Повышение эффективности взаимодействия импульсного лазерного излучения с порошками и суспензиями тема диссертации и автореферата по ВАК РФ 00.00.00, кандидат наук Уманская Софья Филипповна

  • Уманская Софья Филипповна
  • кандидат науккандидат наук
  • 2024, ФГАОУ ВО «Московский физико-технический институт (национальный исследовательский университет)»
  • Специальность ВАК РФ00.00.00
  • Количество страниц 103
Уманская Софья Филипповна. Повышение эффективности взаимодействия импульсного лазерного излучения с порошками и суспензиями: дис. кандидат наук: 00.00.00 - Другие cпециальности. ФГАОУ ВО «Московский физико-технический институт (национальный исследовательский университет)». 2024. 103 с.

Оглавление диссертации кандидат наук Уманская Софья Филипповна

Введение

Глава 1 Обзор литературы

1.1 Лазерная генерация в неоднородных средах

1.2 Измерение длины свободного пробега

1.3 Примеры случайных лазеров

1.3.1 Комбинационные случайные лазеры

1.3.2 Случайные лазеры, основанные на явлении генерации второй гармоники

1.4 Примеры применения случайных лазеров

1.5 Организация частиц при замораживании суспензий

Глава 2 Экспериментальная часть

2.1 Материалы и методы анализа образцов

2.2 Экспериментальная установка

2.3 Измерение конуса обратного рассеяния

Глава 3 Энергетические, спектральные и временные характеристики излучения случайного ВКР-лазера на основе порошка нитрата бария (Ba(NOз)2). Влияние температуры

3.1 Спектральные характеристики излучения ВКР при пико- и наносекундной длительности накачивающего лазера

3.2 Влияние температуры на характеристики ВКР

3.2 Временные характеристики ВКР

Глава 4 Увеличение сигнала люминесценции и понижение порога случайной лазерной генерации после замораживания суспензий

4.1 Увеличение сигнала люминесценции после замораживания суспензий

4.2 Генерация второй гармоники в наночастицах LiNbOз

4.2 Случайная лазерная генерация в наночастицах ZnO

Заключение

Список литературы

Введение

Рекомендованный список диссертаций по специальности «Другие cпециальности», 00.00.00 шифр ВАК

Введение диссертации (часть автореферата) на тему «Повышение эффективности взаимодействия импульсного лазерного излучения с порошками и суспензиями»

Актуальность работы

Взаимодействие импульсного лазерного излучения с неоднородными средами, такими как порошки и суспензии, может привести к возникновению лазерной генерации в таких системах. Получение и исследование лазерной генерации в случайно-неоднородных средах является отдельным направлением оптики и лазерной физики, которое получило название "случайная лазерная генерация" (в англоязычной литературе "random lasing"), сами источники называют "случайными лазерами" ("random lasers"). В отличие от привычных лазерных систем, которые имеют два плоских или сферических зеркала для обеспечения обратной связи, в случайных лазерах система из двух зеркал отсутствует. В таких источниках обратная связь реализуется в процессе многократного упругого рассеяния света на неоднородностях среды, обладающей усилением.

Случайная лазерная генерация наблюдалась в различных неупорядоченных средах таких как: порошки [1], [2], полимерные пленки с внедрёнными в них наночастицами [3], керамика [4], коллоидные суспензии наночастиц [5], [6], пористые материалы [7], и даже в биологических тканях [8]. При этом часто используются комбинированные среды, то есть в качестве рассеивателей выступают элементы неоднородной среды, а в качестве среды усиления используют, например, люминесцирующие красители. Помимо люминесцирующих сред используются ВКР-активные среды [9] и среды, активные в смысле генерации второй гармоники [10], [11].

Случайные лазеры являются компактными, недорогими и доступными источниками света, востребованными для широкого круга практических задач. Интерес к тематике случайной лазерной генерации в неоднородных средах определяется большим количеством практических применений таких источников, например, в качестве биосенсоров [12]. Кроме того, так как излучение случайных лазеров обладает высокой яркостью, широким угловым распределением и, в силу

низкой пространственной когерентности, отсутствием спекл-структуры, случайные лазеры могут быть применены для получения качественных изображений без спеклов [13], что может быть использовано в области оптической обработки информации. Случайные лазеры на основе наночастиц ZnO являются перспективными аналогами полупроводниковых УФ лазеров и диодов благодаря более простой и дешевой конструкции [14].

Случайные лазеры, реализованные на ВКР-активных средах, представляют собой отдельный класс случайных лазеров. Данные источники обладают узкой шириной спектральной линии, которая определяется контуром комбинационного усиления, имеющим ширину несколько терагерц. Еще одной особенностью таких случайных лазеров является то, что возможно перестраивать длину волны их излучения, меняя длину волны накачки. По сравнению с числом публикаций, посвященных случайным лазерам на люминесцентных средах, количество работ по ВКР-активным случайным лазерам достаточно невелико, а их свойства изучены в недостаточной мере. Например, отсутствует исследование температурной зависимости характеристик выходящего излучения, не определены условия возбуждения, соответствующие максимальной эффективности преобразования, временные характеристики также изучены не в полной мере.

В последнее время актуальность приобретают исследования, в которых реализуется внешнее воздействие на неоднородную активную систему, меняющее её характеристики и, соответственно, характеристики случайной лазерной генерации, такие как энергетический порог возбуждения и эффективность преобразования. К таким работам относятся, например, исследования влияния воздействия внешнего поля на жидкие кристаллы [15] а также работы по изучению самосборки частиц за счет температурных эффектов [16]. Изменяя длину свободного пробега в рассеивающей среде путем изменения расстояния между частицами, а также используя гибкие подложки или жидкие кристаллы, возможно перестраивать длину волны излучения случайного лазера [17], [18], управлять

моментом возникновения случайной лазерной генерации и настраивать ее порог [16], что открывает еще больше возможностей для потенциальных применений.

В диссертационной работе предлагается использовать свойство коллоидной суспензии образовывать упорядоченные структуры при замерзании для управления длиной свободного пробега в среде, а, следовательно, и параметрами случайной лазерной генерации, такими как порог и интенсивность. Известно, что ледяной фронт при замерзании водной суспензии вытесняет находящиеся в ней частицы, что может приводить к образованию слоя частиц на границе замерзания [19], [20].

