Зависимость устойчивости бесстыкового пути от типов промежуточных рельсовых скреплений и условий их эксплуатации тема диссертации и автореферата по ВАК РФ 05.22.06, кандидат технических наук Лебедев, Алексей Владимирович
- Специальность ВАК РФ05.22.06
- Количество страниц 117
Оглавление диссертации кандидат технических наук Лебедев, Алексей Владимирович
Введение.
Глава 1 Анализ основных методов определения устойчивости бесстыкового пути.
1.1. Энергетический метод расчета устойчивости бесстыкового пути.
1.2. Метод дифференциальных уравнений равновесия.
1.3. Метод имитационного моделирования.
1.4. Метод конечных элементов.
Выводы.
Глава 2 Экспериментальное определение сопротивления промежуточных скреплений повороту рельсов относительно шпал.
Выводы.
Глава 3 Оценка устойчивости бесстыкового пути в зависимости от вида и условий эксплуатации промежуточных рельсовых скреплений методом дифференциальных уравнений равновесия.
Выводы.
Глава 4 Определение критических параметров оценки устойчивости бесстыкового пути.
Выводы.
Рекомендованный список диссертаций по специальности «Железнодорожный путь, изыскание и проектирование железных дорог», 05.22.06 шифр ВАК
Оценка эффективности внедрения в Сибири промежуточных скреплений с упругими элементами2002 год, кандидат технических наук Величко, Дмитрий Валерьевич
Оценка работоспособности бесстыкового пути с учетом его старения. Том 11984 год, кандидат технических наук Уразбеков, Алтайбек Куликович
Совершенствование модели температурной устойчивости бесстыкового пути под поездами2012 год, кандидат технических наук Манюгина, Екатерина Андреевна
Исследование бесстыкового пути в зоне уравнительного пролета и температурной работы плетей1984 год, кандидат технических наук Акур, Иван Степанович
Особенности устройства, укладки, содержания и ремонта бесстыкового пути на концевых участках рельсовых плетей и с их учетом разработка технических решений2006 год, кандидат технических наук Дутаев, Хаважи Хамзатович
Введение диссертации (часть автореферата) на тему «Зависимость устойчивости бесстыкового пути от типов промежуточных рельсовых скреплений и условий их эксплуатации»
Актуальность темы. Одним из основных направлений повышения надежности и эффективности железнодорожного пути является расширение сферы применения бесстыкового пути.
В годы строительства в России железных дорог, в частности дороги Санкт-Петербург - Москва, в путь укладывались очень короткие рельсы (длиной 3,675; 4,572 и 5,486 м). При столь коротких рельсах на каждом километре железнодорожного пути возникало от 360 до 540 рельсовых стыков [1]. В конструкцию пути тогда входили весьма легкие рельсы, (масса 26,3 кг/м), слабые стыковые соединения и песчаный балласт. При такой конструкции большая часть затрат труда и средств путейцев уходили на поддержание в исправном состоянии рельсовых стыков, смену рельсов из-за их изломов в тех же рельсовых стыках, выправку пути в плане и профиле, на устранение угона пути и т.д. В результате угона пути многие рельсовые стыки оказывались предельно растянутыми или сжатыми. Так, например, на перегоне Торбино - Боровинка Николаевской дороги летом 1866 г. около 200 рельсов оказались настолько плотно сжатыми в стыках, что, не имея возможности свободного температурного удлинения при их естественном нагреве, стали коробиться кверху, искривились вбок в сторону путевой канавы и опустились на поверхность балласта; так произошел один из первых «выбросов пути» на железных дорогах России [2]. В те же годы при низких температурах в зимнее время наблюдались многочисленные случаи разрыва рельсовых стыков и даже рельсов на тех участках, где в результате угона на значительном протяжении пути стыки оказались предельно растянутыми, и растягивающие усилия срезали болты в этих стыках. Все это побуждало путевых работников вводить в практику более длинные рельсы. К началу первой мировой войны в России средняя длина рельсов превышала первоначальную в 2 - 3 раза. И все же, принятая тогда концепция о необходимости уменьшать в рельсах продольные температурные силы