Синтез нечетких моделей методом эволюционного моделирования на основе экспериментальных данных тема диссертации и автореферата по ВАК РФ 05.13.18, кандидат технических наук Демидов, Дмитрий Евгеньевич

  • Демидов, Дмитрий Евгеньевич
  • кандидат технических науккандидат технических наук
  • 2005, Ростов-на-Дону
  • Специальность ВАК РФ05.13.18
  • Количество страниц 196
Демидов, Дмитрий Евгеньевич. Синтез нечетких моделей методом эволюционного моделирования на основе экспериментальных данных: дис. кандидат технических наук: 05.13.18 - Математическое моделирование, численные методы и комплексы программ. Ростов-на-Дону. 2005. 196 с.

Оглавление диссертации кандидат технических наук Демидов, Дмитрий Евгеньевич

СПИСОК ИСПОЛЬЗУЕМЫХ СОКРАЩЕНИЙ.

ВВЕДЕНИЕ.

1. НЕЧЕТКАЯ МОДЕЛЬ. АНАЛИЗ СУЩЕСТВУЮЩИХ МЕТОДОВ СИНТЕЗА.

1.1. Нечеткая модель как средство моделирования в условиях неполных и неточных данных.

1.2. Анализ структуры нечеткой модели.

1.2.1. Методы фазификации.

1.2.2. Типы нечетких моделей.

1.2.3. Анализ методов дефазификации.

1.3. Анализ методов синтеза нечетких моделей.

1.4. Синтез нечеткой модели на основе эволюционного моделирования.

1.5. Выводы.

2. СОВЕРШЕНСТВОВАНИЕ ДЕСКРИПТИВНОЙ НЕЧЕТКОЙ МОДЕЛИ МАМДАНИ.

2.1. Иерархическая двухуровневая нечёткая модель.

2.2. Снижение вычислительной сложности нечеткого вывода за счёт применения кусочно-линейных функций принадлежности нечетких чисел.

2.3. Повышение точности нечеткого моделирования за счет введения модификаторов нечетких чисел специального вида.

2.4. Исследование и анализ нечеткой модели на основе численных экспериментов.

2.4.1. Оценка вычислительной сложности нечеткого вывода.

2.4.2. Исследование эффективности применения модификаторов нечетких чисел для идентификации нелинейных зависимостей

2.5. Формализация свойств нечетких моделей, соблюдение которых необходимо в процессе эволюционного синтеза.

2.6. Выводы.

3. РАЗРАБОТКА ЭВОЛЮЦИОННОГО МЕТОДА СИНТЕЗА НЕЧЕТКИХ

МОДЕЛЕЙ.

3.1. Формальное описание эволюционного алгоритма.

3.2. Анализ и исследование эволюционных операторов.

3.3. Управление процессом эволюционной оптимизации.

3.4. Разработка механизма учёта ограничений в процессе работы эволюционного алгоритма.

3.5. Разработка эволюционного алгоритма решения многоэкстремальных задач оптимизации.

3.6. Выводы.

4. ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ РАЗРАБОТАННОГО

МЕТОДА СИНТЕЗА И АЛГОРИТМОВ НЕЧЕТКОГО ВЫВОДА.

4.1. Комплекс проблемно-ориентированных программ на основе разработанной библиотеки моделирования нечетких систем и эволюционных алгоритмов.

4.2. Исследование эффективности методики синтеза нечетких моделей.

4.2.1. Модель статики.

4.2.2. Модель динамики.

4.3. Синтез нечеткой системы управления установкой «Полизон-М», предназначенной для получения материалов в условиях космоса.

4.4. Выводы.

Рекомендованный список диссертаций по специальности «Математическое моделирование, численные методы и комплексы программ», 05.13.18 шифр ВАК

Введение диссертации (часть автореферата) на тему «Синтез нечетких моделей методом эволюционного моделирования на основе экспериментальных данных»

Актуальность темы исследования.

Не вызывает сомнения необходимость применения различных видов моделей на производстве и в экономике. Особенно эффективно применение моделирования на ранних этапах проектирования систем, когда нужно минимизировать возможные ошибки на последующих этапах производства. С ростом возможностей вычислительной техники (ВТ) и ужесточением требований к точности математических моделей, необходимостью учитывать всё большее и большее число факторов, характерных для реальных систем, увеличивается и сложность используемых моделей, требующихся при изучении данных систем. Традиционный подход к идентификации таких моделей подразумевает наличие параметризированной математической функции, которая не всегда основывается на знании о процессах, протекающих в объекте моделирования. Однако для широкого круга инженерных задач часть информации об объекте моделирования может быть получена только от человека. Такие знания часто не могут быть выражены в терминах классической математики, так как представляют вербальное суждение о свойствах объекта. Трудности, с которыми сталкиваются традиционные методы при синтезе моделей таких систем, породили интерес к интеллектуальным методам моделирования. В последнее время происходит бурное развитие нечеткого моделирования, что обусловлено способностью аппарата теории нечетких множеств интегрировать в модель качественные знания человека в виде нечетких лингвистических правил. Одной из важных проблем, которую необходимо решить в процессе синтеза нечеткой модели, является идентификация параметров функций принадлежности нечетких множеств и нечетких лингвистических правил модели. Решение данной задачи осложняется высокой размерностью, неполнотой и неточностью экспериментальных данных, а также необходимостью комбинации опытных и априорных данных.

Степень разработанности проблемы.

Большой вклад в развитие теории нечетких множеств, теорию и практику построения интеллектуальных моделей, включая нечеткие модели, внесли ученые отечественной школы: А.Н. Аверкин, JI.C. Берпггейн, А.Н. Борисов, С.М. Ковалёв, А.Н. Мелихов, Д.А. Поспелов, А.П. Рыжов, Р. Ягер и др.

Исследованию адаптивных нечетких систем и методов синтеза посвящены работы С.М. Ковалёва, В.В. Круглова, А.П. Ротштейна, С.Д. Штовбы, Р. Янга и др.

Значительный вклад в развитие теории эволюционного моделирования и стохастической оптимизации внесли Д.И. Батшцев, И.Л. Букатова, В.М. Курейчик, JI.A. Растригин.

