Разработка и исследование алгоритмов нечеткой классификации ситуаций для решения задач экологического мониторинга тема диссертации и автореферата по ВАК РФ 05.13.16, кандидат технических наук Тимошенко, Роман Петрович
- Специальность ВАК РФ05.13.16
- Количество страниц 180
Оглавление диссертации кандидат технических наук Тимошенко, Роман Петрович
Введение
1. Методы построения функций принадлежности нечетких множеств, модели и методы принятия решений, базирующиеся на нечеткой логике
1.1. Обзор методов построения функции принадлежности нечеткого множества
1.1.1. Построение функций принадлежности на основе парных сравнений
1.1.2. Параметрическое определение функции принадлежности с участием индивидуального ЛИР
1.1.3. Комбинированный метод для группы экспертов
1.1.4.Построение функций принадлежности лингвистических термов с использованием статистических данных
1.1.5 .Построение функций принадлежности на основе экспертных оценок
1.1.6 Построение функций принадлежности на основе интервальных оценок
1.2.Модели и методы принятия решений, основанные на нечетких множествах
1.2.1 .Логико-лингвистическое описание систем, нечеткие модели и алгоритмы управления
1.2.2. Формализация и декомпозиция нечетких алгоритмов
1.2.3. Нечеткая модель композиции
1.2.4. Нечеткие модели принятия решений при управлении сложными системами
1.2.5. Особенности нечетких моделей
1.3.Выводы по разделу
2. Классификационные модели на основе нечеткой логики
2.1. Нечеткие множества. Основные определения 32 2.1.1 .Основные характеристики нечетких множеств 33 2.1.2. Нечеткие высказывания и нечеткие множества 34 2.1.3 .Нечеткая и лингвистическая переменные
2.2. Модели и алгоритмы нечеткой классификации
2.2.1. Модель оценки экологического состояния участка поверхности на основании знаний экспертов
2.2.2. Модель нечеткой классификации
2.2.3. Оценка числа операций алгоритма нечеткой классификации
2.2.4. Численное представление функций лингвистических переменных
2.2.5. Алгоритм численной нечеткой классификации
2.2.6. Оценка числа операций алгоритма численной нечеткой классификации
2.2.7.Алгоритм сокращенной численной нечеткой классификации
2.2.8.Алгоритм обратной численной нечеткой классификации 69 2.2.9.0ценка числа операций алгоритма обратной численной нечеткой классификации 71 2.2.10. Сравнительный анализ алгоритмов нечеткой классификации
2.3. Выводы по разделу
3. Исследование мер сходства с использованием интервальных нечетких множеств
3.1. Построение и использование функции принадлежности интервального нечеткого множества
3.2. Операции над интервальными нечеткими множествами 84 3.2.1. Теоретико-множественные операции над интервальными нечеткими множествами
3.2.2. Свойства нечетких интервальных подмножеств
3.2.3. Арифметические операции над интервальными нечеткими множествами
3.3 .Меры сходства нечетких множеств
3.3.1 .Комбинированные меры сходства
3.3.2.Меры сходства с интервальной оценкой
3.3.3. Меры сходства интервальных нечетких множеств 108 3.4.Решение задачи интервальной нечеткой классификации . 117 3.5 .Выводы по разделу
4. Нечеткая классификация для качественной оценки экологического состояния территории Таганрога
4.1. Применение нечеткой логики
4.1.1. Система СиЫСа1с
4.1.2. Система РиггуТесЬ
4.1.3. Система РигЮак
4.2. Постановка задачи экологического мониторинга на основе нечеткой классификации
4.3. Подсистема нечеткой классификации 132 4.3.1 .БД экспертной информации и связанные с ней функции, программного модуля
4.3.2.Подсистему сбора и обработки экспертной информации
4.3.3.Подсистема принятия решений
4.3.4.Подсистема визуализации информации
4.4. Выводы по разделу 150 Заключение 152 Список литературы 153 Приложения
Рекомендованный список диссертаций по специальности «Применение вычислительной техники, математического моделирования и математических методов в научных исследованиях (по отраслям наук)», 05.13.16 шифр ВАК
Разработка и исследование моделей принятия решений в интегрированных интеллектуальных системах и их применение для решения экологических задач2000 год, доктор технических наук Целых, Александр Николаевич
Алгоритмы классификации и принятия решений в условиях нечеткой информации в системах экологического мониторинга2003 год, кандидат технических наук Вахания, Дмитрий Валерянович
Методы формализации и обработки нечеткой экспертной информации2004 год, доктор технических наук Полещук, Ольга Митрофановна
Принятие решений в нечетких условиях, заданных нечеткими двудольными графами1999 год, кандидат технических наук Дзюба, Татьяна Анатольевна
Исследование и разработка нечеткой модели и комплекса программ экологической экспертизы горнодобывающего производства2008 год, кандидат технических наук Ястребова, Наталья Николаевна
Введение диссертации (часть автореферата) на тему «Разработка и исследование алгоритмов нечеткой классификации ситуаций для решения задач экологического мониторинга»
Теория нечетких множеств переживает период становления, который сопровождается блестящими примерами ее применения. В теоретическом плане достигнуты существенные успехи: пройден большой путь от понятий нечеткого множества и функции принадлежности к созданию теории возможностей, нечеткой логики, нечеткого моделирования и управления.
