Развитие технологий анализа, многокритериальной оптимизации и моделирования многосвязных мехатронных систем управления тема диссертации и автореферата по ВАК РФ 05.13.01, доктор технических наук Тягунов, Олег Аркадьевич
- Специальность ВАК РФ05.13.01
- Количество страниц 335
Оглавление диссертации доктор технических наук Тягунов, Олег Аркадьевич
ВВЕДЕНИЕ.
ГЛАВА 1. ОСОБЕННОСТИ ИССЛЕДОВАНИЯ, МНОГОКРИТЕРИАЛЬНОЙ ОПТИМИЗАЦИИ И МОДЕЛИРОВАНИЯ МНОГОСВЯЗНЫХ МЕХАТРОННЫХ СИСТЕМ УПРАВЛЕНИЯ ВЫСОКОЙ РАЗМЕРНОСТИ.
1.1 Многосвязные мехатронные системы как объект управления и методы их исследования.
1.2 Анализ и основные направления развития технологий прямых корневых методов для исследования многосвязных мехатронных систем автоматического управления высокого порядка.
1.3 Обзор и анализ работ по многокритериальному выбору параметров систем управления.
1.4 Обзор и анализ результатов в области разработки программных средств для моделирования, исследования и оптимизации многосвязных мехатронных систем высокой размерности.
Выводы по первой главе и основные задачи диссертационной работы.
ГЛАВА 2. РАЗВИТИЕ ТЕХНОЛОГИИ АНАЛИЗА МНОГОСВЯЗНЫХ МЕХАТРОННЫХ СИСТЕМ ВЫСОКОЙ РАЗМЕРНОСТИ.
2.1. Оценки для границ локализации корней алгебраических уравнений
2.2. Оценки для границ локализации корней характеристического уравнения, основанные на использовании собственных чисел матриц.
2.3. Метод локализации корней уравнений, основанный на понятии вычислительной разрешимости алгебраических уравнений.
2.4. Методы выбора начальных приближений для итеративных алгоритмов отыскания корней алгебраических уравнений, основанные на теории поиска.
Выводы по второй главе.
ГЛАВА 3. МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ТЕХНОЛОГИИ АНАЛИЗА МНОГОСВЯЗНЫХ МЕХАТРОННЫХ СИСТЕМ ВЫСОКОЙ РАЗМЕРНОСТИ.
3.1. Сравнительный анализ различных методов локализации корней уравнений.
3.2. Исследование эффективности разработанных классических методов построения областей локализации и выбора начальных приближений для итеративных алгоритмов отыскания корней алгебраических уравнений.
3.3 Разработка алгоритмов решения алгебраических уравнений с кратными корнями, использующих регулируемую точность вычислений.
Выводы по третьей главе.
ГЛАВА 4 МНОГОКРИТЕРИАЛЬНАЯ ОПТИМИЗАЦИЯ ПАРАМЕТРОВ
МНОГОСВЯЗНЫХ МЕХАТРОННЫХ СИСТЕМ УПРАВЛЕНИЯ.
4.1 Модернизации метода многокритериальной оптимизации для многосвязных мехатронных систем управления.
4.2. Алгоритм решения задачи выбора показателей качества управления при многокритериальной оптимизации параметров систем управления.
4.3 Примеры решения задач многокритериального выбора параметров простых мехатронных систем с помощью модернизированного метода многокритериальной оптимизации.
Выводы по четвертой главе.
ГЛАВА 5. РАЗРАБОТКА КОМПЛЕКСА ПРОГРАММНЫХ СРЕДСТВ ДЛЯ АНАЛИЗА, МНОГОКРИТЕРИАЛЬНОЙ ОПТИМИЗАЦИИ И МОДЕЛИРОВАНИЯ МНОГОСВЯЗНЫХ МЕХАТРОННЫХ СИСТЕМ
ВЫСОКОГО ПОРЯДКА.
5.1 Основные требования к программному комплексу для моделирования и исследования ММС.
5.2. Разработка структурной схемы, принципа работы и основных подсистем программного комплекса "Анализ систем".
5.3. Основные алгоритмы программного комплекса "Анализ систем".
5.4. Пример использования программного комплекса "Анализ систем".
5.5. Программный комплекс для автоматизированного вывода математических моделей, исследования и многокритериальной оптимизации многосвязных мехатронных систем высокого порядка в программной среде МАРЬЕ.
Выводы по пятой главе.
ГЛАВА 6. МАТЕМАТИЧЕСКИЕ МОДЕЛИ И МНОГОКРИТЕРИАЛЬНАЯ ОПТИМИЗАЦИЯ ПАРАМЕТРОВ СИСТЕМ УПРАВЛЕНИЯ МАНИПУЛЯЦИОННЫХ И ТРАНСПОРТНЫХ РОБОТОВ.
6.1. Математические модели манипуляционных роботов и многокритериальная оптимизация их систем управления.
6.2. Математические модели транспортных роботов и многокритериальная оптимизация их систем управления.
6.3. Разработка структурной схемы системы управления манипуляционными роботами на основе использования интеллектуальных технологий.
Выводы по шестой главе.
Рекомендованный список диссертаций по специальности «Системный анализ, управление и обработка информации (по отраслям)», 05.13.01 шифр ВАК
Анализ и синтез робототехнических и мехатронных комплексов для крупнопанельного и монолитного строительства2006 год, доктор технических наук Паршин, Дмитрий Яковлевич
Робастное децентрализованное управление многосвязными объектами2011 год, кандидат технических наук Лежнина, Юлия Аркадьевна
Развитие нейросетевых технологий для управления мехатронными системами2003 год, кандидат технических наук Гарцеев, Илья Борисович
Математическое моделирование в проблеме обеспечения точности движения и позиционирования мобильных манипуляционных роботов2005 год, доктор технических наук Лукьянов, Андрей Анатольевич
Модели, алгоритмическое и программное обеспечение интеллектуальной системы управления многосвязными электроприводами1999 год, кандидат технических наук Харитонова, Елена Борисовна
Введение диссертации (часть автореферата) на тему «Развитие технологий анализа, многокритериальной оптимизации и моделирования многосвязных мехатронных систем управления»
Актуальность темы. Системы автоматического управления (САУ) в настоящее время широко используются в разнообразных областях — для управления космическими и другими подвижными объектами (в том числе и военного назначения), для управления сложными технологическими процессами в различных отраслях народно-хозяйственной деятельности и т.д. Можно отметить также широкое использование САУ для управления бытовой техникой (пылесосы, холодильники и т.д.).
Накопленный к настоящему времени богатый опыт создания подобного рода систем свидетельствует о том, что эффективные САУ могут быть созданы лишь при активном использовании теории автоматического управления (ТАУ).
Разработанные к концу 80х годов XX столетия усилиями зарубежных и отечественных ученых методы ТАУ позволяли исследовать процессы и синтезировать управляющие устройства для широкого класса сравнительно несложных систем управления. В то же время с конца 70х годов XX столетия объектом особенно пристального внимания разработчиков становятся так называемые сложные, в том числе технические, системы. Эти системы состоят из большого числа динамически взаимодействующих элементов и описываются математическими моделями большой размерности. В качестве примеров таких систем можно привести:
1. Сложные объекты с распределенными параметрами, для управления которыми используется распределенное управление (задачи управления плазменными установками различного назначения и т.д.).
2. Экономические и экологические системы, для которых особенно остро стоят проблемы обеспечения управляемого поведения в условиях негативного влияния глобализации.
3. Сложные энергетические сети, в которых происходят аварии, связанные с неправильным расчетом режимов работы сложных энергетических сетей.
4. Сложные электромеханические системы (многозвенные роботы-манипуляторы и транспортные роботы, управляемые конструкции космических станций и т.д.).
Все перечисленные примеры объединяет то, что для описания процессов в таких системах приходится использовать аппарат систем обыкновенных дифференциальных уравнений (СДУ) большой размерности (десятки, сотни и даже тысячи).
Последний пример систем играет особую роль в развитии научно-технического прогресса и их удобно объединить в единый класс многосвязных мехатронных систем. В состав таких систем входит большое число механически взаимосвязанных элементов, для управляемого перемещения которых достаточно часто используются различные приводы. Перечислим несколько примеров многосвязных мехатронных систем.
1. Манипуляционные и транспортные роботы. Это наиболее распространенный на практике класс многосвязных мехатронных систем. Известно, что использование промышленных роботов дает значительный эффект в автомобилестроении, машиностроении, микроэлектронике. В 80-90х годах появляются примеры непромышленного применения манипуляционных роботов. Отметим лишь некоторые из них:
• медицина;
• чрезвычайные ситуации;
• космос.
Транспортные роботы также достаточно широко используются в промышленном производстве (транспортирование заготовок и готовой продукции) и разнообразных непромышленных областях — медицина, чрезвычайные ситуации, космос и т.д.
2. Мехатронные системы с параллельной кинематикой. Можно отметить робот-хирург "Гексапод" для нейрохирургических операций и высокоскоростной пятикоординатный обрабатывающий центр с параллельной кинематикой Гексамех-1.
3. Реконфигурируемые мехатронные системы. В ряде странах ведутся работы по созданию многозвенных мехатронно-модульных роботов с адаптивной кинематической структурой. Использование типовых мехатронных модулей позволяет создавать различные по структуре механизмы, обладающие очень важными достоинствами по сравнению с механизмами с фиксированной кинематикой:
• многофункциональность;
• повышенную проходимость и реализуемость сложных движений;
• высокую надежность.
4. Большие космические конструкции (БКК) [24, 34]. БКК представляют собой соединение большого числа механических тел, являющихся каркасом той или иной конструкции, например, системы солнечных батарей, больших радиотелескопов и высокочувствительных телескопов миллиметрового, субмиллиметрового и инфракрасного диапазонов.
Резкий прорыв в последние годы в развитии нано- и микротехнологий позволяет создавать новые типы сенсорных и исполнительных элементов различного назначения. Все это является предпосылкой к созданию нового поколения многосвязных мехатронных систем различного назначения, состоящих из большого числа динамически взаимодействующих элементов (модулей).
Прогресс в создании и разработке новых типов многосвязных мехатронных систем в значительной мере определяется возможностями методов исследования процессов и синтеза управляющих устройств таких систем. Существующие методы, как правило, не позволяют подходить комплексно к решению проблем, связанных со всем многообразием задач, необходимых для анализа и синтеза систем управления многосвязных мехатронных систем. Поэтому крайне актуальной является задача создания новых и модернизации существующих методов исследования подобных систем.
В настоящей работе поставлена и решена задача создания технологий, позволяющих комплексно решать задачи исследования и оптимизации многосвязных мехатронных систем.
Термин технология используется здесь для обозначения метода или совокупности методов, алгоритмического и программного обеспечения, позволяющих решать поставленную задачу.
Можно выделить следующие группы технологий, которые разрабатываются в данной работе и позволяющие решать задачи исследования и оптимизации многосвязных мехатронных систем.
1. Технологии исследования устойчивости и качества многосвязных мехатронных систем.
2. Технологии многокритериальной оптимизации многосвязных мехатронных систем.
