Применение метода лебеговского осреднения для нахождения радиационного баланса в атмосфере Земли тема диссертации и автореферата по ВАК РФ 01.02.05, кандидат физико-математических наук Шилькова, Светлана Валерьевна

  • Шилькова, Светлана Валерьевна
  • кандидат физико-математических науккандидат физико-математических наук
  • 1999, Москва
  • Специальность ВАК РФ01.02.05
  • Количество страниц 98
Шилькова, Светлана Валерьевна. Применение метода лебеговского осреднения для нахождения радиационного баланса в атмосфере Земли: дис. кандидат физико-математических наук: 01.02.05 - Механика жидкости, газа и плазмы. Москва. 1999. 98 с.

Оглавление диссертации кандидат физико-математических наук Шилькова, Светлана Валерьевна

СОДЕРЖАНИЕ

Стр.

ВВЕДЕНИЕ

ГЛАВА

1.1 Основные радиационные потоки

1.2. Уравнение переноса излучения в атмосфере

1.3 Высотный профиль атмосферных газов.

Интерполяция и интегрирование табличных значений

1.4. Микросечения молекулярного поглощения и рассеяния

ГЛАВА

2.1 Выделение носителей резонансов

2.2 Метод лебеговского осреднения

2.3 Подготовка лебеговских коэффициентов

ГЛАВА

3.1 Сходимость решений уравнения переноса методом лебеговского осреднения к решению спектрального уравнения

3.2 Расчеты переноса теплового излучения

в стандартной летней атмосфере средних широт

3.3 Расчеты переноса солнечного излучения

в стандартной летней атмосфере средних широт с учетом и без учета молекулярного рассеяния

ЗАКЛЮЧЕНИЕ

ЛИТЕРАТУРА

Рекомендованный список диссертаций по специальности «Механика жидкости, газа и плазмы», 01.02.05 шифр ВАК

Введение диссертации (часть автореферата) на тему «Применение метода лебеговского осреднения для нахождения радиационного баланса в атмосфере Земли»

ВВЕДЕНИЕ

Необходимость нахождения радиационного баланса атмосферы возникает во многих задачах моделирования климата, прогноза погоды, оценки последствий человеческой деятельности. Одна из основных проблем, возникающих при численном моделировании атмосферной радиации, связана с наличием большого числа молекулярных линий поглощения, что сильно затрудняет вычисление интегральных по спектру характеристик излучения. Атмосфера не является оптически тонкой или оптически толстой одновременно для всех участков спектра. Резко меняющиеся вероятности поглощения квантов в близлежащих энергиях приводят к сложному закону пространственного затухания интегральной интенсивности излучения, заметно отличающемуся от экспоненциального. Спектр излучения коррелирует с каждым резонансом поглощения [1-2]. Основная передача радиации происходит в крыльях линий. Кроме того, имеет место значительная изменчивость и неоднородность по высоте концентраций поглощающих и рассеивающих компонент атмосферы.

В настоящее время усилиями экспериментаторов, теоретиков и вычислителей накоплено большое количество спектроскопических данных о сечениях поглощения в линиях атмосферных газов и малых примесей [3-8], а также данных о рассеянии и поглощении радиации частицами облаков и атмосферными аэрозолями. Информация о сечениях поглощения сведена в компьютерные библиотеки данных, что облегчает ее уточнение и, главное, значительно увеличивает

доступность информации для использования. Например, банк данных

1 1

Н1ТКА1М-92 [4] в диапазоне от 40 см" до 22650 см" содержит параметры примерно 700 тысяч линий молекулярного поглощения 32 атмосферных газов с учетом разного изотопного состава молекул (всего с изотопами

70). Точность данных для основных линий лежит в пределах 5%. Наличие столь подробной и полной информации делает возможным проведение прецизионных расчетов переноса излучения в атмосфере. Прецизионный расчет предполагает:

• Использование только детальных микроскопических сечений поглощения, без привлечения каких-либо дополнительных эмпирических констант и априорных предположений о характере интегрального по спектру поглощения.

• Контролируемость точности расчета спектров излучения, т.е. возможность сознательно регулировать точность, поддерживая ее, например, не ниже уровня точности спектроскопических данных.

• Наличие надежного комплекса компьютерных программ для подготовки входных данных для расчета переноса излучения из большого объема спектроскопической информации.

• Можно говорить о недостаточности знания далеких крыльев линий и характера поглощения в континууме, о неопределенности параметров облачного рассеяния, о неясности влияния малых атмосферных газов, защищая тот или иной полуэмпирический метод расчета атмосферной радиации. Но, реально только прецизионный расчет и его аккуратное сопоставление с экспериментальными данными позволит ответить на эти и многие другие вопросы.