Развитие теории нечетких множеств обусловлено развитием техники и технологий, требующих новых подходов к решению организационно-технических задач, процессов принятия решений человеком, логико-лингвистических систем управления. Для решения этих задач потребовались методы, позволяющие использовать элементы естественного языка. Существующих методов теории принятия решений оказалось недостаточно, возникла необходимость в новых методах, позволяющих обрабатывать информацию, по крайней мере, в виде понятий и отношений естественного языка.
Набором таких методов обладает теория нечетких множеств. Она позволяет наилучшим образом структурировать все то, что разделено не очень точными границами. Нечеткость информации обусловлена наличием в описаниях задач принятия решений (ПР) понятий и отношений с нестрогими границами, а также высказываний с многозначной шкалой истинности. Не только общественные науки наполнены всеми видами абстрактных и конкретных форм; но и науки, называемые точными, могут иметь дело с ситуациями, в которых неопределенность заложена самой природой вещей. С нечеткостью сталкиваются различные специалисты: экономисты, лингвисты, специалисты по теории информации, биологи, экологи, социологи и другие.
В нечеткой среде в виде нечетких понятий и отношений могут быть выраженными все элементы задачи: альтернативы, исходы и зависимости между ними, оценки вероятностей наступления исходов, критериальные оценки исходов, отношения предпочтения лица принимающего решение (ЛПР), решающее правило. Использование нечетких словесных понятий, которыми оперирует ЛПР, позволяет ввести в рассмотрение качественные описания и учесть неопределенность задачи ПР, достигнуть полного описания всех факторов, имеющих отношение к данной задаче и не поддающихся точному количественному описанию.
Теория нечетких подмножеств не призвана конкурировать с теорией вероятности и статистическими методами; она заполняет пробел в области структуризованной неопределенности там, где нельзя корректно применять статистику и вероятности.
В 1965 г. вышла основополагающая статья Заде JI.A. (L. Zadeh) по теории нечетких множеств и нечеткой логике. С этого момента начался активный процесс развития теории нечетких множеств, как в России, так и за рубежом. Весомый вклад в развитие теории нечетких множеств внесли учёные: Аверкин
A.B., Алиев P.A., Борисов А.Н., Батыршин И.З., Берштейн Л.С., Дюбуа Д., Кофман А., Мелихов А.Н., Орловский С.А., Поспелов Д.А., Прад А., Тарасов
B.Б., Ягер P.P. и многие другие.
Актуальность темы. В настоящее время методы и алгоритмы теории нечетких множеств находят широкое применение при управлении организационно-технологическими системами, принятии решений. Они используются для автоматизации управления сложными системами. Под управлением понимается процесс идентификации состояния системы, а затем выдача управляющего решения. Одним из методов идентификации состояния системы является метод нечеткой классификации. Вопросы, связанные с этой тематикой затрагиваются практически на всех конференциях, посвященных нечеткой логике.