3. Технологии автоматизированного анализа, синтеза и настройки параметров многосвязных мехатронных систем.
Рассмотрим основные особенности каждой из отмеченных групп технологий.
Технологии исследования устойчивости и качества многосвязных мехатронных систем.
Для исследования процессов в многосвязных мехатронных системах могут быть использованы две группы методов. В рамках первой, наиболее многочисленной, группы математическое описание исходной системы обычно подвергают предварительным преобразованиям с использованием таких операций как декомпозиция, агрегирование и трансформация. Безусловно, использование методов первой группы основано на построении приближенных моделей исходных сложных САУ. Это имеет место, например, при введении «макропеременных» при построении моделей сложных экономических систем по исходному описанию на «микроуровне» [163]; при использовании моделей сравнения с последующей процедурой построения векторных функций Ляпунова [43]; при использовании метода структурных сингулярных возмущений [160, 248] и т.д. Следует заметить, что в рамках этого подхода модели системы могут быть как линейными, так и нелинейными. Несмотря на достаточно широкое распространение этой группы методов на практике, до сих пор остается нерешенной проблема обоснования их применимости.
Методы второй группы исследования основаны на использовании подхода, связанного с выделением базовых режимов работы, линеаризацией исходной системы дифференциальных уравнений в окрестности этих режимов, исследованием устойчивости этих режимов и синтезом управляющих устройств, обеспечивающих заданное качество процессов в системе. В этом случае используются методы линейной теории управления. При этом возможно использование либо классического аппарата структурных схем, передаточных функций и частотных характеристик, либо методов пространства состояния.
Описание свойств линейных систем в виде передаточных функций появилось в 30-40-е годы XX века и исторически было связано с использованием в ТАУ методов операционного исчисления. К безусловным достоинствам этой формы представления свойств систем управления следует отнести большую наглядность, физическую интерпретацию основных выводов и рекомендаций.
Методы пространства состояния в теории и практике ТАУ начали использоваться с 60-х годов XX века. В значительной мере это было связано с появлением новых разделов теории управления (оптимальное управление и т.д.) и с более активным использованием математических методов. Методы пространства состояния, безусловно, способны решать большинство проблем, связанных с исследованием сложных систем управления, однако у них есть недостатки, существенно снижающие эффективность их использования. В первую очередь, следует отметить недостаточную наглядность процессов в системе и обоснованность основных выводов и рекомендаций; очень часто полученные с их помощью структуры управляющих устройств являются физически нереализуемыми.
Поэтому представляет значительный научный и практический интерес развитие классических методов для исследования многосвязных мехатронных систем управления при использовании их описания в виде передаточных функций.
Классические методы исследования линейных систем управления можно разбить на два класса — прямые методы, заключающиеся в нахождении корней характеристического уравнения системы, и косвенные методы, не использующие в явном виде процедур нахождения корней характеристического уравнения. Основные усилия исследователей были сосредоточены на развитии косвенных методов. В значительной степени это можно объяснить стремлением получить удобные для практического использования инженерные методики. Помимо чисто алгебраических методов (критерии Рауса, Гурвица, построение областей устойчивости, метод D -разбиения и др.) развивались и другие косвенные методы. Наибольшие успехи были достигнуты в развитии частотных методов исследования устойчивости и качества систем управления.
Однако использование косвенных методов для решения основных задач исследования многосвязных мехатронных систем высокого порядка неэффективно. Это связано с тем, что эффективность частотных методов при исследовании устойчивости и качества многосвязных систем снижается с ростом размерности системы [141, 149, 197]. Поэтому приходится использовать прямые корневые методы, основанные на нахождении решений алгебраических уравнений. Методы нахождения решений алгебраических уравнений можно разбить на два класса — прямые точные и прялте приблиэ/сенные методы.
Прямые точные методы — это методы, основанные на нахождении решений уравнений в виде конечной совокупности функциональных зависимостей. Здесь наиболее известны многочисленные исследования, посвященные разрешимости алгебраических уравнений в радикалах (Ж.Л.Лагранж, Н.Х.Абель, Э.Галуа и др.) [178, 18]. Менее известны результаты Ш.Эрмита, Л.Кронекера, Ф.Клейна, Х.Умемура, Г.Билардинелли и др. исследователей о разрешимости алгебраических уравнений в классах гиперэллиптических функций и гипергеометрических функций [181, 136].
Несмотря на явно ограниченные возможности прямых точных методов, они обладают рядом достоинств. Во-первых, эти методы заключаются в реализации конечной совокупности функциональных операций и позволяют находить решения с произвольной точностью, а, во-вторых, здесь не используются итеративные циклы, поэтому нет проблем с неустойчивостью процесса нахождения решения. В целом можно отметить перспективность этих методов при решении уравнений высокого порядка, однако, практически отсутствуют работы, посвященные исследованию вычислительных аспектов этой группы методов.
Прямые приближенные методы [28, 245] базируются на различных итеративных алгоритмах приближенного нахождения решений. К их достоинствам можно отнести универсальность. Вместе с тем при высоких порядках уравнений очень часто имеет место расходимость итеративного процесса, вызываемая, как, правило, накоплением ошибок вычислений [23].
Обширный опыт решения задач исследования линейных систем с использованием существующих прямых приближенных методов показал их эффективность для сравнительно небольшого порядка (не более 20) [61].
По мнению ведущих зарубежных (Дж.Х.Уилкинсон, Б.Парлетт) и отечественных (В.В. Воеводин, Г.А. Дидук и др.) специалистов современное состояние существующего алгоритмического и программного обеспечения позволяет решать поставленные задачи (обеспечивают гарантированный результат) лишь для сравнительно небольших порядков уравнения [61, 234].
Поэтому проблема развития прямых корневых методов (как точных, так и приближенных) с целью их использования для исследования устойчивости и качества многосвязных мехатронных систем высокой размерности является крайне актуальной.
Технологии многокритериальной оптимизации многосвязных мехатронных систем.
Вторая важная проблема, которая решается в диссертационной работе — это проблема многокритериального выбора параметров управляющих устройств многосвязных мехатронных систем управления. Традиционные методы синтеза предполагают при выборе параметров управляющих устройств использование одного, пусть и достаточно сложного, показателя качества (критерия). Например, можно отметить метод синтеза по интегральному квадратичному критерию, метод синтеза по максимальной степени устойчивости и т.д. Ряд исследователей признавали противоречивость такой постановки задачи [239, 124]. В частности, A.M. Летов [124] рассмотрел систему критериев, по которым можно решать задачу многокритериального выбора параметров систем управления.
Проблема многокритериальной оптимизации (выбора параметров) интенсивно разрабатывалась специалистами в области исследования операций, начиная с 60-х годов XX века. В отличие от задач исследования операций проблеме многокритериального выбора параметров динамических систем уделялось существенно меньшее внимание. Здесь следует отметить исследования по многокритериальным статическим и динамическим задачам в условиях неполной информации [188, 86, 87], а также [42, 41], в которых был предложен принцип рациональной организации, состоящий в том, что параметры в динамической системе подбираются так, чтобы различные схемы компромисса приводили к близким результатам. В [109] сформулирована постановка задачи и разработаны алгоритмические методы построения оптимальных по переменному критерию качества систем управления нелинейными объектами, основанные на теории синтеза систем последовательной оптимизации. В [91] обсуждалась общая постановка задачи многокритериального выбора параметров систем автоматического управления. В целом же следует отметить, что практически отсутствуют работы, в которых решались бы задачи многокритериального выбора параметров управляющих устройств многосвязных мехатронных систем управления.
В настоящее время можно говорить о сложившейся схеме решения задачи многокритериальной оптимизации [167, 186]. Для нас будет важно рассмотреть основные этапы этой схемы с целью определения ключевых задач, необходимых для решения проблемы многокритериальной оптимизации многосвязных мехатронных систем. Это три этапа:
1. Этап формализации решаемой задачи и, в частности, выделения системы критериев качества, по которым будет определяться оптимальное решение.
2. Этап выделения в пространстве оптимизируемых параметров так называемых парето-оптимальных решений (множество эффективных решений, область компромисса, переговорное множество).
3. Этап выбора принципа нахождения компромисса, позволяющего находить решение по всем локальным (частным) критериям с учетом их противоречивого характера.
Следует заметить, что наибольшее число работ посвящено третьему этапу решения задачи многокритериального выбора параметров, в частности, были построены различные модели поведения лица принимающего решение (ЛПР), стоящего перед выбором того или иного варианта.
В настоящее время разработано несколько вариантов решения задачи построения множества точек Парето в критериальном пространстве (второй этап), причем каждый из методов обладает достоинствами и недостатками [82,281,284, 201].
Наименее разработанной оказалась задача выделения системы критериев качества, по которым будет определяться оптимальное решение (первый этап).
Разрабатываемые в диссертации технологии должны решать задачу выбора метода построения множества точек Парето, позволяющего обоснованно выбирать систему критериев, наиболее удобных для многокритериальной оптимизации многосвязных мехатронных систем
Технологии автоматизированного анализа, синтеза и настройки параметров многосвязных мехатронных систем.
Успешное решение задач расчета и проектирования многосвязных мехатронных систем в значительной степени определяется совершенством технологий автоматизированного анализа, синтеза и настройки параметров и соответствующего алгоритмического и программного обеспечения. Можно выделить три технологии:
1. Технологии автоматизированного получения математического описания многосвязных мехатронных систем.
2. Технологии анализа и многокритериальной оптимизации многосвязных мехатронных систем.
3. Технологии моделирования многосвязных мехатронных систем.
При получении математических моделей механических систем приходится выполнять большое число утомительных операций преобразования выражений в символической форме. Решение некоторых задач подобного рода практически невозможно для исследователя, выполняющего преобразования операции "вручную". Проблема автоматизации математического описания механических систем интенсивно разрабатывалась с 80-х годов XX века [39, 103]. Следует заметить, что в большинстве публикаций процесс получения математических моделей производился без учета особенностей их дальнейшего использования для решения задач анализа и оптимизации систем управления.
Общим вопросам анализа и синтеза многосвязных систем автоматического управления посвящены монографии [141, 149, 197]. Вместе с тем неизвестны работы, в которых с единых позиций решались бы задачи анализа и оптимизации многосвязных мехатронных систем, особенно высокого порядка.
Методы математического моделирования являются эффективным средством исследования систем автоматического управления (САУ). В настоящее время для решения задач исследования многосвязных мехатронных систем могут быть использованы такие зарубежные коммерческие программные комплексы как MATLAB-SIMULINK [12]. Из отечественных разработок следует отметить комплексы "Экспресс-Радиус", "МВТУ", "CLASSIC" и др. Эти комплексы достаточно громоздки, требуют значительных вычислительных ресурсов, предъявляют высокие требования к квалификации пользователя и не всегда одинаково удобны при проведении научно-исследовательских работ, и особенно, в учебном процессе.
Поэтому перспективны специализированные программные комплексы ' для моделирования и исследования САУ, которые, с одной стороны, были бы легки в освоении, а, с другой стороны, охватывали большинство приложений теории автоматического управления.