Самый простой способ проведения прецизионного расчета спектров излучения состоит в применении многогруппового приближения [9,10]. Увеличиваем число групп до тех пор, пока не будет достигнута сходимость результатов расчетов к стабильному решению в смысле фундаментальной последовательности. Но, так как в атмосфере существенен перенос в крыльях конкретных линий, многогрупповое приближение сходится крайне медленно. Фактически, его применение

не обеспечивает выигрыша по сравнению с прямым поточечным расчетом спектров излучения. Этот факт убедительно показывают результаты расчетов с очень детальным разрешением спектра, получившим в литературе название "Line-by-Line" [11-18]. В современных "Line-by-Line" расчетах достигнута сверхвысокая степень детализации спектра от 10"4 до 10"2 см"1 [14-20]. Между результатами, полученными различными группами исследователей, имеется хорошее соответствие, особенно при отсутствии облачности [21-23]. Основные недостатки этого подхода: большие трудоемкость подготовки и время счета, сложность варьирования параметров, невозможность прямого использования в газодинамических расчетах общей циркуляции атмосферы. Так, при одном уровне облачности, без учета молекулярного рассеяния и отражения от поверхности, один вариант расчета по программе GFDL (Geophysical Fluid Dynamics Laboratory) [18] занимал 100 часов времени процессора Cyber 205. При этом для расчета линейчатого поглощения диапазон от 1 см"1 до 18000 см"1 разбивался на

6 3 1

2.88-10 энергетических интервалов (что соответствует шагу 6-10" см"), а диапазон между 18000 см"1 и 33333 см"1 , где учитывалось только взаимодействие с облачностью, разбивался на 11 спектральных интервалов. Поэтому, в настоящее время расчеты "Line-by-Line" ориентированы на создание банка стандартных, реперных расчетов (под эгидой Международной Ассоциации по Метеорологии и Атмосферной Физике IAMAP), по которым могут тестироваться различные экономичные методики, применяемые в компьютерных программах общей циркуляции атмосферы [21-24].

Экономичные методы расчета радиации используют различные процедуры осреднения фотонного спектра. Это позволяет вычислять интегральные (по участкам спектра) радиационные потоки из решения

осредненного уравнения переноса. Проблемы с осреднением многорезонансных спектров поглощения возникают также в задачах переноса нейтронов и излучений в горячем газе и плазме. В литературе описано несколько основных подходов, отличных от многогруппового приближения [24-50]. Данный список не претендует на полноту охвата и указание приоритетов всех работ по данной тематике. Указанным выше методам в той или иной степени присущи следующие недостатки: не очень широкая область применимости, введение дополнительных предположений, которые могут вносить неконтролируемые погрешности в результаты, громоздкость в реализации, сложность подготовки осредненных констант, сложность варьирования концентраций, невозможность правильно учитывать рассеяние. Так, метод статистического моделирования спектров [35,36,38] предполагает статистическую независимость положений линий и модельное распределение ширин и интенсивностей резонансов. Метод прямого вычисления функций пропускания [31-34] и метод парциальных характеристик [35] (что практически одно и то же) требует пространственной однородности распределения поглощающих компонент, либо требуют хранения больших по объему многопараметрических таблиц для неоднородных распределений концентраций, температурной и барометрической зависимостей функции пропускания. Применение процедуры Куртиса-Годсона [30] не всегда обеспечивает требуемую точность. Вызывает сложность варьирование концентраций и учет процессов рассеяния излучения. Эти же недостатки имеют метод «суммы экспонент» [33,34] и метод, предложенный в [37]. Метод [38] приводит к функциям, которые довольно сильно зависят от новой обобщенной переменной, что приводит к высокой чувствительности к выбору расчетной сетки и, как

следствие, к неэкономичности расчета. Метод [39] не доведен до практического использования и, по-видимому, сложен в реализации. Обобщенное многогрупповое приближение [34,51,52] и метод подгрупп [40-45] хорошо работают только при достаточно слабых искажениях профиля спектрального коэффициента поглощения, т.е. требуют большой пространственной однородности концентраций поглощающих газов, давления и температуры. Метод к-распределений [46-50] опирается на ряд модельных предположений относительно спектра коэффициента поглощения. Довольно трудоемок процесс подготовки осредненных сечений поглощения. При попытках сделать процесс подготовки данных более простым, приходится вводить дополнительные эмпирические предположения.

В настоящей работе используется экономичный и практически точный метод лебеговского осреднения многорезонансных спектров атмосферной радиации [53,54]. Исходные данные берутся из банка микроскопических параметров линий поглощения НШ1АМ-92 [62]. Точность осреднения регулируется и всегда может быть сделана выше точности спектроскопических данных. Для решения проблемы неоднородного распределения различных оптически активных газов по высоте в работе используется процедура разбиения шкалы энергий на носители резонансов [53,54]. Для нахождение пространственно-углового распределения излучения применяется метод квазидиффузии [ ]. Все вместе позволяет решать транспортное уравнение радиации с прецизионной точностью при высокой экономичности и эффективности расчетов. Созданный комплекс программ или отдельные его части могут быть использованы в моделях общей циркуляции атмосферы.