Целью работы является исследование вынужденного комбинационного рассеяния света, люминесценции и второй гармоники в случайно неоднородных средах на основе Ва(КО3)2, рубина, титан-сапфира и 7пО и определение оптимальных энергетических, временных, температурных, спектральных условий возбуждения для получения максимальной эффективности преобразования.

Для достижения этой цели были поставлены следующие задачи:

1. Исследование влияния энергии и длительности импульса накачки и температуры образца на характеристики излучения случайного лазера на основе ВКР-активного порошка Ва(КОз)2. Определение максимального коэффициента преобразования излучения накачки в стоксовую компоненту и изучение временной динамики ВКР компонент с пикосекундным временным разрешением.

2. Проведение экспериментальных исследований временных, спектральных и энергетических характеристик вторичного излучения (люминесценции, второй гармоники), возникающего на фронте раздела фаз при замораживании суспензий титан-сапфира, рубина и ниобата лития.

3. Исследование спектральных и энергетических характеристик люминесценции в водной суспензии наночастиц 7пО. Определение условий возникновения случайной лазерной генерации в такой системе при её замораживании.

4. Анализ полученных экспериментальных результатов по исследуемым процессам лазерной генерации в изучаемых средах и установление физических механизмов обнаруженных явлений.

Научная новизна

При исследовании вынужденного комбинационного рассеяния света в порошке нитрата бария впервые экспериментально получено рекордно высокое для неоднородных сред значение, 30%, коэффициента преобразования в первую стоксову компоненту. При исследовании временной динамики стоксовых компонент вынужденного комбинационного рассеяния света в Ba(NO3)2 обнаружена временная задержка первой стоксовой компоненты, линейно зависящая от энергии накачки, которая ранее не наблюдалась в неоднородных средах. Новой является разработанная и реализованная в ходе выполнения работы оригинальная методика использования свойства коллоидной суспензии при ее направленном замораживании образовывать области повышенной концентрации для усиления вторичного излучения: генерации второй гармоники и люминесценции. Предложен и реализован новый способ снижения порога случайной лазерной генерации при увеличении концентрации частиц, возникающей на границе раздела фаз при замораживании суспензии.

Научная и практическая значимость

Научную значимость для оптики неоднородных сред имеет обнаруженный в ходе выполнения диссертационной работы эффект возникновения лазерной генерации, а также усиления сигнала люминесценции и генерации второй гармоники в результате замораживания жидкой суспензии наночастиц, использование которого является перспективным для создания дистанционных датчиков температуры, сенсоров фазовых переходов и для управления случайной лазерной генерацией. Практически важным является полученный в работе высокий коэффициент преобразования случайной лазерной генерации в ВКР-активном порошке нитрата бария, позволяющий применять системы подобного рода для

задач оптической обработки информации, в которых требуется высокая яркость, широкое угловое распределение и низкая пространственная когерентность излучения. Обнаруженная в работе управляемая задержка первой стоксовой компоненты относительно излучения накачки может быть использована для визуализации ряда быстропротекающих процессов в реальном масштабе времени с существенным улучшением качества получаемых изображений, обусловленным отсутствием спекл-структуры. Существенно, что такого рода регистрация пространственной структуры на пикосекундном временном масштабе не требует применения дорогостоящих и технологически сложных систем оптической задержки.

Положения, выносимые на защиту:

1. Рекордно высокая для неоднородных сред эффективность преобразования лазерного излучения пикосекундной длительности в первую стоксовую компоненту вынужденного комбинационного рассеяния света в порошке нитрата бария составляет 30% при плотности мощности излучения накачки, равной 5,2 ГВт/см2.

2. В процессе случайной лазерной ВКР генерации в порошке Ва(КО3)2 наблюдается временная задержка первой стоксовой компоненты относительно возбуждающего импульса, линейно возрастающая от 18 до 39 пс при увеличении плотности мощности накачки от 0.67 до 39.4 ГВт/см2.

3. В результате увеличения концентрации наночастиц на границе раздела фаз в процессе замораживания водной суспензии 7пО при пикосекундной лазерной накачке с длиной волны 355 нм происходит снижение порога возникновения случайной лазерной генерации на порядок.

Личный вклад

Автор диссертации непосредственно участвовала в постановке задач и выборе объектов исследований, сборке экспериментальных установок, проведении экспериментов и обработке полученных данных. Автор принимала участие в

интерпретации результатов и подготовке публикаций совместно с соавторами опубликованных работ. Диссертант лично представила доклады на перечисленных ниже научных конференциях.

Апробация работы

Основные результаты работы были лично представлены автором на конференциях:

1. А.Н. Маресев, А.А. Нариц, М.А. Шевченко, С.Ф. Уманская, Н.В. Чернега, «Влияние температуры и длительности импульса накачки на параметры генерации в комбинационно-активных порошковых средах», 63-я Всероссийская научная конференция МФТИ, 2020, Москва, Россия.

2. С.Ф. Уманская, М.А. Шевченко, А.Д. Кудрявцева, М.А. Карпов, Н.В. Чернега, А.Н. Маресев, К.И. Земсков, А.И. Водчиц, «Исследование зависимости эффективности случайной рамановской генерации от температуры среды», VIII Международная конференция «Лазерные, плазменные исследования и технологии» ЛаПлаз-2022, 2022, Москва, Россия.

3. Shevchenko M.A., Zemskov K.I., Karpov M.A., Kudryavtseva A.D., Maresev A.N., Tcherniega N.V., Umanskaya S.F., «Raman random lasing - extremely high conversion efficiency and temperature dependence», XXXVII Фортовская международная конференция «Уравнения состояния вещества», 2022, Эльбрус, Кабардино-Балкария, Россия.

4. С. Ф. Уманская, А.Н. Маресев, А.А. Матрохин, М.А. Шевченко, Н.В. Чернега, "Случайная лазерная генерация - температурная зависимость", XX Всероссийский молодежный Самарский конкурс-конференция научных работ по оптике и лазерной физике, посвященнго 100-летию со дня рождения Н.Г. Басова, 2022, Самара, Россия.

