Анализ и диагностика фотосферных магнитных полей Солнца по MDI данным методами стохастической геометрии тема диссертации и автореферата по ВАК РФ 01.03.03, кандидат физико-математических наук Князева, Ирина Сергеевна
- Специальность ВАК РФ01.03.03
- Количество страниц 143
Оглавление диссертации кандидат физико-математических наук Князева, Ирина Сергеевна
Введение
Глава 1. Турбулентность и скейлинговые свойства магнитных полей Солнца.
1.1. Предпосылки наличия мультифрактальности на Солнце
1.2. Бесконечно-делимые каскады
1.3. Адаптация мультифрактального подхода к 1УГО1 магнитограммам
Глава 2. Математическая морфология и топология магнитных полей Солнца.
2.1. Современные представления о структуре и эволюции магнитных полей на Солнце.
2.2. Математическая морфология и геометрия случайных полей
2.3. Анализ пространственной и временной эволюции магнитных полей.
Глава 3. Обнаружение всплывающих потоков методами вычислительной топологии.
3.1. Всплывающие магнитные потоки. Связь со вспышечной активностью
3.2. Элементы вычислительной топологии. Связность.
3.3. Применение топологического подхода к анализу магнитного поля
Рекомендованный список диссертаций по специальности «Физика Солнца», 01.03.03 шифр ВАК
Реконструкция динамики геофизических систем из геометрии и топологии матричных данных2005 год, доктор физико-математических наук Макаренко, Николай Григорьевич
Методы математической морфологии, топологической динамики и нейроматематики в физике Солнца1999 год, кандидат физико-математических наук Макаренко, Николай Григорьевич
Динамика фотосферных магнитных полей Солнца2003 год, кандидат физико-математических наук Биленко, Ирина Антоновна
Структуры солнечной атмосферы на разных временных и пространственных масштабах2011 год, доктор физико-математических наук Парфиненко, Леонид Данилович
Численное моделирование токовых и магнитных полей в активных областях на поверхности Солнца1985 год, кандидат физико-математических наук Романов, Валерий Александрович
Введение диссертации (часть автореферата) на тему «Анализ и диагностика фотосферных магнитных полей Солнца по MDI данным методами стохастической геометрии»
Диссертационная работа посвящена исследованию геометрии и топологии фотосферных магнитных полей Солнца по временной последовательности МБ1 магнитограмм. Основными методами, которые использовались в работе, являются мультифрактальный анализ, математическая морфология и вычислительная топология.
Актуальность темы. Исследование магнитного поля Солнца на уровне фотосферы представляет большой интерес. Оно важно в теории, для понимания механизма динамо и процессов происходящих в конвективной зоне. Теоретические модели трудно верифицировать. Динамика подфотосферных слоев рассматривается обычно в приближении тонких 102км.) магнитных трубок [1]. Приблизительно с такими же шкалами имеют дело и численные модели [2]. Однако, доступные пока прямым наблюдениям масштабы магнитных полей на порядок больше; они составляют ~ 1500-2000 км. Существует интересная возможность статистического восстановления мелкозернистой геометрии поля из наблюдаемых крупномасштабных магнитных структур. Она основана на соображениях о полностью развитой турбулентности в плазменных структурах Солнца, для которых магнитное число Рейнольд-са > 107 [3]. Турбулентные вихри прямого(от больших вихрей, к малым), или обратного каскадов обеспечивают свойство статистического самоподобия [4, 5]. Иначе говоря, крупномасштабные структуры являются коллажем своих уменьшенных копий. Это свойство, выраженное в терминах меры, называют мультифрактальностью [6]. Оно позволяет, при некоторых предположениях, восстановить статистическую геометрию „в малом", по ее крупнозернистой наблюдаемой версии. Уже известны первые попытки достичь „сверхразрешения" для изображений Солнца [7]. Однако, для успешных экспериментов по сверхразрешению важно получить надежные оценки мультифракталъного скейлинга данных.
С практической точки зрения, важной проблемой гелиофизики является динамика предвспышечных сценариев на Солнце. Мощные солнечные вспышки и сопутствующие им выбросы коронального вещества определяют состояние околоземного космического пространства, геомагнитные возмущения и радиационную обстановку в магнитосфере и ионосфере Земли [8, 9]. Не исключено даже их влияние на процессы атмосферного переноса воздушных масс.