Большой вклад в развитие экспертных систем внесли И.З. Батыршин,

B.Н. Вагин, А.Н. Гуда, H.H. Лябах, Э.В. Попов, Д.А. Поспелов, B.J1. Стефанюк, Е.М. Ульяницкий.

Среди иностранных исследователей следует отметить работы:

C. Ассилиана, Д. Гольдберга, JI. Заде, О. Кордона, Б. Коско, Е. Мамдани, ? М. Сагено, Т. Такаги, Т. Тэрано, Г. Хакена, Ф. Херрера, Д. Холланда.

Цель и задачи работы.

Целью данной диссертационной работы является разработка методики синтеза нечетких моделей, позволяющей эффективно использовать имеющиеся экспериментальные данные совместно со знаниями экспертов по данному объекту с целью идентификации параметров нечеткой модели. Также ставится целью разработка усовершенствованной нечеткой модели, не требующей высоких вычислительных затрат и позволяющей эффективно справляться с ростом сложности нечеткой базы знаний, что даст возможность реализовать нечеткую систему на микропроцессорах. Для достижения указанных целей решаются следующие задачи:

- разработка численного метода синтеза нечеткой модели, комбинирующего экспериментальные данные и знания экспертов с целью повышения точности моделирования;

- совершенствование нечеткой модели с целью обеспечения эффективной работы на вычислительных системах, не обладающих высокой вычислительной мощностью;

- разработка и исследование эволюционного алгоритма, способного в процессе синтеза нечеткой модели избегать локальных решений, что позволит увеличить точность нечеткого моделирования;

- программная реализация как усовершенствованной нечеткой модели, так и численного метода синтеза в виде комплекса проблемно-ориентированных программ.

Объектом исследования диссертационной работы является нечеткая модель технических объектов, процесс синтеза которой отличается:

- отсутствием достаточных знаний о физических процессах, протекающих в объекте;

- неполнотой и неточностью экспериментальных данных;

- наличием экспертных знаний об объекте моделирования, носящих в основном качественный характер;

- необходимостью реализации нечеткой модели на вычислительных устройствах, не обладающих большими вычислительными мощностями. Предмет исследования - разработка методики синтеза нечеткой модели на основе комбинации опытных и априорных данных.

Исследование выполнено в рамках паспорта специальности 05.13.18 — «Математическое моделирование, численные методы и комплексы программ» по следующим областям исследования:

- разработка новых математических методов моделирования объектов и явлений, перечисленных в формуле специальности;

- разработка, обоснование и тестирование эффективных численных методов с применением ЭВМ;

- реализация эффективных численных методов и алгоритмов в виде комплексов проблемно-ориентированных программ для проведения вычислительного эксперимента;

- комплексное исследование научных и технических, фундаментальных и прикладных проблем с применением современной технологии математического моделирования и вычислительного эксперимента. Теоретико-методологическая основа исследования. Теоретическую основу диссертационной работы составили фундаментальные исследования отечественных и зарубежных авторов в области эволюционного моделирования, а также в теории нечетких систем и нечетких множеств.

Методы исследования.

В теоретических и экспериментальных исследованиях применены: теория нечетких множеств, теория оптимизации, методы эволюционного моделирования, методы объектно-ориентированного моделирования.

В качестве инструментарно-методжеского аппарата были использованы программные средства: Microsoft Excel ХР, MatLab 6.5, MathCad 2000, Borland ModelMaker 6.20. В качестве объектно-ориентированного языка программирования использовался язык Object Pascal, реализованный в среде визуального программирования Borland Delphi 6.0. Информационно-эмпирическая база исследования. В процессе диссертационного исследования автором использованы сведения и данные из монографий отечественных и зарубежных исследователей, материалы, полученные из различных открытых источников сети Internet.

Основные положения и результаты, выносимые на защиту

1. Иерархическая двухуровневая нечеткая модель на основе нечеткой модели Мамдани, позволяющая снизить общую вычислительную сложность нечеткого вывода за счёт декомпозиции общей базы правил.

2. Методы нечеткого вывода и дефазификации для работы с нечеткими числами, описанными кусочно-линейными функциями принадлежности, обладающие меньшей вычислительной сложностью по сравнению с классическими методами, что позволяет реализовывать нечеткие модели на маломощных вычислительных устройствах.

3. Численный метод синтеза нечетких моделей на основе эволюционного моделирования с возможностью распараллеливания на основе расщепленного поиска в пространстве поиска решений, основанный на идее независимого исследования подпространств пространства поиска решения.

4. Методика использования в процессе синтеза нечетких моделей знаний как экспертов об объекте моделирования, так и экспертов в области нечетких систем в виде ограничений, что в значительной мере упрощает синтез за счёт сужения пространства поиска решения.

5. Комплекс проблемно-ориентированных программ, позволяющий проводить вычислительный эксперимент над различными видами нечетких моделей, а также предназначенный для синтеза нечетких моделей при помощи разработанного эволюционного метода оптимизации.

Научная новизна работы.

1. Разработана методика, основанная на эволюционном методе глобального поиска, позволяющая решать задачу синтеза нечетких моделей на основе комбинации различных видов знаний об объекте моделирования.

2. Развита иерархическая нечеткая модель, позволяющая уменьшить число нечетких правил с сохранением точности нечеткой модели.

3. Предложены алгоритмы быстрого нечеткого вывода и дефазификации применительно к нечетким числам, описанным кусочно-линейными функциями принадлежности.

4. Предложен иерархический эволюционный метод глобальной оптимизации, позволяющий избегать попадания в локальные экстремумы за счёт разбиения пространства поиска решения на подпространства.

Теоретическая значимость диссертационного исследования. Научные положения, выдвинутые в работе, развивают теоретические основы эволюционного моделирования и синтеза нечетких моделей. В диссертационном исследовании:

- усовершенствованна нечеткая модель, имеющая двухуровневую структуру, с целью снижения сложности модели, связанной с ростом числа правил;

- предложены операции для работы с нечеткими числами, обладающими кусочно-линейными функциями принадлежности;

- разработан эволюционный алгоритм оптимизации, обладающий высокой степью распараллеливания, основанный на идее выделения подпространств поиска.

Практическая значимость исследования. Применение результатов диссертационного исследования будет способствовать созданию нечетких систем, не требующих для своего функционирования больших вычислительных мощностей. Разработанная методика позволяет осуществить синтеза нечетких моделей с большим количеством идентифицируемых параметров с учётом мнения экспертов в виде ограничений.