Метод лебеговского осреднения ранее применялся для расчета переноса излучения в высокотемпературном газе [55-57] (задачи

радиационной газовой динамики и кинетики плазмы) и для прецизионного расчета переноса нейтронов в ядерных реакторах [51,52,58]. В [59-61] показана его высокая эффективность при решении этих задач. В основу метода лебеговского осреднения положен принцип осреднения по участкам спектра с одинаковым коэффициентом поглощения. Отметим, что идея использовать величину коэффициента поглощения при осреднении спектра в разных (зачастую очень похожих) вариантах развивалась многими исследователями [35-50]. Наиболее полные и продвинутые подходы: метод подгрупп [40-43] в теории переноса нейтронов и метод к-распределений [46-50] в теории переноса атмосферного излучения. В методе лебеговского осреднения используется иной подход. Применение к спектральному уравнению математически строгого формализма лебеговских множеств и интеграла Лебега позволило добиться большей точности и получить возможность управлять ею. Найден критерий, показывающий где при осреднении может теряться точность, и как добиваться ее восстановления. При самых общих предположениях получено замкнутое уравнение переноса излучения в Б-пространстве - пространстве лебеговских образов интенсивности излучения. Это уравнение является следствием стандартного уравнения переноса для обычной интенсивности излучения. Оно уже не содержит многочисленных резонансных особенностей в коэффициентах и гораздо более просто для численного решения.

Применение метода лебеговского осреднения к задачам переноса излучения в атмосфере потребовало значительной работы по восстановлению сечений молекулярного поглощения по спектроскопическим параметрам. В работе предложен удобный, быстрый и точный алгоритм восстановления сечений молекулярного

поглощения. Подготовлен комплекс программ, проводящий восстановление сечений по параметрам линий из банка Н1Т11А]Ч-92 [62].

После восстановления спектральных сечений проведена значительная работа по подготовке лебеговских оптических констант и коэффициентов поглощения при реальных высотных профилях температуры и концентраций поглощающих газов. Реализована процедура разбиения шкалы энергий на носители резонансов.

Проведенная работа по реконструкции сечений молекулярного поглощения и лебеговскому осреднению полученных сечений позволила провести серию расчетов переноса теплового и солнечного излучения в стандартной летней атмосфере средних широт методом квазидиффузии с лебеговскими осредненными оптическими коэффициентами.

В первой главе проведена характеристика потоков атмосферной радиации. Обсуждены основные факторы затрудняющие расчет переноса излучения в атмосфере: большое число линий молекулярного поглощения, неоднородность высотного распределения газов, наличие облачности. Приведено уравнение переноса излучения в плоскопараллельной квазистационарной атмосфере в системе координат, связанных с давлением. В этой системе координат определяются и скорости радиационного нагрева и выхолаживания, безразмерные коэффициенты поглощения и рассеяния, входящие в уравнение переноса.

Приведены выражения для сечений молекулярного поглощения атмосферных газов через спектроскопические параметры банка данных ШТКА]Ч-92. Обсуждены зависимости сечений от температуры, давления и от энергии фотонов. Сечение поглощения радиации молем молекул газа выражается через спектроскопические параметры и фойгтовские профили линий с помощью многопараметрической суммы по множеству

линий. Для каждой энергетической точки сумма уникальна и содержит свои вклады от сотен/тысяч линий. При восстановлении сечений молекулярного поглощения на всем энергетическом диапазоне возникает ряд проблем, связанных с выбором сетки по энергии, которая бы адекватно прописывала структуру линий; объемом вычислений; объемом хранимой информации и использованием машинного времени.

В работе изложена последовательность алгоритмов и процедур преобразования данных, которая позволяет быстро и с заранее заданной точностью реконструировать сечения молекулярного поглощения атмосферных газов непосредственно перед их использованием и, следовательно, не требует хранения больших объемов информации.

Во второй главе описаны используемые в диссертации методы расчета переноса излучения в атмосфере: процедура разбиения шкалы энергии на носители резонансов, метод лебеговского осреднения и метод квазидиффузии. Описана процедура получения лебеговских микросечений и сборки лебеговских коэффициентов.

Предложенный метод сборки лебеговских оптических коэффициентов из лебеговских оптических сечений значительно упрощает пересчет коэффициентов при вариациях концентраций поглощающих газов и других параметров среды. При этом сложная обработка оптических сечений проводится только один раз. Полученные таблицы лебеговских сечений имеют сравнительно небольшой объем и используются в дальнейшем для решения различных задач.

В третьей главе приводятся результаты расчета переноса теплового и солнечного излучения в стандартной безоблачной летней атмосфере средних широт. Для решения уравнения переноса излучения использован метод квазидиффузии [63,65]. Для расчета переноса солнечного излучения с учетом рассеяния использовался метод учета

анизотропии рассеяния [65,66]. Проведено сравнение с результатами "Line-by-Line" расчетов [18-23,67,68]. Получено совпадение результатов в пределах 1-8% при уменьшении количества вычислений в 1000-10000 раз [69-74].

В заключении сформулированы основные результаты, выносимые на защиту.

Основные результаты диссертации докладывались и обсуждались на

- международной конференции IAS-4: "International Aerosol Symposium" (Россия, г. Санкт-Петербург, июль 1998 г.);

- международной конференции «Физика атмосферного аэрозоля» (2 доклада) (Россия, Москва, апрель 1999 г.);

- научном семинаре в ИММ РАН.