Главную роль в происхождении и реализации активных солнечных явлений играет магнитное поле Солнца[10, 11]. Именно поэтому, уже в первых системах мониторинга вспышек, предвестники опирались на идеи сложности магнитного поля, такие как длина нейтральной линии, число особых точек поля, максимальные значения градиента АО, ее геометрическая конфигурация [12] и кинематические признаки [13, 14]. Располагая этой информацией и достаточным опытом, можно с удовлетворительной точностью предсказать вспышку или их серию на интервале 1 — 3 дня. Прогноз на меньших интервалах является нерешенной задачей.
Серию вспышек в АО удобно рассматривать как стохастический процесс, в котором вероятность события определяется, по видимому, несколькими независимыми динамическими сценариями [15, 16]. Каждый из них предполагает высокий уровень сложности магнитного поля[17]. Очевидно, что в этой ситуации и предвестник может быть только стохастическим.
Сложность магнитного поля эмержентна: она не является простой суммой описывающих ее признаков. Отсюда следует, интересная особенность статистических предвестников: высокие корреляция признаков с уровнем вспы-шечной активности в статистическом ансамбле АО [14], не означают их большой значимости в применении к конкретной АО. Иначе говоря, вопросы о полноте и оптимальности статистических признаков, выбранных в ансамбле остаются полностью открытыми.
Следовательно, необходимы не статистические, а динамические признаки сложности поля. Они должны быть основаны не на феноменологии, а на морфометрии - т.е. измерении форм магнитных паттернов. Иными словами, нужны не признаки, а „описатели"или дескрипторы, полученные в рамках строгого формализма из наблюдательных данных[18, 19]. Они должны иметь ясный физический смысл и обладать минимальным набором полезных свойств. Можно ограничится, например, инвариантностью относительно сдвигов и поворотов изображения, аддитивностью и непрерывностью дескрипторов на практически интересной временной шкале. Построение такого формализма для описания сложности имеет несомненную актуальность.
С динамической сложностью тесно связана проблема обнаружения нового магнитного потока, который предшествует большей части эруптивных событий [2, 20, 21]. Для практики, наиболее актуальной является проблема предсказания появления нового магнитного потока, до тех пор пока он не будет явно виден на поверхности.
Таким образом, можно выделить следующие актуальные проблемы в описании сложности магнитного поля: мультифрактальная диагностика магнитных структур; поиск динамических дескрипторов; поиск эффективных методов обнаружения всплывающих потоков по наблюдательным данным.
Формальным контекстом, который допускает все эти исследования и выбран в диссертации является геометрия случайных полей [22, 23]. Физический контекст исследований основан на попытке извлечения явных знаний непосредственно из наблюдаемых данных.
Данные доступны на сайте Стэнфордского Университета Магнитограммы представляют собой высококонтрастные цифровые изображения полного диска Солнца, представленные в fits формате. Каждый пиксел изображения кодирует радиальную компоненту магнитного поля Солнца выраженного в Гауссах. Разрешение с которым доступны данные 1024 х 1024 пикселов, что соответствует пространственному разрешению 2"(~ 1700 км на пиксел). В работе были использованы данные с временным дискретом 96m. Безусловно в данных присутствуют различные ошибки связанные с особенностями измерения. В частность уровень шума на пиксел варьируется и составляет ~ 15 — 30 Гс. Чувствительность приборов не позволяет напрямую фиксировать высокие уровни напряженностей (более 5000 Гс), значения превышающие этот порог восстанавливаются с использованием косвенных данных. Данные периодически перекалибровываются для учета различных поправок, в частности во всех магнитограммах была произведена коррекция для учета радиального эффекта. Информацию об особенности получения и обработки данных можно найти в работе [24].
Целью настоящей работы является диагностика эволюции фотосфер-ных магнитных структур по MDI данным методами стохастической геометрии.
Анализировались два типа фрагментов MDI, размером 150 х 150 пикселей. Первый тип не содержал АО и называется ниже просто фон. Второй -содержал пятна и окружающие их структуры. Для краткости он назван полем АО или просто АО. В первую очередь, искались ответы на следующие вопросы:
• Справедлива ли гипотеза о масштабной инвариантности магнитных структур АО и фона?