В работе получены следующие практические результаты:

- разработан комплекс программ, позволяющий моделировать поведение нечеткой системы, осуществлять синтез нечетких моделей при помощи' разработанного эволюционного метода оптимизации;

- разработана библиотека классов, предназначенная для реализации систем эволюционного моделирования и нечетких моделей. Данная библиотека является расширяемой за счёт гибкой системы интерфейсов, что позволяет создать различные варианты эволюционных алгоритмов. Достоверность полученных результатов исследования подтверждается результатами вычислительных экспериментов на практических и модельных задачах, апробацией на научных семинарах и конференциях, актами внедрения результатов исследования и рядом публикаций.

Апробация работы. Основные положения данной диссертационной работы докладывались и обсуждались:

- на заседаниях кафедры «Вычислительная техника и автоматизированные процессы управления» РГУПСа в 2001-2005 годах;

- Научно-теоретической конференции «Транспорт-2001» (г. Ростов-на-Дону, РГУПС, 2001 г.);

- V Всероссийской научной конференции студентов и аспирантов «Техническая кибернетика, радиоэлектроника и системы управления» (г. Таганрог, ТРТУ, 2002 г.);

- V Международной научно-технической конференции «Новые технологии управления движением технических объектов» (г. Новочеркасск, г. Ростов-на-Дону, ЮРГТУ, 2002 г.);

- III Международной научно-практической конференции «Компьютерные технологии в науке, производстве, социальных и экономических процессах» (г. Новочеркасск, ЮРГТУ, 2002 г.);

- Региональной конференции «Ляпуновские чтения и презентация информационных технологий» (г. Иркутск, Институт динамики систем и теории управления СО РАН, 2002 г.);

- Конференции по теории управления, посвященной памяти академика Б.Н. Петрова (г. Москва, Институт проблем управления имени В.А. Трапезникова РАН, 2003 г.);

- Научно-теоретической конференции «Транспорт-2003» (г. Ростов-на-Дону, РГУПС, 2003 г.);

- XII Международной конференции по вычислительной математике и современным прикладным программным системам ВМСППС2003 (г. Владимир, ВлГУ, 2003 г.);

- Научно-теоретической конференции «Транспорт-2004» (г. Ростов-на-Дону, РГУПС, 2004 г.);

- VII Всероссийской научной конференции молодых ученых и аспирантов «Новые информационные технологии. Разработка и аспекты применения» (г. Таганрог, ТРТУ, 2004 г.)

Публикации. По результатам проведенных теоретических и экспериментальных исследований опубликовано 13 печатных работ.

Реализация результатов работы. Материалы диссертационной работы были использованы при разработке нечеткой модели системы управления установкой «Полизон-М» для конструкторского бюро общего машиностроения имени В.П. Бармина (КБОМ имени В.П. Бармина). Также результаты диссертационной работы были применены при разработке нечеткой системы управления двигателем скоростных лифтов для ЗАО «Союзлифтмонтаж-ЮГ». Результаты исследования используются в учебном процессе. Внедрения результатов подтверждено соответствующими актами о внедрении. На разработанный пакет программ получено свидетельство о регистрации в отраслевом фонде алгоритмов и программ №50200400281.

Личный вклад автора. Диссертационная работа выполнена на кафедре «Вычислительная техника и автоматизированные системы управления» РГУПСа. Идея данной диссертационной работы, её тема и цели предложены и сформулированы лично автором. Комплекс программ, а также реализованные в нём алгоритмы и методы, разработаны автором лично. Анализ и обобщение полученных данных, формулировка выводов по результатам исследования выполнены автором диссертации.

Структура и объем работы. Диссертация состоит из введения, четырёх глав, заключения, списка используемой литературы и приложений. Объем диссертационной работы - 194 страницы. Кроме того, диссертация содержит 53 рисунка, 5 таблиц, а также 24 страницы приложений. Список литературы содержит 149 наименований библиографических источников.

Похожие диссертационные работы по специальности «Математическое моделирование, численные методы и комплексы программ», 05.13.18 шифр ВАК

Заключение диссертации по теме «Математическое моделирование, численные методы и комплексы программ», Демидов, Дмитрий Евгеньевич

4.4. Выводы

1. Для широкого распространения и применения численных методов необходима их реализация в виде пакетов программ. Разработанный проблемно-ориентированный комплекс программ позволяет проводить численный эксперимент с применением нечетких моделей, исследовать эволюционные методы синтеза нечетких моделей. При этом необходимая расширяемость и гибкость пакета программ достигается применением декларативных языков, основанных на XML, что обеспечивает реализацию различных схем эволюционного синтеза нечетких моделей без перекомпиляции программ.

2. Эволюционное моделирование представляет собой обширный класс алгоритмов и методов, объединенных идей эволюционного развития. При этом возникает необходимость выбора лучшего подхода для решения конкретной задачи. Объектно-ориентированная библиотека классов, разработанная в процессе выполнения диссертационного исследования, обладает достаточной гибкостью, что позволяет реализовывать и исследовать на её основе различные схемы эволюционного моделирования.

3. Для синтеза нечетких моделей характерна большая размерность решаемой задачи оптимизации. Разработанная методика синтеза нечетких моделей обладает способностью оптимизации большого количества параметров, что продемонстрировано в ходе численного эксперимента по синтезу нечеткой модели системы управления температурой печи установки «Полизон-М».

ЗАКЛЮЧЕНИЕ

Актуальность темы диссертационной работы определяется необходимостью синтеза моделей, создание которых классическими методами невозможно или затруднено из-за неточности, неполноты или зашумлённости данных. Также при синтезе модели необходимо учитывать экспертные знания, зачастую легко выражаемые в виде продукционных правил и ограничений на параметры нечеткой модели. Актуальность создания новых методов синтеза нечетких моделей обусловлена не только необходимостью совместного использования как экспериментальных данных, так и экспертных данных, но и большой размерностью решаемой задачи идентификации параметров модели. В диссертации решены следующие теоретические и практические задачи:

1. Предложен способ декомпозиции нечеткой модели Мамдани в виде двухуровневой нечеткой модели. Данный подход позволяет уменьшить количество правил модели. За счет выделения нечетких подсистем второго уровня иерархии возникает возможность независимого синтеза данных подсистем, что упрощает задачу идентификации параметров нечеткой модели.

