Структура и некоторые биологические свойства липидов А из морских грамотрицательных бактерий родов Marinomonas и Chryseobacterium тема диссертации и автореферата по ВАК РФ 02.00.10, кандидат химических наук Воробьева, Елена Владимировна
- Специальность ВАК РФ02.00.10
- Количество страниц 112
Оглавление диссертации кандидат химических наук Воробьева, Елена Владимировна
I. ВВЕДЕНИЕ.
II. ЛИТЕРАТУРНЫЙ ОБЗОР.
11.1. МЕХАНИЗМЫ ТОКСИЧЕСКОГО ДЕЙСТВИЯ ЭНДОТОКСИНОВ И СТРАТЕГИИ ПО ИХ НЕЙТРАЛИЗАЦИИ.
11.2. СТРУКТУРА ЛИПИДА А.
11.2.1. Общая характеристика липида А.
11.2.2. Варианты липида А, имеющие модификации в структуре гидрофильной части молекулы.
11.2.2.1. Вариации в углеводной части молекулы липида А.
11.2.2.2. Наличие остатков фосфорной кислоты.
11.2.3. Характеристика гидрофобной части молекулы липида А.
11.2.3.1. Качественный состав жирных кислот липида А.
11.2.3.2. Количественный состав жирных кислот липида А.
11.2 А. Бактерии, не содерэ/сащие липида А.
II.2.5. Взаимосвязь структуры и биологических свойств липида А.
III. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ.
111.1. ЛИПИДЫ А ИЗ БАКТЕРИЙ РОДА MARINOMONAS.
III. 1.1. Структура липида А из Marinomonas communis
АТСС 27118'.
III. 1.2. Структурная характеристика липида А из Marinomonas mediterránea АТСС 700492Т.
111.2. СТРУКТУРА ЛИПИДОВ А ИЗ БАКТЕРИЙ РОДА CHRYSEOBACTERIUM.
111.3. НЕКОТОРЫЕ ОСОБЕННОСТИ СОСТАВА НАРУЖНОЙ МЕМБРАНЫ
БАКТЕРИЙ РОДА CHRYSEOBACTERIUM.
III.3. НЕКОТОРЫЕ БИОЛОГИЧЕСКИЕ СВОЙСТВА ЛИПИДОВ А И ЛИПОПОЛИСАХАРИДОВ ИЗ БАКТЕРИЙ РОДОВ СHR YSEOBA CTERIUM И MARINOMONAS.
IV. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ.
V. ВЫВОДЫ.
Рекомендованный список диссертаций по специальности «Биоорганическая химия», 02.00.10 шифр ВАК
Липиды некоторых наземных и морских грамотрицательных бактерий как факторы патогенности и потенциальные антагонисты эндотоксинов2009 год, доктор химических наук Красикова, Инна Николаевна
Липосомная модель в исследовании различных биологически активных веществ2000 год, доктор химических наук Лукьянов, Павел Александрович
Характеристика химического и антигенного составов гликополимеров поверхности бактерий Herbaspirillum seropedicae Z78 и Herbaspirillum lusitanum P6-122012 год, кандидат биологических наук Величко, Наталья Сергеевна
Влияние экзогенных и эндогенных факторов на липидный состав бактерий псевдотуберкулеза2001 год, кандидат биологических наук Бахолдина, Светлана Ивановна
Сравнительное исследование липополисахаридов и структуры О-специфических полисахаридов бактерий рода Azospirillum2006 год, кандидат биологических наук Коннова, Ольга Николаевна
Заключение диссертации по теме «Биоорганическая химия», Воробьева, Елена Владимировна
V. ВЫВОДЫ
1. Из морской грамотрицательной бактерии Marinomonas communis АТСС 27118Т выделен липид А необычной структуры - 1-фосфат (3-1'—»6-связанного дисахарида D-глюкозамина, ацилированного остатками редких короткоцепочечных (К)-3-додеканоилоксидекановой (или (Л)-З-деканоилоксидекановой) и (У^)-З-гидроксидекановой кислот в положениях 2 и 3 соответственно и (i?)-3-{(i?)-3-гидроксидеканоил}оксидекановой кислоты в положении 2'.
2. Липид А из бактерий М. mediterránea АТСС 700492 не содержит нормальных жирных кислот и представляет собой 1,4'-дифосфат глюкозаминобиозы, ацилированный остатками (Я)-3-{(/?)-3-гидроксидеканоил}оксидекановой кислоты в положениях 2, 2' и (К)~ 3-гидроксидекановой кислоты в положении 3. Липиды А бактерий рода Marinomonas -первые представители соединений этого класса, содержащие необычную 3-ацилоксиалкановую кислоту, состоящую из двух остатков (Я)-З-гидроксидекановой кислоты.
3. Впервые из диких, не мутантных, штаммов морских бактерий Chryseobacterium in
Т Т doltheticum CIP 103168 и С. scophthalmum CIP 104199 выделен липид А моносахаридной природы: 1-фосфат £)-глюкозамина, ацилированный остатками (/?)-3-гидрокси-изо-пентадекановой и (^)-З-гидрокси-шо-гептадекановой кислот в положениях 2 и 3 соответственно.
4. Показано, что липиды А из бактерий М. communis, М. mediterránea и С. indoltheti-сит, а также липополисахарид из М. communis проявляют низкую токсичность.
5. Липиды А из М. communis и С. indoltheticum, а также липоплисахарид из М. communis не индуцируют синтез фактора некроза опухоли альфа клетками периферической крови человека при всех изученных концентрациях. Липиды А из М communis и С. indoltheticum в дозе 10000 нг/мл ингибируют индуцированную липополисахаридом из Escherichia coli продукцию фактора некроза опухоли альфа на 50 %. Липополисахарид из М. communis в концентрации 1000 нг/мл ингибирует индуцированный синтез фактора некроза опухоли альфа на 80 % и является антагонистом эндотоксинов универсального типа действия.
Список литературы диссертационного исследования кандидат химических наук Воробьева, Елена Владимировна, 2006 год
1. Baumgartner J.-D., Calandra Т. Treatment of sepsis. Past and future avenues // Drugs 1999. V. 57. №2. P. 127-132.
2. Opal S.M., Yu Jr. R.L. Antiendotoxin strategies for the prevention and treatment of septic shock. New approaches and future directions // Drugs 1998. V. 55. № 4. P. 497-508.
3. Morrison D.C., Ryan L.J. Endotoxins and disease mechanisms // Annu. Rev. Med. 1987. V. 38. №4. P. 417-432.
4. Kato H., Haishima Y., Iida Т., Tanaka A., Tanamoto K. Chemical structure of lipid A isolated from Flavobaclerium meningoseplicum lipopolysaccharide // J. Bacteriol. 1998. V. 180. №15. P. 3891-3899.
5. Kumins N.H., Hunt J., Gamelli R.L., Filkins J.P. Partial hepatectomy reduces the en-dotoxin-induced peak circulating level of tumor necrosis factor in rats // Shock 1996. V. 5. № 5. P. 385-388.
6. Cross A., Opal S.M. Therapeutic intervention in sepsis with antibody to endotoxin: is there a future? // J. Endotox. Res. 1994. V. 1. № 1. P. 57-59.
7. Wilkinson S.G. Bacterial lipopolysaccharides themes and variations // Progr. Lipid Res. 1996. V. 35. №3. P. 283-343.
8. Книрель Ю.А., Кочетков H.K. Строение липополисахаридов грамотрицательных бактерий. I. Общая характеристика липополисахаридов и структура липида А // Биохимия 1993. Т. 58. № 2. С. 166-200.
