Метод статистического моделирования магнитного резонанса в неупорядоченных магнетиках тема диссертации и автореферата по ВАК РФ 05.13.18, кандидат физико-математических наук Заболоцкий, Алексей Митрофанович

  • Заболоцкий, Алексей Митрофанович
  • кандидат физико-математических науккандидат физико-математических наук
  • 2005, Белгород
  • Специальность ВАК РФ05.13.18
  • Количество страниц 122
Заболоцкий, Алексей Митрофанович. Метод статистического моделирования магнитного резонанса в неупорядоченных магнетиках: дис. кандидат физико-математических наук: 05.13.18 - Математическое моделирование, численные методы и комплексы программ. Белгород. 2005. 122 с.

Оглавление диссертации кандидат физико-математических наук Заболоцкий, Алексей Митрофанович

ВВЕДЕНИЕ.

ГЛАВА 1. Метод статистического моделирования магнитной релаксации

1.1. Введение.

1.2. Теоретические основы метода.

1.3. Численный алгоритм.

1.4. Спин-спиновые взаимодействия.

1.5. Тестовые расчеты.

1.6. Выводы.

ГЛАВА 2. Насыщение линии парамагнитного резонанса в СВЧ-поле высокой интенсивности.

2.1. Введение.

2.2. Статистическая модель.

2.3. Численное моделирование.

2.4. Обсуждение. 2.5. Выводы.

ГЛАВА 3. Моделирование магнитного резонанса в спиновом стекле

3.1. Введение.

3.2. Численное моделирование.

3.3. Обсуждение.

3.4. Выводы. v

ГЛАВА 4. Компьютерное моделирование ферромагнитного резоф нанса в наноструктурах Со-Си.

Рекомендованный список диссертаций по специальности «Математическое моделирование, численные методы и комплексы программ», 05.13.18 шифр ВАК

Введение диссертации (часть автореферата) на тему «Метод статистического моделирования магнитного резонанса в неупорядоченных магнетиках»

4.2. Математическая модель.84 4.3. Численное моделирование.89

4.4. Обсуждение.97

4.5. Выводы.99

ЗАКЛЮЧЕНИЕ.100

ЛИТЕРАТУРА.104

АВТОРСКИЕ ПУБЛИКАЦИИ.113

ПРИЛОЖЕНИЕ А. О частных решениях уравнения Блоха.115

ПРИЛОЖЕНИЕ Б. Пакет компьютерных программ «Magneton».119

ВВЕДЕНИЕ

Радиоспектроскопические методы занимают важное место в исследовании структуры твердого тела, а также веществ в жидком и газообразном состоянии. Впервые использованный американским физиком И. Раби в 1937 году при исследовании молекулярных и атомных пучков (метод Раби), радиоспектроскопический метод исследования в настоящее время является источником ценной информации о структуре твердых тел, жидкостей, молекул, о природе межатомных химических связей. Основанные на явлении магнитного резонанса, методы радиоспектроскопии имеют существенное значение также в изучении спиновой динамики и различных типов магнетизма твердого тела.

Актуальность темы. Изучение магнитной структуры твердого тела, как средствами радиоспектроскопии, так и другими методами, в последнее время имеет тенденцию к переходу от анализа упорядоченных спиновых систем к исследованию аморфных и неупорядоченных магнетиков. Это обусловлено следующими причинами.

Во-первых, сегодня достигнуто достаточно полное понимание упорядоченного состояния твердого тела благодаря интенсивным экспериментальным и теоретическим исследованиям, проводившимся на протяжении ряда десятилетий вплоть до 80-х годов 20-го столетия. Были разработаны общие модели и методы изучения. Вместе с тем, наряду с хорошо известными пятью основными типами магнитного состояния (диамагнетизм, парамагнетизм, ферромагнетик, антиферромагнетик и ферримагнетик) был обнаружен ряд совершенно новых типов магнитного упорядочения, возникающих там, где нет никакого дальнего магнитного порядка, а также ранее неизвестные типы магнитных структур, появляющихся только в правильной кристаллической решетке [1]. Все они представляют собой примеры кооперативных спиновых систем, для которых характерно (в той или иной степени) существование взаимодействия между дискретными магнитными моментами. Многие из новых типов магнетиков характеризуются весьма необычными, часто труднообъяснимыми свойствами, что вызывает к ним особый интерес, как физиков-экспериментаторов, так и теоретиков.

Во-вторых, в настоящее время уже имеется большой ассортимент различных сплавов и соединений, представляющих собой аморфные магнитные системы, которые находят или могут еще найти важные практические применения. Дело в том, что аморфные магнетики относятся к магнитомягким материалам, обладают уникальными свойствами, в известных отношениях превосходящими свойства магнитомягких кристаллических сплавов. Аморфные магнетики отличаются слабой температурной зависимостью электросопротивления, высокой магнитной восприимчивостью, как правило, малой величиной магнитной анизотропии. Их магнитострикция может быть близка к нулю.

Аморфные магнитные материалы и спиновые стекла находят широкое применение в радиоэлектронике. Они используются в устройствах магнитной памяти на цилиндрических доменах с высокой плотностью записи информации. Не исключено их широкое применение в энергетике в ближайшем будущем. Появление нового класса материалов — аморфных магнитных материалов и спиновых стекол фактически открывают новые направления в физике и химии твердого тела, в учении о магнетизме, материаловедении [2].