1 http://soi.stanford.edu/magnetic/index5.html
• Какие дескрипторы могут быть положены в описание сложности полей АО и фона?
• Какими моделями случайных полей можно описать МБ1 данные для АО и фона?
• Как меняется динамическая сложность полей АО во времени и связаны ли ее изменения с вспышками?
Для исследования использовались мультифрактальный формализм [б], геометрия случайных полей [22], математическая морфология [25] и вычислительная топология [26]. Основными дескрипторами служили два функционала Минковского, определенные на ]УШ1: периметр и характеристика Эйлера. Они вычислялись для черно-белых изображений, полученных как множество выбросов магнитного поля на МБ1, выше заданного уровня. Суммарный периметр линий уровня оценивает полную вариацию Вг поля. Характеристика Эйлера описывает топологическую сложность векторного поля на множестве выбросов. Она равна сумме числа максимумов и минимумов за вычетом сед-ловых точек. Дополнительным дескриптором служил индекс несвязности из вычислительной топологии. Он позволяет описать свойства связности изображения в зависимости от разрешения.
На защиту выносятся следующие положения:
1. Существует масштабная инвариантность МБ1-магнитограмм в диапазоне ~ 3000 — 5000км. Найденный мультифрактальный скейлинг можно интерпретировать либо как проявление полностью развитой турбулентности плазмы на уровне фотосферы, либо как следствие универсального статистического самоподобия природных высококонтрастных изображений.
2. Установлена негауссовость фотосферных магнитных полей по МБР. зависимость характеристики Эйлера от уровня для множества выбросов фона и АО асимметричны. Топология выбросов АО определяется главным образом ее межпятенной компонентой; поля пятен определяют поведение хвостов характеристики. Асимметрию магнитной топографии можно объяснить моделью перемежаемого случайного поля.
3. Эволюция характеристики Эйлера и периметра для АО демонстрируют синхронные депрессии на уровнях (< 500Гс). Они как правило предшествуют или сопутствуют увеличению вспышечной активности АО. На уровнях, соответствующих „пятенной компоненте", периметр растет с ростом вспышечной активности.
4. Разработан новый метод раннего обнаружения всплывающего потока на МБ1 магнитограммах. Метод основан на оценке числа несвязных элементов относительно емкости Шоке полученной для цифрового изображения. Возрастание числа несвязных компонент во всех исследованных случаях предваряет или сопровождает вспышки.
Научная новизна исследований заключается в следующем:
• Методы математической морфологии, в применении к фотосферным магнитным полям позволили получить новые выводы о моделях случайных полей, аппроксимирующих наблюдаемые фотосферные структуры в АО и фоне.
• Для описания динамической геометрии магнитных полей активной области предложены два функционала Минковского: периметр и связность. Они легко и однозначно вычисляются по множеству выбросов МБ1 и дают точный инструмент описания и диагностики полей активных областей.
• Предложен новый метод обнаружения всплывающего магнитного потока в окрестности АО, основанный на понятии топологической связности MDI данных. Предложенный алгоритм позволяет получать оценки в режиме мониторинга.
Практическая ценность. Методы и алгоритмы математической морфологии и вычислительной топологии предложенные в работе могут быть с успехом использованы для анализа и диагностики цифровых изображений в любой области знания.
Личный вклад автора. Соискательница принимала участие в постановке задачи, отборе и подготовке экспериментальных данных. Современные методы математической морфологии и топологии были доработаны, расширены и адаптированы к данной задаче автором самостоятельно или на равных правах с соавторами. Соискательницей был создан программный комплекс, позволяющий осуществлять анализ магнитограмм, с помощью которого была проведена вся численная обработка данных.
Апробация работы. Результаты исследований, представленных в диссертации, докладывались на следующих всероссийских и международных конференциях: 6-я Открытая всероссийская конференция: „Современные проблемы дистанционного зондирования земли из космоса" (Москва, ноябрь 2008); Problems of Geocosmos (Санкт-Петербург,СПбГУ, 23-27 мая 2006, 26 - 30 мая 2008); XI Пулковская Международная конференция: „Физическая природа солнечной активности и прогнозирование ее геофизических явлений." (Пулково июль 2007)¡Всероссийские ежегодные конференции по физике Солнца в Пул-ково(7-12 июля 2008 и 5-11 июля 2009); V Конференция молодых ученых „Фундаментальные и прикладные космические исследования"(8-9 апреля 2008, ИКИ РАН, Москва); EGU General Assembly 2009(19-24 апреля, Austria, Vienna) Результаты докладывались на семинарах в СПБГУ и в ГАО РАН.
