Математические модели и алгоритмы функционирования инклинометра забойной телеметрической системы на базе твердотельного волнового гироскопа тема диссертации и автореферата по ВАК РФ 05.13.18, кандидат технических наук Бодунов, Сергей Богданович

  • Бодунов, Сергей Богданович
  • кандидат технических науккандидат технических наук
  • 2003, Челябинск
  • Специальность ВАК РФ05.13.18
  • Количество страниц 122
Бодунов, Сергей Богданович. Математические модели и алгоритмы функционирования инклинометра забойной телеметрической системы на базе твердотельного волнового гироскопа: дис. кандидат технических наук: 05.13.18 - Математическое моделирование, численные методы и комплексы программ. Челябинск. 2003. 122 с.

Оглавление диссертации кандидат технических наук Бодунов, Сергей Богданович

0. Введение.

0.1 .Формулировка проблемы и ее актуальность.

0.2. Обзор предшествующих работ.

0.3. Цель работы и ее задачи.

0.4. Методы исследований.

0.5. Научная новизна и практическая значимость работы.

1. Описание гироскопического азимутального датчика и разработка алгоритма функционирования его электронных систем.

1.1 .Технические требования для гироскопического датчика инклинометра забойной телеметрической системы.

1.2. Обоснование выбора твердотельного волнового гироскопа.

1.3. Физический принцип работы твердотельного волнового гироскопа (ТВГ) и выбор режима его функционирования.

1.3.1. Физический принцип работы и основы теории ТВГ.

1.3.2. Описание конструкции твердотельного волнового гироскопа.:.

1.3.3. Выбор режима функционирования ТВГ.

1.4. Разработка алгоритма функционирования электронных систем ТВГ применяемого в составе инклинометра.

1.4.1. Изменение конструкции гироскопа.

1.4.2. Разработка алгоритма функционирования электронных систем ТВГ.

1.4.2.1. Недостатки существующих схемотехнических решений и постановка задачи по разработке электронных систем.

1.4.2.2. Разработка алгоритма функционирования электронных систем ТВГ на основе единого рабочего цикла.

1.5. Основные результаты первой главы.

2. Разработка математической модели и алгоритмов определения угловой ориентации инклинометра забойной телеметрической системы (ЗТС).

2.1. Постановка задачи.

2.2. Разработка математической модели и алгоритма определения угловой ориентации гироскопического инклинометра ЗТС с использованием углов . Эйлера-Крылова.

2.2.1. Общее решение задачи.

2.2.2. Алгоритмическая коррекция инструментальных погрешностей инклинометра.

2.3. Разработка алгоритма определения угловой ориентации инклинометра ЗТС на основе теории кватернионов.

2.3.1. Обоснование необходимости перехода к кватернионам в решении задачи угловой ориентации.

2.3.2. Краткие сведения из теории кватернионов.

2.3.3. Решение задачи определения взаимного положения базовых осей инклинометра и осей географической системы координат устья скважины.'.

2.4. Основные результаты второй главы.

3. Разработка математических моделей выходных сигналов ТВГ и алгоритмов оценки параметров трендов этих моделей.

3.1. Постановка задачи.

3.2. Оценивание входных и выходных координат по полной выборке.

3.2.1. Применение метода наименьших квадратов в задачах оценивания состояния систем.

3.2.2. Устойчивые методы анализа, основанные на принципе максимального правдоподобия.

3.2.2.1. Метод Хубера применительно к коррекции выходной информации, состоящего из приращений угла за такт опроса.

3.2.2.2. Метод Хубера в случае интегральной коррекции выходной информации ТВГ.

3.3. Вывод алгоритма оценки прогноза состояния модели выходных сигналов твердотельного волнового гироскопа на такт вперед.

3.3.1. Вывод алгоритма оценивания прогнозируемых значений для полинома второго порядка.

3.3.2. Рекуррентный алгоритм оценки параметров тренда модели выходного сигнала в случае его двукратной коррекции.

3.4. Основные результаты третьей главы.

4. Математический эксперимент, лабораторные испытания и реализация инклинометра забойной телеметрической системы.

4.1. Анализ результатов Математического эксперимента.

4.2. Лабораторные испытания.

4.3. Реализация инклинометра забойной телеметрической системы на базе твердотельного волнового гироскопа.