за счет зазоров в стыках продолжала господствовать в практике железных дорог России вплоть до 20 - 30-х годов XX века [3]. В 90-е годы прошлого столетия инженеры-путейцы на своих съездах и страницах журналов уже обсуждали проблемы создания бесстыкового пути. Естественно, что первые шаги в решении проблемы бесстыкового пути делались в направлении разработки его конструкций с периодической сезонной разрядкой продольных температурных сил в рельсовых плетях, а также попытки создания конструкции с автоматической саморазрядкой продольных усилий в рельсах. К такого рода предложениям необходимо отнести конструкции пути И.Р. Стецевича (1896 г.), А.И. Ольденборгера (1904 г.), И.А. Бородкина (1938 - 1940 гг.), М.С. Боченкова (1948 г.) [4]. В 50 - 60-е годы XX века многократно возросла грузонапряженность железных дорог России, увеличились нагрузки от подвижного состава на путь, скорости движения поездов. Все это потребовало повсеместного значительного повышения прочности и устойчивости верхнего строения пути за счет применения тяжелых типов рельсов, более совершенных типов рельсовых скреплений, железобетонных шпал, щебеночного балластного слоя, защиты пути от угона и т.п. Но еще ранее, в 20 - 30-е годы, рядом ведущих ученых начали проводиться экспериментальные и теоретические работы по созданию конструкций температурно-напряженного бесстыкового пути (работы Членова М.Г.). Эти исследования позволяли начать разработку конструктивной, технологической и нормативной базы для проектирования и применения таких конструкций на железных дорогах, создать Технические условия их применения в эксплуатации, технологий их укладки, ремонта, текущего содержания и диагностики устойчивости бесстыкового пути.
Естественно, все это потребовало большого объема экспериментальных и теоретических исследований, наблюдений за опытными участками бесстыкового пути различных конструкций при действии в его рельсовых плетях больших продольных сжимающих сил.
Разработкой аналитических методов определения значений предельно допускаемых по устойчивости бесстыкового пути продольных сжимающих температурных сил в рельсовых плетях занимались многие исследователи. Так, в бывшем СССР методы расчета устойчивости бесстыкового пути разрабатывали К.Н. Мищенко [5], С. П. Першин [6], А.Я. Коган [7], С.И. Морозов [8] и др.; во Вьетнаме - Нгуен Ван Туен [9] в Венгрии - И. Немешеди, Э. Немчек [10], в Германии - Г. Майер [11], Ф. Рааб; в Австрии - Э. Энгель [12]; во Франции - А. Мартине [13] и Р. Леви; в Чехословакии - JL Сакмауэр [14]; в Англии - Д. Бартлет и Д. Туор; в Японии - М. Нумато [15] и др.
В процессе эксплуатации возникают как конструктивные, так и технологические отказы, снижающие эффективность конструкции бесстыкового пути. При этом ряд отказов имеет специфический характер, определяемый особенностями бесстыкового пути и условиями эксплуатации.
Введение в обращение тяжеловесных поездов повышенной массы привело к увеличению сил действующих на путь от подвижного состава. В частности, исследования на Дальне-Восточной железной дороге показали, что продольные силы в пути вызывают увеличение боковой нагрузки в крутых кривых выше 100 кН. Поэтому, возникает необходимость повышения боковой устойчивости пути, особенно в крутых кривых. По мнению автора, этого можно добиться путем дифференциации промежуточных рельсовых скреплений по условиям эксплуатации. Для бесстыкового пути необходима дифференциация промежуточных скреплений в зависимости от плана пути (радиус кривых участков), регионов его укладки и т.п.
Цель настоящей работы - повышение устойчивости бесстыкового пути и расширение сферы его применения за счет дифференциации требований к промежуточным рельсовым скреплениям.
Для достижения данной цели необходимо: исследование конструктивных и технологических особенностей работы промежуточных рельсовых скреплений; определение сопротивления повороту рельса относительно шпалы в зависимости от типа скрепления и условия его эксплуатации; разработка дополнений к техническим требованиям к промежуточным рельсовым скреплениям.