Структура и объем диссертации. Диссертация состоит из введения, 3 глав, заключения, приложения, в котором приведен графический материал для всех проанализированных АО и списка литературы.
Похожие диссертационные работы по специальности «Физика Солнца», 01.03.03 шифр ВАК
Интегральные характеристики активных областей на Солнце2002 год, кандидат физико-математических наук Красоткин, Сергей Анатольевич
Трехмерная экстраполяция магнитного поля солнечной короны2001 год, доктор физико-математических наук Руденко, Георгий Владимирович
Тонкая структура и колебательные процессы в солнечной фотосфере и пятнах2004 год, кандидат физико-математических наук Ефремов, Вячеслав Иванович
Вопросы нелинейной динамики плазмы в солнечных вспышках и протуберанцах1998 год, доктор физико-математических наук Бардаков, Владимир Михайлович
Математическое моделирование влияния многомерности на эволюцию магнитных полей и структуру аномального прогрева солнечной атмосферы2003 год, кандидат физико-математических наук Романов, Дмитрий Валерьевич
Заключение диссертации по теме «Физика Солнца», Князева, Ирина Сергеевна
Заключение
Целью диссертационной работы являлся анализ динамической геометрии и топологии фотосферных магнитных структур по МП1 данным. Дескрипторами служили:
• мультифрактальный спектр, для описания масштабных свойств магнитограмм,
• функционалы Минковского - периметр и характеристика Эйлера, для описания геометрии магнитных паттернов,
• Число е-несвязных элементов на магнитограмме, для обнаружения элементов нового потока.
Формальным контекстом исследований служила Геометрия Случайных Полей. Эвристическая идея поставленной цели заключалась в попытке извлечь явные знания непосредственно из измеренных значений магнитного поля. Эти знания подразумевали ответы на следующие вопросы:
1. Можно ли подтвердить теоретические соображения о развитой перемежаемой турбулентности из наблюдаемых магнитных структур Активных областей и фона на магнитограммах?
2. Чем отличается геометрия солнечного пятна, от фона?
3. Что можно сказать об устойчивости магнитных структур на интервале 6 — 8 дней?
4. Связаны ли геометрия магнитных полей АО или изменения этой геометрии во времени с вспышечной активностью области?
Для того чтобы найти ответы, необходимо было „арифметизовать" наблюдаемые магнитные формы, используя подходящий морфометрический базис. Его образуют упомянутые выше дескрипторы. В процессе исследования были получены следующие результаты.
1. Оценки мультифрактальных спектров, полученные по ]\<ГО1 данным, доказывают существование свойств масштабной инвариантности. Бе можно объяснить двумя причинами. Первая, следствие ожидаемой высокоразвитой турбулентности солнечной плазмы. Вторая - проявление универсальных свойств НИ, - изображений. Для того, чтобы сделать выбор, были получены морфологические характеристики множества выбросов магнитного поля.
2. Известно, что для гауссовских случайных полей число экстремумов (максимумов и минимумов) уравновешивается числом седел - „перевалов'^ магнитной топографии. Поэтому, график характеристики Эйлера, в зависимости от уровня полностью симметричен. Наш анализ показал, однако, что экспериментальные графики существенно асимметричны для АО и для фона. Это результат важен для теории „среднего поля", в которой предположения о гауссовской структуре поля является ключевым.
3. Форма кривых характеристики Эйлера для АО и фона довольно хорошо аппроксимируется моделью логнормального случайного поля. Хотя эта возможность и не является единственной, заметим, что логнормаль-ное распределение асимптотически вырождается в степенной закон с его свойством масштабной инвариантности. Таким образом, турбулентный источник мультифрактального скейлинга находит дополнительное подтверждение.
4. Анализ эволюции двух функционалов Минковского во времени показал, что общим свойством вспышечно активных АО является когерентные на уровнях напряженности < 500Гс депрессии в морфологических характеристиках. Депрессии часто предваряют или сопровождают увеличение вспышечной активности в АО. Отсюда следует по меньшей мере, что возможные предвестники следует искать в свойствах межпятенной среды. Именно она „прописывает" большую часть характеристики Эйлера; пятна дают небольшой вклад лишь в хвосты кривой. Важно, что графики характеристик для фоновых полей представляют собой хаотические флуктуации.