Целью работы является разработка комплексного подхода к решению задач анализа и синтеза ММС на основе развития технологий, позволяющих решать задачи исследования устойчивости и качества, многокритериальной оптимизации и моделирования ММС высокой размерности.
Для достижения поставленной цели в диссертационной работе решаются следующие задачи:
1. Определение наиболее перспективных направлений развития технологий прямых корневых методов для решения задач анализа и многокритериальной оптимизации ММС высокой размерности.
2. Разработка методов локализации корней характеристических уравнений ММС высокой размерности.
3. Разработка алгоритмов выбора наилучших начальных приближений для широкого класса итеративных алгоритмов отыскания корней характеристических уравнений ММС высокой размерности.
4. Разработка метода многокритериальной оптимизации параметров управляющих устройств ММС высокой размерности.
5. Разработка программных средств для автоматизированного анализа, многокритериальной оптимизации и моделирования ММС высокой размерности, удобных как для проведения научных исследований, так и в учебном процессе.
Методы исследования. Для решения поставленных задач используются математический аппарат теории разрешимости алгебраических уравнений, численные методы решения нелинейных и алгебраических уравнений, методы теории поиска, статистических испытаний, компьютерной алгебры, принципы организации интерпретаторов и компиляторов, теория графов, принципы построения интеллектуальных систем, в частности, экспертных систем.
Научная новизна.
1. В развитии технологии анализа многосвязных мехатронных систем
• разработана концепция вычислительной разрешимости алгебраических уравнений с действительными коэффициентами, которая позволяет эффективно определять границы локализации корней алгебраических уравнений высокого порядка с кратными корнями, и выделены отдельные классы таких уравнений;
• получены новые оценки для границ локализации корней характеристических уравнений систем управления, основанные на теоремах Гершгорина и Брауэра локализации собственных чисел произвольных матриц;
• предложен принцип оптимальности, предназначенный для формирования наилучших границ локализации корней алгебраических уравнений произвольного вида в виде круговых колец на комплексной плоскости;
• разработан метод выбора наилучших начальных, приближений для широкого класса итеративных алгоритмов отыскания корней характеристических уравнений линейных систем управления высокого порядка, основанный на модификации методов статического поиска.
2. В развитии технологии многокритериальной оптимизации многосвязных мехатронных систем
• предложен способ оценки степени корреляции основных критериев оптимальности при многокритериальной оптимизации параметров управляющих устройств широкого класса систем управления;
• разработана модификация метода построения точек Парето в сечениях критериального пространства при многокритериальной оптимизации параметров управляющих устройств широкого класса систем управления.
3. В развитии технологии автоматизированного анализа, синтеза и настройки параметров многосвязных мехатронных систем
• предложен структурный подход к автоматизации математического описания многосвязных мехатронных систем;
• разработан принцип построения программного комплекса для автоматизированного анализа, исследования и многокритериальной оптимизации параметров многосвязных мехатронных систем' высокой размерности;
• разработана и структурная схема программного комплекса нового поколения для исследования свойств широкого класса систем управления* реализующего разработанные в диссертации алгоритмы анализа, и многокритериальной оптимизации параметров, одинаково удобного как для; проведения научных исследований* так и в учебном процессе в вузах страны.
Теоретическое значение работы заключается в том; что разработанные в ней научные результаты обеспечивают комплексное решение задачи анализа и синтеза многосвязных линейных САУ высокой размерности за счет расширения возможностей технологий прямых корневых методов*, повышения эффективности! решения эффективности многокритериальной оптимизации и разработки новых подходов к структурному моделированию сложных систем.
Практическая ценность работы. Практическая ценность результатов диссертационной работы заключается в следующем:
1. Разработанные технологии прямых корневых методов позволяют исследовать характеристики многосвязных мехатронных систем высокой размерности, которые с помощью косвенных методов исследовать практически очень трудно, а иногда и невозможно.
2. Разработанные технологии многокритериальной оптимизации позволяют решать задачи выбора параметров многосвязных мехатронных систем высокой размерности, которые с помощью других подходов решать практически невозможно.
3. Разработанный метод многокритериального выбора позволяет более эффективно, по сравнению с существующими методами (например, методом обеспечения максимальной степени устойчивости), выбирать параметры управляющих устройств для широкого класса систем управления.
4. Метод вычисления коэффициентов корреляции основных критериев оптимальности позволяет при многокритериальном выборе параметров управляющих устройств использовать наиболее информативные критерии, что обеспечивает повышение' эффективности процесса оптимизации.
5. Разработанные технологии прямых корневых методов могут быть использованы для решения задач анализа и многокритериальной оптимизации широкого класса систем автоматического управления высокой размерности (робастные системы, системы с распределенными параметрами)
6. Разработанные программные средства позволяют комплексно решать задачи автоматизированного анализа, синтеза, многокритериальной оптимизации и моделирования многосвязных мехатронных систем высокой размерности.
7. Разработанные в диссертации алгоритмы были реализованы в комплексах программных средств, которые удобны не только при проведении научных исследований и проектировании сложных динамических систем, но и в учебном процессе.
Реализация результатов работы.
1. Разработанное в диссертации алгоритмическое и программное обеспечение было использовано при выполнении ряда научно-исследовательских работ в различных организациях, а именно:
• В Научно-исследовательском институте точного машиностроения (г. Зеленоград), НИР "Разработка методов и систем управления ГАП", "Разработка и исследование алгоритмического и программного обеспечения для управления сборочными и транспортными роботами", "Разработка программно-алгоритмического обеспечения для систем управления электроприводами транспортно-загрузочных модулей для производства СБИС" в 1985-1995 г.г. при создании систем управления транспортными и манипуляционными роботами семейства "Электроника НЦТМ" (манипуляционный робот "Электроника НЦТМ-30", транспортные роботы "Электроника НЦТМ -25" и "Электроника НЦТМ-25М".
• В Московском военном институте радиоэлектроники космических войск— при проведении НИР по созданию перспективных образцов новой техники, предназначенной для войск ракетно-космической обороны.
• В ООО "Автобан-Липецк" при проектировании в проектно-конструкторской деятельности асфальто-бетонного завода для разработки систем управления производством асфальто-бетонной смеси.
2. Разработанные автором научные результаты и программные комплексы вошли в состав работы, отмеченной премией Правительства Российской Федерации за 2000 год за создание учебно-лабораторных комплексов и программно-алгоритмического обеспечения для подготовки специалистов по робототехнике, мехатронике и автоматизации производства для технических высших учебных заведений.
3. Разработанный автором комплекс программных средств "Анализ систем" использовался в качестве базового средства при изучении студентами ряда вузов Российской Федерации теории автоматического управления и других смежных дисциплин, а именно:
• В Московском государственном институте радиотехники, электроники и автоматики (техническом университете);
• в Московском военном институте радиоэлектроники космических войск;
• в Военно-космической академии им. А.Ф. Можайского;
• в Пятигорском государственном технологическом университете.
Акты о внедрении приведены в приложении.
Достоверность научных положений и выводов, полученных автором, подтверждается строгими, математически корректными доказательствами основных утверждений, проведением многочисленных серий численных расчетов, совпадением результатов численных тестовых испытаний с данными, полученными с помощью аналитических методов. Справедливость основных научных результатов подтверждается также их использованием в ряде конкретных разработок сложных систем управления.
Апробация работы.
Основные положения диссертационной работы докладывались на научно-технических конференциях МИРЭА (Москва, 1989, 1993-^-2008 г.г.); на Всесоюзной конференции по автоматизации проектирования (Ереван, 1984); на Российской научной конференции "Интерактивные системы" (Ульяновск, 1993); on Third International Scientific Conference (Symsung Electronics, Moscow, 1995); на Международном научно-техническом семинаре "Современные технологии в задачах управления и принятия решений" (Алушта, 1996); на Международной конференции "Информационные средства и технологии" (Москва, 1996); на Международном научно-техническом семинаре "Современные технологии в задачах управления, автоматики и обработки информации" (Алушта,
1997^-2007 г.г.); на Международном форуме "Информатизация 98" (Москва, 1998); на Научно-технических конференциях "Экстремальная робототехника" (Санкт-Петербург, 1997, 1998, 2001, 2004 г.г.); на научно-технической конференции "Современные научно-технические проблемы и направления совершенствования вооружения и средств информационного обеспечения войск РКО" (Москва, академия РВСН, 2001); на конференции "Современные информационные технологии в управлении и образовании — новые возможности и перспективы" (Москва, ФГУП "Восход", МИРЭА, 2001); на I Всероссийской конференции "Управление и информационные технологии" (Санкт-Петербург, 2003), на II Всероссийской конференции "Управление и информационные технологии" (Пятигорск, 2004), на I Всероссийской научно-технической конференции "Мехатроника, автоматизация, управление" (Владимир, 2004), на 7 Всероссийской научно-практической конференции "Экстремальная робототехника" (Санкт-Петербург, 2004), на Международной конференции "Современные проблемы прикладной математики и математического моделирования" (Воронеж, 2005), на 1-й Всероссийской мультиконференции по проблемам управления. Мехатроника, автоматизация, управление (Санкт-Петербург, 2006)
Публикации по теме диссертации
Результаты диссертационной работы опубликованы в 49 работах, из них 4 монографии, 25 тезисов докладов и докладов на различных российских и международных конференциях, в 18 статьях в различных журналах и научных сборниках, в том числе 11 статей из перечня ВАК РФ, одном учебном пособии, одном свидетельстве о регистрации программы в отраслевом фонде алгоритмов и программ. Перечислим статьи из перечня ВАК РФ и монографии центральных издательств:
1. Тягунов О. А. Математические модели промышленных транспортных роботов // Проблемы машиностр. и над. машин, № 2, 1999.— сс. 76-82
2. Тягунов О.А. Программный комплекс для автоматизированного проектирования промышленных транспортных роботов // Проблемы машиностр. и над. машин, № 4, 1999.— сс.94-96
3. Тягунов О.А. Исследование динамики управляемых транспортных роботов // Проблемы машиностроения и над. машин. № 6, 1999.— сс. 90-91
4. Кормилкин А.А., Тягунов О.А. Многокритериальный выбор параметров регуляторов для линейных систем управления // Мехатроника, автоматизация, управление. № 3, 2007. -с.13-18.
5. Евстигнеев Д.В., Кормилкин А.А., Тягунов О.А. Программный комплекс для моделирования и исследования систем автоматического управления // Мехатроника, автоматизация, управление. № 6, 2007.-сс.41-45.
6. Тягунов О.А., Деркач В.В. Задача многокритериальной настройки параметров регуляторов // Информационно-измерительные и управляющие системы. № 5, т.5, 2007.-сс. 5-13.
7. Тягунов О.А. Математические модели и алгоритмы управления промышленных транспортных роботов // Информационно-измерительные и управляющие системы. № 5, т.5, 2007.-сс. 63-69.
8. Тягунов О.А. Программный комплекс для моделирования и исследования динамических характеристик микро- и наномеханических элементов и систем // Нано- и микросистемная техника. № 3, 2008.- сс. 19-25.