Методика исследования основана на использовании комплекса теоретических и экспериментальных исследований, среди которых:
- методы нелинейной устойчивости бесстыкового пути;
- методы статистической обработки результатов экспериментов;
- экспериментальные исследования по определению сопротивления промежуточного рельсового скрепления повороту рельса относительно шпалы в горизонтальной плоскости.
Научную новизну представляют:
- дополнения и уточнения физико-математической модели расчета устойчивости бесстыкового пути, касающиеся учета типа промежуточного рельсового скрепления и условий его эксплуатации в данной конструкции пути;
- экспериментально определенные коэффициенты, характеризующие сопротивление скрепления повороту рельса относительно шпалы в горизонтальной плоскости;
- методика и программа расчета устойчивости бесстыкового пути с определением численных значений, написанная на языке программирования Delphi, разработанная на основе методов исследования нелинейной устойчивости упругих систем.
Практическая ценность диссертации:
- установлено влияние типа промежуточного рельсового скрепления и условий его эксплуатации (прижатие рельса к подрельсовому основанию) на устойчивость бесстыкового пути;
- на основе разработанной методики получены рекомендации уточняющие значений допускаемых повышений температур рельсовой плети по условию устойчивости в зависимости от типа скреплений;
- дифференцированная таблица повышений температур рельсовых плетей допускаемых по условию устойчивости пути против выброса для типов скреплений КБ-65, ЖБР-65, АРС-4 (рекомендации к Техническим указаниям по устройству, укладке, содержанию и ремонту бесстыкового пути, табл. П.2.1., Допускаемые повышения температур рельсовых плетей).
На защиту выносятся:
- дополненная и уточненная физико-математическая модель расчета устойчивости бесстыкового пути, позволяющая оценить промежуточные рельсовые скрепления и условия их эксплуатации в данной конструкции пути;
- программа расчета устойчивости бесстыкового пути с определением критических параметров, написанная на языке программирования Delphi;
- предложения по изменению технических требований к промежуточным рельсовым скреплениям ЦП 1 -86;
- предпосылки для разработки рекомендаций к техническим указаниям по устройству, укладке, содержанию и ремонту бесстыкового пути.
Результаты работы и ее отдельные предложения докладывались на конференции «Развитие железнодорожного транспорта в условиях реформирования» на экспериментальном кольце ВНИИЖТ в г. Щербинка в 2006 г. и на конференции «Организация перевозок опасных грузов наземным транспортом» Московская обл., п. Ильинское ОЦ «Ласточка».
По материалам диссертации опубликовано 4 печатных работы.
1. Лебедев А.В. Экспериментальное определение сопротивления промежуточных скреплений повороту рельсов относительно шпал// Вестник ВНИИЖТ. 2006 № 6, с. 42 - 44.
2. Баклагин Е. С., Лебедев А. В. Сопротивление повороту рельса относительно шпалы в горизонтальной плоскости // Вестник ВНИИЖТ. 2005. N4. с.37-39
3. Баклагин Е.С., Лебедев А.В., Макаренко А.В., Федорович Д.В. Новое предложение в использовании рельсовых скреплений/Сборник трудов ВНИИЖТ «Развитие железнодорожного транспорта в условиях реформирования», 2006, с. 47-53.
4. Коган А.Я., Лебедев А.В. Устойчивость бесстыкового пути при различных конструкциях скреплений и условиях их эксплуатации // Вестник ВНИИЖТ. 2007. № 2, с. 3-9.
1. АНАЛИЗ ОСНОВНЫХ МЕТОДОВ ОПРЕДЕЛЕНИЯ УСТОЙЧИВОСТИ БЕССТЫКОВОГО ПУТИ
Первые методы оценки устойчивости пути появились еще в 19 веке. По существу они отражали лишь какой-то определенный этап работы конструкции, который был исследован разработчиками опытным путем. После появления бесстыкового пути со сварными стыками возникла необходимость разработки теории, которая бы реально отражала его состояние в процессе эксплуатации.