9. Rietschel Е.Т., Brade Н., Hoist О. Bacterial endotoxin: chemical constitution, biological recognition, host response, and immunological detoxification // Curr. Topics in Microbiol. Immunol. 1996. V. 216. № 1. C. 39-81.
10. Kawata Т., Bristol J.R., Rossignol D.P. E5531, a synthetic non-toxic lipid A derivative blocks the immunobiological activities of lipopolysaccharide // British J. Pharmacol. 1999. V. 27. № 5. P. 853-862.
11. Tanamoto К. Production of nontoxic lipid A by chemical modification and its antagonistic effect on LPS action // Prog. Clin. Biol. Res. 1998. V. 397. № 3. P. 269-280.
12. Ray M.K., Kumar G.S., Shivaji S. Phosphorylation of lipopolysaccharides in the Antarctic psychotroph Pseudomonas syringae: a possible role in temperature adaptation // J. Bacte-riol. 1994. V. 176. № 14. P. 4243-4249.
13. Kawahara K., Tsukano H., Watanabe H., Lindner В., Matsuura M. Modification of the structure and activity of lipid A in Yersinia pestis lipopolysaccharide by growth temperature // Infect. Immun. 2002. V. 70. № 8. P. 4092-4098.
14. Красикова И.Н., Бахолдина С.И., Хотимчеико C.B., Соловьева Т.Ф. Влияние температуры роста и плазмиды pVM82 на жирнокислотный состав липида A Yersinia pseudotuberculosis II Биохимия 1999. Т. 64. № 4. С. 404-411.
15. Beutler В., Poltorak A. The sole gateway to endotoxin response: how LPS was identified as tlr4, and its role in innate immunity // Drug Metabol. Disposit. 2001. V. 29. № 4. P. 474-■478.
16. Mayer H., Bhat U.R., Masoud H., Radziewska-Lebrecht J., Widemann C., Krauss J.H. Bacterial lipopolysaccharides // Pure Appl. Chem. 1989. V. 61. № 7. P. 1271-1282.
17. Nikado H., Nakae T. The outer membrane of gram-negative bacteria // Adv. Microb. Physiol. 1979. V. 20. P. № 2. 163-250.
18. Bayston K.F., Cohen J. Bacterial endotoxin and current concepts in the diagnosis and treatment of endotoxemia // J. Med. Microbiol. 1990. V. 31. № 2. P. 73-83.
19. Rietschel E.T., Brade H. Bacterial endotoxins // Scientif. Amer. 1992. V. 267. № 2. P. 5461.
20. David S.A. Towards a rational development of anti-endotoxin agents: novel approaches tosequestration of bacterial endotoxins with small molecules // J. Mol. Recogn. 2001. V. 14. № 6. P. 370-387.
21. Dinarello C.A. Cytokines as mediators in the pathogenesis of septic shock // Curr. Top. Microbiol. Immunol. 1996. V. 216. № 2. P. 133-165.
22. Bone R.C. Gram-negative sepsis: a dilemma of modern medicine // Clin. Microbiol. Rev. 1993. V. 6. № 1. P. 57-68.
23. Ройт А., Бростофф Д., Мейл Д. Иммунология: Пер. с англ. М.: Мир, 2000 (Roitt I., Brostoff G., Male D. Immunology. London; Philadelphia; St. Louis; Sydney; Tokio: Mosby, 1998).
24. Amura C.R., Silverstein R, Morrison D.C. Mechanisms involved in the pathogenesis of sepsis are not necessarily reflected by in vitro cell activation studies // Infect. Immun. 1998. V. 66. №11. P. 5372-5378.
25. Diks S.H., van Deventer S.J.H., Peppelenbosch M.P. Lipopolysaccharide recognition, internalization, signaling and other cellular effects // J. Endotox. Res. 2001. V. 7. № 5. P. 335-348.
26. Marra M.N., Wilde C.G., Griffith G.E., Snable J.L., Scott R.W. Bactericidal/permeability-increasing protein has endotoxin-neutralizing activity // J. Immunol. 1990. V. 144. № 2. P. 662-666.
27. Tobias P.S., Mathison J.C., Ulevitch R.J. A family of lipopolysaccharide binding proteins involved in responses to Gram-negative sepsis // J. Biol. Chem. 1988. V. 263. № 27. P. 13479-13481.
28. Vesy C.J., Kitchens R.L., Wolfbauer G., AlbersJ.J., Munford R.S. Lipopolysaccharide-binding protein and phospholipid transfer protein release lipopolysaccharides from gramnegative bacterial membranes // Infect. Immun. 2000. V. 68. № 5. P. 2410-2417.
29. Kirkland T.N., Finley F„ Leturq D., Moriarty A., Lee J.D, Ulevitch R.J., Tobias P.S. Analysis of lipopolysaccharide binding by CD14 // J. Biol. Chem. 1993. V. 268. № 33. P. 24818-24823.
30. Wright S.D., Ramos R.A., Tobias P.S., Ulevitch R. J., Mathison J. C. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein // Science 1990. V. 249. №4975. P. 1431-1433.
31. Ziegler-Heitbrock H.W., Ulevitch R.J. CD14: cell surface receptor and differentiation marker // Immunol. Today 1993. V. 14. № 3. P. 121-125.
32. Viriyakosol S., Mathison J.C., Tobias P.S., Kirkland T.N. Structure-function analysis of CD14 as a soluble receptor for lipopolysaccharide // J. Biol. Chem. 2000. V. 275. № 5. P. 3144-3149.
33. Gegner J.A., Ulevitch R.J., Tobias P.S. Lipopolysaccharide (LPS) signal transduction and clearance. Dual roles for LPS binding protein and membrane CD14 // J. Biol. Chem. 1995. V. 270. № 10. P. 5320-5325.
34. Tobias P.S., Soldau K,, Gegner J.A., Mintz D., Ulevitch R.J. Lipopolysaccharide binding protein-mediated complexation of lipopolysaccharide with soluble CD 14 // J. Biol. Chem. 1995. V. 270. 18. P. 10482-10488.
35. Pugin J., Heumann I.D., Tomasz A., Kravchenko V.V., Akamatsu Y., Nishijima M., Glauser M.P., Tobias P.S., Ulevitch R.J. CD14 is a pattern recognition receptor // Immunity 1994. V. 1. № 6. P. 509-516.
36. Antal-Szalmas P. Evaluation of CD 14 in host defence // Eur. J. Clin. Invest. 2000. V. 30. №2. P. 167-179.
37. ITaziot A., Chen S., Ferrero E., Low M.G., Silber R., Goyert S.M. The monocyte differentiation antigen, CD 14, is anchored to the cell membrane by a phosphatidylinositol linkage // J. Immunol. 1988. V. 141. № 2. P. 547-552.
38. Goyert S.M., Ferrero E., Rettig W.J., Yenamandra A.K., Obata F., Le Beau M.M. The CD 14 monocyte differentiation antigen maps to a region encoding growth factors and receptors // Science 1988. V. 239. № 4839. P. 497-500.
39. Simmons D.L., Tan S., Tenen D.G., Nicholson Weller A., Seed B. Monocyte antigen CD 14 is a phospholipid anchored membrane protein//Blood 1989. V. 73. № 1. P. 284-289.
40. Lemaitre B., Nicolas E., Michaut L., Reichhart J.M., Hoffman J.A. The dorsoventral regulatory gene cassette Spaetzle/Toll/cactus controls the potent antifungal response in Droso-phila adults // Cell 1996. V. 86. № 6. P. 973-983.