2. С целью снижения вычислительной сложности модели предложены алгоритмы нечеткого вывода и дефазификации, способные эффективно работать с нечеткими числами, обладающими кусочно-линейными функциями принадлежности. Проведен численный эксперимент, доказывающий преимущества введенных алгоритмов и операций.

3. Предложено семейство модификаторов, оперирующих нечеткими числами с кусочно-линейными функциями принадлежности. Использование модификаторов нечетких чисел в модели позволило найти разумный компромисс между точностью модели и её интерпретируемостью человеком-экспертом. Проведен анализ применения данных модификаторов на тестовой задаче.

4. Разработана методика, основанная на эволюционном моделировании, позволяющая решать задачу синтеза нечетких моделей на основе комбинации различных видов знаний об объекте моделирования. Сужение пространства поиска достигается за счет использования знаний экспертов в виде ограничений на параметры нечеткой модели.

5. Предложен иерархический эволюционный метод глобальной оптимизации, позволяющий избегать попадания в локальные экстремумы за счет разбиения пространства поиска решения на подпространства. Применение метода к задаче синтеза нечеткой модели позволило повысить точность моделирования.

6. Разработаны два XML языка: GFuzzyXML и GFuzzyConstraintXML, позволяющие проектировать нечеткие системы и управлять эволюционным поиском. Применение данных декларативных языков позволило увеличить гибкость и переносимость комплекса программ.

7. Разработан комплекс проблемно-ориентированных программ, обеспечивающий проведение численных экспериментов по синтезу нечетких моделей и исследованию алгоритмов эволюционного моделирования. Комплекс программ разработан на основе авторской библиотеки моделирования нечетких систем и эволюционных алгоритмов.

8. Предлагаемые модели, методы и алгоритмы применены к практической задаче синтеза нечеткой модели системы управления электровакуумной печью для плавки полупроводников установки «Полизон-М». Также проведено исследование предлагаемых методов и алгоритмов на задачах моделирования статики и динамики тестовых объектов.

Использование результатов работы.

Результаты внедрения научных исследований подтверждены соответствующими актами конструкторского бюро общего машиностроения имени В.П. Бармина (КБОМ имени В.П. Бармина) и ЗАО

Союзлифтмонтаж-Юг». Теоретические результаты исследования использованы в учебном процессе на кафедре «Вычислительная техника и автоматизированные системы управления» Ростовского государственного университета путей сообщения.

156

Список литературы диссертационного исследования кандидат технических наук Демидов, Дмитрий Евгеньевич, 2005 год

1. Аверкин, А.Н. Нечеткие множества в моделях управления и искусственного интеллекта /А.Н. Аверкин, И.З. Батыршин, А.Ф.Блишун и др. / Под. ред. Д.А. Поспелова. -М.: Наука, - 1986.-312 с.

2. Алиев, P.A. Нечеткие алгоритмы и системы управления /P.A. Алиев, C.B. Ульянов. -М.: Знание, 1990. -214 с.

3. Аттетков, A.B. Методы оптимизации /A.B. Аттетков, C.B. Галкин, B.C. Зарубин. М.: МГТУ им. Н.Э. Баумана, - 2001. - 440 с.

4. Батшцев, Д.И. Генетические алгоритмы решения экстремальных задач /Д.И. Батищев. / Под ред. Я.Е. Львовича Воронеж, - 1995.

5. Батищев, Д.И. Эволюционно-генетический поход к решению задач невыпуклой оптимизации /Д.И. Батищев, С.А. Исаев, Е.К. Ремер //Межвузовский сборник научных трудов «Оптимизация и моделирование в автоматизированных системах». Воронеж: ВГТУ, -1998.-С. 20-28.

6. Броуди, Л. Начальный курс программирования на языке форт /Л. Броуди. Пер.с англ. -М.: Финансы и статистика ,1990. 252 с.

7. Буч, Г. Объектно-ориентированный анализ и проектирование с примерами на С++ /Г. Буч. 2-е изд. Пер. с англ. М.: Издательство Бином,-2000.-560 с.

8. Вороновский, Г.К. Генетические алгоритмы, искусственные нейронные сети и проблемы виртуальной реальности /Т.К. Вороновский, К.В. Махотило, С.Н. Петрашев, С.А.Сергеев. X.: Основа, - 1997. - 112 с.

9. Гамма, Э. Приёмы объектно-ориентированного проектирования. Паттерны проектирования. /Э. Гамма, Р. Хэлм, Р. Джонсон, Дж. Влиссидес. Спб.: Питер, - 2001. - 368 с.

10. Горяинов, В.Б. Математическая статистика /В.Б. Горяинов, Г.М. Цветкова, И.В. Павлов, О.И. Тескин. М.: Изд-во МГТУ им. Н.Э. Баумана, - 2002. - 424 с.

11. И. Дейч, A.M. Методы идентификации динамических объектов /A.M. Дейч. М.: Энергия, - 1979. - 240 с.

12. Демидов, Д.Е. Создание расширяемой библиотеки классов для реализации нечетких генетических систем /Д.Е. Демидов, В.В. Жуков //Тр. науч.-теор. конф. «Транспорт 2003». - Ростов н/Д: РГУПС, - 2003.

13. Демидов, Д.Е. Об одном эволюционном методе глобальной оптимизации /Д.Е. Демидов //Тез. док. XII междунар. конф. по вычислительной механике и современным прикладным программным системам. -Владимир, 2003.

14. Демидов, Д.Е. Расщепляющий генетический алгоритм с памятью как метод решения задачи глобальной оптимизации /Д.Е. Демидов, В.В. Жуков //Тр. науч.-теор. конф. «Транспорт 2004». - Ростов н/Д: РГУПС,-2004.

15. Демидов, Д.Е. Эволюционный подход к синтезу нечетких логических контроллеров /Д.Е. Демидов //Материалы VII всерос. науч. конф. молодых ученых и аспирантов «Новые информационные технологии. Разработка и аспекты применения». Таганрог: ТРТУ, - 2004.