Начало теоретических исследований устойчивости бесстыкового пути относится к 1913 г [16]. За последующие годы были созданы разные варианты методов расчета величин продольных критических сил в рельсах: энергетический, интегральных уравнений, дифференциальных уравнений и др. Значительный вклад в решение этих вопросов внесли российские ученые: В.Г. Альбрехт, М.С. Боченков, Е.М. Бромберг, М.Ф. Вериго, Н.П. Виногоров, В.А. Грищенко, Н.Б. Зверев, Э.П. Исаенко, Н.И. Карпущенко, С.И. Клинов, А.Я. Коган, А.А. Кривобородов, B.C. Лысюк, К.Н. Мищенко, С.И. Морозов, В.И. Новакович, С.П. Першин и другие, а так же зарубежные ученые: О. Амман, М. Балух, К. Грюневальдт, Д. Игнятич, Г. Майер, Нгуен Ван Туен, И. Немешди-Немшек, Э. Немежди, М. Нумата, Р. Леви, и другие. В каждом из предложенных методов сделаны упрощающие расчетную схему допущения, приняты различные формы деформаций рельсов в плане до выброса, имеются различия в исходных уравнениях равновесия и в величинах задаваемых исходных данных. Выбор метода расчета зависит от многих факторов, главные из которых: а) необходимая точность расчета - один метод прост для решения, но менее точен, другой метод имеет более высокую степень точности, но требует трудоемких вычислений и большого объема исходных данных; б) большинство методов позволяют определить только предельные величины, без отслеживания переходных процессов, однако именно переходные процессы при потере устойчивости представляют наибольший интерес, так как именно они дают более глубокое понимание сущности процесса выброса пути.
Похожие диссертационные работы по специальности «Железнодорожный путь, изыскание и проектирование железных дорог», 05.22.06 шифр ВАК
Совершенствование малообслуживаемых рельсовых скреплений для железобетонных шпал бесстыкового пути2001 год, кандидат технических наук Чижов, Андрей Викторович
Управление техническим, технологическим и организационным состоянием путевого комплекса дороги2002 год, кандидат технических наук Крапивный, Владимир Антонович
Особенности укладки, содержания и ремонта бесстыкового пути со сверхдлинными рельсовыми плетями и с их учетом разработка технологических решений2004 год, кандидат технических наук Карпачевский, Геннадий Владимирович
Напряженное состояние рельсовой плети и методы его определения2002 год, кандидат технических наук Савин, Александр Владимирович
Расширение сферы применения бесстыкового пути в сложных эксплуатационных и природно-климатических условиях2004 год, кандидат технических наук Суслов, Олег Александрович
Заключение диссертации по теме «Железнодорожный путь, изыскание и проектирование железных дорог», Лебедев, Алексей Владимирович
Выводы:
1. В зависимости от типа промежуточного рельсового скрепления допускаемые повышения температуры рельсовых плетей могут отличаться от соответствующих им нормативов, предусмотренных ТУ [52]. Так, например, допускаемое по условию устойчивости, повышение температуры рельсовых плетей для скрепления типа ЖБР-65 больше на 4-9°С, соответствующего допустимого повышения температуры для скрепления КБ-65;
2. В зависимости от прижатия рельса к подрельсовому основанию допускаемые повышения температуры рельсовых плетей могут отличаться между собой для скрепления КБ-65 на 9°С, для скрепления ЖБР на 2°С, для АРС-4 на 5°С.
3. При дифференциации допускаемых повышений температур рельсовых плетей бесстыкового пути в зависимости от типа и состояния скреплений можно рекомендовать сферы применения промежуточных рельсовых скреплений по отношению к бесстыковому пути.
4. Учитывая полученные автором результаты, представляется возможным определить способность работы промежуточных рельсовых скреплений при повторной укладке их в бесстыковой путь.