41. Cantrell D., O'Neill L., Welham M. Signal transduction during innate and adaptive immunity // Biochem. Society Transact. 2001. V. 29. № 5. P. 853-859.
42. Shimazu R., Akashi S., Ogata H., Nagai Y., Fukudome K., Miyake K., Kimoto M. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4 // J. Exp. Med. 1999. V. 189. № 11. P. 1777-1782.
43. Ogata H., Su I., Miyake K., Nagai Y., Akashi S., Mecklenbrauker I., Rajewsky K., Kimoto M., Tarakhovsky A. The Toll-like receptor protein RP105 regulates lipopolysaccharide signaling in B cells // J. Exp. Med. 2000. V. 192. № 1. P.- 23-30.
44. Moran A. Structure-bioactivity relationships of bacterial endotoxins // J. Toxicol. Toxin Rev. 1995. V. 14. № 1. P. 47-83.
45. Leturcq D.J., Moriarty A.M., Talbott G., Winn R.K., Martin T.R., Ulevitch R.J. Antibodies against CD14 protect primates from endotoxin-induces shock // J. Clin. Invest. 1996. V. 98. №7. P. 1533-1538.
46. Leturcq D.J., Moriarty A.M., Talbott G., Winn R.K., Martin T.R., Ulevitch R.J. Therapeutic strategies to block LPS interactions with its receptor // Prog. Clin. Biol. Res. 1995. V. 392. P. 473-477.
47. Gallay P., Heumann D., Le Roy D., Barras C., Glauser M.-P. Mode of action of anti-lipopolysaccharide-binding protein antibodies for prevention of endotoxemic shock in mice //Proc. Natl. Acad. Sci. USA 1994. V. 91. № 17. P. 7922-7926.
48. Siegel J.P. Antiendotoxin antibodies //Ann. Intern. Med. 1995. V. 122. № 4. P. 315-316.
49. David S.A., Bechtel B., Annaiah C., Mathan V.I., Balaram P. Interaction of cationic amhpiphilic drugs with lipid A: implications for development of endotoxin antagonists // Biochim. Biophys. Acta 1994. V. 1212. № 2. P. 167-175.
50. Rustici A., Velucchi M., Sironi M., Ghezzi P., Quataert S., Green B., Porro M. Molecular mapping and detoxifivation of the lipid A binding site by synthetic peptides // Science 1993. V. 259. № 5093. P. 361-365.
51. Westphal 0., Liideritz O. Chemische erfoschung von lipopolysacchariden gram-negativer bacterien//Angew. Chem. 1954. B. 66. S. 407-417.
52. Gmeiner J., Simon M., Liideritz O. The linkage of phosphate group and 2-keto-3-deoxyoctonate to the lipid A component in a Salmonella minnesota lipopolysaccharide // Eur. J. Biochem. 1971. V. 21. № 3. P. 355-356.
53. Galloway S.W., Raetz C.R.H. A mutant of Escherichia coli defective in the first step of endotoxin biosynthesis // J. Biol. Chem. 1990. V. 265. № 11. P. 6394-6402.
54. Krasikova I.N., Bakholdina S.I., Solov'eva T.F. A rapid method for the preparation of lipid A from Yersinia pseudotuberculosis // Russian J. Bioorgan. Chem. 1999. V. 25. № 3. P. 257-261.
55. Hamidi A.E., Tirsoaga A., Novikov A., Hussein A., Caroff M. Microextraction of bacterial lipid A: easy and rapid method for mass spectrometric characterization // J. Lipid Res. 2005. V. 46. P. 1773-1778.
56. Gmeiner J., Liideritz O., Westphal O. Biochemical studies on lipopolysaccharides of Salmonella R mutants. 6. Investigation on the structure of the lipid A component // Eur. J.
57. Biochem. 1969. V. 7. № 3. P. 370-379.
58. Sledjeski D.D., Weiner R.M. Hyphomonas spp., Shewanella spp., and other marine bacteria lack heterogeneous (ladderlike) lipopolysaccharides // Appl. Environ. Microbiol. 1991. V. 57. № 7. P. 2094-2096.
59. Westphal 0., Gmeiner J., Luderitz 0., Tanaka 0., Eichenberger E. Chemistry and biology of the lipid A component of enterobacterial lipopolysaccharides // Colloq. Int. C. N. R. S. 1969. V. 174. P. 69-79.
60. Strain S.M., Fesik S.W., Armitage I.M. Characterization of lipopolysaccharide from a hep-toseless mutant of Escherichia coli by carbon 13 nuclear magnetic resonance // J. Biol. Chem. 1983. V. 258. № 5. P. 2906-2910.
61. Qureshi N., Takayama K., Heller D., Fenselau C. Position of ester groups in the lipid A backbone of lipopolysaccharides obtained from Salmonella typhimurium II J. Biol. Chem. 1983. V. 258. № 12. P. 12947-12951.
62. Chan S., Reinhoid V.N. Detailed structural characterization of lipid A/ Electrospray ionization coupled with tandem mass spectrometry // Anal. Biochem. 1994. V. 218. № 1. P. 6373.
63. Johnson R.S., Her G.-R., Grabarek J., Hawiger J., Reinhoid V.N. Structural characterisation of monophosphoryl lipid A homologs obtained from Salmonella mininesota Re595 lipopolysaccharide//J. Biol. Chem. 1990. V. 265. № 14. P. 8108-8116.
64. Wy C.A., Goto M., Young R.I., Myers T.F. Prophulactic treatment of endotoxic shock with monohosphoryl lipid A in newborn rats // Biol. Neon. 2000. V. 77. P. 191-195.
65. Trent M.S, Pabich W., Raetz C.R.H., Miller S.I. A PhoP/PhoQ-induced lipase (PagL) that catalyzes 3-O-deacylation of lipid A precursors in membranes of Salmonella lyphimurium II J. Biol. Chem. 2001. V. 276. № 12. P. 9083-9092.
66. Babinski K.J., Ribeiro A.A., Raetz C.R.H. The Escherichia coli gene encoding the UDP-2,3-diacylglucosamine pyrophosphatase of lipid A biosynthesis // J. Biol. Chem. 2002. V. 277. № 29. P. 25937-25946.
67. Crowell D.N., Anderson M.S., Raetz C.R.H. Molecular cloning of the genes for lipid A disaccharide synthase and UDP-N-acetylglucosamine acyltransferase in Escherichia coli // J. Bacteriol. 1986. V. 168. № 1. P. 152-159.
68. Radika K., Raetz C.R.H. Purification and properties of lipid A disaccharide synthase of Escherichia coli // J. Biol. Chem. 1988. V. 263. № 29. P. 14859-14867.
69. Garrett T.A., Kadrmas J.L., Raetz C.R.H. Identification of the gene encoding the Escherichia coli lipid A 4'-kinase. Facile phosphorylation of endotoxin analogs with recombinant lpxK// J. Biol. Chem. 1997. V. 272. № 35. P. 21855-21864.
70. Ray B.L., Raetz C.R.H. The biosynthesis of gram-negative endotoxin. A novel kinase in Escherichia coli membranes that incorporates the 4'-phosphate of lipid A //J. Biol. Chem. 1987. V. 262. №3. P. 1122-1128.
71. Brozek K.A., Hosaka K., Robertson A.D., Raetz C.R.H. Biosynthesis of lipopolysaccharide in Escherichia coli. Cytoplasmic enzymes that attach 3-deoxy-D-manno-octulosonic acidto lipid A // J. Biol. Chem. 1989. V. 264. № 12. P. 6956-6966.