Из сказанного следует, что тема данной диссертационной работы, посвященной разработке и исследованию алгоритмов нечеткой классификации ситуаций для решения задач экологического мониторинга, является актуальной и представляет практический интерес.
Цель работы. Целью диссертационной работы является разработка и исследование алгоритмов решения задач нечеткой классификации, предназначенных для поддержки процесса принятия решений в задачах экологического мониторинга.
Для этого необходимо решить следующие задачи:
- Разработка и исследование алгоритмов нечеткой классификации: алгоритма численной нечеткой классификации, алгоритма сокращенной численной нечеткой классификации и алгоритма обратной численной нечеткой классификации. Оценка сложности алгоритмов и их сравнительный анализ.
- Разработка алгоритма построения функций принадлежности интервального нечеткого множества. Разработка и исследование арифметических и теоретико-множественных операций над интервальными нечеткими множествами. Исследование свойств интервальных нечетких множеств.
- Разработка и исследование способов построения комбинированных мер сходства, мер сходства нечетких множеств с интервальной оценкой, мер сходства интервальных нечетких множеств.
- Разработка программного комплекса, реализующего алгоритмы нечеткой классификации: численной нечеткой классификации, сокращенной численной нечеткой классификации, обратной численной нечеткой классификации, алгоритм построения функции принадлежности интервального нечеткого множества.
Методы исследования базируются на применении комбинаторики, теории нечетких множеств, нечеткой математики и логики.
Научная новизна диссертационной работы состоит в следующем:
- разработан алгоритм численной нечеткой классификации;
- разработан алгоритм сокращенной численной нечеткой классификации;
- разработан алгоритм обратной численной нечеткой классификации;
- получены оценки сложности алгоритмов по числу операций;
- предложен способ построения меры сходства с интервальной оценкой;
- исследованы и выявлены свойства мер сходства, использующих интервальные нечеткие множества.
Практическая ценность работы. Разработан программный комплекс, реализующий алгоритмы нечеткой классификации, который позволяет ускорить и упростить процесс классификации, а также исключить ошибки эксперта. Данный программный комплекс используется для качественной оценки экологического состояния территории г. Таганрога, что подтверждается соответствующим актом.
Предложены способы построения мер сходства нечетких множеств, которые позволяют наилучшим образом учитывать различные смысловые трактовки исходных данных. Это позволяет строить более адекватные алгоритмы и принимать обоснованные решения.
Разработанные алгоритмы нечеткой классификации могут быть использованы в предметных областях, где есть неопределенность и человеческий фактор.
Достоверность полученных в диссертации результатов подтверждается математическими и аналитическими доказательствами, оценками и результатами математического моделирования.
Реализация результатов работы. Результаты диссертации внедрены в Таганрогском городском экологическом фонде, Южно-российском региональном кадастровом центре «Земля» (г. Таганрога) и в учебном процессе на кафедре прикладной информатики Таганрогского государственного радиотехнического университета, что подтверждается соответствующими актами.
Апробация работы. Основные результаты диссертации представлены на VI Национальной конференции по искусственному интеллекту с международным участием КИИ' 98 (Пущино, 1998 г.), на XXVI Международной конференции и дискуссионном клубе «Информационные технологии в науке, образовании, телекоммуникации, бизнесе и охране природных ресурсов» 1Т+8Е'99 (Гурзуф, Украина, 1999 г.), на II Международном симпозиуме по проблемам рационального природопользования и обеспечения безопасности жизнедеятельности «Мониторинг и природопользование чрезвычайных ситуаций» ЕМР'97 (Махачкала, 1997 г.), на III Всероссийской научной конференции студентов и аспирантов «Радиоэлектроника. Микроэлектроника. Системы связи и управления» (Таганрог, 1997 г.), на Всероссийской научно-технической конференции с участием международных представителей «Интеллектуальные САПР-97» 1САО-97 (Таганрог, 1998 г.), на IV Всероссийской научной конференции студентов и аспирантов «Техническая кибернетика, радиоэлектроника и системы управления» (Таганрог, 1998 г.), на Второй всероссийской конференции молодых ученых и аспирантов «Новые информационные технологии. Разработка и аспекты применения» (Таганрог, 1999 г.), на Международной научно технической конференции «Интеллектуальные САПР - 98» (Таганрог, 1999 г.), на ХЬГ/ научно-технической и научно-методической конференций профессорско-преподавательского состава, аспирантов и сотрудников ТРТУ (Таганрог, 1999
Публикации. По результатам диссертации опубликовано 12 печатных работ [9, 10, 12,53-61].