9. Тягунов О.А. Выбор показателей качества при многокритериальной настройке параметров систем управления // Мехатроника, автоматизация, управление. № 4, 2008.-сс. 12-16.
10. Тягунов О. А., Масленкин Е.В. Об одной задаче выбора показателей качества при многокритериальной настройке параметров систем управления // Информационно-измерительные и управляющие системы. № 6, т.6, 2008 сс. 5-10.
11. Тягунов О.А. Развитие технологий прямых корневых методов в задачах исследования систем управления // Информационно-измерительные и управляющие системы. № 6, т.6, 2008 сс. 43-48.
12. Макаров И.М., JIoxuh В.М., Тягунов О. А. и др. Времяимпульсные системы автоматического управления. —М.: Машиностроение, 1991.—282 с.
13. Pantyushin S.V., Nazaretov V,M, Tyagunov О. A. Modeling of robotic and flexible manufacturing systems. —N.Y.: Hemisphere Publ. Corp., 1991. — 156 p.
14. Макаров KM., JIoxuh B.M., Тягунов О.А. и др. Времяимпульсные системы автоматического управления, 2 изд. —М.: Наука, Физматлит, 1997.—224 с.
15. Макаров И.М., JIoxuh В.М., Тягунов О.А. и др. Дискретные системы управления: Новые принципы и устройства.— Edwin Mellin Press N.Y., 2000. —406 с.
Объем и структура работы
Диссертация состоит из введения, шести глав, заключения, списка литературы и приложений.
Похожие диссертационные работы по специальности «Системный анализ, управление и обработка информации (по отраслям)», 05.13.01 шифр ВАК
Модели, алгоритмы и программное обеспечение систем управления мехатронно-модульными роботами с адаптивной кинематической структурой2009 год, кандидат технических наук Кадочников, Михаил Владимирович
Создание высокоэффективных систем управления исполнительными движениями роботов и мехатронных устройств на основе технологически обусловленного метода синтеза2001 год, доктор технических наук Илюхин, Юрий Владимирович
Интеллектуальные системы управления с ассоциативной памятью: Модели, алгоритмы и методы исследования1999 год, доктор технических наук Романов, Михаил Петрович
Алгоритмы многокритериальной оптимизации параметров систем управления мобильными робототехническими комплексами2010 год, кандидат технических наук Кормилкин, Алексей Алексеевич
Энергетический подход и принцип многорежимности в задачах управления лагранжевыми динамическими системами2006 год, кандидат технических наук Филимонов, Никита Александрович
Заключение диссертации по теме «Системный анализ, управление и обработка информации (по отраслям)», Тягунов, Олег Аркадьевич
ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ ДИССЕРТАЦИИ
1. Выделен класс многосвязных мехатронных систем (ММС) управления высокой размерности. На основе анализа работ, посвященных методам исследования таких систем, показано, что существующие методы, как правило, не позволяют комплексно решать проблемы, связанные с исследованием, многокритериальной оптимизацией и моделированием ММС высокой размерности.
2. Выделены следующие группы технологий, которые разрабатываются в данной работе и позволяющие решать задачи исследования и оптимизации многосвязных мехатронных систем.
• технологии исследования устойчивости и качества;
• технологии многокритериальной оптимизации;
• технологии автоматизированного анализа, синтеза и настройки параметров.
3. Показано, что при разработке технологий исследования устойчивости и качества многосвязных мехатронных систем наиболее перспективно использование прямых корневых методов, как точных, так и приближенных.
4. Анализ технологий прямых точных корневых методов позволил a. выявить ограничения теории Абеля-Галуа при практическом отыскании решений алгебраических уравнений высоких степеней; b. определить особенности вычислительного алгоритма нахождения решения алгебраических уравнений на базе теоремы Умемуры, позволяющей отыскивать корни уравнений через матрицы периодов гиперэллиптических функций Зигеля и векторные тэта-константы; c. сформулировать понятие вычислительной разрешимости, позволяющее выделить важные классы алгебраических уравнений высоких степеней с действительными коэффициентами (в том числе уравнения с кратными корнями), при решении которых не требуется использовать итеративные методы.
5. Сформулирована ключевая проблема повышения эффективности прямых приближенных корневых методов при исследовании систем управления высокого порядка, заключающаяся в улучшении точности определения начальных приближений для широкого класса итеративных процессов отыскания корней алгебраических уравнений в сочетании с регулируемой точностью вычислений.
6. Дано развитие технологии прямых приближенных методов:
• рассмотрена задача построения областей локализации корней алгебраических уравнений. Выделены два класса оценок — классические оценки, основанные на оценках в виде круговых колец на комплексной плоскости, и неклассические оценки, основанные на оценках собственных чисел сопровождающих матриц (оценки типа Гершгорина), для которых получен ряд новых оценок.
• сформулирован и обоснован принцип оптимальности выбора оценок локализации корней алгебраических уравнений, заключающийся в том, что среди множества оценок сверху выбирается минимальная оценка, а среди множества оценок снизу — максимальная.
• задача выбора начальных приближений для итеративных алгоритмов отыскания корней уравнений сформулирована как задача статического поиска на плоскости множества целей (корней алгебраического уравнения). Выделены непрерывные и дискретные задачи поиска и предложены варианты дискретизации исходной области корней алгебраических уравнений.
• для случая отсутствия априорной информации о расположении корней уравнений получены различные варианты алгоритмов выбора начальных приближений для итеративных методов отыскания корней уравнений.
• на основе принципа вычислительной разрешимости предложен новый метод локализации кратных корней алгебраических уравнений, дающий существенно более точные оценки для расположения кратных корней.
7. С помощью расчетов на ЭВМ решена задача определения эффективности разработанных методов определения наилучших приближений для широкого класса итеративных алгоритмов отыскания корней уравнений для основных типов полиномов. Показано, что созданные на базе разработанных методов выбора начальных приближений для итеративных алгоритмов программные средства позволяют решать задачи отыскания корней алгебраических уравнений высоких порядков. Эффективность использования разработанных программных средств сравнима, а иногда и выше, признанного лидера в области систем компьютерной алгебры — системы MAPLE.
8. Показано, что при разработке технологий многокритериальной оптимизации ММС наиболее перспективно использование модифицированной версии метода глобального зондирования пространства параметров с использованием наиболее равномерно распределенных последовательностей (ЛП г— последовательности), разработанный И.М Соболем, и предложена модернизированная версия построения точек Парето в сечениях критериального пространства.
9. Разработан метод обоснованного выбора системы критериев, по которым производится многокритериальная оптимизация ММС, основанный на вычислении коэффициентов корреляции критериев, причем критерии, имеющие наименьшие значения коэффициентов корреляции, и следует использовать при решении задачи многокритериальной оптимизации. Показано, что при многокритериальной оптимизации систем управления целесообразно использовать систему критериев "степень устойчивости— колебательность", обладающих свойством слабой коррелированности и позволяющую адекватно оценивать их динамические свойства.
10. Разработан комплекс программных средств для решения задач исследования, многокритериальной оптимизации и моделирования ММС. Первая часть комплекса состоит из программной среды "Анализ систем", которая одинаково удобна как при решении задач исследования, многокритериальной оптимизации и моделирования сравнительно несложных ММС, так и в учебном процессе в вузах страны.
11. Вторая часть программного комплекса, реализованная в среде MAPLE, позволяет выводить уравнения кинематики и динамики ММС, строить линеаризованные модели динамики, а также решать задачи многокритериальной оптимизации ММС, в частности, систем управления манипуляционных роботов типа СКАРА и ПУМА. Математическое моделирование с использование полных математических моделей динамики роботов и исполнительной системы управления показало эффективность полученных результатов.
12. Разработанное в диссертации алгоритмическое и программное обеспечение было использовано при выполнении ряда научно-исследовательских работ в различных организациях, а именно:
• при создании систем управления транспортными и манипуляционными роботами семейства "Электроника НЦТМ" (манипуляционный робот "Электроника НЦТМ-30", транспортные роботы "Электроника НЦТМ -25" и "Электроника НЦТМ-25М" (НИИ ТМ, г. Зеленоград;
• при проведении НИР по созданию перспективных образцов новой техники, предназначенной для войск РКО (МВиРЭ KB);
• при проектировании в проектно-конструкторской деятельности асфальто-бетонного завода при разработке систем управления производством асфальто-бетонной смеси (ООО "Автобан-Липецк").
13. Комплекс программных средств "Анализ систем" использовался в качестве базового средства при изучении студентами ряда вузов Российской Федерации теории автоматического управления и других смежных дисциплин, в том числе и дистанционного с использованием сети Интернет (МИРЭА, МВиРЭ KB, ВКА им. А.Ф. Можайского, ПГТУ).
14. Программный комплекс "Анализ систем" был включен в состав работы, отмеченной премией Правительства Российской Федерации за 2000 год за создание учебно-лабораторных комплексов и программно-алгоритмического обеспечения для подготовки специалистов по робототехнике, мехатронике и автоматизации производства для технических высших учебных заведений
15. В целом в диссертационной работе решена крупная научная проблема разработки технологий исследования, многокритериальной оптимизации и моделирования систем управления, имеющая важное значение при создании многосвязных мехатронных систем высокой размерности нового поколения.
Список литературы диссертационного исследования доктор технических наук Тягунов, Олег Аркадьевич, 2009 год
1. Абрамов В. А. Математические, психологические и эргономические аспекты разработки эффективных методов графических интерфейсов в САПР // Информационные технологии в проектировании и производстве. 1997, №2.
2. Абрамова М. В. Аппроксимация множества Парето с помощью двух-параметрического семейства сверток // Программное обеспечение вычислительных комплексов. — М.: МГУ, 1985. —С. 155-160.
3. Автоматизированное проектирование систем управления / Под ред. М. Джамшиди и др.— М.: Машиностроение, 1989.
4. Акритас А. Основы компьютерной алгебры с приложениями.— М.: Мир, 1994
5. Александров А.Г. Синтез регуляторов многомерных систем М.: Машиностроение, 1986
6. Алексеев А. С., Макарычева Д. Н., Чубарое М. А. Алгоритмы аналитического исследования устойчивости динамических систем на ЦВМ // Теория устойчивости и ее приложения. — Новосибирск: Наука, 1979.
7. Алексеев А. С., Макарычева Д. Н., Чубарое М. А., Шильман С.В. Алгоритмы аналитического исследования устойчивости движения систем на ЦВМ // Тез. докл. III Всесоюз. Четаевской конф. — Иркутск: СЭИ, 1977.
8. Алексеев В.Б. Теорема Абеля в задачах и решениях.— М.: Физматлит, 1976.
9. Андреев Ю. Н. Алгебраические методы пространства состояний в теории управления линейными объектами (обзор зарубежной литературы). // Автоматика и телемеханика, 1977, № 3, с. 5-50.
10. Андреев Ю. Н. Управление конечномерными линейными объектами. М.: Наука, 1976. - 424 с.
11. Андриевский Б.Р., Фрадков А.Л. Избранные главы теории автоматического управления с примерами на языке MATLAB.—СПб.: Наука, 2000.