72. Belunis C.J., Raetz C.R.H. Biosynthesis of endotoxins. Purification and catalytic properties of 3- deoxy-D-manno-octulosonic acid transferase from Escherichia coli II J. Biol. Chem. 1992. V. 267. № 14. P. 9988-9997.
73. Gronow S., Brade H. Lipopolysaccharide biosynthesis: which steps do bacteria need to survive?Ill Endotox. Res. 2001. V. 7. № 1. P. 3-23.
74. Karow M., Georgopoulos C. Isolation and characterization of the Escherichia coli msbB gene, a multicopy suppressor of null mutations in the high-temperature requirement gene htrB // J. Bacteriol. 1992. V. 174. № 3. P. 702-710.
75. Brozek K.A., Raetz C.R.H. Biosynthesis of lipid A in Escherichia coli. Acyl carrier protein-dependent incorporation of laurate and myristate // J. Biol. Chem. 1990. V. 265. № 26. P. 15410-15417.
76. Clementz T., Bednarski J.J., Raetz C.R.H. Function of the htrB high temperature requirement gene of Escherichia coli in the acylation of lipid A: HtrB catalyzed incorporation of laurate // J. Biol. Chem. 1996. V. 271. № 20. P. 12095-12102.
77. Tharanathan R.N., Weckesser J., Mayer H. Structural studies on the D-arabinose-containing lipid A from Rhodospirillum tenue 2761 // Eur. J. Biochem. 1978. V. 84. № 2. P. 385-394.
78. Hoist O., Borowiak D., Weckesser J., Mayer H. Structural studies on the phosphate-free lipid A of Rhodomicrobium vannielii ATCC 17100 // Eur. J. Biochem. 1983. V. 137. № 1. P. 325-332.
79. Urbanik-Sypniewska T., Seydel U., Greek M., Weckesser J., Mayer H. Chemical studies on the lipopolysaccharide of Rhizobium meliloti 10406 and its lipid A region 11 Arch.
80. Microbiol. 1989. V. 152. № 4. 527-532.
81. Pokrywka M., Viazanko K., Medvick J., Knabe S., McCool S., Pasculle A.W., Dowling J.N. A Flavobacterium meningosepticum outbreak among intensive care patients // Am. J. Infect. Control 1993. V. 21. № 3. P. 139-145.
82. Moran A.P. Biological and serological characterization of Campylobacter jejuni lipopoly-saccharides with deviating core and lipid A structures // FEMS Immunol. Med. Microbiol. 1995. V. 11. №2. P. 121-130.
83. Choma A. Sowinski P. Characterization of Mesorhizobium huakuii lipid A containing both D-galacturonic acid and phosphate residues // Eur. J. Biochem. 2004. V. 271. № 7. P. 1310-1322.
84. Wilkinson S.G., Taylor D.P. Occurrence of 2,3-diamino-2,3-dideoxy-D-glucose in lipid A from lipopolysaccharide of Pseudomonas diminuta II J. Gen. Microbiol. 1978. V. 109. № 2. P. 367-370.
85. Carrion M., Bhat U.R., Reuhs B., Carlson R.W. Isolation and characterization of the lipopolysaccharides from Bradyrhizobium japonicum IIJ Bacteriol. 1990. V. 172. № 4. P. 1725-1731.
86. Roppel J., Mayer H., Weckesser J. Identification of a 2,3-diamino-2,3-dideoxyhexose in the lipid A component of lipopolysaccharides of Rhodopseudomonas viridis and Rhodop-seudomonaspalustris II Carbohydr. Res. 1975, V. 40. № 1. P. 31-40.
87. Ahamed N.M., Mayer H., Biebl H., Weckesser J. Lipopolysaccharide with 2,3-diamino-2,3-dideoxyglucose containing lipid A in Rhodopseudomonas sulfoviridis II FEMS Microbiol. Lett. 1982. V. 14. № 1. P. 27-30.
88. Mayer H., Bock E., Weckesser J. 2,3-Diamino-2,3-dideoxyglucose containing lipid A in the Nitrobacter strain X14 // FEMS Microbiol. Lett. 1983. V. 17. № 1-3. P. 93-96.
89. Kumada H., Haishima Y., Umemoto T., Tanamoto K. Structural study on the free lipid A isolated from lipopolysaccharide of Porphyromonas gingivalis II J. Bacteriol. 1995. V. 177. №8. P. 2098-2106.
90. Tanamoto K., Kato H., Haishima Y., Azumi S. Biological properties of lipid A isolatedfrom Flavobacterium meningosepticum // Clin. Diagn. Lab. Immunol. 2001. V. 8. № 3. P. 522-527.
91. Weintraub A., Zahringer U., Wollenweber H.-W., Seydel U., Rietschel E.T. Structural characterization of the lipid A component of Bacteroides fragilis strain NCTC 9343 lipopolysaccharide // Eur. J. Biochem. 1989. V. 183. № 2. P. 425-431.
92. Moran A.P., Lindner B., Walsh E.J. Structural characterization of the lipid A component of Helicobacter pylori rough- and smooth-form lipopolysaccharides // J. Bacteriol. 1997. V. 179. №20. P. 6453-6463.
93. Hashimoto M., Asai Y., Tamai R., Jinno T., Umatani K., Ogawa T. Chemical structure and immunobiological activity of lipid A from Prevotella intermedia ATCC 25611 lipopolysaccharide // FEBS Lett. 2003. V. 543. № 1-3. P. 98-102.
94. Silipo A., Lanzetta R., Garozzo D., Cantore P.L., Iacobellis N. S., Molinaro A., Parrilli M., Evidente A. Structural determination of lipid A of the lipopolysaccharide from Pseudomonas reactans II Eur. J. Biochem. 2002. V. 269. P. 2498-2505.
95. Lehmann V., Redmond J., Egan A., Minner I. The acceptor for polar head groups of the lipid A component of Salmonella lipopolysaccharides II Eur. J. Biochem. 1978. V. 86. № 2. P. 487-496.
96. Volk W.A., Galanos C., Lüderitz O. The occurrence of 4-amino-4-deoxy-L-arabinose as a constituent in Salmonella lipopolysaccharide preparations // Eur. J. Biochem. 1970. V. 17. № 2. P. 223-229.
97. Soncini F.C., Groisman E.A. Two-component regulatory systems can interact to process multiple environmental signals // J. Bacteriol. 1996. V. 178. № 23. P. 6796-6801.
98. Gunn J.S., Miller S.I. PhoP-PhoQ activates transcription of pmrAB, encoding a two-component regulatory system involved in Salmonella typhimurium antimicrobial peptide resistance // J. Bacteriol. 1996. V. 178. № 23. P. 6857-6864.
99. Gunn J.S., Lim K.B., Krueger J., Kim K., Guo L., Hackett M., Miller S.I. PmrA-PmrB-regulated genes necessary for 4-aminoarabinose lipid A modification and polymyxin resisresistance // Mol. Microbiol. 1998. V. 27. № 6. P. 1171-1182.
100. Groisman E.A., Kayser J., Soncini F.C. Regulation of polymyxin resistance and adaptation to low-Mg2+ environments //J. Bacteriol. 1997. V. 179. № 22. P. 7040-7045.
101. Hase S., Rietschel E.T. The chemical structure of the lipid A component of lipopolysaccha-rides from Chromobacterium violaceum NCTC 9694 // Eur. J. Biochem. 1977. V. 75. № 1. P. 23-34.
102. Sidorczyk Z., Zahringer U., Rietschel E.T. Chemical structure of the lipid A component of the lipopolysaccharide from a Proteus mirabilis Re-mutant // Eur. J Biochem. 1983. V. 137. №1. p. 15-22.