5. Топологический дескриптор, представляющий собой число различимых с заданной точностью элементов магнитограммы, меняется во времени, так, что изменения всегда предваряют либо сопровождают увеличение вспышечной активности АО. Для вспышечно спокойных АО этот эффект отсутствует.
Дальнейшие исследования должны быть, ориентированы на увеличение статистической состоятельности полученных результатов, извлечение дополнительной информации о топологии поля методами вычислительной топологии и получение статистических вариантов геометрии магнитных полей методами бесконечно-делимых каскадов.
Список литературы диссертационного исследования кандидат физико-математических наук Князева, Ирина Сергеевна, 2010 год
1. Fisher G. H., Fan Y., Longcope D. W. et al. The Solar Dynamo and Emerging Flux // Solar Physics. 2000. Vol. 192. Pp. 119-139.
2. Ruzmaikin A. Clustering of Emerging Magnetic Flux // Solar Physics. 1998. Vol. 181. Pp. 1-12.
3. Зельдович Я. В., Рузмайкин А. А., Соколов Д. Д. Магнитные поля в Астрофизике. М.-Ижевск: Ин-т компьют. исслед, 2006. 384 с.
4. Фрик П. Г. Турбулентность: модели и подходы. Курс лекций. Перм. гос. техн. ун-т, 1998. 107 с.
5. Фрик П. Г. Турбулентность: модели и подходы. Курс лекций. Перм. гос. техн. ун-т, 1999. 136 с.
6. Макаренко Н. Г., Князева И. С. Мультифрактальный анализ изображений // Изв.вузов, ПНД. 2009. Т. 17, № 4. С. 85-99.
7. Delouille V., Chainais P., Hochedez J. F. Quantifying and containing the curse of high resolution coronal imaging // Annales Geophysicae. 2008. Vol. 26, no. 10. Pp. 3169-3184.
8. Мурзин В. С. Астрофизика космических лучей. М.: Университетская книга;Логос, 2007. 488 с.
9. Pulkkinen Т. Space Weather: Terrestrial Perspective // Liv. Rev. in Solar Phys. 2007. Vol. 4, no. 1. URL: http://www.livingreviews.org/ lrsp-2007-1.
10. Обридко В. H. Солнечные пятна и комплексы активности. М.: Наука, 1985. 255 с.
11. Fan Y. Magnetic Fields in the Solar Convection Zone // Liv. Rev. in Solar Phys. 2009. Vol. 6, no. 4. URL: http://www.livingreviews.org/ lrsp-2009-4.
12. Касинский В. В., Иванов Б. В., Обридко В. Н. Индекс компактности солнечных активных областей и характеристики протонных событий // Ис-след. геомагн., аэрон, физ. Солнца. Т. 42. М.: Мир, 1977. С. 34-41.
13. Смит Д. Б. Наблюдения и прогноз солнечной активности. М.: Наука, 1976. 339 с.
14. Cui Y., Li R., Zhang L. et al. Correlation between solar flare productivity and photospheric magnetic field properties // Solar Phys. 2006. Vol. 237. Pp. 45-59.
15. Somov В. V. Plasma Astrophysics, Part II: Reconnection and Flares. NY: Springer, 2009. 440 pp.
16. Benz A. O. Flare Observations // Liv. Rev. in Solar Phys. 2008. Vol. 5, no. 1. URL: http://www.livingreviews.org/lrsp-2008-1.
17. Longcope D. W. Topological Methods for the Analysis of Solar Magnetic Fields // Liv. Rev. in Solar Phys. 2005. Vol. 2, no. 7. URL: http://www. livingreviews.org/lrsp-2005-7.
18. Adams F. C. A topological/geometrical approach to the study of astrophysical maps // Astrophys. J. 1992. Vol. 387. Pp. 572-590.
19. Adams F. C., Wiseman J. Formal results regarding metric space techniques for the study of astrophysical maps // Astrophys. J. 1994. Vol. 435. Pp. 693-707.