16. Жиглявский, A.A. Методы поиска глобального экстремума /A.A. Жиглявский, А.Г. Жилинкас. М.: Наука, - 1991 - 248 с.

17. Жуков, В.В. Методы настройки ПИД-регулятора при помощи генетических алгоритмов /Д.Е. Демидов, В.В. Жуков //Сб. ст. по мат. 5-й Междунар. науч.-техн. конф. «Новые технологии управления движением технических объектов». Новочеркасск: ЮРГТУ, - 2002.

18. Жуков, В.В. Описание структуры и принципов функционирования нечеткого адаптивного регулятора /Д.Е. Демидов, В.В. Жуков //Вестник РГУПС.-2001.-№ 2.

19. Жуков, В.В. Основы обучения генетических нечетких контроллеров /Д.Е. Демидов, В.В. Жуков IIТр. науч.-теор. конф. «Транспорт-2001». -Ростов н/Д: РГУПС, 2001.

20. Заде, JI.A. Понятие лингвистической переменной и его применение к принятию приближенных решений /JI.A. Заде. М.: Мир, 1976. - 165 с.

21. Зарубин, B.C. Математическое моделирование в технике /B.C. Зарубин. -М.: Изд-во МГТУ им. Н.Э. Баумана, 2001. - 496 с.

22. Захаров, В.И. Нечеткие модели интеллектуальных промышленных регуляторов и систем управления: Эволюция и принципы построения /В.И. Захаров, C.B. Ульянов. //Техническая кибернетика. 1993. — № 4. -С. 169-194.

23. Зинченко, JI.A. Алгоритмы эволюционного моделирования с динамическими параметрами /JI.A. Зинченко, В.М. Курейчик, И.В. Хабарова// Информационные технологии. 2001. — № 6. - С. 10-15.

24. Ивахненко, А.Г. Моделирование сложных систем по экспериментальным данным /А.Г. Ивахненко, Ю.Г. Юрачковский. М.: Радио и связь, - 1987. - 120 с.

25. Интеллектуальные системы автоматического управления /Под. ред. И.М. Макарова, В.М. Лохина. М.: Физматлит, - 2001. - 576 с.

26. Исаев, С.А. Разработка и исследование генетических алгоритмов для принятия решений на основе многокритериальных нелинейных моделей /С.А. Исаев: Автореферат на соискание ученой степени канд. техн. наук. -Н.Новгород,-2000.

27. Кофман, А. Введение в теорию нечетких множеств. /А. Кофман — М.: Радио и связь, 1982. - 432 с.

28. Круглов, В.В. Нечеткая логика и искусственные нейронные сети /В.В. Круглов, М.И. Дли, Р.Ю. Годунов М.: Физматлит, - 2001. - 225 с.

29. Курейчик, В.М. Генетические алгоритмы /В. М. Курейчик. — Таганрог:Изд во ТРТУ, - 1998. -120 с.

30. Курейчик, В.В. Перспективные архитектуры генетического поиска /В.В. Курейчик// Перспективные информационные технологии и интеллектуальные системы. 2000. - № 1. - С. 58-60.

31. Леоненков, А. Нечеткое моделирование в среде MATLAB и Fuzzy TECH /А. Леоненков. БХВ: Санкт-Петербург, - 2003. - 716 с.

32. Ломаш, Д.А. Автоматизация взаимодействия железной дороги и морского порта на основе мультиагентной оптимизации и имитационногомоделирования /Д.А. Ломаш: Автореферат на соискание ученой степени канд. техн. наук. Ростов-на-Дону, - 2004.

33. Льюнг, Л. Идентификация систем. Теория для пользователя / Л. Льюнг. — М.: Наука,- 1991.-432 с.

34. Макеев, С.П. Декомпозиция задачи вычисления функции от взаимодействующих нечетких переменных //Техническая кибернетика. -1990.-№ 5.-С. 207-211.

35. Месарович, М. Теория иерархических многоуровневых систем /М. Месарович, Д. Мако , Я. Такахара. М.: Мир, - 1973. - 334 с.

36. Мюррей, У. Практическая оптимизация /У. Мюррей, Ф. Гилл, М. Райт. : Пер. с англ. М.: Мир, - 1985. - 509 с.

37. Нечеткие множества и теория возможностей. Последние достижения /Под ред. P.P. Ягера. -М.: Радио и связь, 1986.-408 с.

38. Ненахов, А.Н. Ситуационные системы с нечеткой логикой /А.Н. Ненахов, Л.С. Бертпггейн, С.Я. Коровин. -М.: Наука, 1990.-272 с.

39. Осовский, С. Нейронные сети для обработки информации /С. Осовский Пер. с польского И.Д. Рудинского. М.: Финансы и статистика, - 2002. -344 с.

40. Паклин, Н.Б. Адаптивные системы нечеткого логического вывода и их при ложения /Н.Б. Паклин// Интеллектуальные системы в производстве. — 2003. -Хо 2. Ижевск: Изд-во ИжГТУ, -2003. - С. 138-151.

41. Пантелеев, A.B. Методы оптимизации в примерах и задачах /A.B. Пантелеев, Т.А. Летова. М.:Высш. шк., - 2002. - 544 с.

42. Пивкин, В.Я. Построение нечетких моделей динамических объектов по данным наблюдений /В.Я. Пивкин //Автометрия 1998. - N 3. - С. 62-68.

43. Питц-Моултис, Н. XML в подлиннике /Н. Питц-Моултис, Ч. Кир к. — Спб.: BHV-Санкт-Петербург, 2001. - 736 с.

44. Прикладные нечеткие системы /Под ред. Т.Тэрано. М.: Мир, - 1993. -512 с.

45. Родзин, С.И. Формы реализации и границы применения эволюционных алгоритмов / С.И. Родзин // Перспективные информационные технологии и интеллектуальные системы. 2002. - № 1. - С. 36-41.

46. Ротштейн, А.П. Влияние методов дефазификации на скорость настройки нечеткой модели / А.П. Ротштейн, С.Д. Штовба // Кибернетика и системный анализ. 2002. - № 5. - С. 169-176.

47. Рыжов, А.П. Элементы теории нечетких множеств и измерения нечеткости / А.П. Рыжов М.: Диалог-МГУ, - 2000. - 116с.

48. Титце, У. Полупроводниковая схемотехника / У. Титце, К. Шенк М.: Мир,-1982.-257 с.