103. Guo L., Lim K.B., Poduje C.M. Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides // Cell 1998. V. 95. № 2. P. 189-198.
104. Suda Y., Ogawa T., Kashihara W., Oikawa M., Shimoyama T., Hayashi T., Tamura T., Kusumoto S. Chemical structure of lipid A from Helicobacter pylori strain 206-1 lipopolysaccharide // J. Biochem. 1997. V. 121. № 6. P. 1129-1133.
105. Tegtmeyer B., Weckesser J., Mayer H., Imhoff J. F. Chemical composition of the lipopoly-saccharides of Rhodobacter sulfidophilus, Rhodopseudomonas acidophila, and Rhodop-seudomonas blasticall Arch. Microbiol. 1985. V. 143. № 1. P. 32-36.
106. Rietschel E.T. Absolute configuration of 3-hydroxy fatty acids present in lipopolysaccha-rides from various bacterial groups // Eur. J. Biochem. 1976. V. 64. № 2. P. 423-428.
107. Nikado H. Molecular basis of bacterial outer membrane permeability revisited // Microbiol. Mol. Biol. Rev. 2003. V. 67. № 4. P. 593-656.
108. Bishop D.G., Hewett M.J., Knox K.W. Occurrence of 3-hydroxytridecanoic and 3-hydroxypentadecanoic acids in the lipopolysaccharides of Veillonella H Biochim. Biophys. Acta 1971. V. 231. №2. P. 274-276.
109. Wilkinson S.G., Caudwell P.F, Lipid composition and chemo taxonomy of Pseudomonas putrefactions (Alteromonas putrefactions) II J. Gen. Microbiol. 1980. V. 118. № 2. P. 329
110. Чернявская E.H., Васюренко З.П. Жирнокислотный состав липополисахаридов бактерий родов Klebsiella и Enterobacter И 1983. Т. С. 39-43.
111. Iida Т., Haishima Y., Tanaka A., Nishiyama K., Saito S., Tanamoto K. Chemical structure of lipid A isolated from Comamonas testosteroni lipopolysaccharide // Eur. J. Biochem. 1996. V. 237. №.5. P. 468-475.
112. Masoud H.,Weintraub S.T., Wang R., Cotter R., Holt S.C. Investigation of the structure of lipid A from Actinobacillus actinomycetemcomitans strain Y4 and human clinical isolate PO 1021-7 // Eur. J. Biochem. 1991. V. 200. № 3. P. 775-781.
113. Kawahara K., Moll Ii., Knirel Y.A., Seydel U., Zaehringer U. Structural analysis of two glycosphingolipids from the lipopolysaccharide-lacking bacterium Sphingomonas capsulata // Eur. J. Biochem. 2000. V. 267. № 6. P. 1837-1846.
114. Salimath P., Weckesser J., Strittmatter W., Mayer H. Structural studies on the non-toxic lipid A from Rhodopseudomonas spaeroides ATCC 17023 // Eur. J. Biochem. 1983. V. 136. №1. P. 195-200.
115. Rietschel E.T., Luderitz О., Volk W.A. Nature, type of linkage, and absolute configuration of (hydroxy) fatty acids in lip polysaccharides from Xenyhomonas sinensis and related strains//! Bacteriol. 1975. V. 122. №3. P. 1180-1188.
116. Wilkinson S.G., Galbraith L., Lightfoot G.A. Cell walls, lipids, and lipopolysaccharides of Pseudomonas species II Eur. J. Biochem. 1973. V. 33. № 1. P. 158-174.
117. Wilkinson S.G., Galbraith L. Studies of lipopolysaccharides from Pseudomonas aeruginosa II Eur. J. Biochem. 1975. V. 52. № 2. P. 331-343.
118. Bryn K., Rietschel E.T. L-2-hydroxytetradecanoic acid as a constituent of Salmonella lipopolysaccharides (lipid A) // Eur. J. Biochem. 1978. V. 86. № 2. P. 311-315.
119. Gibbons H.S., Lin S., Cotter R.J., Raetz C.R.H. Oxygen requirement for the biosynthesis of the S-2-hydroxymyristate moiety in Salmonella typhimurium lipid A // J. Biol. Chem. 2000. V. 275. № 42. P. 32940-32949.
120. Guo L., Lim K.B., Gunn J.S., Bainbridge В., Darveau R.P., Hackett M., Miller S.I. Regula
121. Regulation of lipid A modifications by Salmonella (yphimurium virulence genes phoP-phoQ // Science 1997. V. 276. № 5310. P. 250-253.
122. Arata S., Hirayama T., Kasai N., Itoh T., Ohsawa A. Isolation of 9-hydroxy-(-tetradecalactone from lipid A of Pseudomonas diminuta and Pseudomonas vesicularis II FEMS Microbiol. Lett. 1989. V. 51. № 1. P. 219-222.
123. Choma A. Fatty acid composition of Mesorhizobium huakuii lipopolysaccharides. Identification of 27-oxooctacosanoic acid // FEMS Microbiol. Lett. 1999. V. 177. № 2. P. 257262.
124. Vadam V., Kannenberg E.L., Haynes J.G., Sherrier D.J., Datta A., Carlson R.W. A Rhizo-bium leguminisarum AcpXL mutant produces lipopolysaccharide lacking 27-hydroxyoctacosanoic acid // J. Bacterid. 2003. V. 185. № 6. P. 1841-1850.
125. Carlson R.W., Busch M., Mayer H. Distribution and phylogenetic significance of 27-hydroxyoctacosanoic acid in lipopolysaccharides from bacteria belonging to the a-2 subgroup ofProteobacteria// J. Syst. Bacteriol. 1991. V. 41. № 2. P. 213-217.
126. Kropinski A.M.B., Lewis V., Berry D. Effect of growth temperature on the lipids, outer membrane proteins, and lipopolysaccharides of Pseudomonas aeruginosa PAO I I J. Bacteriol. 1987. V. 169. № 5. P. 1960-1966.
127. Kumar G.S., Jagarmadham M.V., Ray M.K. Low-temperature-induced changes in composition and fluidity of lipopolysaccharides in the antarctic psychrotrophic bacterium Pseudomonas syringae II J. Bacteriol. 2002. V. 184. № 23. P. 6746-6749.
128. Carty S.M., Sreekuraar K.R., Raetz C.R.H. Effect of cold shock on lipid A biosynthesis in Escherichia coli. Induction at 12 °C of an acyltransferase specific for palmitoleyl-acyl carrier protein // J. Biol. Chem. 1999. V. 274. № 14. P. 9677-9685.
129. Zhou Z., White K.A., Polissi A., Georgopoulos C., Raetz C.R.H. Function of Escherichia coli MsbA, an essential ABC family transporter, in lipid A and phospholipid biosynthesis // J. Biol. Chem. 1998. V. 273. № 20. P. 12466-12475.
130. Caroff M., Aussei L., Zarrouk H., Perry M.B., Karibian D. Contribution of 252Cf-plasmadesorption mass spectrometry to structural analysis of lipids A: examples of non-conservatism in lipid A structure // J. Endotox. Res. 1999. V. 5. № 1. P. 86-89.
131. Bath U.R., Kontrohr T., Mayer H. Structure of Shigella sonnei lipid A // FEMS Microbiol. Lett. 1987. V. 40. № 2. P. 189-192.
132. Masoud II, Lindner B., Weckesser J., Mayer H. The structure of lipid A component of Rhodocyclus gelatinosus Dr2 // System. Appl. Microbiol. 1990. V. 13. P. 227-233.