Одна из самых актуальных тем в магнетизме сегодня - исследование слоистых магнитных наноструктур, что в значительной степени обусловлено их возрастающими приложениями в магнитных датчиках и в средах магнитных накопителей, подобных компьютерным дискам и блокам памяти с произвольным порядком доступа. Энергонезависимая память, основанная на структурах магнитных металлических пленок,

разделенных немагнитными металлическими или разделяющими промежуточными слоями, представляют следующий этап в технологии магнитных накопителей и разработки элементов сверхвысокочастотных (СВЧ) устройств принципиально нового типа [3, 4]. Управляемое магнитное поле, порождаемое тонкой пленкой, служит основой спин-троники - новой области науки, изучающей целенаправленное управление спинами электронов, которая в недалеком будущем будет также значима, как и электроника.

Следует отметить, что методы исследования неупорядоченных спиновых систем, часто адекватны методам, применяемым при изучении других физических объектов (стеклообразное состояние твердого тела, жидкости и т. д.). Эти методы могут найти также полезные применения в других отраслях знаний. Так, например, исследование неупорядоченных спиновых систем может сыграть определенную роль в понимании принципов функционирования биологической памяти [5]. Поэтому исследование аморфных магнетиков, в том числе методами радиоспектроскопии, весьма актуально для понимания природы магнетизма в неупорядоченных спиновых системах и использования результатов исследования в целях создания новых типов магнитных материалов.

Существенный прогресс в последнее время достигнут в области экспериментальной методики и технике радиоспектроскопических исследований. Наметилась тенденция перехода из области сантиметрового диапазона волн к использованию миллиметрового СВЧ-поля. Это стало возможным благодаря созданию принципиально новых конструктивных элементов СВЧ-устройств (генераторы дифракционного излучения, квазиоптические резонаторы и т. д.) [6, 7]. Повышение разрешающей способности метода позволило наблюдать тонкие детали профилей магниторезонансных линий и эффекты, ранее недоступные для экспериментального изучения. Кроме этого стало возможным проведение радиоспектроскопических исследований в условиях очень низких температур (Т < 1 К), при которых имеет место условие: /гсо » кТ, где со - частота резонанса. Данное обстоятельство ведет к существенному уменьшению уровня тепловых флуктуаций в магнитных системах, повышает эффективность исследования и открывает возможности детального изучения свойств систем слабовзаимодейст-вующих спинов [8-10].

Но, с другой стороны, радиоспектроскопический метод исследования аморфных и неупорядоченных спиновых систем сталкивается с весьма сложной проблемой физической интерпретации результатов экспериментов. Дело в том, что модели таких магнитных структур, как спиновые стекла, асперомагнетики и т. п., сейчас находятся в стадии интенсивной разработки и еще далеки от совершенства.

Исторически первой моделью магнитного резонанса является феноменологическая модель Ф. Блоха, которая основана на использовании дифференциальных уравнений движения вектора средней намагниченности М образца во внешнем магнитном поле Н0. Первоначально эта модель предназначалась для анализа опытов по ядерному магнитному резонансу [11]. Далее, ее успешно использовали и при описании электронного парамагнитного резонанса (ЭПР). Большое достоинство феноменологических уравнений Блоха - их математическая простота и физическая наглядность. Эти уравнения в дальнейшем позволили описать большое количество экспериментальных фактов и оказали сильное влияние на развитие методов магнитного резонанса [12]. Однако теоретический расчет основных параметров модели - времен продольной и поперечной релаксации, потребовал детальной разработки теории спин-спиновых и спин-решеточных взаимодействий [13,14].

В настоящее время ЭПР является одним из наиболее изученных явлений. Интенсивно ведется разработка методов моделирования ЭПР в неупорядоченных твердых телах. Существующие методы основаны на использовании спин-гамильтониана парамагнитных центров, учитывающего тонкую и сверхтонкую структуру спектра ЭПР, факторы анизотропии, а также случайный характер параметров спин-гамильтониана и ориентации парамагнитных центров. Они позволяют выполнять расчет резонансных частот спектра, вероятностей перехода между энергетическими уровнями спиновой системы. Однако, как отмечено в работе [15], все эти расчеты чрезвычайно сложны, трудоемки и требуют больших затрат машинного времени. Подчеркивается, что необходима разработка и реализация последовательно статистического по своему характеру подхода к анализу ЭПР-спектров.

Применение феноменологического подхода для моделирования ферромагнитного резонанса (ФМР) потребовало введения эффективного поля Яэфф. Поле Яэфф существенно отличается от внешнего поля Но . Оно зависит от полей магнитной анизотропии Н&, констант маг-нитоупругого взаимодействия и размагничивающих полей [16-18].