49. Усков, А.А. Интеллектуальные системы управления на основе методов нечеткой логики / А.А. Усков, В.В. Круглое. Смоленск: Смоленская городская типография, - 2003. - 177 с.

50. Фаулер, М. Рефакторинг: улучшение существующего кода / М. Фаулер. Пер. с англ. Спб.: Символ-Плюс, - 2003. - 432 с.

51. Филипс, Ч. Системы управления с обратной связью / Ч. Филипс, Р. Харбор. М.: Лаборатория базовых знаний, - 2001. - 616 с.

52. Штовба, С.Д. Идентификация нелинейных зависимостей с помощью нечеткого логического вывода в пакете MATLAB / С.Д. Штовба // Exponenta Pro: Математика в приложениях. 2003. - № 2. - С. 9-15.

53. Хабарова, И.В. Исследование динамических операторов в эволюционном моделировании / И.В. Хабарова, В.М. Курейчик, JI.A. Зинченко // Перспективные информацинные технологии и интеллектуальные системы. 2001. -№ 3. - С. 65-70.

54. Цыпкин, Я.З. Основы информационной теории идентификации / Я.З. Цыпкин. М.:Наука, - 1984. - 198с.

55. Ahmad, L. Learning Fuzzy Interface Systems / L. Ahmad // Phd. 1995.

56. Alice, E.S. Genetic optimization using penalty function / E.S. Alice, D.M. Tate. // Conf. of Genetic algorithms. San-Mateo. - 1993. - P. 499-503.

57. Bastian, A. How to handle the flexibility of linguistic variables with applications. /A. Bastion //Int. Journal of Uncertainty, Fuzziness and Knowledge-Based Systems. 1994. -№ 2. - P. 463-484.

58. Barbosa, H.J. On Adaptive Operator probabilities in real coded genetic algorithms /H.J. Barbosa, A.Medeiros. //Anais do Workshop on advances and trends in artificial intelligence. 2000. - P. 31-44.

59. Beasley, D. An overview of genetic algorithms: Part 2, research topics /D. Beasley, D.R. Bull, R.R. Martin. //University Computing. 15(4), 1993. -P. 170-181.

60. Beasley, D. A sequential niche technique for multimodal function optimization /D. Beasley, D.R. Bull, R.R. Martin. //Evolutionary Computation. № 2. -1993.-P. 101-125.

61. Beyer, H.G. Toward a theory of evolution strategies: On the benefit if sex- the () theory /H.G. Beyer. //Evolutionary Computation. 1995. - № 3. - P. 81111.

62. Bremermann, H.J. Global properties of evolution process /H.J. Bremermann, M. Rogson, S. Salaff. //Natural Automata and Useful Simulations. -Washington. 1966. - № 4. - P. 3-41.

63. Berstecher, R.G. Construction of a linguistic adaptation law for a fuzzy sliding-mode controller /R.G. Bersteche, R. Palm,H. Unbehauen. //Conf. on Fuzzy Systems. New-Orleans. - 1996. -№ 3. - P. 1794-1799.

64. Carse, B. Evolving fuzzy rule base controllers using genetic algorithms /B. Carse, T.C. Fogarty, A. Munro. //Fuzzy sets and systems. 1996. - № 80. -P. 273-293.

65. Casillas, J. Genetic tuning of fuzzy rule deep structures for linguistic modeling /J. Casillas, O. Cordon, Jesus Maria J. Del, F. Herrera. Technical Report DECSAI-010102, Dept. of Computer Science and A.I., University of Granada. -2001.

66. Castro, J.L. Fuzzy logic controllers are universal approximators /J.L. Castro. //IEEE Trans, on Systems, Man, and Cybernetics. 1995. - № 4. - P. 629635.

67. Chak, C.K. An adaptive fuzzy neural network based on input space partitioning /С.К. Cha, G.E. Feng. //IEEE, Singapore International Conference on Intelligent Control and Instrumentation. P. 39-44.

68. Chen, J.Y. Fuzzy sliding mode controller design: indirect adaptive approach /J.Y. Chen// Cybernetics and Systems: An International Journal, 1999,30,(1), -P. 9-27.

69. Davis, L. Adapting operator probabilities in genetic algorithms iL. Davis// Proc. 1st Int. Conf. Genetic Algorithms and their Applications, 1989. P. 6169.

70. De Jong, K. An Analysis of the Behavior of class of Genetic Adaptive System /К. De Jong// PhD thesis, University of Michigan, Department of Computer and Communication Science, Ann Arbor, Michigan, 1975.

71. Deb, K. An investigation of niche and species formation in genetic function optimization /К. Deb, D.E. Goldberg// Proceedings of Third International Conference on Genetic Algorithms, San Mateo,CA. P. 42-50.

72. Deb, K. Genetic algorithms in multimodal function optimization /К. Deb// Phd, College of Engineering, University of Alabama, Tuscaloosa, AL, 1989.

73. Deb, K. Simulated binary crossover for continuous search space /К. Deb, R.B. Agrawal//Complex Systems, 9,1995. P. 115-148.

74. DUnit: An Xtreme testing framework for Borland Delphi programs. режим доступа: http://dunit.sourceforge.net

75. Eshelman, L.J. The CHC adaptive search algorithm: how to have safe search when engaging in nontraditional genetic recombination /L.J. Eshelman// Foundations of Genetic Algorithms, Morgan Kaufmann Publishers, 1991. P. 265-283.

76. Eshelman, L.J. Real-coded genetic algorithms and interval schemata /L.J. Eshelman, J.D. Schaffer// In D. Whitley (Ed.), Foundations of Genetic Algorithms, II. P. 187-202.

77. Ghosh, A. Function optimization in non stationary environment using steady state genetic algorithms with aging of individuals /A. Ghosh, S. Tsutsui, H. Tanaka// Proc. 19998 IEEE Int. Conf. on Evolutionary Computation,AK,1998. P. 666-671.

78. Glover, F. Tabu search /F. Glover, M. Laguna// Kluwer Academic Publishers, Boston, MA, 1997.

79. Goldberg, D.E. Genetic algorithms in search, optimization and machine learning /D.E. Goldberg// MA:Addison-Wesley, 1989.