133. Moran A.P., O'Malley D.T., Kosunen T.U., Helander I.M. Biochemical characterization of Campylobacter fetus lipopolysaccharide // Infect. Immun. 1994. V. 62. № 9. P. 3922-3929.
134. Goldman R.C., Doran C.C., Kadam S.K., Capobianco J.O. Lipid A precursor from Pseudomonas aeruginosa is completely acylated prior to addition of 3-deoxy-D-manno-octulosonate // J. Biol. Chem. 1988. V. 263. № 11. P. 5217-5223.
135. Mohan S., Raetz C.R.H. Endotoxin biosynthesis in Pseudomonas aeruginosa: enzymatic incorporation of laurate before 3-deoxy-D-manno-octulosonate // J. Bacteriol. 1994. V. 176. №22. P. 6944-6951.
136. Rietschel E.T., Wollenweber H.-W., Russa R., Brade IT, Zahringer U. Concepts of the chemical structure of lipid A // Rev. Infect. Dis. 1984. V. 6. № 4. P. 432-438.
137. Tsukioka D., Nishizawa T., Miyase T., Achiwa K., Suda T., Soma G.-I., Mizuno D. Structural characterization of lipid A obtained from Pantoea agglomerans lipopolysaccharide // FEMS Microbiol. Lett. 1997. V. 149. № 2. P. 239-244.
138. Helander I.M., Hirvas L., Touminen J. Vaara M. Preferential synthesis of heptaacyl lipopolysaccharide by the ssc permeability mutant of Salmonella typhimurium I I Eur. J. Biochem. V. 204. №3. P. 1101-1106.
139. Roy A.M., Coleman J. Mutations in firA, encoding the second acyltransferase in lipopolysaccharide biosynthesis, affect multiple steps in lipopolysaccharide biosynthesis // J. Bacteriol. 1994. V. 176. № 6. P. 1639-1646.
140. Bishop R.E., Gibbons H.S., Guina T., Trent M.S., Miller S.I., Raetz C.R.H. Transfer of palmitate from phospholipids to lipid A in outer membranes of Gram-negative bacteria // EMBO J. 2000. V. 19. № 19. P. 5071-5080.
141. Brozek K.A., Bulawa C.E., Raetz C.R.H. Biosynthesis of lipid A precursors in Escherichia coli. A membrane- bound enzyme that transfers a palmitoyl residue from a glycerophos-pholipid to lipid X//J. Biol. Chem. 1987. V. 262. № 11. P. 5170-5179.
142. Красикова И.Н., Капустина H.B., Исаков В.В., Горшкова Н.М., Соловьева Т.Ф. Установление структуры липида А из морской грамотрицательной бактерии Pseudoalteromonas haloplanktis АТСС 14393т // Биоорган. Хим. 2004. Т. 30. №. 4. С. 409-416.
143. Caroff М., Deprun С., Richards J.С., Karibian D. Structural characterization of the lipid A of Bordetellapertussis 1414 endotoxin II J. Bacteriol. 1994. V. 176. № 16. P. 5156-5159.
144. Somerville J.E., Cassiano L., Bainbridge B. Cunningham M.D., Darveau R.P. A novel Escherichia coli lipid A mutant that produces an anti-inflammatory lipopolysaccharide I I J. Clin. Invest. 1996. V. 97. № 2. P. 359-365.
145. Basu S.S., White K.A., Que N.L., Raetz C.R.H. A deacylase in Rhizobium leguminosarum membranes that cleaves the 3-O-linked beta-hydroxymyristoyl moiety of lipid A precursors //J. Biol. Chem. 1999. V. 274. №16. P. 11150-11158.
146. Ernst R.K., Guina Т., Miller S.I. How intracellular bacteria survive: surface modifications that promote resistance to host innate immune responses // J Infect Dis. 1999. V. 179. № 2. P. 326-330.
147. Zarrouk H., Karibian D., Bodie S., Perry В., Richards J.C., Caroff M. Structural characterization of the lipids A of three Bordetella bronchiseptica strains: variability of fatty acid substitution//J. Bacteriol. 1997. V. 179. № 11. P. 3756-3760.
148. Kawahara K., Uchida K., Aida K. Isolation of an unusual lipid A type glycolipid from Pseudomonaspaucimobilis II Biochim. Biophys. Acta 1982. V. 712. № 3. P. 571-575.
149. Kawahara K., Seydel U., Matsuura M., Danbara H., Rietschel E.T., Zahringer U. Chemical structure of glycosphingolipids isolated from Sphingomonas paucimobilis II FEBS Lett. 1991. V. 292. № 1,2. P. 107-110.
150. Kawasaki S., Moriguchi R., Sekiya K., Nakai Т., Ono E., Kume K., Kawahara K. The cell envelope structure of the lipopolysaccharide-lacking gram-negative bacterium Sphingomo
151. Sphingomonaspaucimobilis II J. Bacteriol. 1994. V. 176. № 2. P. 284-290.
152. Schultz C.P., Wolf V., Lange R., Mertens E., Wecke J., Naumann D., Zahringer U. Evidence for a new type of outer membrane lipid in oral spirochete Treponema denticola // J. Biol. Chem. 1998. V. 273. № 25. P. 15661-15666.
153. Scudo F.M., Sacchi L., Freudenberg M.A., Grigolo A., Galanos C. On the absence of lipolysaccharides in endocellular symbionts of cockroaches and its evolutionary implications // Endocytobiosis Cel. Res. 1996. V. 11. № 2. P. 119-127.
154. Cinco M., Banfi E., Balanzin D., Godeas C., Panfili E. Evidence for (lipo)oligosaccharides in Borrelia burgdorferi and their serological specificity // FEMS Microbiol. Irnmun. 1991. V. 76. № 1. P. 33-38.
155. Steeghs L., Den Hartog R., Den Boer A., Zomer B., Roholl P., Van der Ley P. Meningitis bacterium is viable without endotoxin //Nature 1998. V. 392. № 2. P. 449-450.
156. Steeghs L., de Cock H., Evers E., Zomer B., Tommassen J., van der Ley P. Outer membrane composition of a lipopolysaccharide-deficient Neisseria meningitidis mutant // EMBO J. 2001. V. 20. № 24. P. 6937-6945.
157. Alving C.R. Lipopolysaccharide, lipid A, and liposomes containing lipid A as immunologic adjuvants // Immunobiology 1993. V. 187. № 3-5. P. 430-446.
158. Glauser M.P., Zanetti G., Baumgartner J.-D., Cohen J. Septic shock: Pathogenesis // Lancet 1991. V. 338. № 8769. P. 732-736.
159. Yamamoto A., Ochiai M., Kataoka M., Toyoizumi H., Horiuchi Y. Development of a highly sensitive in vitro assay method for biological activity of endotoxin contamination in biological products // Biologicals 2002. V. 30. № 2. P. 85-92.
160. Tanamoto K. Dissociation of endotoxic activities in a chemically synthesized lipid A precursor after acetylation // Infect. Immun. 1995. V. 63. № 2. P. 690-692.
161. Golenbock D.T., Randolph Y., Hampton Q., Qureshi N., Takayama K., Raetz C.RH. Lipid A-like molecules that antagonize the effects of endotoxins on human monocytes // J. Biol. Chem. 1991. V. 266. № 29. P. 19490-19496.
162. Tanamoto K., Azumi S. Salmonella-type heptaacylated lipid A is inactive and acts as an antagonist of LPS action on human line cells // J. Immunol. 2000. V. 164. № 6. P. 31493156.