Структура и объем диссертационной работы. Диссертация состоит из введения и четырех разделов, заключения, списка литературы из 65 наименований и приложений. Текст диссертации изложен на 180 страницах, включая 43 рисунка, 6 таблиц и 21 страницу приложений.
Похожие диссертационные работы по специальности «Применение вычислительной техники, математического моделирования и математических методов в научных исследованиях (по отраслям наук)», 05.13.16 шифр ВАК
Гибридные алгоритмы анализа и обработки данных в задачах поддержки принятия решений2011 год, кандидат технических наук Титов, Сергей Борисович
Разработка моделей и методов принятия решений в задачах тестирования знаний2012 год, кандидат технических наук Шестова, Елена Александровна
Разработка и исследование моделей автоматической оптимизации при задании параметров модели в виде нечетких интервалов2006 год, кандидат технических наук Молчанов, Артем Юрьевич
Использование нечеткой модели при оптимизации характеристик программных средств с помощью многокритериального генетического алгоритма2002 год, кандидат технических наук Борисенко, Маргарита Леоновна
Методы кластеризации в задачах оценки технического состояния зданий и сооружений в условиях неопределённости2010 год, кандидат технических наук Коняева, Елена Ивановна
Заключение диссертации по теме «Применение вычислительной техники, математического моделирования и математических методов в научных исследованиях (по отраслям наук)», Тимошенко, Роман Петрович
4.4.Выводы по разделу
1. Программные комплексы, использующие нечеткую логику, находят все большее применение. Об этом свидетельствует краткий обзор систем и программных продуктов, представленный в начале раздела. Из проведенного анализа можно сделать вывод, что для решения каждой задачи, использующей нечеткую логику необходимо разрабатывать свою систему, ориентированную на поставленную задачу.
2. Разработан программный комплекс, позволяющий строить интервальную функцию принадлежности по результатам опроса нескольких
151 экспертов, а также на ее основе производить интервальную классификацию поступающих ситуаций.
3. Разработанный программный комплекс позволяет проводить классификацию экологической обстановки по заданным параметрам (концентрации в почвенном слое химических элементов). Алгоритмы нечеткой классификации, позволяют ускорить процесс получения решения. Использование программного комплекса позволяет быстрее принимать обоснованное решение.
4. В сравнении с неавтоматизированной оценкой экологического состояния города Таганрога, программный комплекс позволяет на несколько порядков ускорить процесс построения карты оценки экологической оценки территории города Таганрога.
Заключение
В работе получены следующие научные и практические результаты.
1. Разработаны и исследованы алгоритмы нечеткой классификации: алгоритм численной нечеткой классификации, алгоритм сокращенной численной нечеткой классификации и алгоритм обратной численной нечеткой классификации, которые позволяют ускорить и упростить процесс классификации.
2. Разработаны и исследованы арифметические и теоретико-множественные операции над интервальными нечеткими множествами. Исследованы свойства интервальных нечетких множеств. Модели и алгоритмы, построенные на основе интервальных операций позволяют получать решение вместе с его оценкой, которая позволяет повысить качество принимаемых решений.
3. Разработаны и исследованы способы построения комбинированных мер сходства нечетких множеств, мер сходства с интервальной оценкой и мер сходства интервальных нечетких множеств, которые позволяют наилучшим образом учитывать различные смысловые трактовки исходных данных, строить более адекватные алгоритмы и принимать обоснованные решения.
4. Разработан программный комплекс, реализующий алгоритмы нечеткой классификации, который позволяет: исключить ошибки эксперта, качественно оценивать и прогнозировать экологическое состояние территории г. Таганрога.
Список литературы диссертационного исследования кандидат технических наук Тимошенко, Роман Петрович, 2000 год
1. Айгнер М. Комбинаторная теория. М.: Мир, 1982.- 558 с.