5. С.Ф. Уманская, А.Д. Кудрявцева, Н.В. Чернега1 М.В. Тареева, М.А. Шевченко, А.Н. Маресев, А.А. Матрохин, "Генерация второй гармоники в

замороженной суспензии частиц ниобата лития", Необратимые процессы в природе и технике, МГТУ им. Баумана, 2023, Москва, Россия.

6. С.Ф. Уманская, А.А. Матрохин, М.А. Шевченко, Н.В. Чернега, "Генерация второй гармоники при замораживании суспензии частиц LiNbO3", 65-я Всероссийская научная конференция МФТИ, 2023, Москва, Россия.

Публикации автора по теме работы:

1. M. A. Shevchenko, K. I. Zemskov, M. A. Karpov, A. D. Kudryavtseva, A. N. Maresev, N. V. Tcherniega, and S. F. Umanskaya, "Raman random lasing — Extremely high conversion efficiency and temperature dependence," Opt. Commun., vol. 508, p. 127795, Apr. 2022, doi: 10.1016/J.OPTCOM.2021.127795.

2. A. A. Matrokhin, M. A. Shevchenko, S. F. Umanskaya, M. V. Tareeva, A. D. Kudryavtseva, and N. V. Tcherniega, "Second-Harmonic Generation in Aggregates of Lithium Niobate Particles Formed upon Suspension Freezing," Photonics, vol. 9, no. 10, p. 705, Sep. 2022, doi: 10.3390/photonics9100705.

3. M.A. Shevchenko, S.F. Umanskaya, S.D. Abdurakhmonov, N. V. Tcherniega and S.S. Gras'kin "Anti-Stokes luminescence of ZnO powder under picosecond excitation", Bull. Lebedev Phys. Inst. 49, 55-58 (2022), doi: 10.3103/S1068335622020075

4. Umanskaya, S. F., Shevchenko, M. A., Tcherniega, N. V., Maresev, A. N., Matrokhin, A. A., Karpov, M. A., & Voronova, V. V. "Tuning the efficiency of Random Laser Generation in a Suspension of ZnO Nanoparticles by Means of its Directional Freezing." Journal of Russian Laser Research, 44(6), 691-699, 2023, doi: 10.1007/s10946-023-10179-x

5. M. A. Shevchenko, S. F. Umanskaya, K. I. Zemskov, N. V. Tcherniega and A. D. Kudryavtseva, "Freezing the suspension of laser microcrystals - a new way for increasing the luminescence efficiency response," IEEE Journal of Quantum Electronics, 2024, doi: 10.1109/JQE.2024.3366470

Глава 1 Обзор литературы

1.1 Лазерная генерация в неоднородных средах

Активное исследование различных упорядоченных и неупорядоченных систем частиц нано- и микронного размера привело к появлению новых направлений в оптике, фотонике, оптоэлектронике и лазерной физике. Одним из таких направлений является получение и исследование случайной лазерной генерации в случайно-неоднородных средах, обладающих усилением. Лазерная генерация в таких системах обусловлена многократным упругим рассеянием на неоднородностях среды, то есть роль резонатора, обеспечивающего обратную связь, выполняет сама же среда. При этом возможно образование замкнутых траекторий, что выполняет роль замкнутого резонатора. Накачка таких систем осуществляется обычным лазером. Излучение таких лазеров является ненаправленным, однако обладает высокой яркостью, низкой пространственной когерентностью и другими особенностями, которые будут рассмотрены в данной диссертации.

Случайная лазерная генерация тесно связана с андерсоновской локализацией света в неоднородных структурах и фотонных кристаллах. Эффект локализации Андерсона изначально наблюдался в кристаллических решетках твердых тел [21]. Данное явление названо в честь американского физика П. В. Андерсона, который первым предположил, что локализация электрона в потенциале решетки происходит, если степень случайности (беспорядка) в решетке достаточно велика, что может быть реализовано, например, в полупроводнике с примесями или дефектами. Локализация Андерсона является общеволновым эффектом и справедлива для волн любой природы. Локализация световых волн была впервые рассмотрена в [22]. При распространении электромагнитных волн в средах, имеющих пространственные неоднородности, из-за многократного рассеяния и последующей интерференции рассеянных волн, возникают стоячие волны, локализованные в ограниченной области пространства, и распространение бегущих волн становится невозможным. Случайные лазеры можно разделить на

группы различными способами в зависимости от их физических свойств и строения, но одна из самых важных классификаций касается когерентности обратной связи, так как именно она определяет тип рассеяния: диффузный или локализованный.

Работа, в которой зародилась концепция случайных лазеров, была написана В. С. Летоховым в 1967 году [23]. В своей статье Летохов рассмотрел систему из множества частиц с отрицательным показателем поглощения (усилением), где распространение фотонов описывалось уравнениями диффузии, а длина свободного пробега была много меньше размера рассеивающей среды. Летохов описывал распространение света в терминах уравнения диффузии, которое не несет информации о фазе и не учитывает волновую природу света. Несмотря на это, используя уравнение диффузии, он показал, что излучение является подобным лазерному, и что оно характеризуется порогом, сужением спектральной линии, затуханием и другими признаками лазерного излучения. В этой работе Летохова было получено условие для порога вынужденного излучения, определено значение предельной ширины спектра генерируемого излучения, а также исследованы процесс сужение спектральной линии и динамика установления стационарного режима. Физическая причина возникновения лазерной генерации заключается в значительном увеличении длины пути света внутри конечного усиливающего объема за счет многократного рассеяния. Длина усиления Lg, которая зависит от коэффициента усиления и коэффициента диффузии света в среде, определяет условия порога. Когда длина усиления превышает длину потерь Ll, происходит переход к лазерной генерации, поэтому условие порога - Ц = Ь1. Отметим, что именно неоднородности среды обуславливают наличие обратной связи. Процесс взаимодействия излучения с неоднородными средами характеризуется также длиной свободного пробега фотона I, которая определяется как средняя длина между двумя процессами рассеяния. В зависимости от соотношения значений длинны свободного пробега фотона I, длины волны возбуждающего излучения X и длины активной среды Ь выделяют два режима взаимодействия лазерного

излучения с неоднородной средой: локализованный и диффузный. В локализованном режиме, когда рассеяние велико (/<Х<Ь), происходит образование замкнутых траекторий фотонов в среде, так называемых кольцевых резонаторов, и в результате в спектре случайной лазерной генерации наблюдаются отдельные узкие пики или моды. Такие лазеры называют случайными лазерами с когерентной или резонансной обратной связью. В случае слабого рассеяния, в диффузном режиме (Х< /<Ь), не происходит образования кольцевых резонаторов, и в спектре наблюдается одиночный пик на длине волны, соответствующей максимуму усиления. Этот тип случайной лазерной генерации называют некогерентной или нерезонансной обратной связью. В обоих случаях признаками случайной лазерной генерации являются резкий рост интенсивности и сужение спектральной линии. Само название некогерентной случайной лазерной генерации говорит об отсутствии каких-либо резонансных особенностей в распределении поля внутри усиливающей среды, или, другими словами, об отсутствии отдельных мод. В этом случае частота генерации определяется только частотой перехода, поэтому в спектре излучения наблюдается одиночный пик.