163. Ribi E. Beneficial modification of the endotoxin molecule // J. Biol. Response 1984. V. 3. № 1. P. 1-9.
164. Qureshi N., Takayama R., Ribi E. Purification and structural determination of nontoxic lipid A obtained from the lipopolysaccharide of Salmonella typhimurium II J. Biol. Chem.1982. V. 257. № 19. P. 11808-11815.
165. Nair B.C., Mayberry W.R., Dziak R., Chen P.B., Levine M.J., Hausmann E. Biological effects of a purified lipopolysaccharide from Bacteroides gingivalis II J. Periodont. Res.1983. V. 18. № l.P. 40^19.
166. Muotiala A., Helander I.M., Pyhala L., Kosunen T.U., Moran A.P. Low biological activity of Helicobacter pylori lipopolysaccharide // Infect. Immun. 1992. V. 60. № 4. P. 1714— 1716.
167. Flad H.-D., Loppnow H., Rietschel E.T., Ulmer A.J. Agonists and antagonists for lipopoly-saccharide-induced cytokines // Immunobiol. 1993. V. 187. № 3-5. P. 303-316.
168. Strittmatter W., Weckesser J., Salimath P.V., Galanos C. Nontoxic lipopolysaccharide from Rhodopseudomonas spaeroides ATCC 17023 // J. Bacteriol. 1983. V. 155. № 1. P. 153
169. Fujiwara T., Ogawa T., Sobue S., Hamada S. Chemical, immunobiological and antigenic characterizations of lipopolysaccharides from Bacteroides gingivcdis strains // J. Gen. Microbiol. 1990. V. 136. № 2. P. 319-326.
170. Vandenplas M.L., Carlson R.W., Jeyaretnam B.S., McNeill B., Barton M.H., Norton N., Murray T.F., Moore J.N. Rhizobium Sin-1 lipopolysaccharide (LPS) prevents enteric LPS-induced cytokine production // J. Biol. Chern 2002. V. 277. № 44. P. 41811-41816.
171. Matsuura M., Kiso M., Hasegawa A. Activity of monosaccharide lipid A analogues in human monocytic cells as agonists or antagonists of bacterial lipopolysaccharide // Infect. Immun. 1999. V. 67. № 12. P. 6286-6292.
172. Munford R.S. How do animal phagocytes process bacterial lipopolysaccharides? // APMIS 1991. V. 99. №6. P. 487-491.
173. Asai N., Arata S., Hashimo J., Akiyama Y., Tanaka C., Egawa K., Tanaka S. Pseudomonas diminuta LPS with a new endotoxic lipid A stucture // Biochem. Biophys. Res. Commun. 1987. V. 142. №3. P. 972-978.
174. Proctor A.R., Will J.A., Burhop K.E., Raetz C.R.H. Protection of mice against lethal en-dotoxemia by a lipid A precursor // Infect. Immun. 1986. V. 52. № 3. P. 905-907.
175. Loppnow H., Brade H., Durrbaum I., Dinarello C.A., Kusumoto S., Rietschel E.T., Flad H.-D. Interleukin 1 induction-capacity of defined lipopolysaccharide partial structures // J. Immunol. 1989. V. 142. № 9. P. 3229-3238.
176. Takayama K., Qureshi N., Ribi E., Cantrell J.L. Separation and characterization of toxic and nontoxic forms of lipid A // Rev. Infect. Dis. 1984. V. 6. № 4. P. 439-443.
177. Baldridge J.R., Crane R.T. Monophosphoryl lipid A (MPL) formulations for the next generation of vaccines// Methods 1999. V. 19. P. 103-107.
178. Wy C.A., Goto M., Young R.I., Myers T.F. Prophulactic treatment of endotoxic shock with monohosphoryl lipid A in newborn rats // Biol. Neon. 2000. V. 77. № 2. P. 191-195.
179. Christ W.J., Asano O., Robidoux A.L.C., Perez M., Wang Y., Dubuc G.R., Gavin W.E., Hawkins L.D., McGuinness P.D., Mullarkey M.A., Lewis M.D., Kishi Y., Kawata T, Bristol J.R., Rose J.R., Rossignol D.P., Kobayashi S., Hishinuma I., Kimura A., Asakawa
180. N., Katayama K., Yamatsu I. E5531, a pure endotoxin antagonist of high potency // Science 1995. V. 268. P. 80-83.
181. Sato K., Yung C.Y., Fukushima A., Saiki I., Takahashi T.A., Fujihara M., Tono-oka S., Azuma I. A novel synthetic lipid a analog with low endotoxicity, DT-5461, prevents lethal endotoxemia// Infect. Immun. 1995. V. 63. № 8. P. 2859-2866.
182. Moule A.L., Wilkinson S.G. Composition of lipopolysaccharides from Alteromonas putri-faciens (Shewanellaputrefaciens) II J. Gen. Microbiol. 1989. V. 135. № 11. P. 163-173.
183. Svetashev V., Vysotskii M.V., Ivanova E.P., Mikhailov V.V. Cellular fatty acids of Alteromonas species // System Appl. Microbiol. 1995. V. 18. № 1. P. 37-43.
184. Ivanova E.P., Onyshchenko O.M., Christen R., Lysenko A.M., ZhukovaN.V., Shevchenko L.S., Kiprianova E.A. Marinomonas pontica sp. nov., isolated from the Black Sea // Int. J. Syst. Evol. Microbiol. 2005. V. 55. P. 275-279.
185. Prabagaran S.R., Suresh K., Manorama R., Delille D., Shivaji S. Marinomonas ushuaiensis sp. nov., isolated from coastal sea water in Ushuaia, Argentina, sub-Antarctica // Int. J. Syst. Evol. Microbiol. 2005. V. 55. P. 309-313.
186. Yoon J.-H., Kang S.-J., Oh T.-K. Marinomonas dokdonensis sp. nov., isolated from sea water//Int. J. Syst. Evol. Microbiol. 2005. V. 55. № 11. P. 2303-2307.
187. Macian M.C., Arahal D.R., Garay E., Pujalte M.J. Marinomonas aquamarina sp. nov., isolated from oysters and seawater // Syst. Appl. Microbiol. 2005. V. 28. № 2. P. 145-150.
188. Gauthier M.J., Breittmayer V.A. The Prokaryotes: the genera Alteromonas and Marinomonas // (Balows A., Truper H.G., Dworkin M., Harber H., Schleifer K.-H. eds.) New York: Springer-Verlag, 1992. P. 3046-3070.
189. Ivanova E.P., Zhukova N.V., Svetashev V.l., Gorshkova N.M., Kurilenko V.V., Frolova
190. G.M., Mikhailov V.V. Evaluation of phospholipid and fatty acid compositions as chemo-taxonomic markers of Alteromonas-Wke Proteobacteria // Curr. Microbiol. 2000. V. 41. № 5. P. 341-345.
191. Romanenko L.A., Uchino M., Mikhailov V.V., Zhukova N.V., Uchimura T. Marinomonas primoryensis sp. nov., a novel psychrophile isolated from coastal sea-ice in the Sea of Japan// Int. J. Syst. Evol. Microbiol. 2003. № 7. V. 53. P. 829-832.
192. Капустина H.B., Красикова И.Н., Исаков B.B., Горшкова Н.М., Соловьева Т.Ф. Структура липида А из липополисахарида морской у-протеобактерии Marinomonas vaga АТСС 27119Т // Биохимия 2004. Т. 69. № 4. С. 504-510.
193. Baumann L., Baumann P., Mandell M., Allen R.D. Taxonomy of aerobic marine eubacteria // J. Bacteriol. 1972. V. 110. № 1. P. 402-429.