2. Алексеев A.B. Интерпретация и определение функции принадлежности нечетких множеств./ТМетоды и системы принятия решений. -Рига: Риж. политехи, ин-т, 1979. с. 42-50.
3. Алексеенко В. А. Геохимия ландшафта и окружающая среда. М.: Недра, 1990. - 142 с.
4. Алиев Р. А., Церковный А. Э., Мамедова Г. А. Управление производством при нечеткой исходной информации. М.: Энергоатомиздат, 1991.-238 с.
5. Алиев P.A., Мамедова Г.А. Идентификация и оптимальное управление нечеткими динамическими системами // Изв. АН: серия техническая кибернетика, № 6, 1993.
6. Астровский А.И. Применение теории нечетких множеств для исследования задач апостериорного оценивания в линейных дискретных системах. Минск, 1992. - 30 с.
7. Беллман Р., Заде JI.A. Вопросы принятия решений в расплывчатых условиях // Вопросы анализа и процедуры принятия решений. / М.: Мир, 1976.
8. П.Берштейн JI.C., Финаев В.И. Адаптивное управление с нечеткими стратегиями. Ростов н/Д.: Изд-во Рост. Ун-та, 1993. 134 с.
9. Беспамятнов Т.П., Кротов Ю.А. Предельно допустимые концентрации химических веществ в окружающей среде. Л.: Химия, 1985. - 528 с.
10. Блохин А.Г. Алгебра нечетких множеств//Теория и системы управления. Москва. Изд-во "Наука". 1998. №5. с. 88 96.
11. Борисов А.Н., Алексеев A.B., Меркурьева Г.В. др. Обработка нечеткой информации в системах принятия решений. М.: Радио и связь, 1989. 304 с.
12. Борисов А.Н., Крумберг O.A., Федоров И.П. Принятие решений на основе нечетких моделей. Примеры использования. Рига: "Зинатне", 1990. 186 с.
13. Бочаров. П.П., Печерина A.B. Теория вероятностей. Математическая статистика: Учеб. пособие. М.: Гардарика, 1998. - 326 с.
14. Ватлин С.И. Анализ обоснованности нечетких классификационных моделей управления в сложных технических системах. -Минск, 1993. 135 с.
15. Вентцель Е.С. Теория вероятностей: Учебник для вузов.-6-e изд., стер. М.: Высш. шк., 1999. - 575 с.
16. Гитман М.Б. Введение в теорию нечетких множеств и интервальную математику Ч. 1 : Применение лингвистической переменной в системах принятия решений. -1998. 44 с.
17. Дюбуа Д., Прад А. Теория возможностей. Приложения к представлению знаний в информатике. Пер. с франц. -М.: Радио и связь, 1990. -288 с.
18. Елисеев П.И. Интерпретация нечетких подмножеств в задачах моделирования и управления // Изв. АН: серия техническая кибернетика, № 3, 1992.
19. Искусственный интеллект. В 3-х кн. Кн. 2. Модели и методы: Справочник.// Под ред. Поспелова Д.А. -М.: Радио и связь, 1990. 304 с.
20. Иваи С., Асаи, Д. Ватада и др. Под ред. Т. Тэрано. Прикладные нечеткие системы. Пер. с яп. Ю. Н. Чернышева. М.: Мир, 1993. - 368 с.
21. Калмыков С. А. и др. Методы интервального анализа. Новосибирск, 1986.-226 с.
22. Кофман А. Введение в теорию нечетких множеств: Пер. с франц. М.: Радио и связь, 1982. - 432 с.
23. Кузьмин В.Б. Построение групповых решений в пространствах четких и нечетких бинарных отношений. М.: Наука, 1982. - 168 с.
24. Ларичев О.И., Мечитов А.И., Мошкович Е.М., Фуремс Е. М. Выявление экспертных знаний. М.: Наука, 1989. - 128 с.
25. Липский В. Комбинаторика для программистов: Пер. с польск. М.: Мир, 1988.-213 с.
26. Лорин Г. Сортировка и системы сортировки. Пер. с англ. М.: Наука, 1983.-386 с.