80. Hesser, J. Towards an optimal mutation probability for genetic algorithms /J. Hesser, R. Manner// Proc. of 1st Conf. Parallel Problem Solving from Nature, №496, 1991. P. 23-32.

81. Higuchi, T. Theoretical analysis of simplex crossover for real-coded genetic algorithm /T. Higuchi, S. Tsutsui, M. Yamamura// Parallel Problem Solving from Nature (PPSN-VI), 2000. P. 365-374.

82. Holland, J.H. Adaptation in Natural and Artificial Systems /J.H Holland// Ann Arbor: The University of Michigan Press, 1975.

83. Hook, R. Direct search solution of numerical and statistical problems /R. Hook, T. Jeeves//ACM, 7, 1969. P. 212-229.

84. Huang C.F. A study of mate selection in genetic algorithms /C.F. Huang// Dissertation submitted for degree of Doctor of Philosophy in The University of Michigan, 2002.

85. Ingberg, L. Simulated annealing: practice versus theory /L. IngbergII Journal of Mathematical and Computer Modeling, -№18, -1993. P. 29-57.

86. Jager, R. Fuzzy logic in control /R. Jager //CIP-Data koninklijke bibliotheek,1995.

87. Joines, J. On the use non-stationary penalty functions to solve nonlinear constrained optimization problems with GAs /J. Joines, C. Houck// Proc. of 1st IEEE Conf. on Evolutionary Computation, Orlando, Florida, 1994. P. 579584.

88. Jose, V. Adaptive scaling factors for fuzzy logic controller /V. Joser, A. Dourado// Instituto Politécnico de Leiria.

89. Julstrom, B.A. Adaptive operators probabilities in a genetic algorithm that applies three operators /B.A. Julstrom// Proc. of 1997 ACM Symposium on Applied Computing, New-York, ACM Press. P. 233-238.

90. Karr, C. Design of adaptive fuzzy logic controller using a genetic algorithms /C. Karr// Proc. 4Th Int. Conf. Genetic Algorithms, 1991. P. 450-457.

91. Karr, C. Genetic Algorithms to Fuzzy Logic /C. Karr// AI Expert, 1991. P. 26-33.

92. Kinzel, J. Modifications of genetic algorithms for design and optimizing fuzzy controllers /J. Kinzel, F. Klawonn, R. Kruse// Proc. 1st IEEE Int. Conf. Evolutionary Computation, IEEE, Piscataway, NJ, 1994. — P. 28-33.

93. Kickert, W.J.M. Analysis of fuzzy logic controller / W.J.M Kickert, E.H. Mamdani// Fuzzy Sets and Systems, 1, 1978. pp. 29^44.

94. Koenig A.C. A study of mutation methods for evolutionary algorithms /A. C. Koenig// IEEE Transaction on Evolutionary Computation. Vol2, № 2, July, 2002. P. 67-72.

95. Lee, CY. Evolutionary Algorithms with Adaptive Levy Mutations /CY. Lee, X. Yao// IEEE Proceedings of the 2001 Conference on Evolutionary Computation, Seoul, South Korea, Vol. 1, May 2001. P. 568-575.

96. Lee M. Integrating design stages of fuzzy systems using genetic algorithms /M. Lee, H. Takagi// Proc. 2nd IEEE Int. Conf. Fuzzy Systems. IEEE, San Francisco, 1993. P. 612-617.

97. Lobo, F.G. Decision making in a hybrid genetic algorithms /F.G. Lobo, D.E. Goldberg// Technical report 96009, Illinois Genetic Algorithms Laboratory (IlliGAL), 1996.

98. Mamdani, E. An experiment in linguistic synthesis with fuzzy logic controller /E. Mamdani, S. Assilian// Int. Journal of Man-Machine Studies 7,1975. P. 1-13.

99. Mathias, K. E. Changing representation during search: a comparative study of delta coding /K.E. Mathias, L.D. Whitley// Evolutionary Computation, Vol. 2, No. 3, 1995. P. 249-278.

100. Michalewicz, Z. Evolutionary Algorithms for Constrained Parameter Optimization Problems /Z. Michalewicz, M. Schoenauer// Evolutionary Computation, Vol. 4,-№1,-1996. P. 1-32.

101. Michalewicz, Z. Genetic algorithms, numerical optimization, and constraints /Z. Michalewicz// Proc. of the 6th Int. Conf. on Genetic Algorithms, Jule 1995.- P. 151-158.

102. Michalewicz, Z. Genocop II: A co-evolutionary algorithm for numerical optimization with nonlinear constraints /Z. Michalewicz, G. Nazhiyath.// Proc. of then 2nd IEEE Int. Conf. on Evolutionary Computation, New Jersey, 1995.- P. 647-651.

103. Mori, N. Adaptation to a changing environment by means of the thermo dynamical genetic algorithms /N. Mori, H. Kita, Y. Nishikawa// Parallel Problem Solving from Nature, Berlin, 1996. P. 513-522.

104. Nehab, D.F. Schemata Theory for the Real Coding and Arithmetical Operators /D.F. Nehab, M. Aurelio, C. Pacheco// SAC'04, March 14-17, 2004, Nicosia, Cyprus.

105. Ng, K.C. Design of Sophisticated Fuzzy Logic Controllers Using Genetic Algorithms /K.C. Ng, Y. Li. // 3rd IEEE Int. Conf. on Fuzzy Systems. 1994.

106. Ono, I. A real-coded genetic algorithm for function optimization using unimodal normal distribution crossover /1. Ono, S. Kobayashi. //Seventh International Conferenceon Genetic Algorithms. 1997. - P. 246-253.

107. Pfluger, N. A defuzzification strategy for a fuzzy logic controller employing prohibitive information in command information /N. Pfluger, J. Yen, R. Langari. //IEEE Int. Conference on Fuzzy Systems. San Diego. - 1992.

108. Pierreval, H. Distributed evolutionary algorithms for simulation optimization /H. Pierreval, J.L. Paris. //IEEE Transactions on Systems, Man and Cybernetics. Part A. - № 1. -2000. - P. 15-24.

109. Pok, Y.M. Minimizing number of fuzzy rules using fuzzy cell and task decomposition /Y.M. Pok. //Fourth International Conference on Control, Automation, Robotics and Vision. 1996. - P. 1284-1288.