194. Van Landschoot A., De Ley J. Intra- and intergeneric similarities of the rRNA cistrons of Alteromonas, Marinomonas (General nov.) and some other Gram-negative bacteria // J. Gen. Microbiol. 1983. V. 129. № 10. P. 3057-3974.
195. Solano F., Sanchez-Amat A. Studies on the phylogenetic relationships of melanogenic marine bacteria: proposal of Marinomonas mediterranea sp. nov. // Int. J. Syst. Bacteriol. 1999. V. 49. P. 1241-1246.
196. Westphal O., Jann K. Bacterial lipopolysaccharides: extraction with phenol-water and further applications of the procedure // Meth. Carbohydr. Chem. 1965. V. 5. P. 83-91.
197. Jennings H.5 Smith I.C. Polysaccharide structures using carbon-13 nuclear magnetic resonance //Methods Enzymol. 1978. V. 50. № 1. P. 39-50.
198. Ribeiro A.A., Zhou Z., Raetz C.R.H. Multi-dimensional NMR structural analyses of purified lipid X and lipid A (endotoxin) // Magn. Reson. Chem. 1999. V. 37. № 9. P. 620-630.
199. Silipo A., Lanzetta R., Amoresano A., Parrilli M., Molinaro A. Ammonium hydroxide hydrolysis: a valuable support in the MALDI-TOF mass spectrometry analysis of lipid A fatty acid distribution // J. Lipid Res. 2002. V. 43. № 14. P. 2188-2195.
200. Baltzer L.H., Mattsby-Baltzer I. Heterogeneity of lipid A: structural determination by I3C31and P NMR of lipid A fractions from lipopolysaccharide of Escherichia coli Olll // Biochemistry 1986. V. 25. № 12. P. 3570-3573.
201. Forsberg C.W., Casterton J.W., MacLeod R.A. Separation and localization of ceil wall layers of a gram-negative bacterium // J. Bacteriol. 1970. V. 104. № 3. P. 1338-1353.
202. Bernardet J.-F., Nakagawa Y., Holmes B. Proposed minimal standards for the describing new taxa of the family Flavobacteriaceae and emended description of the family // Int. J. Syst. Evol. Microbiol. 2002. V. 52. №. 9. P. 1049-1070.
203. Woese C.R., Yang D., Mandelco L., Stetter K.O. The flexibacter-flavobacter connection // System. Appl. Microbiol. 1990. V. 13. № 22. P. 161-165.
204. Campbell L.L., Williams O.B. A study of chitin-decomposing microorganisms of marine origin // J. Gen. Microbiol. 1951. V. 5. № 5. P. 894-905.
205. Mudarris M., Austin В., Segers P., Vancanneyt M., Hoste В., Bernardet J.F. Flavobacte-rium scophthalmum sp. nov., a pathogen of turbot (Scophthalmus maximus L.) // Int. J. Syst. Bacteriol. 1994. V. 44. № 5. p. 447-453.
206. Красикова И.Н., Бахолдина С.И., Соловьева Т.Ф. Быстрый способ получения липида А из бактерии Yersinia pseudotuberculosis // Биоорган. Химия. 1999. Т. 25. № 4. С. 293-298.
207. Rooney S.A., Goldfme Н., Sweeley С.С. The identification of trans-2-tetradecanoic acid in hydrolisates of lipid A from Escherichia coli // Biochim. Biophys. Acta 1972. V. 270. P. 289-295.
208. Wollenweber H.-W., Rietschel E.T. Analysis of lipopolysaccharide (lipid A) fatty acids // J. Microbiol. Meth. 1990. V. 11. №33. P. 195-211.
209. Nishijima M., Raetz C.R.H. Membrane lipid biogenesis in Escherichia coli: identification of genetic loci for PG-synthetase and construction of mutants lacking PG // J. Biol. Chem. 1979. V. 254. №. 16. P. 7837-7844.
210. Nishijima M., Bulawa C.E., Raetz C.R.H. Two interacting mutations causing temperature-sensitive phosphatidylglycerol synthesis in Escherichia coli membranes // J. Bacteriol. 1981. V. 145. № l.P. 113-121.
211. Nishijima M., Raetz C.R.H. Characterization of two membrane-associated glycolipids from an Escherichia coli mutant deficient in phosphatidylglycerol // J. Biol. Chem. 1981. V. 256. №20. P. 10690-10696.
212. Raetz C.R.H., Dowhan W. Biosynthesis and function of phospholipids in Escherichia coli //J. Biol. Chem. 1990. V. 265. № 3. P. 1235-1238.
213. Huijbregts R.P.H., Kroon A.I.P.M., Kruijff B. Topology and transport of membrane lipidsin bacteria // Biochim. Biophys. Acta 2000. V. 1469. P. 43-61.
214. Matsui Y., Suzuki S., Suzuki Т., Takama K. Phospholipid and fatty acid compositions of Alteromonas putrefaciens and A. haloplanktis // Lett. Appl. Microbiol. 1991. V. 12. № 2. P. 51-53.
215. Kampher P., Dreyer U., Neef A., Dott W., Busse H.-J. Chryseobacterium defluvii sp. nov., isolated from wastewater // Int. J. Syst. Evol. Microbiol. 2003. V. 53. № 2. P. 93-97.
216. Orskov I., Orskov F., Jann В., Jann K. Serology, chemistry, and genetics of О and К antigens of Escherichia coli II Bacterial Rev. 1977. V. 41. № 3. P. 667-710.
217. Troy F.A. The chemistry and biosynthesis of selected bacterial capsular polymers // Annu. Rev. Microbiol. 1979. V. 33. № 3. P. 519-560.
218. Altman E., Brisson J-R., Gagne S. M., Perry M. B. Structure of the capsular polysaccharide of Actinobacilluspleuropneumoniae serotype 5b // Eur. J. Biochem. 1992. V, 204. № 2. P. 225-230.
219. Gygi, D., Rahman, M.M., Lai, H.-C., Carson, R., Guard-Petter, J., Hughes C. A cell-surface polysaccharide that facilitates rapid population migration by differentiated swarm cells of Proteus mirabilis // Mol. Microbiol. 1995.17. № 6. P. 1167-1175.
220. Aschauer IT, Grab A., Hildebrandt J., Schuetze E., Stuetz P. Highly purified lipid X is devoid of immunostimulatory activity // J. Biol. Chem. 1990. V. 265. № 16. P. 9159-9164.
221. Golenbock D.T., Will J.A., Raetz C.R.H. Proctor R.A. Lipid X ameliorates pulmonary hypertension and protects sheep from death due to endotoxin // Infect. Immun. 1987. V. 55. № 10. P.2471-2476.
222. Danner R.L., Joiner K.A., Parillo J.E. Inhibition of endotoxin-induced priming of human neutrophils by lipid X and 3-Aza-lipid X // J. Clin. Invest. 1987. V. 80. № 3. P. 605-612.
223. Schwartz B.S., Monroe M.C., Bradshaw J.D. Endotoxin-induced production of plasminogen activator inhibitor by human monocytes is autonomous and can be inhibited by lipid X // Blood 1989. V. 73. № 8. P. 2188-2195.
224. Sibley C.H., Terry A., Raetz C.R.H. Induction of kappa light chain synthesis in 70Z/3 В lymphoma cells by chemically defined lipid A precursors // J. Biol. Chem. 1988. V. 263. № 11. P.5098-5103.
225. Зубков B.A., Назаренко E.JI., Иванова Е.П., Горшкова Н.М., Горшкова Р.П. // Биоорган. химия 1999. Т. 25. № 3. С. 290-292.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.