ЗАКЛЮЧЕНИЕ
1. Устойчивость бесстыкового пути зависит от параметров сопротивляемости рельсошпальной решетки деформациям, которая характеризуется сопротивлением балласта поперечному сдвигу шпал; сопротивлением промежуточных скреплений повороту рельсов; сопротивлением бесстыкового пути продольным перемещениям. Представляется целесообразным учесть сопротивление промежуточных рельсовых скреплений повороту рельса относительно шпал в горизонтальной плоскости. В расчетах по оценке устойчивости пути параметры, характеризующие его устойчивость, описываются различными аналитическими выражениями. Исходя из физики процесса, для аппроксимации экспериментальных данных по определению указанных параметров, используется трехпараметрическая функция арктангенса вида R = q-<p+M-arcig—. Принятая функция имеет нечетность, г т.е. обладает кососимметричностью, в силу которой f(-x)= - f(x). В диссертации определены параметры указанной функции для различной степени прижатия рельса к подрельсовому основанию промежуточными скреплениями КБ-65, ЖБР-65 и АРС-4.
2. С учетом полученных автором экспериментальных данных определяющих сопротивление скреплений повороту рельса относительно шпалы была дополнена и уточнена физико-математическая модель расчета устойчивости бесстыкового пути.
Представленная модель позволяет выполнить расчет по оценке устойчивости бесстыкового пути для конструкции пути с различными типами промежуточных рельсовых скреплений и степенью прижатия ими рельса к подрельсовому основанию.
3. Из анализа результатов видно, что величина критической силы, частоты и длины волны неровности пути в плане зависят от типа промежуточного рельсового скрепления и степени прижатия рельса к шпале, характеристик начальной неровности, радиуса кривой и свойств балласта. Для скрепления КБ-65 с затяжкой гаек клеммных болтов крутящим моментом 200Нм величина критической силы на 15% меньше по сравнению со скреплением ЖБР-65 с прижатием рельса к шпале, вызываемым крутящим моментом 200Нм. Для скрепления АРС-4 при четвертой позиции монорегулятора величина критической силы на 20-25% меньше чем у скрепления КБ-65 с затяжкой гаек клеммных болтов крутящим моментом 200Нм.
4. Определены повышения температуры рельсовой плети допускаемые по условию устойчивости пути против выброса в зависимости от прижатия рельса к подрельсовому основанию для прямого участка пути и кривых участках, для скреплений КБ-65, ЖБР-65 и АРС-4. Это дает возможность дополнить технические требования к промежуточным рельсовым скреплениям ЦП 1-86, позволяет сократить эксплуатационные расходы на содержание пути, повысить безопасность движения и расширить полигон укладки бесстыкового пути.
5. Разработана программа для ПВМ для расчета основных критических параметров оценки устойчивости бесстыкового пути в зависимости от типа скрепления и характеристики прижатия рельса к шпале, сопротивления поперечному перемещению шпал в балласте, вида и степени уплотнения балласта.
6. При дифференциации допускаемых повышений температур рельсовых плетей бесстыкового пути в зависимости от типа и состояния скреплений можно рекомендовать сферы применения промежуточных рельсовых скреплений для бесстыкового пути.
7. Используя предложенную расчетную модель для проведя экспериментов со старогодными промежуточными рельсовыми скреплениями представляется возможным определить их работоспособность при повторной укладке их в бесстыковой путь.
8. Результаты, полученные в ходе исследования, можно использовать в автоматизированной системе контроля напряженного состояния рельсовых плетей бесстыкового пути, с использованием разработок Акустического института им. академика Андреева Н.Н. и ВНИИЖТа основанных на теории звуковых колебаний. Периодическая диагностика напряженного состояния плетей способствует предотвращению выбросов бесстыкового пути, сокращению эксплуатационных расходов на содержание пути, повышению безопасности движения и расширению полигона укладки бесстыкового пути.
Список литературы диссертационного исследования кандидат технических наук Лебедев, Алексей Владимирович, 2007 год
1. Карейша С. Д. Исторический очерк постепенного развития и улучшения верхнего путевого строения // Тр. НТК НКПС. Вып. 20: Столетие железных дорог. М.: Транспечать НКПС, 1925. С. 175 192.
2. Чернявский А. Непрерывный железнодорожный путь // Железнодорожное дело. 1903. №4.