Основные положения и материалы диссертации опубликованы в работах [53,54,62,69-74].

Автор считает своим приятным долгом выразить благодарность своим научным руководителям профессору В.Я. Гольдину и А.В.Шилькову за внимание и помощь на всех этапах работы над диссертацией, E.H. Аристовой за плодотворное сотрудничество и моральную поддержку, Б.А. Фомину за любезно предоставленные результаты для проведения сравнений и другие материалы.

Похожие диссертационные работы по специальности «Механика жидкости, газа и плазмы», 01.02.05 шифр ВАК

Заключение диссертации по теме «Механика жидкости, газа и плазмы», Шилькова, Светлана Валерьевна

ОСНОВНЫЕ РЕЗУЛЬТАТЫ РАБОТЫ:

1. Предложен и реализован быстрый алгоритм восстановления сечений молекулярного поглощения атмосферными газами с любой заданной степенью точности на основе банка параметров линий поглощения HITRAN-92. Алгоритм может применяться в расчетах с помощью метода лебеговского осреднения, в спектральных 'Line-by-Line' расчетах, в процедуре разбиения шкалы энергий на носители резонансов.

2. Для учета неоднородности высотных распределений атмосферных газов реализована процедура разбиения шкалы энергий на носители резонансов оптически активных газов. Написан пакет программ. Применение этой процедуры эффективно для метода лебеговского осреднения, в методах 'Line-by-Line', а так же для вычислении функций пропускания атмосферы на носителях и для других приложений.

3. Проведено лебеговское осреднение микроскопических оптических сечений атмосферы Земли. Таблицы лебеговских осредненных сечений молекулярного поглощения и рассеяния атмосферными газами имеют сравнительно небольшой объем. Создан пакет программ для быстрой подготовки коэффициентов, входящих в транспортное уравнение радиации.

4. Проведены расчеты переноса теплового и солнечного излучения в стандартной летней атмосфере средних широт методом лебеговского осреднения и методом квазидиффузии. Получено хорошее совпадение с результатами эталонных "line-by-line" расчетов. При этом достигается уменьшение объема вычислений по сравнению с указанными расчетами до 1000-10000 раз.

Реализованная методика расчетов с помощью лебеговского осреднения благодаря своей экономичности и точности могла бы применяться в моделях общей циркуляции атмосферы в качестве радиационного блока, может использоваться для изучения влияния газовых примесей и аэрозолей на радиационный баланс атмосферы, для оценки последствий человеческой деятельности. Полученные в процессе реализации метода лебеговского осреднения отдельные результаты имеют более широкую область практического применения. Выделение носителей резонансов эффективно в методах 'Ьте-Ьу-Ыпе' и при вычислении функций пропускания. Алгоритм реконструкции сечений молекулярного поглощения полезен и для проведения точных спектральных расчетов.

ЗАКЛЮЧЕНИЕ

Список литературы диссертационного исследования кандидат физико-математических наук Шилькова, Светлана Валерьевна, 1999 год

Литература

1. Migeotte M., Nevin L., Swensson J. The solar spectrum from 2.8 to 23.7 |Lim. Part 1. Photometric Atlas. // Univ.of Liege, Contract AF 61 (514)-432. Phase A. Part 1. Geophysics Research Directorate AFCRL, Cambridge, Mass., ASTIA AD210043.

2. Kuiper G.P., Thomson A.B., Biß L.A., Benner D.C. N 162 Arizona NASA Atlas of Infrared Solar Spectrum. Report VI, May 1969.

3. McClatchey R.A., Benedict W.S., Clough S.A. et. al. AFCRL Atmospheric Absorption Line Parameters Compilation. // AFCRL-Technical Report 0096 (1973). Air Force Cambridge Res. Lab., Bedford, Massachusetts.

4. Rothman L.S. et. Al. The Hitran Molecular Data Base: 1992 edition. II J. Quant. Spectrosc. and Radiat. Transfer, 1992, v.48, p.467-507.

5. Rothman L.S., Gamache R.R., Goldman A. et. al. The Hitran Data Base: 1986 edition.//Applied Optics, 1987, v.26, N 19, p.4058-4097.

6. Rothman L.S., Goldman A., Gillis J.R. et. al. AFGL trace gas compilation: 1982 version, /1980 version. // Applied Optics, 1983, v.22, N 11, p. 1616-1627. / Applied Optics, 1983, v. 22, p. 2247. / Appl. Opt., 1981, v. 20, N 5, p. 791. / Applied Optics, 1981, v.20, N 8, p. 1323-1328.

7. Chedin A., Husson N., Scott N.A. et. al. The GEISA Data Bank, 1984 Version. // Internal Note 127, (1985). Lab. de Meteorol. Dyn. du Cent. Natl.de la Rech. Sei., Ecole Polytechnique, Palaiseau, France, 1985.