За последние десятилетия был накоплен значительный объем теоретических исследований неупорядоченных магнетиков на основе хорошо известных моделей Изинга и Гейзенберга. При этом основное внимание уделялось изучению фазовых переходов в спин-стекольное состояние. Отметим также, что некоторые важные результаты были получены на основе этих моделей путем численного моделирования методом Монте-Карло [19]. Несмотря на относительную простоту модели Изинга, точно решено только лишь небольшое число частных случаев для одно- и двумерных задач. Уже в плоском случае точное квантово-статистическое описание спиновой системы можно получить лишь для модели, не включающей взаимодействия с постоянным магнитным полем [12]. И хотя эта модель приносит необычайную пользу в статистической механике фазовых переходов, тем не менее, нельзя считать, что модель Изинга достаточно точно воспроизводит другие свойства реальных магнитных систем [20]. Этого недостатка лишена модель Гейзенберга, в которой учитывается векторный характер спинов. Однако задачи на ее основе более сложны, и информацию о свойствах их решений невозможно получить без компьютерного моделирования.

Таким образом, в связи со сложностью задач физики неупорядоченных магнетиков возрастает роль численного моделирования происходящих в них процессов, в том числе и явления магнитного резонанса. Важную роль в этом направлении играют численные методы математической статистики, известные как методы Монте-Карло [19]. В настоящее время в статистической физике с помощью этого метода получены весьма значительные достижения. Особенно эффективным метод Монте-Карло оказался при исследовании систем сильно взаимодействующих частиц. К его положительным свойствам следует отнести сравнительную простоту и естественность алгоритмов, а также возможность построения модификаций статистического моделирования с учетом информации о решении. Теория таких модификаций интенсивно развивается в последнее время.

Все это свидетельствует об актуальности задачи моделирования магнитного резонанса в магнитных материалах различных типов, особенно в таких спиновых системах, как аморфные и неупорядоченные магнетики.

Цель и задачи. Основная цель работы - разработка статистического метода численного моделирования магнитного резонанса для теоретической интерпретации данных радиоспектроскопии неупорядоченных спиновых систем. Объектом исследования в данной работе являются однородные неупорядоченные спиновые системы со случайным пространственным распределением дискретных магнитных моментов, которые связаны прямым и косвенным обменным взаимодействием Рудермана-Киттеля-Касуи-Иосиды (РККИ), а также диполь-дипольным взаимодействием. Предмет исследования - связь магнито-резонансных свойств с атомным порядком и спин-спиновыми взаимодействиями в мультислойных магнитных структурах и разбавленных магнетиках (спиновые стекла). В качестве метода исследования в работе используется математическое моделирование магнитного резонанса и магнитной релаксации в спиновых системах на основе численного решения уравнения движения магнитных моментов и имитации спин-фононных взаимодействий методом Монте-Карло. Основные задачи: 1) расчет профилей линий магнитного резонанса в целях сопоставления результатов моделирования с известными экспериментальными данными, полученными путем магниторезонансных измерений в аморфных ферромагнетиках; 2) определение параметров обменных взаимодействий в мультислойных наноструктурах и разбавленном ферромагнетике путем моделирования температурного фазового перехода в упорядоченное состояние.

Научная новизна данной работы заключается в том, что предложен и разработан математический метод, который сочетает в себе детерминированный и статистический подходы, поскольку он основан на использовании дифференциальных уравнений движения магнитных моментов и описания их взаимодействия с фононами методом Монте-Карло. На основе этого метода и реализации соответствующих численных алгоритмов разработан пакет компьютерных программ для моделирования динамических процессов в спиновой системе твердого тела. С его помощью построены магнитные фазовые диаграммы для аморфного магнетика, выполнены расчеты профилей линий магнитного резонанса в фазе спинового стекла вблизи мультикритической точки фазовой диаграммы при различных температурах и частотах СВЧ-поля. Аналогичные расчеты линий магнитного резонанса, выполненные для наноструктуры Fe(Co/Cu)30, показали удовлетворительное согласие с данными эксперимента.

Основные положения, выносимые на защиту, заключаются в следующем:

1. Предложен и разработан новый метод статистического моделирования в неупорядоченных спиновых системах, отличительной особенностью которого является сочетание детерминистского подхода, базирующегося на использовании уравнения движения магнитных моментов и метода Монте-Карло для моделирования спин-фононных взаимодействий.

2. Для реализации вычислений на основе этого метода разработаны численный алгоритм, который (в отличие от общеизвестных методов численного интегрирования обыкновенных дифференциальных уравнений) адаптирован для решения уравнения движения магнитных моментов со случайными возмущениями, обусловленными спин-фононными взаимодействиями. Этот алгоритм реализован в пакете компьютерных программ «Magneton» для выполнения численной имитации магнитного резонанса и процессов магнитной релаксации в неупорядоченных спиновых системах.

3. По результатам численного моделирования магнитного резонанса в разбавленном аморфном ферромагнетике установлено, что параметры расчетных профилей линий магнитного резонанса в фазе спинового стекла и их зависимость от температуры качественно согласуются с результатами экспериментов.

4. На основе статистического метода разработана модель ферромагнитного резонанса в мультислойных структурах со случайной обменной связью промежуточного слоя, которая позволила вычислить профили линий магнитного резонанса в наноструктуре Fe(Co/Cu)30, демонстрирующие удовлетворительное согласие с экспериментальными данными.

5. Путем анализа результатов численного моделирования резонанса установлено, что формирование широкой резонансной линии в опытах по ФМР в образцах Fe(Co/Cu)30 обусловлено флуктуациями толщины магнитных и промежуточных слоев.