Примерами случайной лазерной генерации в некогерентном режиме является генерация в порошках. Первыми такими работами являются работы сотрудников ФИАН [24]-[26]. В данных статьях изучалось вынужденное комбинационное рассеяние света (ВКР) в порошках стильбена в зависимости от энергии лазера и температуры. В работе [26] наблюдался нелинейный рост интенсивности ВКР в зависимости от энергии накачки. В данной статье авторы объясняют усиление ВКР в порошках лазерной генерацией в диспергирующей среде, в которой рассеяние на частицах играет роль обратной связи, и ссылаются на работу Летохова.

Существуют и еще работы, посвященные излучению порошков и дисперсных сред 1970-1990х годов, например, [27]. Однако, самой первой экспериментальной реализацией случайных лазеров принято считать работу Lawandy 1994 года [28], после которой интерес к данной теме исследований возобновился. В указанной работе лазерная генерация наблюдалась в суспензии частиц диоксида титана с

красителем. Результаты работы [28] и некоторых последующих экспериментов находятся в рамках диффузного приближения, то есть объясняются некогерентной обратной связью (см., например, [29]-[31]). Некогерентный режим связывают со слабым рассеянием света, когда длина свободного пробега в системе находится далеко от режима Андерсоновской локализации и интерференционные эффекты слабы.

Усиливая степень рассеяния света путем уменьшения длины свободного пробега в среде, удалось наблюдать качественно новое явление [32]-[35]. В спектрах случайной лазерной генерации наблюдалось образование отдельных узких пиков в пределах ширины усиления, вместо одного пика, наблюдаемого при более высоких значениях /. Количество и положение данных пиков, обладающих очень узкой шириной линии, менялось в зависимости от плотности мощности накачки. Так как при некогерентной обратной связи может наблюдаться только одиночный пик, в работе [32] было сделано предположение, что изменения в спектре излучения связаны с переходом от некогерентной обратной связи к когерентной.

Первоначально в работе [32] предполагалось, что обратная связь возникает в случайно образующихся замкнутых траекториях рассеянного света, что приводит к отдельным пикам в спектрах излучения. Со временем эта идея развилась в более общую концепцию случайных замкнутых резонаторов, возникающих в сильно рассеивающей среде. Локализация Андерсона рассматривается как основной механизм, ответственный за образование таких замкнутых траекторий. Есть и альтернативная модель образования кольцевых резонаторов, которая была предложена в статье [36]. Здесь было высказано предположение, что случайные флуктуации показателя преломления неупорядоченной среды могут приводить к кольцеобразным конфигурациям макроскопического размера, способным улавливать свет в течение длительного времени и служат, таким образом, случайными резонаторами. Следуя высказанному предположению, с достаточной вероятностью подобные замкнутые траектории могут образовываться только в том

случае, когда изменения показателя преломления коррелированы на достаточно больших расстояниях, что может быть объяснено для одних образцов, но это труднее обосновать для других. Еще одним подходом к описанию случайной генерации является модель, предложенная в работах [37], [38], где случайные лазеры рассматривались как лазеры с распределенной обратной связью. Данная модель является схожей с моделью образований случайного резонатора, с той лишь разницей, что вместо кольцевых резонаторов модель с распределенной обратной связью предполагает, что за генерацию ответственны крупномасштабные почти периодические брэгговские конфигурации.

Таким образом, в данный момент в научной литературе рассматривают два типа случайных лазеров, одни работают в нерезонансном или некогерентном режиме (с некогерентной обратной связью), а другие - в резонансном или когерентном режиме (с когерентной обратной связью). В случайных лазерах с некогерентной обратной связью свет усиливается в среде за счет многократного рассеяния: плотность фотонов быстро растет с увеличением накачки, и при достижении порога на длине волны усиления в спектре формируется узкий пик излучения (Рисунок 1.^, б). В случае когерентной обратной связи в случайном лазере происходит образование замкнутых кольцевых траекторий (резонаторов), что приводит к появлению в спектре излучения отдельных очень узких пиков над фоном излучения при достижении порога случайной лазерной генерации (Рисунок 1.1в, г).

Рисунок 1.1 а) Схематическое представление случайной лазерной генерации в некогерентном режиме; б) схематическое представление случайной лазерной генерации в когерентном режиме; в) пример спектра случайного лазера в некогерентном режиме [39]; г) пример спектра случайного лазера в когерентном режиме [32], нижняя линия - излучение до достижения лазерного порога, верхняя - при превышении порога.

1.2 Измерение длины свободного пробега

Итак, важнейшим параметром, характеризующим режим рассеяния в случайных лазерах, является средняя длина пробега фотона. Она характеризует степень неупорядоченности среды. Для её экспериментального определения обычно используют явление когерентного обратного рассеяния света [40].

Явление когерентного обратного рассеяния света состоит в резком возрастании интенсивности излучения в малом телесном угле, упруго рассеянного неоднородной средой в направлении, противоположном направлению падения.