110. Rechenberg, R. Evolution strategies: Optimierung technischer Systeme nach Prinzipen der biologischen evolution /R. Rechenberg. //Frommann-Holzbogg, Stuttgart, 1973.

111. Rodolphe, G. Le Riche A segregated genetic algorithm for constrained structural optimization /G. Le Riche Rodolphe, T.H. Raphael. //6th Int. Conf. of Genetic algorithms. San-Mateo. - 1995. - P. 558-565.

112. Runkler, T.A. Defuzzification and ranking in the context of membership value semantics, rule modality, and measurement theory /T.A. Runkler, M.K. Glesner. //European Congress on Fuzzy and Intelligent Technology. -Aachen. 1994.

113. Schaffer, J.D. Multi-objective optimization with vector evaluated genetic algorithms /J.D. Schaffer. //International Conference on Genetic Algorithms and Their Applications. Pittsburg. - 1985. - P. 93-100.

114. Siedlecki, W. Constrained genetic optimization via dynamic reward-penalty balancing and its use in pattern recognition /W. Siedlecki, J. Sklanski. //4th Int. Conf. of Genetic Algorithms. 1989. - P. 141-150.

115. Smith, S.F. A learning system based on genetic adaptive algorithms /S.F. Smith// Ph.D. thesis, University of Pittsburgh, 1980.

116. Srinivas, N. Multiobjective optimization using nondominated sorting in genetic algorithms / N. Srinivas, K. Ded. //Evolution Computation. № 3. - P. 221248.

117. Takagi, T. Fuzzy identification of system and its application to modeling and control /T. Takagi, M. Sugeno. //IEEE Transactions on Systems, Man and Cybernetics.- 1985. -№ l.-P. 116-132.

118. Thrift, P. Fuzzy logic synthesis with genetic algorithms /P. Thrift. //4th Int. Conf. Genetic Algorithms. 1991. - P. 509-513.

119. Tsutsui, S. Forking GAs: GAs with space division schemes /S. Tsutsui, Y. Fujimoto, A. Ghosh. //Evolutionary Computation. №5. - P. 61-80.

120. Tsutsui, S. Forking genetic algorithm with blocking and shrinking modes /S. Tsutsui, Y. Fujimoto. //Fifth International Conference on Genetic Algorithms. 1993. - P. 206-213.

121. Valente de Oliveira, J. Semantic constrains for membership function optimization / J. Valente de Oliveira. //IEEE Transactions on Systems, Man and Cybernetics Part A. - 1999. - № 3. - P. 128-138.

122. Vavak, F. Adaptive combusting in multiple burner boiler using a genetic algorithm with variable range of local search /F. Vavak, K. Jukes, T. Fogarty. //7th Int. Conf. on Genetic Algorithms. 1997. - P. 719-726.

123. Wang, L. Fuzzy Systems universal approximators /L. Wang. //IEEE conf. on Fuzzy Systems. 1992. - P. 1163-1170.

124. Wang, L. Stable adaptive fuzzy control of nonlinear systems /L.X. Wang. //IEEE Trans, on Fuzzy Systems. 1993. -№ 1. - P. 146-155.

125. Wang, L.X. Generating fuzzy rules by learning from examples /L.X. Wang, J.M. Mendel // IEEE Trans, on Systems, Man and Cybernetics. 1992 - № 6 -P. 1414-1427.

126. Greene, W.A. A non-linear schema theorem for genetic algorithms. /W.A. Greene. //Genetic and Evolutionary Computation Conference, 2000. -P. 189-194.

127. Xin Yao Global optimization by evolutionary algorithms /Xin Yao. //Second Aizu International Symposium. 1997. - P. 282-291.

128. Yager, R.R. Essentials of fuzzy Modeling and control /R.R. Yager, D. Filev. -New York:Wiley, 1994.-p.

129. Yager, R.R. On the issue of defuzzification and selection based on fuzzy set /R.R.Yager, D.P. Filev. //Fuzzy Set and Systems. 1993. -№ 55. - P. 251— 271.

130. Yen, J Simplifying fuzzy rule-based models using orthonormal transformation methods /J. Yen, L. Wang //IEEE Transactions on Systems, Man and Cybernetics, Part B: 1999. - № 1. - P. 13-24.

131. Yuan, Y. A genetic algorithms for generating fuzzy classification rules /Y.Yuan, H. Zhuang. //Fuzzy Sets and Systems. 1994. - № 84. - P. 1-19.

132. Zadeh, L.A. Outline of new approach to the analysis of complex systems and decision processes /L.A. Zadeh. //IEEE Trans, on Systems, Man and Cybernetics. 1973. -№ 3. - P. 28-55.

133. Fisher, M Adaptive fuzzy model-based control /M. Fisher, O. Nelles, A. Fink // Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 1998. - № 3. -P. 22-28.

134. Nelles, O. Comparison of two construction algorithms for takagi-sugeno fuzzy models /0. Nelles, A. Fink, R. Babushka, M. Setnes // 7-th European Congress on Intelligent Techniques and Soft Computing. -1999. P. 142-151.

135. Bezdek, J.C. Pattern Recognition with Fuzzy Objective Function Algorithms. //Plenum Press. New York. - 1981.

136. Nauck, D. Neuro-fiizzy systems, review and prospects /D. Nauck //Proc. Fifth European Congress on Intelligent Techniques and Soft Computing -1997. P. 1044-1053.

137. Jang, J.S.R. ANFIS: Adaptive network based fuzzy inference systems /J.S.R. Jang //IEEE Trans, on Systems, Man and Cybernetics. 1993 - № 3 -P. 665-685.

138. Wang, L. Extracting fuzzy rules for system modeling using a hybrid of genetic algorithms and Kalman filter /L. Wang, J. Yen //Fuzzy Set and Systems. -1993-№ 101 -P. 353-362.

139. Wang, L. Application of statistical information criteria for optimal fuzzy model construction ÍL. Wang, J. Yen //IEEE Trans. On Fuzzy Systems. 1998 — № 6 -P. 362-371.

140. Roubos, H Compact fuzzy models through complexity reduction and evolutionary optimization /H. Roubos, M. Setnes //Proc. 9th IEEE Conference on Fuzzy System. USA - SA. - 2000. - P. 7-10.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.