Практическая и научная значимость работы состоит в том, что предложенный метод статистического моделирования открывает новые возможности интерпретации результатов эксперимента при исследовании веществ радиоспектроскопическими методами. Одно из основных его достоинств - независимость численных алгоритмов от координационного атомного порядка, что определяет его применимость для моделирования динамических процессов, как в кристаллических, так и в аморфных спиновых системах. Разработанный на основе обсуждаемого в диссертации математического метода пакет компьютерных программ позволяет исследовать процессы релаксации в магнетиках различных типов, их свойства в зависимости от внешних магнитных полей, температуры, пространственной структуры и параметров обменного взаимодействия. С его помощью мы получаем возможность изучать магнитный порядок в системе благодаря визуализации полей направлений магнитных моментов различными способами, так как исследуемые зависимости между параметрами задачи выводятся в графическом виде. Полученные в результате моделирования данные сохраняются в файлах и, в случае необходимости, могут быть подвергнуты дальнейшему изучению и дополнительной обработке другими программами.

Пакет компьютерных программ также может быть использован в учебных целях при изучении соответствующих разделов физики конденсированного состояния.

Достоверность результатов работы обеспечена использованием апробированных на задачах статистической физики методов спиновой динамики и метода Монте-Карло, применением общеизвестных численных алгоритмов для решения дифференциальных уравнений. Расчеты качественно согласуются с экспериментальными данными, опубликованными ранее в работах различных авторов, и не противоречат известным теоретическим представлениям о природе критических состояний спиновых систем.

Апробация работы. Основные материалы работы были представлены и докладывались на Международной конференции по математическим методам в электромагнитной теории (Украина, Харьков, 1998), Третьей Европейской конференции по численным методам в электромагнетизме (Франция, 2000), а также на семинарах в ИРЭ (Харьков, 2000), БелГУ (Белгород), ИТФ ННЦ ХФТИ (Харьков), СГУ (Саратов) и КГТУ (Курск).

Публикации. По результатам диссертационного исследования опубликовано 7 печатных работ, в Росагенстве по патентам и товарным знакам получено регистрационное свидетельство о разработке программы для ЭВМ "Magneton". Список публикаций приведен на стр. 113.

Личный вклад соискателя. В работах, написанных в соавторстве, автору принадлежит разработка математических моделей, численных алгоритмов, пакета компьютерных программ, численное моделирование и обработка данных численных экспериментов. Автор принимал активное участие в обсуждении результатов и подготовке статей.

Похожие диссертационные работы по специальности «Математическое моделирование, численные методы и комплексы программ», 05.13.18 шифр ВАК

Заключение диссертации по теме «Математическое моделирование, численные методы и комплексы программ», Заболоцкий, Алексей Митрофанович

5. Выводы

1. Как видно из полученных результатов, численное моделирование ФМР в наноструктуре Fe(Co/Cu) на основе рассмотренной в разд. 4.2. математической модели показывает удовлетворительное согласие формы расчетного профиля линии и полученного экспериментально в работе [31]. Различие резонансных частот объясняется тем, что, в отличие от модельного образцов с плотностью упаковки Г) = 0.61, реальные образцы имеют более плотно упакованную атомную структуру с г) £ 0.7.

2. Формирование широкой резонансной линии в опытах по ФМР в образцах Fe(Co/Cu)3o обусловлено локальным характером резонансного взаимодействия СВЧ-излучения с мультислойной структурой Со/Си из-за случайных флуктуаций толщины магнитных и промежуточных слоев, возникающих в процессе изготовления образцов путем ионо-плазменного напыления.

3. Статистическое моделирование магнитных взаимодействий в наноструктурах является полезным методом изучения магниторезо-нансных и других особенностей мультислойных систем. Необходим поиск эффективных алгоритмов численного моделирования магнитных релаксационных процессов в наноструктурах для получения более достоверной информации о них путем использования в расчетах выборок большего объема, более детального учета атомного порядка в образцах. Исследование особенностей ФМР, в свою очередь, может служить целям разработки различных устройств и элементов СВЧ-диапазона.

ЗАКЛЮЧЕНИЕ

Таким образом, изложенные в данной работе результаты позволяют сделать вывод об эффективности статистических методов моделирования магнитного резонанса в неупорядоченных магнетиках.

1. Созданный на основе реализации численных алгоритмов решения уравнений спиновой динамики и моделирования спин-решеточных взаимодействий методом Монте-Карло пакет компьютерI ных программ «Magneton» позволяет анализировать данные радиоспектроскопических экспериментов путем их сопоставления с расчетными профилями магниторезонансных линий, исследовать фазовые переходы и процессы релаксации в магнетиках, а также статистические свойства их атомной структуры.

2. Тестирование численных алгоритмов показало результаты, согласованные с хорошо известными фактами магнетизма. Это - возникновение ферромагнитного порядка в спиновой системе с положительным обменным взаимодействием между ближайшими атомами, зависимость типа магнитного упорядочения от параметров обменных интегралов прямого и косвенного взаимодействий. В разбавленном ферромагнетике - существование дальнего порядка выше порога перколяции рс и его отсутствие при концентрациях магнитных атомов р < рс. Моделирование эффекта насыщения ЭПР статистическим методом также дало результаты, качественно согласующиеся с экспериментальными фактами и аналитическими расчетами.