12. Ануфриев И.Е., Смирнов А.Б., Смирнова Е.Н. MATLAB 7.— СПб.: БХВ-Петербург, 2005.
13. Арайс Е.А., Дмитриев В.М. Автоматизация моделирования многосвязных механических систем. —М.: Машиностроение, 1987
14. Аркин В.И. Некоторые экстремальные задачи, связанные с теорией поиска//Теория вероятностей и ее применения. 1965.— Т. 10, вып. 3
15. Аркин В.И. Задачи оптимального распределения поисковых усилий // Теория вероятностей и ее применения. 1964. - Т. 9, вып. 1.
16. Аркин В.И. Задачи оптимального поиска // Труды Математического института им. В.А. Стеклова АН СССР. Т. 71: Сб. работ по теории вероятностей. М.: Наука, 1964.
17. Аркин В.И. Равномерно-оптимальные стратегии в задачах поиска // Теория вероятностей и ее применения. 1964. - Т. 9, вып. 4.
18. Артин Э. Теория Галуа,— М.: Изд-во МЦНМО, 2004.
19. Артоболевский И. И., Емельянов С. В., Сергеев В. И., Статников Р. Б., Шестаков О. А. Интерактивный метод решения задачи' оптимального проектирования машины. // Докл. АН СССР, 1977, 237, № 4, с. 793—795.
20. Артоболевский И. И., Сергеев В. И., Соболь И. М., Статников Р. Б. Об использовании ЭВМ при постановке задач оптимального проектирования машин. // Докл. АН СССР, 1977, 233, № 4, с. 567-570.
21. Артюхов О.И. Разработка имитационных средств для проектирования систем управления. // Автореф диссерт. на соиск. уч. степ, канд. техн. наук. М.: МЭИ, 1987.
22. Афонин С.М. Обобщенная структурно-параметрическая модель электромагнитноупругого преобразователя нано- и микроперемещениями // Теория и системы управления. Изв. РАН, 2006, № 2, — с. 158-166
23. Бабенко КИ. Основы численного анализа. -М.: Наука. Гл. ред. физ.-мат. лит. 1986.
24. БаничукН.В., Карпов И.К, Климов Д.М. и др. Большие космические конструкции. — М.: ФАКТОРИАЛ, 1997
25. Барабанов А.Е. Синтез минимаксных регуляторов. — СПб.: СПб. Ун-т, 1996
26. Барабанов А.Е., Граничин О.Н. Оптимальный регулятор для линейных объектов с ограниченным шумом // АиТ. 1984. № 5. с.39-46
27. Барабанов А.Е., Первозванский А.А. Оптимизация по равномерно-частотным критериям // АиТ. 1992. № 9. с.3-32
28. Березин И.С., Жидков Н.П. Методы вычислений. Т. II. — М.: Физматгиз, 1960.
29. Березкин В. Е., Каменев Г. К, Лотов А. В. Гибридные адаптивные методы аппроксимации невыпуклой многомерной паретовой границы // ЖВМиМФ.-2006.-Т. 46(11).-С. 1231-1242.
30. Борисов В.И. Проблемы векторной оптимизации // В кн. Исследование операций.— М.: Наука ,1972.
31. Бутковский А.Г. Структурная теория распределенных систем. — М.: Наука, 1977. -320с.
32. Бутковский А.Г. Структурная теория распределенных систем. — М.: Гл. ред. физмат, лит-ры, 1977.— 320 с.
33. Бутковский А.Г. Характеристики систем с распределенными параметрами. —М.: Наука, 1979. 224с.
34. Буякас В.И. Статически определимые регулируемые структуры и их приложения в технических задачах космической астрономии // автореф. дисс на соис. уч. ст. д.ф.-м.н.—М.: ИПУ РАН, 2004
35. Ван дер Варден Б.Л. Алгебра.— М.: Наука, Гл. ред. Физ.-мат.лит,1976
36. Васильев Д.В., Митрофанов Б.А., Рабкин Г.Л. и др. Расчет следящего привода.— Л.: Судпромгиз, 1958
37. Вентцелъ Е.С. Теория вероятностей.— М.: Физматгиз, 1962
38. Винберг Э.Б. Курс алгебры.—М.: Факториал, 2002.
39. Виттенбург Й. Динамика систем твердых тел.—М.: Мир, 1980.
40. Воеводин В. В., Павленко О. А. Модифицированный метод наискорейшего спуска для определения всех корней полинома // Численный анализ на ФОРТРАНЕ, вып. 27. М.: МГУ, 1980
41. Воронин А.Н. О формализации выбора схемы компромиссов в задачах многокритериальной оптимизации // Техническая кибернетика, 1984, №2.
42. Воронин А.Н. Принцип рациональной организации в многокритериальных задачах управления // Изв. Вузов, сер. Электромеханика, 1979, № 10.
43. Воронов А.А. Введение в динамику сложных управляемых систем.— М.: Физматлит, 1985.
44. Вязгин В. А., Федоров В. В. Математические методы автоматизированного проектирования. — М.: Высшая школа, 1989.
45. Галуа Э. Сочинения.— Л.-М.: ОНТИ-ГТТИ, 1936.
46. Герасимов С.М. Алгебраический метод синтеза модальных регуляторов для объектов с распределенными параметрами // Аналитические методы синтеза регуляторов: Межвуз. науч. сб. — Саратов: Сарат. Политехи., ин-т. 1990. - СС. 19-27.
47. Герасимов СМ., Подчукаев В.А. Алгебраический подход к анализу и синтезу распределенных управляемых систем // Автоматика и телемеханика. № 5, 1991.— сс.57-62.
48. Гердт В.П., Тарасов О.В., Широков Д.В. Аналитические вычисления на ЭВМ в приложении к физике и математике // Успехи физ. наук. 1980. Т. 30. № 1.— сс. 20-29
49. Глумов В.М., Земляков С.Д. Компьютерный вывод уравнений движения механической системы с большим числом степеней свободы // Изв. РАН. Теория и системы управления. № 6, 2005. —сс. 46-60
50. Городецкий О.М. Специализированная систем MMANG для проведения аналитических выкладок в механике сложных систем твердых тел // Пакеты прикладных программ. Аналитические преобразования. М.: Наука, 1988.
51. Граве Д. А. Элементы высшей алгебры.— Киев: Изд-во импер. Ун-та, 1914.
52. Грис Д. Конструирование компиляторов для вычислительных машин. М.: Мир. 1975.
53. Грошева М.В., Ефимов Г.Б. О системах аналитических вычислений на ЭВМ в задачах механики // Пакеты прикладных программ. Аналитические преобразования. М.: Наука, 1988.
54. Грошева М. В., Ефимов Г. Б., Самсонов В. А. Символьные преобразования на ЭВМ в задачах управления // Изв. РАН. Теория и системы управления, № 3, 1998.— сс. 80-91
55. Гуткин Л.С. Оптимизация радиоэлектронных устройств по совокупности показателей качества.— М.: Советское радио, 1975
56. Дегтярев Г.Л., Ризаев И. С. Синтез локально-оптимальных алгоритмов управления летательными аппаратами — М. : Машиностроение, 1991,304 с.
57. Дегтярев Г.Л., Сиразетдинов Т.К. Теоретические основы оптимального управления упругими космическими аппаратами. — М.: Машиностроение, 1986, 216 с.
58. Демидович Б.П., Марон И.А. Основы вычислительной математики. .— М.: Наука, Гл. ред. Физ.-мат.лит, 1966.
59. Дэюури Э. Инноры и устойчивость динамических систем.— М.: Наука, 1979.
60. Дидук Г.А. Гусеничный адаптивный способ построения границ областей, внутри которых заданный функционал отвечает заранее поставленным требованиям. // В кн. Адаптация и обучение в системах управления и принятия решений.— Новосибирск: Наука, 1982.
61. Дидук Г. А. Машинные методы исследования автоматических систем.— Д.: Энергоатомиздат, 1983
62. Долгов Г. А., Макарычева Д. Н., Чубарое М. А. Пакет АЛГЕБР А-0 для аналитических операций над алгебраическими многочленами и полиномиальными матрицами // Оптимизация и математическое обеспечение САПР. — Горький: Горьк. ун-т, 1982.
63. Дорри М.Х., Климачев С.Н. Машинный синтез структур САУ. — М.: МИРЭА, 1978.
64. Дорри М.Х., Кочемасов А.В., Рощин А.А. Автоматизированное проектирование систем и .средств управления. Пакет "Экспресс-Радиус 2.1".— М.: МИРЭА, 2000.
65. Дорф Р., Бишоп Р. Современные системы управления. — М.: Лаборатория базовых знаний, 2002.
66. Евстигнеев Д.В. ,Кормилкин А.А., Тягунов О.А. Программный комплекс для моделирования и исследования систем автоматического управления // Мехатроника, автоматизация, управление. № 6, 2007.-сс. 41-45.
67. Евстигнеев Д.В., Тягунов О.А. Мультимедийные компьютерные учебники для дистанционного обучения студентов по робототехнике. // В кн.: XII Научно-техническая конференция "Экстремальная робототехника. Материалы конф."— СПб.: СПбГТУ, 2002.— с.361-364
68. Евстигнеев Д.В., Тягунов О.А. Пакет прикладных программ для исследования систем автоматического управления. // В кн.: Управление и проектирование на базе интеллектуальных технологий. Межвуз. сб. научных трудов.—М. : МИРЭА, 1999.—с. 149-156
69. Евстигнеев Д.В., Тягунов О.А. Программные комплексы для моделирования систем управления роботов и транспортных роботов. // В кн.: Интеллектуальные технологии в задачах идентификации и управления. Межвуз. сб. науч. тр.— М. : МИРЭА, 1997.— с.51-61
70. Евстигнеев Д.В., Тягунов О.А. Программный комплекс для дистанционного обучения ТАУ. // Сб. тр. IX междунар. науч.-техн. семинара Современные технологии в задачах управления, автоматики и обработки информации.— М. :Научлиттехиздат 1999.— с.309-310
71. Евстигнеев Д.В., Тягунов О.А. Программный комплекс для исследования систем автоматического управления. // В кн.: Международный форум информатизации 98. Докл. междунар. Конф. "Информационные средства и технологии".— М. : Станкин, 1998.— с.
72. Евтушенко Ю. Г., Потапов М. А. Методы численного решения многокритериальных задач // ДАН СССР. Т. 291, 1986. — сс. 25-29.
73. Евтушенко Ю. Г., Потапов М. А. Численные методы решения многокритериальных задач // Кибернетика и вычислит, техника. Вып. 3. 1987.—М.: Наука. —сс. 209-218.
74. Егоров А.И. Оптимальное управление тепловыми и диффузионными процессами. —М.: Наука, 1978. — 463с.
75. Жабко А.П., Харитонов В.Л. Необходимые и достаточные условия устойчивости линейного семейства полиномов // АиТ, 1994, № 10.
76. Жуковский В.И., Салуквадзе М.Е. Оптимизация гарантий в многокритериальных задачах управления. — Тбилиси: Мецниереба, 1996.
77. Жуковский В. И., Салуквадзе М.Е. Риски и исходы в многокритериальных задачах управления.— Тбилиси: Интелекти, 2004.