8. Husson N., Chedin A., Scott N.A. et. al. La banque de donnees Geisa. Il Internai Reports 108 (1980) and 116 (1982). Lab. de Meteorol. Dyn. du Cent. Natl. de la Rech. Sei., Ecole Polytechnique, Palaiseau, France,

1985.

9. Davison D. Neutron Transport Theory. - Oxford Univ. Press (Clarendon), London and New York, 1957. / Русский пер.: Дэвисон Б. Теория переноса нейтронов.- М: Атомиздат, 1960.

Ю.Николаев М.Н., Рязанов Б.Г., Савоськин М.М., Цибуля A.M. Многогрупповое Приближение в Теории Переноса Нейтронов». -М.: Энергоатомиздат, 1984.

11 .Drayson S.R. Atmospheric Transmission in the C02 Bands Between 12jim and 18pm. //Applied Optics, 1967, v. 5, p. 385-391.

ll.Fels S.B., Schwarzkopf M.D, An Efficient, Accurate Algorithm for Calculating C02 15-pm Band Cooling Rates. I I J. Geophys. Research, 1981, v. 86, p. 1205-1232.

13. Scott N.A., Chedin A. A Fast Line-by-Line Method for Atmospheric Absorption Computations: The Automatized Atmospheric Absorption Atlas. 11 J. Applied Meteorology, 1981, v. 20, p. 801-812.

14. Ridgway W.L., Harshvardhan, Arking A. Computation of Atmospheric Cooling Rates by Exact and Approximate Methods. // J. Geophysical Research, 1991, v. 96, N D5, p. 8969-8984.

15. Feigelson E.M., Fomin B.A., Gorchakova I.A. et. al. Calculation of Longwave Radiation Fluxes in Atmospheres. // J. Geophysical Research, 1991, v. 96, N D5, p. 8985-9001.

16 .Романов С.И., Троценко А.Н., Фомин Б. А. Использование численных методов для описания переноса солнечного излучения в рассеивающей атмосфере при строгом учете селективности газового поглощения. // Препринт ИАЭ им.Курчатова И.В. 5304/1, Москва 1991.

17. Kratz D.P., Gao В.-С., Kiehl J.Т. A Study of the Radiative Effects of the 9.4- and 10.4-Micron Bands of Carbone Dioxide. //J. Geophysical Research, 1991, v. 96, N D5, p. 9021-9026.

18.Ramaswamy V., Freidenreich S.M, Solar Radiation Line-by-Line Determination of Water Vapor Absorption and Water Cloud Extinction in Inhomogeneous Atmospheres. // J. Geophysical Research, 1991, v. 96, N D5, p. 9133-9157.

19.Clough S.A., Iacono M.J., Moncet J.L. Line-by-Line Calculations of Atmospheric Fluxes and Cooling Rates: Application to Water Vapor //Journal of Geophysical Research, 1992, v. 97, No. D14, pp. 15,76115,785.

20.Clough S.A., Iacono M.J. Line-by-Line Calculations of Atmospheric Fluxes and Cooling Rates: 2. Application to carbon dioxide, ozone, methane, nitrous oxide and the halocarbons / Journal of Geophysical Research, 1995, v. 100, No. D8, pp. 16,519-16,535.

21 .Ellingson R.G., Fouquart Y. The Intercomparison of Radiation Codes in Climate Models: An Overview. // J. Geophysical Research, 1991, v. 96, N D5, p. 8925-8927.

ll.Ellingson R.G., Ellis J., Fels S. The Intercomparison of Radiation Codes Used in Climate Models: Long Wave Results. // J. Geophysical Research, 1991, v. 96, N D5, p. 8929-8953.

23.Fouquart Y., Bonnel В., Ramaswamy V, Intercomparing Shortwave Radiation Codes for Climate Studies. // J. Geophys. Research, 1991, v. 96, N D5, p. 8955-8968.

2А.Фейгельсон E.M., Дмитриева JI.P. и др. Радиационные алгоритмы в моделях общей циркуляции атмосферы: обзор // ВНИИГМИ-МЦД , Выпуск 1, Обнинск, 1983.

25.Fels S.B., Kiehl J.T., Lacis A.A., Schwarzkopf M.D. Infrared Cooling Rate Calculations in Operational General Circulation Models: Comparison with Benchmark Computations. // J. Geophys. Research, 1991, v. 96, N D5, p. 9105-9120.

26.Могcrette J.J. Radiation and Cloud Radiative Properties in the European Center for Medium Range Weather Forecasts Forecasting System. //J. Geophys. Research, 1991, v.96, ND5, p.9121-9132.

21.Hunt G.E., Grant LP. Discrete Space Theory of Radiative Transfer and its Application to Problems in Planetary Atmospheres. // J. Atmos. Sei., 1969, v. 26, p. 963-972.

28.Wiscombe W.J. On Initialization, Error and Flux Conservation in the Doubling Method. // J. Quant. Spectrosc. Radiative Transfer, 1976, v. 16, p. 637-658.