Одно из основных достоинств метода - независимость его численных алгоритмов от координационного атомного порядка, что определяет возможности его применения для моделирования динамических процессов, как в кристаллических, так и в аморфных спиновых системах.

3. Статистическим методом выполнен расчет фазовой диаграммы и профилей линий магнитного резонанса в разбавленном ферромагнетике с прямым и косвенным обменным взаимодействием РККИ, что дает возможность определения параметров обменного взаимодействия по расположению мультикритической точки. На основе исследования магнитной релаксации получено подтверждение факта магнитной неоднородности и метастабильного поведения разбавленного ферромагнетика в фазе спинового стекла.

4. Путем численного моделирования статистическим методом выполнены расчеты профилей линий магнитного резонанса для спинового стекла слева от мультикритической точки, которые в пределах статистических погрешностей демонстрируют качественное согласие с результатами радиоспектроскопических исследований температурной зависимости их параметров. Все эти факты свидетельствуют о значимости предложенного метода статистического моделирования для теоретической интерпретации данных радиоспектроскопии неупорядоченных спиновых систем. Численное моделирование магнитного резонанса на основе рассмотренного в нашей работе метода представляет одно из направлений в теоретическом изучении свойств неупорядоченных спиновых систем.

5.Моделирование магнитного резонанса в наноструктуре Fe(Co/Cu)30 продемонстрировало удовлетворительное согласие расчетного профиля с данными экспериментов, выполненных при комнатной температуре. Это означает, что неоднородность толщины магнитных и промежуточных слоев, обусловленная технологией изготовления образцов наноструктур, служит причиной образования широких линий магнитного резонанса. Сравнение результатов моделирования магнитного резонанса в спиновом стекле и наноструктуре показало, что метод статистического моделирования особенно эффективен при исследовании спиновой динамики при температурах Т ~ 300 К в таких объектах, как наноструктуры, микропровода и т.п., изучение которых необходимо для развития компьютерной техники и создания элементов СВЧ-устройств принципиально нового типа [4, 99-101].

При современном уровне развития вычислительной техники эффективность метода статистического моделирования может быть существенно увеличена путем использования многопроцессорных компьютерных систем в сочетании с предварительным рациональным планированием численных экспериментов. Учитывая положительные результаты применения статистического метода для численного моделирования магниторезонансных свойств спиновых систем, целесообразно постоянное накопление результатов расчетов, выполненных для спиновых систем с различным топологическим порядком и параметрами спин-спиновых взаимодействий. Использование такой базы данных позволило бы существенно повысить эффективность метода и намного упростить задачу интерпретации данных радиоспектроскопии неупорядоченных спиновых систем.

Благодаря возможности непосредственного учета влияния атомной структуры на магнитные и магниторезонансные свойства магнетиков метод статистического моделирования найдет полезные применения в исследованиях наноструктур, которые интенсивно ведутся в настоящее время.

Пакет компьютерных программ «Magneton», реализующий численные алгоритмы моделирования магнитной релаксации, может быть использован также и в учебных целях при изучении магнетизма.

Быстродействие процессоров современных компьютеров с каждым годом непрерывно и заметно растет. Это позволяет надеяться, что в перспективе данный метод займет важное место в моделировании динамических процессов в неупорядоченных магнетиках.

В заключение хочу выразить искреннюю благодарность:

Тарапову С.И., докт. физ.-мат. наук, ст. н. сотр., зав. отделом радиоспектроскопии Института радиофизики и электроники им. А .Я. Усикова НАН Украины за предоставленные материалы экспериментальных исследований разбавленных ферромагнетиков и слоистых магнитных наноструктур, а также за всестороннюю помощь в выполнении работы;

Чеканову Н.А., докт. физ.-мат. наук, проф. кафедры математического анализа БелГУ за помощь и содействие в подготовке рукописи диссертации;

Белозорову Д.П., канд. физ.-мат. наук, ст. н. сотр. ННЦ ХФТИ НАН Украины за полезные обсуждения и ряд ценных критических замечаний, сделанных в процессе выполнения работы.

Список литературы диссертационного исследования кандидат физико-математических наук Заболоцкий, Алексей Митрофанович, 2005 год

1.ХёрдК. М. Многообразие видов магнитного упорядочения в твердых телах. // УФН. -1984. - Т. 142, вып.2. - С.331-355.

2. Магнетизм аморфных систем. Материалы Международного симпозиума. США, 1977. Пер. с англ. Под ред. Р. Леви, Р. Хасечава. М.: Металлургия. - 1981. - 448 с.

3. Grunberg P. Layered Magnetic Structures: History, Highlights, Applications. // Physics Today. 2001, V.54, Iss.5. - P.31-38.

4. Gregg J. F., Petej I., Jouguelet E., Dennis C. Spin electronic—a review. // J. Phys. D: Appl. Phys. 2002, V.35. - P. R121-R155.

5. Кинцель В. Спиновые стекла как модельные системы для нейронных сетей. //УФН. 1987. -Т.152, вып.1. - С.123-1131.

6. Вертий А. А., Карнаухов И. М., Шестопалов В. П. Поляризация атомных ядер миллиметровыми волнами. Киев: Наукова думка. -1990.-232 с.