3. Вериго М. Ф. Новые методы в установлении норм устройства и содержания бесстыкового пути / ВНИИЖТ.- М.: Интекст, 2000. 184 с.
4. Першин С. П. Развитие строительно-путейского дела на отечественных железных дорогах. М.: Транспорт, 1978. 296 с.
5. Мищенко К. Н. Бесстыковой рельсовый путь. М.: Трансжелдориз-дат, 1950. 62 с.
6. Першин С. П. Метод расчета устойчивости бесстыкового пути // Тр. МИИТ. Вып. 147: Путь и путевое хозяйство. М., 1962. С. 28 97.
7. Коган А. Я. Продольные силы в железнодорожном пути //Тр. ВНИИЖТ. Вып. 332. М.: Транспорт, 1967. 166с.
8. Морозов С. И. Устойчивость температурно-напряженного железнодорожного пути: Автореферат докторской диссертации. М.: ВНИИЖТ, 1982. 35 с.
9. Нгуен Ван Туен. Определение допускаемой температурной продольной силы на прямых участках бесстыкового пути (на основе теории случайных функций): Автореферат кандидатской диссертации. М.: МИИТ, 1970. 18с.
10. Немчек Э. Расчет горизонтальной устойчивости бесстыкового пути / Перевод ЦНТБ МПС П-7850. 58 с.
11. Майер Г. Упрощенный метод теоретического исследования выброса бесстыкового пути / Перевод ЦНТБ МПС, П-8264. 65 с.
12. Энгель Э. Устойчивость бесстыкового пути в условиях изменения температуры / Перевод ЦНТБ МПС П-8314. 41 с.
13. Мартине А. Выпучивание бесстыкового пути в балласте и рельсы большой длины // Rev. Jen. de Chemins de Fer. 1936 №4. P. 212-231.
14. Сакмауэр Jl. Расчет бесстыкового пути на действие продольных сил // Eisenbahntechnische Rundschau. 1960. Т VIII. № 8. S. 389 397.
15. Нумато М. Сопротивление сварных длинных рельсов продольному изгибу/ Перевод ЦНТБ МПС П-8465. 29 с.
16. Першин С.П., Методы расчета устойчивости температурно напряженного пути и способы ее повышения. /Дисс. к-та техн. наук, М., 1959.
17. Мищенко К.Н. Расчет устойчивости непрерывной рельсовой колеи под воздействием температурных сил//Труды МИИТ 1932. Вып.21.
18. Nemesdi Е. A. vaganiok kivetodesbiz tonsaganak szamitasa // Бщяпщтн муыуещл яыуилщтшмуб 1958.
19. Nemesdi Е. Berechnung waagrechte Gleisverfung nach neuen ungaris-chen Versuchen//ETR, №12, I960.
20. Коган А.Я. Динамика пути и его взаимодействие с подвижным составом. М.: Транспорт, 1997. 326 с.
21. Коган А.Я., Полещук И.В. Взаимосвязь критической температурной силы в рельсе с размерами неблагоприятной неровности // Вестник ВНИИЖТ, №7, 2000. С.3-7
22. Коган А. Я., Грищенко В. А. Нелинейная устойчивость бесстыкового пути в прямых участках при наихудших формах ненапряженной начальной неровности // Вестник ВНИИЖТ. 1993. № 3. С. 20-45.
23. Вериго М. Ф. Динамические модели устойчивости бесстыкового пути // Железные дороги мира. 1994. № 10. С. 3 9.
24. Новакович В. И. Бесстыковой железнодорожный путь с рельсовыми плетями неограниченной длины. Львов: Вища школа, 1984. 99 с.
25. Игнятич Д. Определение критической силы, деформирующей бесстыковой путь// Вестник ВНИИЖТ. 1965. № 8. С. 7 11.
26. Ignjalic D. Osnove za komjutersko prognoziranje temperature I mesta nastanka katastrofalnt deformacije neprekinetog koloseka u zavistnosti jdstcena jderzavanja u eksploataciji. Tehnika, 37, №12,1982ю рю1823-1828,1841.