29. Goody R.M. A Statistical Model for Water Vapor Absorption. // Quart. J. Roy. Meteorol. Soc. 1952, v. 78, p. 165-169.

30.Goody R.M. Atmospheric Radiation. 1. Theoretical Basis. - Oxf. Univ. Press (Clarendon), London and New York, 1964. / Рус. пер.: Гуди P.M. Атмосферная радиация. 1. Основы теории. - М.: Мир, 1966.

31 .Кондратьев К.Я. Перенос излучения в атмосфере. - JL: Гидрометеоиздат, 1972.

32.Зуев В.Е. Распространение видимых и инфракрасных волн в атмосфере. - М.: Советское радио, 1970.

33.Фейгелъсон Е.М., Краснокутская Л.Д. Потоки солнечного излучения и облака. - JL: Гидрометеоиздат, 1978.

34. Kuo-Nan Liou. An Introduction to Atmospheric Radiation. - Academic Press. New York, London, 1980. / Русский пер.: Kyo- Нан Лиоу.

Основы радиационных процессов в атмосфере. - Л.: Гидрометеоиздат, 1984.

35. Сееастъяненко В.Г. Теплопередача излучением в реальном спектре. // Дисс.доктора физ.-мат.наук.- ИТПМ. Новосибирск. 1980.

36.Lacis А.А., Hansen J.E. A Parameterization for the absorption of solar radiation in the Earth's atmosphère. // J. Atmos. Sci., 1974, v. 31, p. 118-133.

37.Yamamoto G., Tanaka M., Asano S. Radiative Transfer in Water Clouds in the Infrared Région. // J. Atmos. Sci., 1970, y. 27, p. 282292.

38.Голъдин В.Я., Четеерушкин Б.H. Методы Решения Одномерных Задач Радиационной Газовой Динамики. // Ж. Вычисл. Математики и Мат. Физики, 1972, т. 12, Т 4, с. 990-1000

39 .Кривцов В.М. Об одном подходе к расчету селективного излучения //Ж. Вычисл. математики и мат. физики. 1974, т. 14, Т 6, с. 15951599.

АО.Николаев М.Н., Игнатов А.А., Исаев Н.В., Хохлов В.Ф. Метод подгрупп для учета резонансной структуры сечений в нейтронных расчетах. Часть 1. // Ж. Атомная энергия. 1970, т. 29, Т 1, с. 11-16.

Al.Николаев М.Н., Игнатов А.А., Исаев Н.В., Хохлов В.Ф. Метод подгрупп для учета резонансной структуры сечений в нейтронных расчетах. Часть 2. //1971, т. 30, Т 5, с. 426-430.

А2.Синица В.В., Николаев М.Н. Аналитический метод получения подгруппвых параметров. // Ж. Атомная энергия. 1973, т.35, Т 6, с. 429-430.

Основы радиационных процессов в атмосфере. - Л.: Гидрометеоиздат, 1984.

35. Сееастъяненко В.Г. Теплопередача излучением в реальном спектре. // Дисс.доктора физ.-мат.наук.- ИТПМ. Новосибирск. 1980.

36.Lacis А.А., Hansen J.E. A Parameterization for the absorption of solar radiation in the Earth's atmosphere. // J. Atmos. Sci., 1974, v. 31, p. 118-133.

31 .Yamamoto G., Tanaka M., Asano S. Radiative Transfer in Water Clouds in the Infrared Region. // J. Atmos. Sci., 1970, v. 27, p. 282292.

38.Голъдин В.Я., Четверушкин Б.H. Методы Решения Одномерных Задач Радиационной Газовой Динамики. // Ж. Вычисл. Математики и Мат. Физики, 1972, т. 12, Т 4, с. 990-1000

39 .Кривцов В.М. Об одном подходе к расчету селективного излучения //Ж. Вычисл. математики и мат. физики. 1974, т. 14, Т 6, с. 15951599.

40.Николаев М.Н., Игнатов А.А., Исаев Н.В., Хохлов В.Ф. Метод подгрупп для учета резонансной структуры сечений в нейтронных расчетах. Часть 1. // Ж. Атомная энергия. 1970, т. 29, Т 1, с. 11-16.

41 .Николаев М.Н., Игнатов А.А., Исаев Н.В., Хохлов В.Ф. Метод подгрупп для учета резонансной структуры сечений в нейтронных расчетах. Часть 2. //1971, т. 30, Т 5, с. 426-430.

42.Синица В.В., Николаев М.Н. Аналитический метод получения подгруппвых параметров. // Ж. Атомная энергия. 1973, т.35, Т 6, с. 429-430.

43 .Николаев М.Н., Усиков Д. А. Формулировка граничных условий в методе подгрупп //Ж. Атомная энергия. 1973, т. 34, Ъ 2, с.112.

44.Cullen D.E. Application of the Probability Tabel Method to Multigroup Calculations of Neutron Transport. // Nuclear Science and Engineering, 1974, v. 55, p. 387-400.

45.Cullen D.E., Pomraning G.C. The Multiband Method in Radiative Transfer Calculations. // J. Quant. Spectrosc. and Radiat. Transfer, 1980, v. 24, p. 97-117.