7. Шестопалов В. П., Вертий А. А., Ермак Г. П., Скрынник Б. К., Хлопов Г. И., Цвык А. И. Генераторы дифракционного излучения. -Киев: Наукова думка. 1991. - 320 с.

8. Вертий А.А., Гаврилов С.П., Тарапов С.И., Шестопалов В.П. Наблюдение явления бистабильности в условиях магнитного резонанса на миллиметровых волнах. // ДАН СССР. 1990. - Т.313, №4. -С.849-853.

9. Vertiy A.A., Gavrilov S.P., Tarapov S.I. The transmission and testability of a nonlinear quasioptical resonator in ESR conditions in ruby. // Intern. Journ. of Infrared and MMW. -1992. V.3, N.9. P.1404-1419.

10. Вертий А.А., Гаврилов С.П., Тарапов С.И. Бистабильность многослойной структуры в условиях магнитного резонанса на миллиметровых волнах. // Письма в ЖТФ. 1993. - т.19, в.З. - с.1-4.

11. Bloch F. Nuclear Induction. // Phys. Rev. 1946. - Vol.70, No.7. - pp. 460-472.

12. Кессель А. П., Берим Г. О. Магнитный резонанс изинговых магнетиков. М.: Наука. - 1982. - 147 с.

13. Абрагам А. Ядерный магнетизм. М.: ИЛ. - 1963. - 551 с.

14. Альтшулер А. С., Козырев Б. М. Электронный парамагнитный резонанс. М.: Физматгиз. - 1961. - 368 с.

15. Клява Я. Г. ЭПР-спектроскопия неупорядоченных твердых тел. -Рига.: Зинатне. 1988. - 320 с.

16. Киттель Ч. Введение в физику твердого тела. М.: Мир. - 1978. -791 с.

17. Моносов Я. А. Нелинейный ферромагнитный резонанс. М.: Наука. - 1971. - 376 с.

18. Гуревич А.Г. Магнитный резонанс в ферритах и антиферромагнетиках. М.: Наука. - 1973. - 591 с.

19. Биндер К. и др. Методы Монте-Карло в статистической физике. -М.: Мир. 1982. - 400 с.

20. Займан Дж. Модели беспорядка: Теоретическая физика однородно неупорядоченных систем. М.: Мир. - 1982. - 592 с.

21. Cohen М. Н., Continentino М. A. Relaxation and Internal Topology of Magnetic Alloys. // Solid State Communications. 1985. - V. 55, N 7. -P. 609-610.

22. Деменев А.Г., Хеннер E.K. Метод численного моделирования спиновой динамики в магниторазбавленных твердых телах. // Радиоспектроскопия, вып.21., Перм. ун-т, Пермь. 1993. - С.6-16.

23. Деменев А. Г. Компьютерное моделирование спиновой динамики в магнито-разбавленных твердых телах. // Математическое моделирование, 1996. - Т.8, №4. - С.47-56.

24. Ландау Л. Д., Лифшиц Е. М. Теоретическая физика. Т. 3. Квантовая механика (нерелятивистская теория). М., Наука. - 1989. - 768 с.

25. Соколов А. А., Тернов И. М., Жуковский В. Ч. Квантовая механика. М.: Наука. - 1979. - 528 с.

26. Вонсовский С. В. Магнетизм. М.: Наука. - 1971. - 1032 с.

27. Frait Z. Surface Studies of Amorphous Metallic Glass by Magnetic Resonance. // Journal of Magnetism and Magnetic Materials. 1983. -V.35. - P.37-42.

28. Bhagat S. M., Liao S. В., Manheimer M. A., Moorjani K. Determination of Coordination Number by Magnetic Resonance in Reentrant Ferromagnets. // Solid State Communications. 1987. - V.57, N.l. -P.21-24.

29. Ширяев A. H. Вероятность. M.: Наука. - 1980. - 576 с.

30. ГихманИ. И., Скороход А. В. Введение в теорию случайных процессов. М.: Наука. - 1977. - 567 с.

31. Филлипов А.Ф. Дифференциальные уравнения с разрывной правой частью. М.: Наука. - 1985. - 224 с.

32. Каханер Д., Моулер К., Нэш С. Численные методы и математическое обеспечение. М.: Мир. - 1998. - 575 с.

33. Самарский А. А. Теория разностных схем. М.: Наука. - 1977. -616 с.

34. Форсайт Дж., Малькольм М., Моулер К. Машинные методы математических вычислений. М.: Мир. - 1980. - 277 с.

35. Волков Е.А. Численные методы. М.: Наука. - 1982. - 256 с.

36. Годунов С.К., Рябенький B.C. Разностные схемы. М.: Наука. -1973.-400 с.

37. Калиткин Н.Н. Численные методы. М.: Наука. - 1978. - 512 с.

38. Бахвалов Н. С. Численные методы: учебное пособие для студентов физико-математических специальностей / Н. С. Бахвалов, Н. П. Жидков, Г. М. Кобельков. Изд. 2-е. - М.; СПб.: Физматлит. -2002. - 630 с.

39. Гулин А.В., Самарский А.А. Численные методы. М.: Наука. -1989.-432 с.

40. Тихонов А.Н., Костомаров Д.П. Вводные лекции по прикладной математике. М.: Наука. - 1984. - 190 с.