78. Загарий Г.И., Шубладзе A.M. Синтез систем управления на основе критерия максимальной степени устойчивости — М.: Энергоатомиздат, 1988
79. Зенкевич С.Л., Ющенко А. С. Основы управления манипуляционными роботами.—М.: МГТУ им. Н.Э. Баумана, 2004.
80. Зотов М.Г. Многокритериальное конструирование систем автоматического управления.— М.: БИНОМ. Лаборатория знаний, 2004
81. Зубов В.И. Колебания в нелинейных и управляемых системах.— Л.: Судпромгиз, 1962
82. Зубов В.И. Лекции по теории управления.— М.: Наука, 1975.
83. Зубов В.И. Об одном новом методе построения области устойчивости в пространстве допустимых значений параметров системы автоматического управления // АиТ, 1959, № 3.
84. Интеллектуальные системы автоматического управления / под ред. ИМ. Макарова и В.М. Лохина.— М.: ФИЗМАТЛИТ, 2001.— сс. 479-493.
85. Квакернаак X., Сиван Р. Линейные оптимальные системы управления. —М.: Мир, 1977
86. Ким Д.П. Методы поиска и преследования подвижных объектов. — М.: Наука, Гл. ред. Физ.-мат.лит, 1989.
87. Ким Д.П. Теория автоматического управления, т. 1.— М.: Физматлит, 2003.
88. Ким Д.П., Ким Енг-шик Оптимальные и адаптивные алгоритмы управления транспортным роботом. // Межвуз.сб. научн.тр. "Автоматическое управление и интеллектуальные системы"/ МИРЭА. М.,1996.-с.101-109.
89. Ким Енг-Шик. Модели и алгоритмы управления транспортным роботом // Автореф. дисс. на соис. уч. ст. канд. техн. наук. М.: МИРЭА, 1994
90. Киндлер Е. Языки моделирования.— М.: Энергоатомиздат, 1985.
91. Клейн Ф. Лекции об икосаэдре и решении уравнений пятой степени.—М.: УРСС, 2004
92. Климов Д.М., Руденко В.М. Методы компьютерной алгебры в задачах механики. М.: Наука, 1989.
93. Клюкин Н.Г. Цифровая система моделирования в задачах динамики.—М.: Труды ЦАГИ. 1983, вып. 2172.
94. Коваль В.А. Спектральный метод анализа и синтеза распределенных управляемыз систем. —Саратов: Сарат. ГУ, 1997. 192 с.
95. Козлов О. С., Кондаков Д.Е., Скворцов Л.М. и др. Программный комплекс для исследования динамики и проектирования технических систем // Информационные технологии. 2005. № 9.
96. Козлов О. С., Скворцов JI.M. Исследование и проектирование автоматических систем с помощью программного комплекса "МВТУ" // Информационные технологии. 2006. № 8. с. 9-15
97. Кокорев С.А. Разработка и исследование метода одновременной оценки корней характеристического уравнения линейной системы // автореф. дисс на соис. уч. ст. к.т.н.—М.: МЭИ, 2007
98. Колесников А.А., Гелъфгат А.Г. Проектирование многокритериальных систем управления промышленными объектами. — М.: Энергоатомиздат, 1993.
99. Коловский М.З. , Слоущ А.В. Основы динамики промышленных роботов. — М.: Наука, Гл. ред. Физ.матлит, 1988.
100. Компьютерная алгебра: Символьные и алгебраические вычисления / под ред. Б. Бухбергера, Дж. Коллинза, Р. Лооса.— М.: Мир, 1986.
101. Кормилкин А.А., Тягунов О.А. Многокритериальный выбор параметров регуляторов для линейных систем управления // Мехатроника, автоматизация, управление. № 3, 2007. -с. 13-18.
102. Кормилкин А.А., Тягунов О.А. Комплекс для моделирования и исследования систем автоматического управления. // В кн.: Сб. докладов II Всероссийской научной конференции "Управление и информационные технологии", т.2.— Пятигорск, ПГТУ, 2004.— сс. 149-151
103. Краснощекое 77. С, Петров А. А. Принципы построения моделей. — М.:МГУ, 1983.
104. Краснощекое 77. С, Петров А. А., Федоров В. В. Информатика и проектирование.—М.: Знание, 1986.
105. Красовский А.А., Поспелов Г.С. Основы автоматики и технической кибернетики.— М.: Госэнергоиздат, 1962.
106. Крутъко П.Д. Обратные задачи динамики в теории автоматического управления.— М.: Машиностроение, 2004.
107. Крутъко П.Д. Обратные задачи динамики управляемых систем : нелинейные системы.—М.: Наука, Гл. ред. Физ.матлит, 1988.— 328 с.
108. Крутъко ПД. Управление исполнительными системами.— М.: Наука, Гл. ред. Физ.матлит, 1991.— 336 с.
109. Лахтин Л.К Алгебраические уравнения, разрешимые в гипергеометрических функциях.—М., 1893
110. Лахтин Л.К Дифференциальные резольвенты алгебраических уравнений высших степеней.—М., 1896
111. Лесков А.Г. Теоретические основы моделирования и анализа динамики манипуляционных роботов, их приложение к задачам проектирования и подготовки операторов. // автореф. дисс на соис. уч. ст. д.т.н.—М.! МГТУ им. Н.Э. Баумана, 2002.
112. Летов A.M. Аналитическое конструирование регуляторов // Автоматика и телемеханика, №№ 4, 5, 6, 1960
113. Летов A.M. Динамика полета и управление.— М.: Наука, 1969.
114. Лионе Ж. Оптимальное управление системами, описываемыми уравнениями в частных производных. — М.: Мир, 1972. 414с.
115. Лотов А. В. Исследование экономических систем с помощью множеств достижимости // Тр. междунар. конф. «Моделир. экономич. процессов» (Ереван, апрель 1974). —М.: ВЦ АН СССР, 1975.
116. Лотов А. В. О понятии обобщенных множеств достижимости и их построении для линейных управляемых систем // ДАН СССР. Т. 250(5) 1980,—сс. 1081-1083.
117. Лотов А. В., Бушенков В. А., Каменев Г. К, Черных О. Л. Компьютер и поиск компромисса. Метод достижимых целей. — М.: Наука, 1997.
118. Лотов А. В., Каменев Г. К, Березкин В. Е. Аппроксимация и визуализация паретовой границы для невыпуклых многокритериальных задач // Докл. РАН. №6 2002. — сс. 738-741.
119. Лурье А.И. Аналитическая механика.—М.: Физматгиз, 1961
120. Лурье К. А. Оптимальное управление в задачах математической физики. — М.: Наука, 1977. — 480с.
121. Макаров И.М., Лохин В.М., Тягунов О.А. и др. Времяимпульсные системы автоматического управления. —М.: Машиностроение, 1991.—282 с.
122. Макаров И.М., Лохин В.М., Тягунов О.А. и др. Времяимпульсные системы автоматического управления, 2 изд. —М.: Наука, Физматлит, 1997.—224 с.
123. Макаров И.М., Лохин В.М., Тягунов О.А. и др. Дискретные системы управления: Новые принципы и устройства.— Edwin Mellin Press N.Y., 2000. —406 с.
124. Макаров И.М., Лохин В.М., Манько С.В. и др. Многозвенные мехатронно-модульные роботы с адаптивной кинематической структурой // Меехатроника, автоматизация, управление. № 11, 2006.-cc.2-l 1
125. Мамфорд Д. Лекции о тэта-функциях.— М.: Мир, 1988.
126. Мамфорд Д. Лекции о тэта-функциях.— Новокузнецк : Новокузн. Ф.-мат. Ин-т., 1998.
127. Маркус М., Минк X. Обзор по теории матриц и матричных неравенств.— М.: Наука, Гл. ред. Физ.-мат.лит, 1972
128. Матросов А.В. Maple 6. Решение задач высшей математики и механики.—СПб.: БХВ-Петербург.—528 с.
129. Медведев B.C., Лесков А.Г., Ющенко А.С. Системы управления манипуляционных роботов. — М.: Наука, Гл. ред. Физ.матлит, 1978.— 416 с.
130. Мееров М.В. Системы многосвязного регулирования. —М.: Наука, Гл. ред. Физ.матлит, 1965.
131. Михалева М.А., Тягунов О.А. О некоторых модификациях метода отыскания корней полиномиальных уравнений. // В кн.: Управление и проектирование на базе интеллектуальных технологий. Межвуз. сб. научных трудов,—М. : МИРЭА, 1999.—с.107-112
132. Мовчан А.А. О прямом методе Ляпунова в задачах устойчивости упругих систем //Прикл. мат. и мех. т. 23, вып. 3, 1957.—сс. 483-494.
133. Мовчан А. А. Об устойчивости движения сплошных тел. Теорема Лагранжа и ее обращение // Инж. Сб. т. 29, 1960. — сс. 3-20.
134. Мовчан А.А. Устойчивость процессов по двум метрикам // Прикл. мат. и мех. т. 24, вып. 6. 1960.—сс. 988-1001.
135. Моисеев Н.Н., Иванилов Ю.П., Столярова Е.М. Методы оптимизации. — М.: Наука, гл.ред. физ.матлит. 1978
136. Молодцов Д. А. Устойчивость принципов оптимальности. — М.: Наука, 1987.
137. Морозов В. В. Об аппроксимации множества Парето с заданной точностью в многокритериальных задачах // Системы: математические методы описания, САПР и управления. — Калинин: КГУ, 1989.-С. 117-126.
138. Морозовский В.Т. Многосвязные системы автоматического управления. —М.: Физматгиз, 1970
139. Мосяков Д.Е., Тягунов О.А. Об одной задаче автоматизации вывода уравнений кинематики и динамики манипуляционных роботов. // В кн.: Информационные средства и технологии. ТР. Междунар. конф.— М.: МЭИ, 1996.—с.
140. Мосяков Д.Е., Тягунов О.А. Пакет прикладных программ для автоматизированного расчета характеристик манипуляционных роботов. // В кн.: Автоматическое управление и интеллектуальные системы. Межвуз. сб. научных трудов.—М.: МИРЭА, 1996,— с.с. 110-113
141. Нанотехнологии в электронике // Под ред. Ю.А. Чаплыгина М: Техносфера, 2005.- 448 с.
142. Немировский А.С., Поляк Б.Т. Необходимые условия устойчивости полиномов и их исследование. // АиТ, 1994, № 11
143. Нефедов В. Н. Методы регуляризации многокритериальных задач оптимизации. —М.: МАИ, 1984.
144. Нефедов В. Н. Об аппроксимации множества оптимальных по Паре-то решений // ЖВМиМФ. Т. 26(2). 1986. — сс. 163-176.
145. Нефедов В. Н. Об аппроксимации множества Парето // ЖВМиМФ. Т. 24(7). 1984.- сс. 993-1007.
146. Островский A.M. Решение уравнений и систем уравнений.— М.: ИЛ, 1963.
147. Пароди М. Локализация характеристических чисел матриц и ее применения. — М. ИЛ, 1960.