46. Ar king A., Grossman K. The Influence of Line Shape and Band Structure on Temperatures in Planetary Atmospheres. // J. Atmos. Sei., 1972, v. 29, p. 937-949.

47.Chou M.D., Arking A. Computation of Infrared Cooling Rates in the H20 Bands. // J. Atmos. Sei., 1980, v. 37, p. 855-867.

48.Wang W.-C., Shi G.-Y. Total Band Absorptance and K-distribution Function for Atmospheric Gases. // J. Quant. Spectrosc. Radiat. Transfer, 1988, v. 39, p. 387-397.

49.Lacis A.A., Oinas V. A Description of the Correlated K-distribution Method for Modeling Nongray Gaseous Absorption, Thermal Emission, and Multiple Scattering in Vertically Inhomogeneous Atmospheres. // J. Geophysical Research, 1991, v. 96, N D5, p. 9027-9063.

50.Kato S., Ackerman T.R., Mather J.H., Clothiaux E.E. The к-distribution method and correlated к-approximation for a shortwave radiative transfer model // JQSRT, 1999, v 62, pp. 109-121.

51.Шилъков A.B. Методы осреднения сечений и энергетического спектра в задачах переноса нейтронов //Ж. Матем. моделирование, 1991, т. 3 , Т 2, с. 63-81.

52.Shilkov A.V. Generalized Multigroup Approximation and Lebesgue Averaging Method in Particle Transport Problems. // Transp. Theory and Stat. Physics. 1994, v.23, No 6, p.781-814.

53.Шилъков A.B., Цветкова И.Л., Шилъкова С.В. Система кодов и банк данных ATRAD для прецизионных расчетов атмосферной радиации. // Ж. Математ. моделирование. 1994, т. 6, №7, с. 91-102.

54.Шилъков А.В., Цветкова И.Л., Шилъкова С.В.. Система ATRAD для расчетов атмосферной радиации: Лебеговское осреднение спектров и сечений поглощения // Ж. Математ. моделирование. 1997, т.9, No 6, с. 3-24.

55.Шилъков А.В. Метод лебеговского осреднения уравнения переноса частиц в среде - М.: Препринт ИПМ АН СССР, 1987, Т 100.

56.Цветкова И.Л., Шилъков А.В. Осреднение Уравнения Переноса в Резонансно Поглощающей Среде. // Ж. Математ. Моделирование, 1989, т. 1, Т 1, с. 91-100.

51.Шилъков А.В. Математическая Модель для Описания Неравновесной Излучающей Плазмы. - М.: Препринт ИПМ АН СССР, 1988, Т 125.

58.Shilkov A.V. Averaging of cross-sections and energy spectrum in neutron transport problems. // Proc. of the Int. Topical Meeting: "Advances in Math., Сотр., and Reactor Physics", 1991, Pittsburgh, USA, 3, 13.1 1.

59Цветкова И.Л., Шилъков А.В. Реализация метода лебеговского осреднения уравнения переноса излучения - М.: Препринт ИПМ АН СССР Т 100. 1989.

60.Можейко С.В., Цветкова И.Л., Шилъков А.В. Расчет переноса

излучения в горячем воздухе // Ж. Матем. моделирование, 1992, т. 4, Т 1, с. 65-82.

61 .Аликберов И.Р., Голъдин В.Я., Шилъков А.В. Расчет переноса радиационного возбуждения в плазме. - М.: Препринт ВЦММ АН СССР Т 10, 1991.

62.Шилъков А.В., Цветкова И.Л., Шшъкова С.В. Система ATRAD для расчетов атмосферной радиации: Реконструкция микросечений поглощения и рассеяния. // Ж. Математ. моделирование. 1996, т. 8, No 8, с. 104-127.

63 .Голъдин В.Я. Квазидиффузионный метод решения о кинетического уравнения. // Ж. Выч. Математики и Матем. Физики, 1964, т.4, №6, с. 1078-1087.

бА.Гермогенова Т.А., Сушкевич Т.А. Решение уравнения переноса методом средних потоков. // В сб. «Вопросы физики защиты реакторов». -М.: Атомиздат, 1969, с. 34-46.

65.Аристова Е.Н., Голъдин В.Я. Метод учета сильной анизотропии рассеяния в уравнении переноса. // Ж. Математическое Моделирование, 1997, т.9, N 6, с.39-52.

66.Аристова Е.Н., Голъдин В.Я. Расчет анизотропного рассеяния солнечного излучения в атмосфере (моноэнергетический случай). // Ж. Математическое Моделирование, 1998, т. 10, N 9, с. 14-34.

61.Fomin В.А., Gershanov Yu. V., Tables of the Benchmark Calculations of Atmospheric Fluxes for ICRCCM Test Cases. Part 1: Long-Wave Clear-Sky Results. // Preprint of Russian Research Centre 'Kurchatov Institute', IAE-5981/1, Moscow,1996.

68 .B.A.Fomin, Yu.V.Gershanov. Tables of the Benchmark Calculations of

Atmospheric Fluxes for ICRCCM Test Cases. Part 2: Short-Wave Clear-Sky Results. // Preprint of Russian Research Centre 'Kurchatov Institute', IAE-5981/1, Moscow, 1996.