Принцип данного явления иллюстрирует Рисунок 1.2. Пусть на случайно-распределенную систему падает плоская волна. Обозначим волновой вектор падающей плоской волны //0 . В данной среде она испытывает п последовательных

рассеиваний и после ¿-го акта рассеяния имеет вектор кг. После каждого процесса рассеяния изменяется направление и фаза волны. В каждом акте рассеяния для фиксированных /с0 и //п, соответствующих в нашем случае падающему на среду и рассеянному излучению, существуют пути распространения волны, имеющие одинаковые траектории, но разные направления (ка и кь). Если рассеяние

однородное, то в ситуации обратного рассеяния, когда кп — к.0, комплексные амплитуды волн этих двух путей будут одинаковыми и равными А0. При том же условии они будут иметь нулевую разность фаз и конструктивно интерферировать, что увеличит интенсивность выходящего излучения с фонового некогерентного уровня 2|Л0|2 до 4|Л0|2 в обратном направлении. Если ф —к0, то сдвиг фазы будет определяться выражением:

^ ^ 5 — (к^ + к0 )(г?- гЦ),

где т1 , 71 - это радиус-векторы первой и последней частиц, на которых происходит

рассеяние. Усреднённое интерференционное слагаемое всех траекторий с п актами

взаимодействий не будет равно нулю и будет положительным, когда выполняется

следующее условие:

\кп + ^0 1 < ^ 1

где - средний диаметр траекторий или транспортная длина пробега фотона. Минимальное его значение соответствует случаю, когда свет рассеивается на двух центрах, и оно равно средней длине пробега фотона 18. В итоге, при обратном когерентном рассеянии ожидается увеличение интенсивности максимум в два раза, по сравнению с фоном, причем когерентно усиленное излучение будет расходиться в конусе с угловой шириной порядка Х/1г.

Рисунок 1.2 Распространение света в методе обратного когерентного рассеяния: а) незамкнутая траектория, б) замкнутая. Зелёные стрелки иллюстрируют значение интенсивности рассеянного излучения в зависимости от угла к нормали

Для получения конуса обратного рассеяния и определения длины свободного пробега обычно используется классическая схема, представленная на Рисунке 1.3. Излучение непрерывного лазера с малой расходимостью пучка проходит через поляризатор P1, отражается через делитель пучка BS на исследуемую среду. Рассеянное средой излучение снова проходит через делитель пучка и фокусируется линзой L3 на фотоумножитель PD. Перед фотоумножителем ставится диафрагма (pinhole) Ph и поляризатор P2. Фотоумножитель PD, диафрагма Ph и поляризатор P2 находятся на передвижном столике, который перемещается с шагом в несколько мкм. Правильная постановка эксперимента по исследованию когерентного обратного рассеяния является достаточно сложной, так как предполагает анализ и подавление большого количества помех, вызванных диффузным отражением и рассеянием от всех оптических элементов установки. В современных аналогичных установках для регистрации рассеянного излучения от образца используются ПЗС-матрицы.

Похожие диссертационные работы по специальности «Другие cпециальности», 00.00.00 шифр ВАК

Список литературы диссертационного исследования кандидат наук Уманская Софья Филипповна, 2024 год

Список литературы

[1] S. Garda-Revilla et al., "Random laser performance of NdxYl-xAl 3(BO3)4 laser crystal powders," in Optical Materials, Elsevier B.V., 2011, pp. 461-464. doi: 10.1016/j.optmat.2011.03.047.

[2] A. L. Moura, L. J. Q. Maia, V. Jerez, A. S. L. Gomes, and C. B. de Araujo, "Random laser in Nd:YBO3 nanocrystalline powders presenting luminescence concentration quenching," J. Lumin., vol. 214, Oct. 2019, doi: 10.1016/j.jlumin.2019.116543.

[3] O. Popov, A. Zilbershtein, and D. Davidov, "Random lasing from dye-gold nanoparticles in polymer films: Enhanced gain at the surface-plasmon-resonance wavelength," Appl. Phys. Lett., vol. 89, no. 19, 2006, doi: 10.1063/1.2364857.

[4] S. J. Marinho, L. M. Jesus, L. B. Barbosa, D. Reyes Ardila, M. A. R. C. Alencar, and J. J. Rodrigues, "Bi-chromatic random laser from alumina porous ceramic infiltrated with rhodamine B," Laser Phys. Lett., vol. 12, no. 5, May 2015, doi: 10.1088/1612-2011/12/5/055801.

[5] C. T. Dominguez et al., "Random lasing at localization induced in correlated colloidal system," Opt. Mater. (Amst)., vol. 120, Oct. 2021, doi: 10.1016/j.optmat.2021.111428.

[6] J. U. Kang, "Observation of random lasing in gold-silica nanoshell/water solution," Appl. Phys. Lett., vol. 89, no. 22, 2006, doi: 10.1063/1.2397546.

[7] V. D. Ta, D. T. Le, T. L. Ngo, and X. T. Nguyen, "Flexible random laser from a porous polymer film," Opt. Commun., vol. 524, Dec. 2022, doi: 10.1016/j.optcom.2022.128794.

[8] R. C. Polson and Z. V. Vardeny, "Random lasing in human tissues," Appl. Phys. Lett., vol. 85, no. 7, pp. 1289-1291, Aug. 2004, doi: 10.1063/1.1782259.

[9] B. H. Hokr et al., "Bright emission from a random Raman laser," Nat. Commun., vol. 5, Jul. 2014, doi: 10.1038/ncomms5356.

[10] O. Sanchez-Dena et al., "Polarization-resolved second harmonic generation from LiNbO3 powders," Opt. Mater. (Amst)., vol. 107, Sep. 2020, doi: 10.1016/j.optmat.2020.110169.

[11] R. F. Ali and B. D. Gates, "Lithium niobate particles with a tunable diameter and porosity for optical second harmonic generation," RSCAdv., vol. 12, no. 2, pp. 822-833, Jan. 2022, doi: 10.1039/d1ra07216a.

[12] W. Z. Wan Ismail, G. Liu, K. Zhang, E. M. Goldys, and J. M. Dawes, "Dopamine sensing and measurement using threshold and spectral measurements in random lasers," Opt. Express, vol. 24, no. 2, p. A85, Jan. 2016, doi: 10.1364/oe.24.000a85.

[13] J. Tian, G. Weng, Y. Wang, X. Hu, S. Chen, and J. Chu, "Random Lasing in ZnO Nanopowders Based on Multiphoton Absorption for Ultrafast Upconversion Application," ACS Appl. Nano Mater., vol. 2, no. 4, pp. 1909-1919, Apr. 2019, doi: 10.1021/acsanm.8b02300.