148. Партон В.З., Кудрявъ^в Б.А. Электромагнитоупругость пьезоэлектрических и электропроводных тел. — М: Наука. Гл. ред. физмат, лит., 1988.
149. Первозванский А.А., Гайцгори В.Г. Декомпозиция, агрегирование и приближенная оптимизация. —М.: Наука, 1979
150. Першин И.М. О критерии Найквиста в системах с распределенными параметрами // Аналитические методы синтеза регуляторов: Межвуз. науч. сб. Саратов: Сарат. политехи, ин-т 1981.-сс.57-67.
151. Першин И.М., Гочияев Б.Р. Частотный метод синтеза систем с распределенными параметрами. — Кисловодск: РИО Кисловодского ун-та Академии оборонных отраслей пром-ти РФ. 1998. — 287 с.
152. Петров А.А., Поспелов И.Г., ШананинА.А. Опыт математического моделирования экономики. — М.: Энергоатомиздат, 1996.
153. Петров Ю.П. Новые главы теории управления и компьютерных вычислений.— СПб.: БХВ-Петербург, 2004.
154. Плотников В.И. О сходимости конечномерных приближений (в задаче об оптимальном нагреве неоднородного тела произвольной формы) // Вычислительная математика и математическая физика. №1, Т.8. 1968. — сс.136-157.
155. Погорелое Д.Ю. Введение в моделирование динамики систем тел.—Брянск: БГТУ, 1997.-156 с.
156. Подиновский В.В., Ногин В.Д. Парето-оптимальные решения многокритериальных задач.— М.: Наука ,1982.
157. Позняк А.С., Себряков Г.Г., Семенов А.В., Федосов Е.А. Н°° -теория управления: феномен, достижения, перспективы, открытые проблемы. — М.: ГосНИИАС, 1990
158. Полиа Г., Сеге Г. Задачи и теоремы из анализа, ч. 1.— М.: Наука, Гл. ред. Физ.-мат.лит, 1978
159. Поляк Б.Т., Цыпкин Я.З. Робастный критерий Найквиста // АиТ, 1992, №7, с. 25-31
160. Поляк Б.Т., Цыпкин Я.З. Частотные критерии робастной устойчивости и апериодичности линейных систем // АиТ, 1990, № 9, с. 45-54
161. Поляк Б.Т., Щербаков П.С. Вероятностный подход к робастной устойчивости систем с запаздыванием // АиТ, 1996, № 12, с. 97-108
162. Поляк Б.Т., Щербаков П.С. Робастная устойчивость и управление.- М.: Наука, 2002.—303 с.
163. Понтрягин JI.C. 0 нулях некоторых элементарных трансцендентных функций // Изв. АН СССР, серия матем. 1942.- Т.6.- № 3. С.115-134.
164. Попов Н. М. Об аппроксимации множества Парето методом сверток // Вестник МГУ, Вычисл. Матем. и киберн. — 1982. — №2. — С. 3541.
165. Попов Н. М. Приближенное решение многокритериальных задач с функциональными ограничениями // ЖВМиМФ. —1987.— Т. 26(10).-С. 1468-1481.
166. ПостниковМ.М. Теория Галуа.— М.: Физматгиз, 1963.
167. Постников М.М. Теория Галуа.—М.: Факториал, 2003.
168. Потемкин В.Г. MATLAB 5 — М.: Диалог-МИФИ. 1998.
169. Прасолов В.В. Многочлены.— М.: МЦИМО, 2003
170. Прасолов В.В., Соловьев Ю.П. Эллиптические функции и алгебраические уравнения.— М.: Факториал, 1997.
171. Рапопорт Э.Я. Структурное моделирование объектов управления и систем управления с распределенными параметрами. М.: Высшая школа, 2003. 299 с.
172. Роджерс К. А. Укладки и покрытия.— М.: Мир, 1969.
173. Ротач В.Я. Расчет динамики промышленных систем автоматического регулирования. М.: Энергия, 1973. - 440 с.
174. Ротач В.Я. Расчет настройки промышленных систем регулирования. М.: Госэнергоиздат, 1961. — 344 с.
175. Рыков А.С. Методы и модели системного анализа: принятие решений и оптимизация.— М.: МИСИС, 2005.
176. Савелов А.А. Плоские кривые.— М.: Физматгиз, 1960.
177. Салуквадзе М.Е. Задачи векторной оптимизации в теории управления.— Тбилиси: Мецниереба, 1975
178. Самарский А.А., Михайлов А.П. Математическое моделирование.-М.: Физматлит, 2003. •
179. Свами М.Н., Тхуласираман К. Графы, сети и алгоритмы. М. : Мир, 1984.
180. Сиразетдинов Т.К. Оптимизация систем с распределенными параметрами.- М.: Наука, 1977,
181. Сиразетдинов Т.К. Устойчивость систем с распределенными параметрами.- Казань: КАИ, 1971. —180 с.
182. Сиразетдинов Т.К. Устойчивость систем с распределенными параметрами.- Новосибирск: Наука, 1987. 232 с.
183. Смирнов А.В., Тягунов О.А. Программный комплекс для исследования и моделирования транспортных роботов. // В кн.: IX Научно-техническая конференция "Экстремальная робототехника. Материалы конф.".—СПб. : СПбГТУ, 1998.—с.69-72
184. Соболев О. С. Вопросы исследования некоторых типов многосвязных систем автоматического регулирования. // Тр. III Всесоюзногосовещания по автоматическому управлению (технической кибернетике). -М.: Наука, 1968, с. 218-231.
185. Соболев О. С. К теории линейных САР взаимосвязанных однотипных агрегатов. // Тр. ЦНИИКА, вып. 12. М.: 1965, с. 30-45.
186. Соболев О.С. Методы исследования линейных многосвязных систем. М.: Энергоатомиздат, 1985
187. Соболев О.С. Однотипные связанные системы регулирования. — М.: Энергия, 1973. 136 с
188. Соболь И. М. Многомерные квадратурные формулы и функции Хаара. —М.: Наука, 1969.
189. Соболь И. М. О распределении точек в кубе и сетках интегрирования. // Усп. матем. наук, 1966, 21, № 5. —сс. 271—272.
190. Соболь И. М., Статников Р. Б. Выбор оптимальных параметров в задачах со многими критериями. — М.: Наука, 1981.
191. Соболь И. М., Статников Р. Б. Постановка некоторых задач оптимального проектирования при помощи ЭВМ. // Препринт № 24. М.: Ин-т прикладной математики АН СССР, 1977
192. Соболь И.М. Многомерные квадратурные формулы и меры Хаара.— М.: Наука, Гл. ред. Физ.-мат.лит, 1969.
193. Солодовников В.В. и др. Расчет систем управления на ЦВМ.-М.: Машиностроение. 1979
194. Справочник по теории автоматического управления / Под ред. А.А. Красовского.— М.: Наука, 1987.
195. Староверов О. В Об одной задаче поиска // Теория вероятностей и ее применение. 1963. - Т. 8, № 2
196. Сухарев А. Г. Минимаксные алгоритмы в задачах численного анализа. —М.: Наука, 1989.
197. Телец В., Алфимов С., Иванов А. и др. Прикладные аспекты нанотехнологий //Наноиндустрия, 2007, № 2.— с. 16-23
198. Телец В., Алфимов С., Иванов А. и др. Прикладные аспекты нанотехнологий // Наноиндустрия, 2007, № 4.— с. 4-11
199. Тгшошенков С.П., Зотов С.А., Морозова Е.С. и др. Передаточные функции чувствительного элемента микромеханического вибрационного гироскопа // Нано- и микросистемная техника, 2007, № 9.— с. 32-34
200. Трантер К.Дж. Интегральные преобразования в математической физике. М.: Гостехиздат, 1957. - 345с
201. Трауб Дяс. Итерационные методы решения уравнений.— М.: МИР, 1985
202. Тягунов О.А. Алгоритмическое и программное обеспечение в задачах исследования сложных систем. // В кн.: Сб. докладов II Всероссийской научной конференции "Управление и информационные технологии", т. 1.— Пятигорск, ПГТУ, 2004.— с. 294-298
203. Тягунов О.А. Алгоритмическое и программное обеспечение в задачах исследования сложных систем. // В кн.: Сб. докладов II Всероссийской научной конференции "Управление и информационные технологии", т. 1— Пятигорск, ПГТУ, 2004.— с. 294-298
204. Тягунов О.А. Выбор показателей качества при многокритериальной настройке параметров систем управления // Мехатроника, автоматизация, управление. № 4, 2008 сс. 12-16.
205. Тягунов О.А. Использование интеллектуальных технологий, алгоритмического и программного обеспечения в задачах исследования сложных систем // Труды 7 Всероссийской научно-практической конференции "Экстремальная робототехника"- СПб, 2004.-е. 126-129
206. Тягунов О.А. Исследование динамики управляемых транспортных роботов // Проблемы машиностроения и надежности машин, №6, 1999. — сс. 90-91
207. Тягунов О.А. Компьютерный обучающий комплекс по теории автоматического управления // Труды XIV международного научно-технического семинара "Современные технологии в задачах управления, автоматики и обработки информации".— Самара: СГАУ, 2005.-— с. 161.
208. Тягунов О.А. Математические модели и алгоритмы управления промышленных транспортных роботов // Информационно-измерительные и управляющие системы. № 5, т.5, 2007.— с. 63-69.
209. Тягунов О.А. Математические модели промышленных транспортных роботов. // Проблемы машиностроения и надежности машин, №2, 1999,—сс. 76-82
210. Тягунов О.А. Об одной минимаксной задаче поиска. // В кн.: Цифровое моделирование и оптимизация режимов промышленных объектов и систем. Межвуз. тематический сб. № 47. — Москва, МЭИ, 1984.— с.75-80
211. Тягунов О.А. Программный комплекс для автоматизированного проектирования промышленных транспортных роботов. // Проблемы машиностроения и надежности машин. № 4, 1999. — сс.94-96
212. Тягунов О.А. Программный комплекс для моделирования и исследования динамических характеристик микро- и наномеханических элементов и систем // Нано- и микросистемная техника № 3, 2008.- сс. 19-25.
213. Тягунов О.А. Развитие технологий прямых корневых методов в задачах исследования систем управления // Информационно-измерительные и управляющие системы. № 6, т.6, 2008. —- сс. 43-48
214. Тягунов О.А., Деркач В.В. Задача многокритериальной настройки параметров регуляторов // Информационно-измерительные и управляющие системы. № 5, т.5, 2007.—сс. 5-13.
215. Тягунов О.А., Масленкин Е.В. Об одной задаче выбора показателей качества при многокритериальной настройке параметров систем управления // Информационно-измерительные и управляющие системы. № 6, т.6, 2008 —сс. 5-10
216. Тягунов О.А., Мосяков Д.Е. Моделирование роботов, уч. пособие,—М.: МИРЭА, 1997.— 84 с.
217. Уилкинсон Дж.Х. Алгебраическая проблема собственных значений. — М.: Наука, Гл. ред. Физ.-мат.лит, 1970.