20. Green L. M., Demoulin P., Mandrini С. H., Driel-Gesztelyi L. V. How are
21. Emerging Flux, Flares and CMEs Related to Magnetic Polarity Imbalance in Midi Data? // Solar Physics. 2003. Vol. 215. Pp. 307-325.
22. Kosovichev A. G. Photospheric and Subphotospheric Dynamics of Emerging Magnetic Flux // The Origin and Dynamics of Solar Magnetism. Springer-Science, 2009. Pp. 175-195.
23. Adler R. J. The Geometry of Random Fields. Wiley Series in Probability and Mathematical Statistics. Chichester: John Wiley and Sons Ltd, 1981. 290 pp.
24. Worsley K. J. The Geometry of Random Images // Chance. 1996. Vol. 9, no. 1. Pp. 27-39.
25. Scherrer P. H., Bogart R. S., Bush R. I., et al. The Solar Oscillations Investigation Michelson Doppler Imager // Solar Phys. 1995. Vol. 162, no. 1-2. Pp. 129-188.
26. Serra J. Image analysis and mathematical morphology. Academic Press, 1988. 610 pp.
27. Zomorodian A. J. Topology for Computing. Cambridge University Press, 2005. 243 pp.
28. Tennekes H., Lumley J. L. A First Course in Turbulence. MIT Press, 1972. 300 pp.
29. Зельдович Я. В., Молчанов С. А., Рузмайкин А. А., Соколов Д. Д. Перемежаемость • в случайной среде // УФН. 1987. Т. 152, № 1. С. 2-32.
30. Frisch U. Turbulence, the legacy of A.N. Kolmogorov. Cambridge University Press, 1996. 312 pp.
31. Farge M., Kevlahan N., Perrier V., Goirand E. Wavelets and turbulence // Proc. IEEE. 1996. Vol. 84. Pp. 639-669.
32. Mitzenmacher M. A Brief History of Generative Models for Power Law and Lognormal Distributions Internet Mathematics // Solar Physics. 2004. Vol. 1, no. 2. Pp. 226-251.
33. Wilkin S. L. Magnetic structure produced by the fluctuation dynamo: Phd thesis / Newcastele Univ. 2006. 144 pp.
34. Frick P. G., Sokoloff D. D. Cascade and dynamo action in a shell model of magneto-hydrodynamic turbulence // Physical Review E. 1998. Vol. 57, no. 4. Pp. 4155-4164.
35. Staicu A. D. Intermittency in Turbulence: Phd thesis / University of Technology Eindhoven. 2002. 177 pp.
36. Barnsley M. Fractals everywhere. Academic Press, 1988. 531 pp.
37. Зельдович Я. В., Соколов Д. Д. Фракталы, подобие, промежуточная асимптотика // УФН. 1985. Т. 146, № 3. С. 493-506.
38. Solanki S. К. Sunspots: an overview // Astron. Astrophys. Rev. 2003. Vol. 11, no. 2-3. Pp. 153-286.
39. Chainais P., Riedi R., Abry P. On Non-Scale-Invariant Infinitely Divisible Cascades // IEEE Trans IT. 2005. Vol. 51, no. 3. Pp. 1063-1083.
40. Lawrence J. K., Cadavid A. C., Ruzmaikin A. A. On the multifractal distribution of Solar magnetic fields // Astrophys. J. 1996. Vol. 465. Pp. 425-435.
41. Головко А. А., Салахутдинова И. И. Вариации фрактальных характеристик активных областей и вспышки // Солнечно-земная физика. 2008. Т. 12, № 1. С. 25-26.
42. Круглун О. А., Каримова JI. М., Мухамеджанова С. А., Макаренко Н. Г. Мультифрактальный анализ и моделирование магнитограмм полного диска Солнца // Солнечно-земная физика. Т. 10. Новосибирск: Изд. СО РАН, 2007. С. 31-42.
43. Conlon P. A., Gallagher Р. Т., McAteer R. Т. J. et al. Multifractal properties of evolving active regions // Solar Phys. 2008. Vol. 248, no. 2. Pp. 297-309.
44. Abramenko V. I., Yurchishyn V. В., Wang H. et al. Signature of Avalanche in Solar Flares as Measured by Photospheric Magnetic Fields // Astrophys. J. 2003. Vol. 597. Pp. 1135-1144.