[14] H. Cao et al., "Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films," Appl. Phys. Lett., vol. 73, no. 25, pp. 36563658, 1998, doi: 10.1063/1.122853.

[15] T. Naruta, T. Akita, Y. Uchida, D. Lisjak, A. Mertelj, and N. Nishiyama, "Magnetically controllable random laser in ferromagnetic nematic liquid crystals," Opt. Express, vol. 27, no. 17, p. 24426, Aug. 2019, doi: 10.1364/0E.27.024426.

[16] M. Trivedi, D. Saxena, W. K. Ng, R. Sapienza, and G. Volpe, "Self-organized lasers from reconfigurable colloidal assemblies," Nat. Phys., vol. 18, no. 8, pp. 939-944, Aug. 2022, doi: 10.1038/s41567-022-01656-2.

[17] X. Li et al., "Lotus-Leaf-Inspired Flexible and Tunable Random Laser," ACS Appl. Mater. Interfaces, 2020, doi: 10.1021/acsami.9b23524.

[18] R. Liao, X. Zhan, X. Xu, Y. Liu, F. Wang, and D. Luo, "Spatially and electrically tunable random lasing based on a polymer-stabilised blue phase liquid crystal-wedged cell," Liq. Cryst, 2020, doi: 10.1080/02678292.2019.1673842.

[19] J. You et al., "Dynamic particle packing in freezing colloidal suspensions," Colloids Surfaces A Physicochem. Eng. Asp., vol. 531, pp. 93-98, Oct. 2017, doi: 10.1016/j.colsurfa.2017.07.073.

[20] G. Shao, D. A. H. Hanaor, X. Shen, and A. Gurlo, "Freeze Casting: From Low-Dimensional Building Blocks to Aligned Porous Structures—A Review of Novel Materials, Methods, and Applications," Advanced Materials, vol. 32, no. 17. Wiley-VCH Verlag, Apr. 01, 2020. doi: 10.1002/adma.201907176.

[21] M. S. Ste I N Berg, E. Sondheimer, A. H. Wilson, P. Roy Soc, and P. W. Anderson, "Absence of Diffusion in Certain Random Lattices," Phys. Rev., vol. 109, p. 1492, 1988, doi: https://doi.org/10.1103/PhysRev.109.1492.

[22] D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, "Localization of light in a disordered medium," Nature, vol. 390, no. 6661, pp. 671-673, Dec. 1997, doi: 10.1038/37757.

[23] V. S. Letokhov, "Generation of light by a scattering medium with negative resonance absorption," Sov. Phys. JETP, vol. 26, pp. 835-840, 1967.

[24] Е. К. Казакова, А. В. Крайский, В. А. Зубов, М. М. Сущинский, and И. К. Шувалов, "Изучение процессов развития вынужденного комбинационного рассеяния света," Краткие сообщения по физике, vol. 7, 1970.

[25] V. A. Zubov, G. V. Peregudov, M. M. Sushchinskii, V. A. Chirkov, and I. K. Shuvalov, "Observation of stimulated Raman scattering of light in crystalline

powders," Sov. J. Exp. Theor. Phys. Lett., vol. 5, no. 6, pp. 188-189, 1967.

[26] Peregudov G. V., Ragozin E. N., and Chirkov V. A., "Energy and Time Characteristics of Stimulated Raman Scattering of Light in a Disperse Medium at Various Temperatures," Sov. J. Exp. Theor. Phys., vol. 63, pp. 421-430, 1972.

[27] Markushev V. M., Zolin V. F., and Briskina Ch. M., "Luminescence and stimulated emission of neodymium in sodium lanthanum molybdate powders," Sov. J. Quantum Electron., vol. 13, pp. 427-430, 1986, [Online]. Available: http: //www. mathnet .ru/eng/agreement

[28] N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, "Laser action in strongly scattering media," Nature, vol. 368, pp. 436-438, 1994.

[29] D. S. Wiersma and A. Lagendijk, "Light diffusion with gain and random lasers," Phys. Rev. E, vol. 54, p. 4256, 1996, doi:

https://doi.org/10.1103/PhysRevE.54.4256.

[30] S. John and G. Pang, "Theory of lasing in a multiple-scattering medium," 1996.

[31] L. Florescu and S. John, "Theory of photon statistics and optical coherence in a multiple-scattering random-laser medium," Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top., vol. 69, no. 4, p. 16, 2004, doi: 10.1103/PhysRevE.69.046603.

[32] H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, "Random Laser Action in Semiconductor Powder," Phys. Rev. Lett., vol. 82, p. 2278, 1999, doi: https://doi.org/10.1103/PhysRevLett.82.2278.

[33] Y. Ling, H. Cao, A. L. Burin, M. A. Ratner, X. Liu, and R. P. H. Chang, "Investigation of random lasers with resonant feedback," Phys. Rev. A - At. Mol. Opt. Phys., vol. 64, no. 6, p. 8, 2001, doi: 10.1103/PhysRevA.64.063808.

[34] S. V Frolov, Z. V Vardeny, K. Yoshino, A. Zakhidov, and R. H. Baughman, "Stimulated emission in high-gain organic media," Phys. Rev. B, vol. 59, 1999.

[35] H. Cao, J. Y. Xu, S.-H. Chang, and S. T. Ho, "Transition from amplified spontaneous emission to laser action in strongly scattering media," Phys. Rev. E, vol. 61, 2000.

[36] V. M. Apalkov, M. E. Raikh, and B. Shapiro, "Random resonators and prelocalized modes in disordered dielectric films," Phys. Rev. Lett., vol. 89, no. 1, pp. 168021-168024, Jul. 2002, doi: 10.1103/PhysRevLett.89.016802.

[37] B. Wilhelmi, "Laser action in resonators composed of scattering mesoscopic particles," in OPTIKA '98: 5th Congress on Modern Optics, SPIE, Aug. 1998, p. 13. doi: 10.1117/12.321016.

[38] J. Herrmann and B. Wilhelmi, "Lasers and Optics Mirrorless laser action by randomly distributed feedback in amplifying disordered media with scattering centers," Appl. Phys. B, vol. 66, pp. 305-312, 1998.