41. Березин И.С., Жидков Н.П. Методы вычислений. T.I. М.: Гос. изд-во физ.-мат. лит. - 1962. - 464 с.

42. Березин И.С., Жидков Н.П. Методы вычислений. Т.Н. М.: Гос. изд-во физ.-мат. лит. - 1959. - 620 с.

43. Демидович Б.П. Марон И.А., Шувалова Э.З. Численные методы анализа. М.: Гос. изд-во физ.-мат. лит. - 1967. - 368 с.

44. Поттер Д. Вычислительные методы в физике. М.: Мир. - 1975. -394 с.

45. Канторович Л.В., Крылов В.И. Приближенные методы высшего анализа. — М.: Гос. изд-во физ.-мат. лит. 1962. - 707 с.

46. Вазов В., Форсайт Дж. Разностные методы решения дифференциальных уравнений в частных производных. М.: ИЛ. -1963.-487 с.

47. Рихтмайер Р., Мортон К. Разностные методы решения краевых задач. М.: Мир. - 1972. - 420 с.

48. Соболь И. М. Численные методы Монте-Карло. М.: Наука. -1973.-311 с.

49. Portis А. М. Electronic Structure of F Centers: Saturation of the Electron Spin Resonance//Physical Review. 1953. - V.91, N.5. - P. 10711078.

50. Portis A. M. Spectral Diffusion in Magnetic Resonance // Physical Review. 1956. - V.104, N.3. - P.584-588.

51. Ацаркин В. А., Демидов В. Б. Охлаждение дипольного резервуара и динамическая поляризация ядер при насыщении неоднородной линии ЭПР//ЖТЭФ. 1979. - Т.76, вып.6. - С.2185-2193.

52. Golding В., Graebner J. Е., Капе А. В., Black J. L. Relaxation of Tunneling Systems by Conduction Electrons in a Metallic Glass. // Physical Review Letters. 1978. - V.41, N.21. - P.1487-1491.

53. Румер Ю. Б., Рыбкин M. Ш. Термодинамика, статистическая физика и кинетика. М.: Наука. - 1977. - 552 с.

54. Марчук Г. И. Методы вычислительной математики. М.: Наука. -1980.- 536 с.

55. Гинзбург С. А. Необратимые явления в спиновых стеклах. М.: Наука. -1989. - 149 с.

56. Sherrington D., Kirkpatrick S. Solvable model of spin-glass. // Physical Review Letters. 1975. - V.35, N.26. - P.1792-1796.

57. Kirkpatrick S., Sherrington D. Infinite range model of spin-glass. // Physical Review B. 1978. - V.17, N.l 1. - P.4384-4403.

58. Tanaka F., Edvards S. F. Analytic theory of the ground state of a spin glass: 1. Ising spin glass. // Journ. Phys. F. 1980. - V. 10, N.l2. -P.2769-2778.

59. Гюндтеродт Г., Бек Г. Металлические стекла. М.: Мир. - 1983. -376 с.

60. Webb D. J., Bhagat S. M. Magnetic resonance in amorphous FeJCNi80.Jt.P14B6. 1. Ferromagnetic and reentrant alloys. // Journal of Magnetism and magnetic Materials. 1984. - V.42. - P. 109-120.

61. Webb D. J., Bhagat S. M. Magnetic resonance in amorphous Fe^Nigo^P^Bg. II. Spin glass alloys. // Journal of Magnetism and magnetic Materials. 1984. - V.42. - P.121-129.

62. Тарапов С. И. Магниторезонансные исследования твердых тел в миллиметровом диапазоне волн при сверхнизких температурах. // Автореферат диссертации на соискание ученой степени доктора физ.-мат. наук., Харьков. 1994. - 30 с.

63. Moorjani К., Coey J. М. D. Magnetic Glasses. Amsterdam-Oxford-New York-Tokio. - 1984. - P.328-330.

64. Bhagat S. M., Spano M. L. Unified Description for the Effect of Spin Freezing on ESR Linewidth. // Sol. State Comm. 1981. - V.38.-P.261-265.

65. Manheimer M. A., Bhagat S. M., Webb D. J. Two-level systems and FMR near the ferromagnet spin-glass transition. // J. Appl. Phys. -1985. V.57, N.l. - P.3476-3478.

66. Belozorov D. P., Vertiy A. A., Golik A. V., Tarapov S. I. Low temperature FMR linewidth in reentrant magnets. //Physics Letters A. 1993.- V.180. -P.379-381.

67. Belozorov D. P., Tarapov S. I. Magnetic structure of reentrant magnets near the spin-glass transition. // Fiz. Nizk. Temp. 1996. - V.22. -C.391-393.

68. Zomack M., Baberschke K., Barnes S.E. Magnetic resonance in the spin-glass (LaGd)Al2 // Phys. Rev. B. 1983. - V.27, N.7. - P.4135--4148.

69. Jackson E.M., Lialo S.B., Bhagat S.M., Manheimer S.M. Field-induced parameters of reentrant magnets and concentrated spin glasses // Journal of Magnetism and Magnetic Materials. 1989 - V.80. - P.229--240.

70. Lialo S.B., Bhagat S.M., Manheimer S.M., Moorjani K. Energy gap in concentrated spin glasses. // J. Appl. Phys. 1988. - V.63, N.8. -P.4354-4356.