45. Levy-Vehel J., Vojak R. Multifractal analysis of Choquet capacities: Preliminary Results Advances // Applied Mathematics. 1998. Vol. 20. Pp. 1-43.
46. Chhabra А. В., Jensen R. V. Direct determination of the f(a) singularity spectrum // Phys. Rev. Lett. 1989. Vol. 62. Pp. 1327-1330.
47. Salakhutdinova I. I., Golovko A. A. The variations of the scaling parameters of the structure functions in solar active regions at the pre-flare stage // Solar phys. 2004. Vol. 225, no. 1. Pp. 59-74.
48. Turiel A., Mato G., Parga N., Nadal J. P. The Self-Similarity properties of natural images resemble those of turbulent flows // Physical Review Letters. 1998. Vol. 80, no. 5. Pp. 1098-1101.
49. Turiel A., Parga N. The multi-fractal structure of contrast changes in natural images: from sharp edges to textures // Neural Computation. 2000. Vol. 12. Pp. 763-793.i
50. Srivastava A., Lee А. В., Simoncelli E. P. On Advances in Statistical Modeling of Natural Images // J. of Mathem. Imaging and Vision. 2003. Vol. 18, no. 1. Pp. 17-33.
51. Schrijver C. J., Zwaan C. Solar and Stellar Magnetic Activity. UK: Cambridge University Press, 2000. 404 pp.
52. Рабинович M. И., Фабрикант А. П., Цимринг JI. Ш. Конечномерный пространственный беспорядок // УФН. 1992. Т. 162, № 8. С. 1 42.
53. Koenderink J. J. The structure of images // Biol. Cybern. 1984. Vol. 50. Pp. 363-370.
54. Schrooder P. What can we measure? // Discrete Differential Geometry: An Applied Introduction. SIGGRAPH 2006 Courses. ACM, 2006. Pp. 5-9.
55. Сантало JI. Интегральная геометрия и геометрические вероятности. М.: Наука, 1983. 358 с.
56. Меске К. R., Buchert Т., Wagner Н. Robust morphological measures for large-scale structure in the universe // Astron. Astrophys. 1994. Vol. 288. Pp. 697-704.
57. Макаренко H. Г. Временные ряды из геометрии и топологии пространственно-временного хаоса // Прикладная Нелинейная динамика. 2004. Т. 6. С. 3-16.
58. Солнечная и солнечно-земная физика. Иллюстрированный словарь терминов, Под ред. А. Бруцек, Ш. Дюран. М.: Мир, 1980. 256 с.
59. Ишков В. Н. Всплывающие магнитные потоки ключ к прогнозу больших солнечных вспышек // Изв. РАН, серия физ. 1998. Т. 62. С. 1835-1839.
60. Wang Н., Wang J. Two-dimensional magnetic singular points and flares in solar active region // Astron. Astrophys. 1996. Vol. 313. Pp. 285-296.
61. Wang H. Distribution of 2-D magnetic saddle points and morphology of flare kernels in solar active regions // Solar Phys. 1997. Vol. 174, no. 1,2. Pp. 265-279.
62. Asimov D. Notes on the topology of vector fields and flows // Tech. Rep. Vol. RNR-93-003. NASA Ames Research Center, 1993.
63. Theisel H., Rossi C., Weinkauf T. Morphological Representations of Vector Fields // Shape Analysis and Structuring / Ed. by L. Floriani, M. Spagnuolo. Springer, 2008. Mathematics and Visualization.
64. Guillemin V., Pollack A. Differential Topology. NY: Prentice Hall, 1974.
65. Basener W. F. Topology and Its Applications. NJ: John Wiley and Sons, Inc., 2006. 339 pp.
66. Michielsen K., Raedt H. D., Hosson J. Т. M. D. Aspects of Mathematical Morphology // Advances in Imaging and Electron Physics. Academic Press, 2002. Vol. 125. Pp. 119-195.
67. Coles P. Statistical geometry and the microwave background // Mon.Not, Roy.Astron.Soc. 1988. Vol. 234. Pp. 539-531.
68. Ryden B. S. The Area of Isodensity Contours in Gaussian and non-Gaussian Fields // Pub. Astr. Soc. Pacific. 1988. Vol. 100. Pp. 1360-1363.