69.Шшьков A.B., Шшъкова C.B. Система ATRAD для расчетов атмосферной радиации: Результаты расчетов переноса теплового излучения в безоблачной летней атмосфере средних широт// Ж. Математ. моделирование. 1999, т.11, No 1, с. 18-24.

10.Apucmoea Е.Н., Голъдин В.Я., Шилъков А.В., Шшъкова С.В. Система ATRAD для расчета атмосферной радиации: Результаты расчета переноса солнечного излучения для летней атмосферы средних широт// Ж. Математ. моделирование. 1999, т.11, No 5, с. 117-125.

71..Шилъков А.В., Шилъкова С.В., Голъдин В.Я., Аристова Е.Н. Экономичные прецизионные расчеты атмосферной радиации на основе системы ATRAD// ДАН, в печати.

ll.Shilkov A.V., Shilkova S.V. A Computer Code System ATRAD for Efficient Precise Calculations of Atmospheric Radiation // Aerosols, Special Issue: Proceedings of the Fourth International Aerosol Symposium, St.-Petersburg, 6-9 July 1998, v.4a, N11, 1998, pp.112113.

ll.Shilkov A.V., Shilkova S.V. A Computer Code System ATRAD for Efficient Precise Calculations of Atmospheric Radiation // Тезисы Международной конференции "Физика атмосферного аэрозоля"-М:Изд."Диалог МГУ", 1999, с. 315-316

1А.Шилъков А.В., Шилъкова С.В., Голъдин В.Я., Аристова Е.Н. Перенос солнечного излучения в атмосфере при наличии полидисперсных частиц //Тезисы Международной конференции

"Физика атмосферного аэрозоля"-М:Изд."Диалог МГУ", 1999, с. 317-318

75. Labs D., Neckel Н. Transformation of the Absolute Solar Radiation Data into the International Temperature Scale of 1968. // Solar Physics, 1970, v. 15, p. 79-87.

76. Neckel H., Labs D. The solar radiation between 3300 and 12500 A. // Solar Physics. 1984, v. 90, p. 205-258.

11 .Морозов В.П. Курс сфероидической гравиметрии. - М.: Недра, 1979.

78. Белов П.Н. Численные методы прогноза погоды. - Л.: Гидрометеоиздат, 1975.

79.ГОСТ 4401-81. Атмосфера стандартная. Параметры. - М.: Из-во стандартов, 1981.

80.McClatchey R.A. et. al. A Preliminary Cloudless Standard Atmosphere for Radiation Computation. // World Climatic Research Program. 1986, WCP - 112, World Met.Organ. TD, N 24.

81 .Зельдович Я.Б., Райзер ЮЛ. Физика ударных волн и высокотемпературных гидродинамических явлений. - М.: Наука, 1966.

82.Houdeau J.P., Boulet С., Bonamy J, et. al, Air broadened NO linewidths in a temperature range of atmospheric interest. I I J. Chem. Phys., 1983, v. 79(4), p. 1634-1640.

83.Cousen C., Doucen R., Boulet C., Henry A. Temperature Dependence of the Absorption in the Region Beyond the 4.3-p.m Band Head of C02, N2 and 02 Broadenig. // Applied Optics, 1985, v. 24, N 22, p. 38993907.

84.Ачасов О.В., Солоухин Р.И., Фомин Н.А. Резонансное поглощение в углекислом газе: 1. Теория и элементарные процессы. // Препринт ИТМО АН БССР им. А.В. Лыкова №8, Минск, 1982.

8 5. Никифоров А.Ф., Уваров В.Б. Специальные функции математической физики. - М.: Наука, 1984.

8e.Bignell K.J. The Water-Vapour Infra-red Continuum. // Q. J. R. Meteorol. Soc., 1970, v. 96, p. 390-403.

87.Roberts R.E., Biberman L.M., Selby J.E.A. Infrared Continuum Absorption by Atmospheric Water Vapor in the 8-10 mm Window. // Applied Optics, 1976, v. 15, p. 2085-2090.

88.Clough S.A., Kneizys F.X., Davies R.W. Line Shape and the Water Vapor Continuum. / In IRS'88: Current Problems in Atmospheric Radiation. 1989, p. 355-359. Edited by J. Lenoble and J.-F. Geleyn, A. DEEPAK, Hampton, Va.

89.Clough S.A., Kneizys F.X., Davies R.W. Line Shape and the Water Vapor Continuum //Atmospheric Research, 1989, v 23, pp. 229-241.

90.Elterman L. Atmospheric Attenuation Model, 1964, in the Ultraviolet, Visible, and Infr. Regions for Altitudes to 50 km // AFCRL, Environmental Research Papers, N 46 (1964). Air Force Cambridge Res. Lab., Massachusetts, 1964.

91.Joseph J.H., Wiscombe W.J., Weinman W.A. The Delta-Eddington Approximation for Radiative Flux Transfer. // J. Atmos.Sci., 1976, v. 33, N 12, pp2452-2459.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.