[39] W. Z. W. Ismail, J. Jamaludin, I. Ismail, M. Sahrim, S. Balakrishnan, and J. Dawes, "Plasmonic Effect on Performance of Random Lasers," Adv. Sci. Lett., vol. 24, no. 3, pp. 1689-1693, Mar. 2018, doi: 10.1166/asl.2018.11138.

[40] P.-E. Wolf and Maret Georg, "Weak Localization and Coherent Backscattering of Photons in Disordered Media," Phys. Rev. Lett., vol. 55, p. 24, 1985.

[41] M. P. Van Albada and A. Lagendijk, "Observation of Weak Localization of Light in a Random Medium," Phys. Rev. Lett. , vol. 55, p. 24, 1985.

[42] S. K. Turitsyn et al., "Random distributed feedback fibre laser," Nat. Photonics, vol. 4, no. 4, pp. 231-235, Apr. 2010, doi: 10.1038/nphoton.2010.4.

[43] V. P. Yashchuk, E. A. Tikhonov, and O. A. Prigodyuk, "Effect of stimulated raman scattering on the formation of the random lasing spectrum of dyes," JETP Lett., vol. 91, no. 4, pp. 174-177, 2010, doi: 10.1134/S002136401004003X.

[44] M. S. Hosseini, E. Yazdani, B. Sajad, and F. Mehradnia, "Random Raman laser of Rhodamine 6G dye containing ZnO nanospheres," J. Lumin., vol. 232, Apr. 2021, doi: 10.1016/j.jlumin.2020.117863.

[45] A. E. Perkins and N. M. Lawandy, "Light amplification in a disordered Raman medium," 1999.

[46] V. S. Gummaluri, S. R. Krishnan, and C. Vijayan, "Stokes mode Raman random lasing in a fully biocompatible medium," Opt. Lett., vol. 43, 2018.

[47] J. R. Murray, J. Goldhar, D. Eimeri, and A. SzÖke, "Raman Pulse Compression of Excimer Lasers for Application to Laser Fusion," IEEE J. Quantum Electron., 1979, doi: 10.1109/JQE.1979.1070009.

[48] V. M. Malkin, G. Shvets, and N. J. Fisch, "Fast compression of laser beams to highly overcritical powers," Phys. Rev. Lett., 1999, doi: 10.1103/PhysRevLett.82.4448.

[49] O. D. Herrera, L. Schneebeli, K. Kieu, R. A. Norwood, and N. Peyghambarian, "Slow light based on stimulated Raman scattering in an integrated liquid-core optical fiber filled with CS_2," Opt. Express, 2013, doi: 10.1364/oe.21.008821.

[50] G. Qin, R. Jose, and Y. Ohishi, "Stimulated Raman scattering in tellurite glasses as a potential system for slow light generation," in Journal of Applied Physics, 2007. doi: 10.1063/1.2730566.

[51] P. A. Franken, A. E. Hill, C. % Peters, and G. Weinreich, "PHYSICAL REVIEW LETTERS GENERATION OF OPTICAL HARMONICS," 1961.

[52] R. W. Boyd, Nonlinear Optics. Academic press, 2020.

[53] T. V. Dolgova et al., "Giant microcavity enhancement of second-harmonic generation in all-silicon photonic crystals," Appl. Phys. Lett., vol. 81, no. 15, pp. 2725-2727, Oct. 2002, doi: 10.1063/1.1510968.

[54] J. Martorell, R. Vilaseca, and R. Corbalan, "Second harmonic generation in a photonic crystal," Appl. Phys. Lett., vol. 70, no. 6, pp. 702-704, Feb. 1997, doi: 10.1063/1.118244.

[55] R. Czaplicki et al., "Enhancement of second-harmonic generation from metal nanoparticles by passive elements," Phys. Rev. Lett., vol. 110, no. 9, Feb. 2013, doi: 10.1103/PhysRevLett.110.093902.

[56] В. Б. Новиков, А. А. Насонов, А. И. Майдыковский, and Т. В. Мурзина, "Усиление генерации второй оптической гармоники гибридными плазмон-фотонными микрорезонаторами," Письма в ЖЭТФ, vol. 108, no. 5-6, pp. 316321, 2018, doi: 10.1134/s0370274x18170046.

[57] A. V Zayats, T. Kalkbrenner, V. Sandoghdar, and J. Mlynek, "Second-harmonic generation from individual surface defects under local excitation," Phys. Rev. B, vol. 61, p. 4545, 2000.

[58] A. Wokaun, J. G. Bergman, J. P. Heritage, A. M. Glass, P. F. Liao, and D. H. Olson, "Surface second-harmonic generation from metal island films and microlithographic strucures," Phys. Rev. B, vol. 24, no. 2, p. 849, 1981.

[59] J. Ducuing and N. Bloembergen, "Observation of reflected light harmonics at the boundary of piezoelectric crystals," Phys. Rev. Lett., vol. 10, p. 474, 1963, doi: https://doi.org/10.1103/PhysRevLett.10.474.

[60] J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, "Second-Harmonic Rayleigh Scattering from a Sphere of Centrosymmetric Material," Phys. Rev. Lett., vol. 83, p. 4045, 1999, doi: https://doi.org/10.1103/PhysRevLett.83.4045.

[61] D. Timbrell, J. W. You, Y. S. Kivshar, and N. C. Panoiu, "A comparative analysis of surface and bulk contributions to second-harmonic generation in centrosymmetric nanoparticles," Sci. Rep., vol. 8, no. 1, Dec. 2018, doi:

10.1038/s41598-018-21850-8.

[62] P. Hewageegana and V. Apalkov, "Second harmonic generation in disordered media: Random resonators," Phys. Rev. B - Condens. Matter Mater. Phys., vol. 77, no. 7, Feb. 2008, doi: 10.1103/PhysRevB.77.075132.

[63] Y. Qiao, F. Ye, Y. Zheng, and X. Chen, "Cavity-enhanced second-harmonic generation in strongly scattering nonlinear media," Phys. Rev. A, vol. 99, no. 4, Apr. 2019, doi: 10.1103/PhysRevA.99.043844.

[64] Z. Xie et al., "Multi-wavelength coherent random laser in bio-microfibers," Opt. Express, vol. 28, no. 4, p. 5179, Feb. 2020, doi: 10.1364/oe.384105.