71. Bhagat S. M., Sayadian H. A. Magnetic Resonance in Random Spin Systems: Diluted Magnetic Semiconductors, Universal Temperature Dependence. // Journal of Magnetism and Magnetic Materials. 1986.- V.61.-P.151-161.

72. Raghavan R., Levy P. M. Theory of electron spin resonance in the insulating spin glass: Europium strontium sulfide. // J. Appl. Phys. -1985. V.57, N.l. - P.3386-3388.

73. Иванченко Ю. M. Флуктуацнонные эффекты в системах с конкурирующими взаимодействиями. Киев. - 1989. - 279 с.

74. Клингер М. П. Низкотемпературные свойства и локализованные состояния стекол. // УФН. 1987. - Т. 152, вып.4. - С.623-652.

75. Villain J. Two-level systems in a spin-glass model: I. General formalism and two-dimensional model. // J. Phys. C: Solid State Phys. 1977.- V.10. -P.4793-4803.

76. Continentino M. Structural relaxation in ferromagnetic glasses. // J. Phys. C: Solid State Phys. 1981. - V.14. - P.3527-3539.

77. Continentino M. Dynamic theory of ferromagnetic to spin-glass transition. // Phys. Rev. B. 1983. - V.27, N.7. - P.4351-4358.

78. Боков В. А. Физика магнетиков. СПб.: Невский диалект. - 2002,272 с.

79. Вонсовский С. В. Магнетизм. М.: Наука. - 1984. - 208 с.

80. КэндэлМ. Временные ряды. / Пер. с англ. и предисл. Ю.П. Лукашина. М.: Финансы и статистика. - 1981. - 199 с.

81. Титчмарш Е. Введение в теорию интегралов Фурье: Пер. с англ./ Титчмарш Е. М.: ОГИЗ. Гостехтеориздат. - 1948. - 479 с.

82. Бохнер С. Лекции об интегралах Фурье. Пер. с англ., М.: ИЛ. -1962.-360 с.

83. Крылов В.И. Справочная книга по численному гармоническому анализу / Крылов В.И., Кругликова Л.Г.- Минск: Наука и техника.- 1968. 165 с.

84. Крылов В.И. Методы приближённого преобразования Фурье и обращения преобразования Лапласа: Справ, книга. / Крылов В.И., Скобля Н.С.- М.: Наука. 1974. - 223 с.

85. Бриллинджер Д.Р. Временные ряды. Обработка данных и теория. -М.: Мир. 1980.-536 с.

86. Калиникос Б.А. Спиновые волны в ферромагнитных пленках. // Со-росовский образовательный журнал. 1996. - №5. - С.93-100.

87. Казаков В.Г. Тонкие магнитные пленки. // Соросовский образовательный журнал. 1997. -№1. - С.107-114.

88. Gubin S.P., Spichkin Y.I., Yurkov G.Y., Tishin A.M. Nanomaterial for High Density Magnetic Date Storage. // Russ. J. of Inorganic Chem. -2002. V.47.-P. S32-S67.

89. Буравцова B.E., Ганыиина E.A., Гущин B.C., Касаткин С.И., Муравьев A.M., Плотникова Н.В., Пудонин Ф.А. Магнитные и магнитооптические свойства многослойных наноструктур ферромагнетик-полупроводник. // ФТТ. 2004. - Т.46, вып.5. -С.864-874.

90. Ринкевич А.Б., Носов А.П., Васильев В.Г., Владимирова Е.В. Ферромагнитный резонанс и антирезонанс в порошковом лантан-иттриевом манганите. // ЖТФ. 2004. - Т.74, вып.6. - С.89-95.

91. Песчанский В.Г., Степаненко Д.И. Спиновые волны в слоистых проводниках. // Письма в ЖЭТФ. 2003. - Т.78, вып.5. - С.772-776.

92. Зюзин A.M., Сабаев С.Н., Бажанов А.Г., Радайкин В.В. Влияние области затухания спиновых волн в слое закрепления на интенсивность линий спин-волнового резонанса. // Письма в ЖТФ. 2001. -Т.27, вып.4. - С.33-38.

93. Устинов В.В., Ринкевич А.Б., Ромашев JI.H. Взаимодействие электромагнитных волн с мультислойными наноструктурами железо/хром. // Журнал технической физики. 2004. - Т.75., вып.4. -С.96-102.

94. Семенцов Д. И., Шутый А. М. Динамическая бистабильность в двухслойных магнитосвязанных пленках. // Письма в ЖЭТФ. -2001. Т.27, вып. 21. - С. 19-24.

95. Шутый А. М., Семенцов Д. И. Ферромагнитный резонанс в муль-тислойных структурах с билинейным и биквадратичным обменным взаимодействием. // Письма в ЖЭТФ. 2003. - Т.29, вып.24. -С.47-53.

96. Баранов С.А. Использование микропровода с естественным ферромагнитным резонансом для радиопоглощающих материалов. // Письма в ЖТФ. 1998. - Т.24, № 14. - С.21-23.

97. Баранов С. А. Магнитная проницаемость аморфного микропровода в диапазоне сверхвысоких частот. // Радиотехника и электроника. -2003. Т.48, №2. - С.254-256.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.