27. Коган А.Я., Грищенко В.А., Косенюк В.К. Устойчивость бесстыкового пути при температурном воздействии // Обеспечение надежности и эффективности бесстыкового пути в сложных условиях эксплуатации. Новосибирск: 1991. С. 5-15.
28. Вериго М.Ф. Новые методы в установлении норм устройства и содержания бесстыкового пути / ВНИИЖТ.- М: Интекст, 2000. 184 с.
29. Вериго М.Ф. Проблема угона пути в современной путейской нау-ке//Ж.д. мира, №2, 1998.
30. Вериго М.Ф. Расчеты пути. Их прошлое, настоящее и буду-щее//Путь и путевое хозяйство. №8,1997.
31. Вериго М.Ф. Расширение сферы применения бесстыкового пу-ти//Ж.д. мира, №6, 1996, С.49-53.
32. Вериго М. Ф. Создание нормативной базы для повышения устойчивости бесстыкового пути и расширения его применения // Железные дороги мира, N6, 1996. С.41-49
33. Вериго М. Ф. Технические указания нуждаются в принципиальной переработке // Путь и путевое хозяйство. №11,1997.
34. Вериго М. Ф., Коган А. Я. Взаимодействие пути и подвижного состава. М.: Транспорт, 1986. 559 с.
35. Александров А. В. Исследование перемещений и усилий при изгибе пластины методом конечных разностей: Учеб. пособие. М., 1978. -44с.
36. Александров А. В. Решение плоской задачи теории упругости методом конечных разностей: Учеб. пособие. -М.: 1979. -22с.
37. Галлагер Р. Метод конечных элементов: Пер. с англ./Под ред. Н.В. Банинчука. М.:Мир, 1984. - 428 с.
38. Сегерлинд JI. Применение метода конечных элементов. М., Мир, 1979.-392 с.
39. Елизаров С.В. Современные методы расчета инженерных конструкций на железнодорожном транспорте: Метод конечных элементов и программа COSMOS/M: Учеб.пособие. СПб: ПГУПС, 2002.-211 с.
40. Кудрявцев И.А. Расчет элементов верхнего строения пути методом конечных элементов: Учеб. пособие Гомель, 1982. - 32 с.
41. Шимкович Д.Г. Расчет конструкций в NSC/NASTRAN for Windows. Мю: ДМК Пресс, 2001. - 448 с.
42. К. X. Чу и П. X. Ли. Влияние продольных усилий на бесстыковой путь// Железные дороги мира. 1980. №12 с. 59-64.
43. Конечно-элементные модели расчета железнодорожного пути на прочность и устойчивость: Сб. ст./Ауезбаев Е.Т., Безруков М.В., Васильев А.Б., Васильев С.П., Исагалиев Е.Б., Исаенко Э.П. Под ред. Э.П. Исаенко, М.: Гудок, 1997.- 136 с.
44. Лебедев А.В. Экспериментальное определение сопротивления промежуточных скреплений повороту рельсов относительно шпал// Вестник ВНИИЖТ. 2006 № 6.
45. Корн Г., Корн Т. Справочник по математике. М.: Наука, 1968. 262с.
46. Бабаков И.М. Теория колебаний. М.: Гостехиздат, 1968. 559с
47. Ржаницын А.Р. Устойчивость равновесия упругих систем. М.: Гос.Издат. технико-теоретич. лит., 1955, 476 с.
48. Болотин В.В. Динамическая устойчивость упругих систем. М.: Гостехиздат, 1956. 600 с.
49. Зверев Н.Б. Бесстыковой путь со скреплениями различных типов. -М.: Транспорт, 1965, 32 с.
50. Бромберг Е.М. и др. Бесстыковой путь. Труды ЦНИИ МПС, вып. 244, М., Трансжелдориздат, 1962.
51. Бесстыковой путь / В.Г. Альбрехт, Н.П. Виногоров, Н.Б. Зверев и др.; Под ред. В. Г. Альбрехта, А.Я. Когана. М.: Транспорт, 2000. 408 с.
52. Технические указания по устройству, укладке, содержанию и ремонту бесстыкового пути / МПС России. М.: Транспорт, 2000. 96 с.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.