69. Schmalzing J., Kerscher M., Buchert Т. Minkowski Functionals in Cosmology // arXiv:astro-ph/9508154. 1995.
70. Kerscher M., Mecke K., Schmalzing J. et al. Morphological fluctuations of large-scale structure: the PSCz survey // Astronomy k. Astrophysics. 2001. Vol. 373. Pp. 1-11.
71. Makarenko N. G., Karimova L. M., Novak M. Dynamics of Solar magnetic fields from Synoptic charts // Emergent Nature.Patterns, Growth and Scaling in the Sciences. World Scientific, 2001. Pp. 197-207.
72. Worsley K. J. Local maxima and the expected Euler characteristic of excursion sets of X2? F and t fields // Advances in Applied Probability. 1994. Vol. 26. Pp. 13-42.
73. Stoyan D., Kendall W. S., Mecke K. Stochastic Geometry and its applications. J.Wiley&Sons, 1995. 436 pp.
74. Abrahamsen P. A review of gaussian random fields and correlation functions. Tech. Rep. 917. Norwegian Computing Center, 1997.
75. Rice S. O. Mathematical Analysis of random Noise // Bell Systems Tech. J. 1944. Vol. 23. Pp. 282-332.
76. Rice S. O. Mathematical Analysis of random Noise-Conclusion // Bell Systems Tech. J. 1945. Vol. 24. Pp. 46-156.
77. Свешников А. А. Прикладные методы теории случайных функций. М.: Наука, 1968. 464 с.
78. Hadwiger Н. Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. Berlin: Springer Verlag, 1957.
79. Макаренко Н. Г. Эмбедология и нейропрогноз //VI Всерос.научн.-тех. конф. "Нейроинформатика-2004": Лекции по нейроинформатике. 4.2. М.: МИФИ, 2004. С. 140-194.
80. Matsumoto Y. An Introduction to Morse Theory. Translation of Mathematical Monographs. American Mathematical Society, 2001. Vol. 208. 219 pp.
81. Coles P., Barrow J. D. Non-Gaussian statistics and the microwave background radiation // Mon.Not, Roy.Astron.Soc. 1987. Vol. 228, no. 2. Pp. 407-426.
82. Longuet-Higgins M. S. The Statistical Analysis of a Random, Moving Surface // Phil. Trans. R. Soc. bond. A. 1957. Vol. 249, no. 966. Pp. 321-387.
83. Chan T. F., Shen J. Image processing and analysis. Variational, PDE, Wavelet, and Stochastic Methods. Philadelphia: SIAM, 2005. 400 pp.
84. Мала С. Вейвлеты в обработке сигналов. М.: Мир, 2005. 671 с.
85. Magara Т. Investigation into the Subsurface Magnetic Structure in an Emerging Flux Region on the Sun based on a comparison between Hinode's observations and Numerical Simulations // Astrophys. J. 2008. Vol. 685. Pp. 91-94.
86. Fu G., Shih F. Y., Wang H. Automatic detection of magnetic flux emergings in the solar atmosphere from full-disk magnetogram sequences // IEEE Trans, on Image Processing. 2008. Vol. 17, no. 11. Pp. 2174-2185.
87. Robins V., Meiss J. D., Bradley E. Computing connectedness: An exercise in computational topology // Physica D. 1998. Vol. 11. Pp. 913-922.
88. Makarenko N. G., Karimova L. M., Novak M. M. Investigation of global solar magnetic field by computational topology methods // Physica A. 2007. Vol. 380. Pp. 98-108.
89. Makarenko N., Karimova L. Diagnosis of stochastic fields by the mathematical morphology and computational topology methods // Nuclear Instr. & Methods in Physics Res. Sec. A. 2003. Vol. 502, no. 2-3. Pp. 802-804.
90. Келли Д. JI. Общая топология. М.: Наука, 1968. 432 с.
91. Александров П. С. Введение в теорию множеств и общую топологию. М.: Наука, 1977. 368 с.
92. Robins V., Meiss J. D., Bradley E. Computing connectedness: Disconnectedness and discreteness // Physica D. 2000. Vol. 139. Pp. 276-300.
93. H. Г. Макаренко И. H. M., О. А. Круглун, Каримова Л. М. Вариации фрактальных характеристик активных областей и вспышки // Исследование Земли из Космоса. 2008. № 3. С. 18-26.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.