218. Умемура X. Решение алгебраических уравнений с помощью тэта-констант // в книге Мамфорд Д. Лекции о тэта-функциях.— Новокузнецк : Новокузн. Ф.-мат. Ин-т., 1998.
219. Уонэм М. Линейные многомерные системы управления. — М.: Наука, 1980
220. Фейеш Тот Расположения на плоскости, на сфере и в пространстве.— М.: Физматгиз, 1958
221. Фелъдбаум А. А. О распределении корней характеристического уравнения систем управления // Автоматика и телемеханика, № 4, 1948.
222. Фелъдбаум А.А. Электрические системы автоматического регулирования.— М.: Оборонгиз, 1957.
223. Фу К, Гонсалес Р., Ли К. Робототехника —М.: Мир, 1989.-624 с.
224. Харитонов В.Л. Асимптотическая устойчивость семейства систем дифференциальных уравнений // Дифференц. Уравнения, 1978, т. 14, № 11.
225. Харитонов В.Л. Устойчивость вложенного семейства полиномов //АиТ, 1995, № 11.
226. Харитонов В.Л., Хинричсен Д. О выпуклых направлениях для устойчивых полиномов // АиТ, 1997, № 3.
227. Хеллман О. Введение в теорию оптимального поиска. М.: Наука,1985.
228. Хемминг Р.В. Численные методы. — М.: Наука, 1972.
229. Химмелъблау Д. Прикладное нелинейное программирование. М.: Мир, 1975
230. Хованский А.Г. Малочлены. —М.: Фазис, 1996.
231. Цурков В.И., Литвинчев И.С. Декомпозиция в динамических задачах с перекрестными связями, ч.1 и ч.2.— М.: ФИЗМАТ ЛИТ, 1994
232. Цыпкин Я.З. Основы теории автоматических систем.— М.: Наука,
233. Цыпкин Я.З., Поляк Б.Т. Робастная устойчивость линейных систем //Итоги науки, сер. Техн. Киб. Т.32. М.: ВИНИТИ, 1991.С. 3-31
234. Чеботарев Н.Г. К проблеме Гурвица для целых трансцендентных функций // ДАН СССР. Новая серия.- 1941.-Т.ЗЗ. №9. с.483-486.
235. Чеботарев Н.Г. Основы теории Галуа, 4.1.—J1.-M.: ОНТИ-ГТТИ,1934
236. Чернецкий В.И. ,Дидук Г.А., Потапенко А.А. Математические методы и алгоритмы исследования автоматических систем.— Л.: Энергия, 1970.
237. Черноусъко Ф.Л., Болотник Н.Н., Градецкий В.Г. Манипуляционные роботы.— М.: Наука, 1989.
238. Черноусъко Ф.Л., Меликян А.А. Игровые задачи управления и поиска. М.: Наука, 1978.
239. Чубарое М. А. О критериях неотрицательности полиномов и определении областей абсолютной устойчивости // Дифференциальные и интегральные уравнения. —Горький: Горьк. ун-т, 1979.
240. Чубарое М. А. Проблема Гауса — Гурвица и последовательности полиномиальных остатков // Динамика систем. — Горький: Горьк. ун-т, 1974. Вып. 2.
241. Чхартиилвили Г.С., Афоненков С. А., Артюхов О.И. Инструментальное средство автоматизации моделирования и проектирования динамических систем. — М.: МЭИ, 1997.
242. Чхартишвили Г.С., Чхартиилвили Л.П., Клюкин Н.Г. Программа моделирования нелинейных непрерывных систем автоматического управления. // Автоматизация научных исследований. Тр. МЭИ, вып. 241.— М.: МЭИ, 1975.
243. Шевяков А.А., Мартьянова Т.С., Рутковский В.Ю. и др. Оптимизация многомерных систем управления газотурбинных двигателей летательных аппаратов.— М.: Машиностроение, 1989
244. Штойер Р. Многокритериальная оптимизация. — М.: Радио и связь,
245. Юсупбеков И.Р., Цацкин М.Л. Робастность многосвязных систем управления.—М.: Наука, 1980
246. Якубович В.А. Решение некоторых матричных неравенств, встречающихся в теории автоматического управления // Док. АН СССР. 162. т. 143. вып. 6. с. 1304-1307
247. Янушевский Р. Т. Теория линейных оптимальных многосвязных систем управления. М.: Наука, 1973.
248. Abrishamchian М., Barmish В. Reduction of robust stabilization problem to standart H°° problems for classes of systems with unstructured uncertainty // Automatica. 1996. v. 32, No. 8. p. 1101-1115
249. Ackermann J. Robust control: systems with uncertain physical parameters.—New York: Springer-Verlag, 1993.
250. Arbarello E., Cornalba M., Griffiths P.A., Harris J. Geometry of Algebraic Curves.—N.Y., Ber., Heid., Tok.: Spr.-Ver., 1985
251. Arnon D., Buchberger B. Algorithms in Real Algebraic Geometry.— Lon., N.Y., Academic Press, 1988
252. Balas M. Linear distributed parameter systems: cloused-loop exponential stability with finite dimensional controller // Automatica. - 1984. Vol. 20, № 3 - P.371-377.
253. Balas M. Subortimality and stability of linear distributed parameter systems with finite dimensional controllers. // J. Optimiz. Theory and appl. -1985.-Vol. 45, №.1. - P.1-19.
254. Barmish B.R. New tools for robustness of linear systems. — New York: MacMillan, 1995.
255. Bartlett A.C., Hollot C.V. and Huang L. Root location of an entire polytope of polynomials: It suffices to check the edges // Mathematics of Control, Signals and Systems. 1988, v. 1
256. Bazar Т., Bernhardt P. H^ -optimal control and related minimax design problems a dynamic game approach. — Boston, Birkhauser, 1991
257. Belardinelli G. Fonctions hypergeometriques de plusieurs variables et resolution analitique des equations algebriques generales.—Paris: Gauthier-Villars, 1960.
258. Bellman R. A Brief Introduction to Theta functions.— N.Y.: Holt, Rinehart and Winston, 1961
259. Bhattaacharyya S.P. Robust stabilization against structured parameters. — Berlin, Springer-Verlag, 1987
260. Bonhnak J., Coste M., Roy M.-F. Real Algebraic Geometry. — Ber., Hei.: Spr.-Ver.,1998
261. Brown W. S., Traub J. F. On Euclid's algorithm and the theory of sub-resultants// Numer. Math., 14 (1970). 1971. Vol. 18, N 4.
262. Chang S.K. Introduction: visual languages and iconic languages // Visual languages.—N.Y. 1986.
263. Chipperfield A. J., Whideborn J.F., Fleming P.J. Evolutionary algorithms and Simulated Annealing for MCDM // Multicriteria Decision Making: Advances in MCDM Models, Algorithms, Theory, and Applications. — Boston: Kluwer Academic Publishers, 1999.
264. Collins G. E. Subresultants and reduced polynomial remainder sequences //J. Assoc. Comput. Mach. 1967. Vol. 14, N 1.
265. Collins G.E. Polynomial remainder sequences and determinants // Amer. Math. Mon. 1966, v. 73, n. 7.
266. Deb K. Multi-objective optimization using evolutionary algorithms. — Chichester: Wiley, 2001.
267. Doyle J.C., Francis В.A., Tannenbaum A.R. Feedback control theory. — Engle-Wood Cliffs, New York: MacMillan, 1992.
268. Drexler K.E. Nanosystems-N.Y.: J.W., 1992
269. Enslow P.ff. A bibliography of search theory and recconnaissance theory literature//Naval Research Logistics Quarterly. 1966. - V. 13, No. 2.
270. Eyssette F., Galligo A. Computational Algebraic Geometry.— В., Bas., Ber.: Birkhauser, 1993
271. Francis B.A. A course in Hoo- control theory. Berlin, Springer-Verlag,1987
272. Hermite Ch. Sur la resolution de 1'equation du cinquieme degre. — С R. Acad. Sci., t. 46, 1858
273. Jenkins M.A., Traub JF. A three-stage algorithm for real polynomials using quadratic iteration // SIAM J. Numer. Anal., vol. 7, no. 4, Decern., 1970, pp. 545-566.
274. Jenkins M.A., Traub JF. A three-stage variable-shift iteration for polynomial zerous and its relation to generalized Rayleigh iteration, Numer. Math., 14 (1970), pp.252-261/
275. Jordan C. Traite des substitutions et des equations algebriques.— Gautier-Villars, Paris, 1870
276. Kronecker L. Sur la resolution de 1'equation du cinquieme degre.— С R. Acad. Sc, t. 46, 1858.
277. Kubotani H., Yoshimura K. Performance evaluation of acceptance probability functions for multiobjective simulated annealing // Computers and Operations Research. — 2003. — V. 30. — P. 427-442.
278. Lotov A. V., Bushenkov V. A., Kamenev G.K. Interactive Decision Maps. Approximation and Visualization of Pareto Frontier. — Boston: Kluwer Academic Publishers, 2004.
279. Lotov A., Berezkin V., Kamenev G., Miettinen K. Optimal control of cooling process in continuous casting of steel using a visualization-based multi-criteria approach//Applied Mathematical Modelling. 2005. V. 29(7).-P. 653-672.
280. Luse D.W. A Nyquist tipe stability test for multivaria-" bale distributed systems. // IEEE Trans. Autom. Contr. - 1988.- Vol.33, N°. - P.563-566.
281. MacFarlane A.C J., Belletrutti Y. J. The characteristic locus design method. //-Automatica, 1973, vol. 9, №5, p. 575-588
282. Mar den M. The Geometry of the Zeros of a Polynomial in a Complex Variable. — AMS, N.Y., 1949
283. Miettinen К. M. Nonlinear Multiobjective Optimization. — Boston: Kluwer Academic Publishers, 1999.
284. Mignotte M. Mathematics for computer algebra.— N.Y. : Springer-Verlag, 1992.
285. Mora Т., Traverso C. Effective Methods in Algebraic Geometry.— В., Bas., Ber.: Birkhauser, 1991
286. Owens D. H. Feedback and multivariable systems. — London: Peregrinus, 1978. -318 p
287. Pantyushin S.V., Nazaretov V,M, Tyagunov O.A. Modeling of robotic and flexible manufacturing systems. —N.Y.: Hemisphere Publ. Corp., 1991. — 156 p.
288. Postlethwate J., Foo Y.K. A robustness test for distributed feed back-system. 11 Int. J. Contr. 1985. - Vol.41, №4. -P.973-980.
289. Robert Т., Jacob K. A visual programming enviroment for designing user interface // Visual languages. —N.-Y., 1986.
290. Rosenbrock H. H. Computer-aided control systen design. — London: Academic Press, 1974. 230 p
291. Safonov M. G., Laub A., Hartmann G. Feedback properties of multivariable systems: the role and use of the return difference matrix. // IEEE Trans. Aut. Contr., 1981, vol. 26, №1, p. 47-65
292. Sawaragi Y., Nakayama H., Tanino T. Theory of multiobjective optimization. — Orlando: Academic Press, 1985.
293. Schenk H. Computational Algebraic Geometry.—Camb.: Academic Press, 2003
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.