27. Малышев Н.Г., Берштейн Л.С., Боженюк A.B. Нечеткие модели для экспертных систем в САПР. М.: Энергоатомиздат, 1991. 210 с.
28. Мелихов А. Н., Баронец В. Д. Проектирование микропроцессорных средств обработки нечеткой информации. Ростов-на-Дону. Изд-во Ростовского ун-та, 1990. - 130 с.
29. Мелихов А.Н., Берштейн Л.С. Конечные четкие и расплывчатые множества. 4.2. Расплывчатые множества. Учебное пособие. Таганрог, ТРТИ, 1981.94 с.
30. Мелихов А.Н., Берштейн Л.С., Коровин С.Я. Расплывчатые ситуационные модели принятия решений: Учебное пособие. -Таганрог, ТРТИ, 1986. 92с.
31. Мелихов А.Н., Берштейн Л.С., Коровин С.Я. Сжатие множества эталонных ситуаций в лингвистических моделях ситуационного управления// Автоматика и телемеханика. 1985. №2. с. 118-123.
32. Мелихов А.Н., Берштейн Л.С., Коровин С.Я. Ситуационные советующие системы с нечеткой логикой.- М.: Наука, 1990.- 272 с.
33. Нечеткие множества в моделях управления и искусственного интеллекта. /Под ред. Д.А. Поспелова. М.: Наука. Гл. ред. физ.-мат. лит., 1986. -312 с.
34. Нечеткие множества и теория возможностей. Последние достижения / Под ред. Р. Ягера. М.: Радио и связь, 1986. - 408 с.42.0рлов А.И. Задачи оптимизации и нечеткие переменные. М.: Знание, 1980.- 63 с.
35. Орловский С.А. Проблемы принятия решений при нечеткой исходной информации. -М.: Наука, 1981. 208 с.44,Орса В. А. Числовой метод минимизации булевых функций. Издательства Ростовского университета, 1987. 64 с.
36. Оценка и регулирование качества окружающей природной' среды. Учебное пособие для инженера-эколога/Под ред. А.Ф. Порядина и А.Д. Хованского. М.: НУМЦ Минприроды России, Издательский Дом "Прибой", 1996.-350 с.
37. Пападимитриу X., Стайглиц К. Комбинаторная оптимизация: Алгоритмы и сложность. М.: Мир, 1985. 512 с.
38. Поспелов Д.А. Логико-лингвистические модели в системах управления. М.: Энергоиздат, 1981. - 232 с.
39. Поспелов Д.А. Ситуационное управление: Теория и практика. М.: Наука, 1986. - 284с.
40. Пфанцагль И. Теория измерений. М.: Мир, 1976. - 248 с.
41. Рейнгольд Э., Нивергельт Ю., Део Н. Комбинаторные алгоритмы. Теория и практика М.: Мир, 1980. - 476 с.
42. Робертс Ф.С. Дискретные математические модели с приложениями к социальным, биологическим и экологическим задачам . М: Мир, 1986. - 320 с.
43. Целых А.Н., Тимошенко Р.П. Оценка экологической обстановки окружающей среды на основе анализа знаний экспертов. // Известия ТРТУ. Тематический выпуск "Управление в социальных и экономических системах". Таганрог: Изд-во ТРТУ, 1998. № 1. с. 219 222.
44. Целых А.Н., Тимошенко Р.П. Принятие решений на основе мер сходства интервальных нечетких множеств. Препринт. Ростов на - Дону: Изд-во Северо-Кавказского научного центра высшей школы, 1999, 36 с.
45. Шокин Ю.И. Интервальный анализ. -Новосибирск: Наука, 1981.- 112с.
46. Berthold М., J.Hand D. Intelligent Data Analisis: An Introduction. Berlin; Heidelberg; New York; Barcelona; Hong Kong; London; Milan; Singapore;Tokyo: Springer, 1999. p. 402.
47. Kaufmann, A., and Gupta, M.M., "Introduction to Fuzzy Arithmetic", Reinhold, New York, 1985.
48. Miymoto Sadaaki. Fuzzy sets in information retrieveal and cluster analysis. Kluwer academic publishers. 1990. 260p.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.