[65] Y. C. Wang et al., "Flexible Organometal-Halide Perovskite Lasers for Speckle Reduction in Imaging Projection," ACSNano, vol. 13, no. 5, pp. 5421-5429, May 2019, doi: 10.1021/acsnano.9b00154.

[66] Q. Song et al., "Naturally occurring resonators in random lasing of pi-conjugated

polymer films," 2005.

[67] F. Lahoz et al., "Random laser in biological tissues impregnated with a fluorescent anticancer drug," Laser Phys. Lett., vol. 12, no. 4, Apr. 2015, doi: 10.1088/16122011/12/4/045805.

[68] R. C. Polson and Z. V. Vardeny, "Cancerous tissue mapping from random lasing emission spectra," J. Opt. A Pure Appl. Opt., vol. 12, no. 2, 2010, doi: 10.1088/2040-8978/12/2/024010.

[69] E. Ignesti, F. Tommasi, L. Fini, F. Martelli, N. Azzali, and S. Cavalieri, "A new class of optical sensors: A random laser based device," Sci. Rep., vol. 6, Oct. 2016, doi: 10.1038/srep35225.

[70] K. Ge et al., "Large-area biocompatible random laser for wearable applications," Nanomaterials, vol. 11, no. 7, Jul. 2021, doi: 10.3390/nano11071809.

[71] F. Bouville, E. Maire, and S. Deville, "Self-assembly of faceted particles triggered by a moving ice front," Langmuir, vol. 30, no. 29, pp. 8656-8663, Jul. 2014, doi: 10.1021 /la404426d.

[72] D. Dedovets and S. Deville, "Multiphase imaging of freezing particle suspensions by confocal microscopy," J. Eur. Ceram. Soc., 2018, doi: 10.1016/j.jeurceramsoc.2018.01.045.

[73] A. W. Rempel and M. G. Worster, "The interaction between a particle and an advancing solidi"cation front," 1999.

[74] J. You et al., "Dynamic particle packing in freezing colloidal suspensions," Colloids Surfaces A Physicochem. Eng. Asp., 2017, doi: 10.1016/j.colsurfa.2017.07.073.

[75] Â. G. Marin, H. Gelderblom, D. Lohse, and J. H. Snoeijer, "Order-to-disorder transition in ring-shaped colloidal stains," Jul. 2011, doi: 10.1103/PhysRevLett.107.085502.

[76] R. Piazza, "Settled and unsettled issues in particle settling," Reports on Progress in Physics, vol. 77, no. 5. Institute of Physics Publishing, 2014. doi: 10.1088/0034-4885/77/5/056602.

[77] Q. Shi et al., "Ice-templating of core/shell microgel fibers through 'bricks-and-mortar' assembly," Adv. Mater., vol. 19, no. 24, pp. 4539-4543, Dec. 2007, doi: 10.1002/adma.200700819.

[78] N. O. Shanti, K. Araki, and J. W. Halloran, "Particle redistribution during dendritic solidification of particle suspensions," J. Am. Ceram. Soc., vol. 89, no. 8, pp. 2444-2447, Aug. 2006, doi: 10.1111/j.1551-2916.2006.01094.x.

[79] S. Deville, J. Adrien, E. Maire, M. Scheel, and M. Di Michiel, "Time-lapse, three-dimensional in situ imaging of ice crystal growth in a colloidal silica suspension."

[80] S. A. Barr and E. Luijten, "Structural properties of materials created through freeze casting," Acta Mater., vol. 58, no. 2, pp. 709-715, Jan. 2010, doi: 10.1016/j.actamat.2009.09.050.

[81] И. Р. Шен, Принципы нелинейной оптики. Москва: Рипол Классик, 1989.

[82] P. G. Zverev, J. T. Murray, R. C. Powell, R. J. Reeves, and T. T. Basiev, "Stimulated Raman scattering of picosecond pulses in barium nitrate crystals," Opt. Commun., vol. 97, pp. 59-64, 1993, doi: https://doi.org/10.1016/0030-4018(93)90617-E.

[83] A. S. Eremenko, S. N. Karpukhin, and A. I. Stepanov, "Stimulated Raman scattering of the second harmonic of a neodymium laser in nitrate crystals," J. Quantum Electron, vol. 10, no. 1, 1980.

[84] D. Anglos et al., "Random laser action in organic-inorganic nanocomposites," J. Opt. Soc. Am. B, 2004, doi: 10.1364/josab.21.000208.

[85] B. H. Hokr and V. V. Yakovlev, "A proposal for a random Raman laser," J. Mod. Opt., vol. 61, no. 1, pp. 57-60, Jan. 2014, doi: 10.1080/09500340.2013.846429.

[86] B. H. Hokr, J. N. Bixler, and V. V. Yakovlev, "Higher order processes in random Raman lasing," Appl. Phys. A Mater. Sci. Process., vol. 117, no. 2, pp. 681-685, Oct. 2014, doi: 10.1007/s00339-014-8722-7.

[87] J. You et al., "Dynamic particle packing in freezing colloidal suspensions," Colloids Surfaces A Physicochem. Eng. Asp., vol. 531, pp. 93-98, Oct. 2017, doi: 10.1016/j.colsurfa.2017.07.073.

[88] P. W. Anderson, "The question of classical localization a theory of white paint ?," Philos. Mag. BPhys. Condens. Matter; Stat. Mech. Electron. Opt. Magn. Prop., vol. 52, no. 3, pp. 505-509, 1985, doi: 10.1080/13642818508240619.

[89] S. Faez, P. M. Johnson, D. A. Mazurenko, and A. Lagendijk, "Experimental observation of second-harmonic generation and diffusion inside random media," J. Opt. Soc. Am. B, 2009, doi: 10.1364/josab.26.000235.

[90] P. A. Rodnyi and I. V Khodyuk, "Optical and Luminescence Properties of Zinc Oxide," 2011. [Online]. Available: http://www.springerlink.com/content/tv730240x4708374/

[91] A. A. Lizunova et al., "Plasmon-Enhanced Ultraviolet Luminescence in Colloid Solutions and Nanostructures Based on Aluminum and ZnO Nanoparticles," Nanomaterials, vol. 12, no. 22, p. 4051, Nov. 2022, doi: 10.3390/nano12224051.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.