4.4. Основные результаты четвертой главы.

Рекомендованный список диссертаций по специальности «Математическое моделирование, численные методы и комплексы программ», 05.13.18 шифр ВАК

Введение диссертации (часть автореферата) на тему «Математические модели и алгоритмы функционирования инклинометра забойной телеметрической системы на базе твердотельного волнового гироскопа»

0.1. Формулировка проблемы и ее актуальность

В середине семидесятых годов в нашей стране и за рубежом возросли объемы бурения нефтяных и газовых скважин, при одновременном увеличении их глубины и скорости бурения. Возросло, также, число горизонтальных, направленных и морских скважин, при проводке которых необходимы частые замеры кривизны. Совокупность этих факторов выдвинула проблему измерения технологических, геологических и геофизических параметров непосредственно в процессе бурения.

Измерения углового положения скважины традиционным способом с помощью кабельного инклинометра не технологичны, так как его спуск и подъем продолжается от десятков минут до нескольких часов. При этом возникают непроизводственные затраты времени в связи с неработающей буровой, к которым следует отнести периоды проведения подготовительных работ, измерений, монтажа и демонтажа оборудования для спуска такого инклинометра в скважину. Ситуация, когда бурильщик вынужден принимать оперативные решения в условиях информационного дефицита, приводит, как правило, к значительным материальным потерям.

Измерение скважины традиционным способом, каким бы совершенным он не был, не решает проблемы угловой ориентации в процессе бурения. Поэтому появилась экономическая необходимость в создании инклинометров, позволяющих измерять угловую ориентацию скважины без нарушения технологии бурения. Главным отличием такого инклинометра от классического является возможность его применения в составе буровой колонны, что позволяет определять параметры скважины, не нарушая процесса бурения. Технология бурения подразумевает чередование непосредственного бурения с остановками в интервале времени от 3 до 5 минут, необходимых для наращивания очередной трубы. Задача угловой ориентации скважины сводится, таким образом, к определению взаимного положения географической системы координат, связанной с землей, и базовой системы координат, связанной с инклинометром, в моменты технологических остановок буровой колонны. Несмотря на особенность измерения угловой ориентации только в моменты остановок буровой колонны, обозначение такого типа инклинометров в зарубежной литературе сопровождается аббревиатурой MWD, что в переводе означает «измерение при бурении». В отечественной литературе данный тип инклинометра носит название «инклинометр забойной телеметрической системы» (ЗТС), так как он входит в состав системы, позволяющей (кроме измерения, запоминания, передачи и воспроизведения на земной поверхности азимута, зенитного угла и угла установки отклонителя) определять ряд дополнительных технологических параметров.

В течение нескольких десятилетий в нашей стране и за рубежом выполнялась работа, направленная на создание средств измерения ориентации скважины в процессе бурения. К 1976г. в разработках ЗТС участвовало уже 20 зарубежных компаний, занятых созданием и испытанием около десяти различных модификаций. На эти исследования было израсходовано более 12млн. долларов [13]. В 1978г.'работами в области ЗТС активно занимались не менее 40 фирм, которые участвовали как в финансировании программ, так и в непосредственных разработках и испытаниях.

Телеметрические системы разрабатывались компаниями Scientifikt Drilling Controls, Sperry Sun, Exxon Production Research, General Electric, Teleco Oilfield Services Inc., Schleumburger, Mobie Oil, Bi-Hughes Inc. и др.

Первые результаты создания инклинометрических преобразователей и забойных телесистем в бывшем СССР принадлежат кафедре информационно-измерительной технике Азербайджанского института нефти и химии им. М.Азизбекова (АзИНЕФТЕХИМ). В течение 1953-1964гг. ими были предложены и разработаны импульсные инклинометрические преобразователи

ИИ-1, ИИ-2, ИИ-3 специально предназначенные для контроля ориентации электробура при бурении и системы телеметрии.

Позднее исследованиями по методам и средствам измерения скважины в процессе бурения занимались в институте машиноведения и автоматизации (ИМА) АН УССР, Уральском филиале АН СССР, Куйбышевском политехническом институте, НИИ механики МГУ, Уфимском авиационном институте, всероссийском научно-исследовательском институте геофизических исследований геологоразведочных скважин (ВНИИГИС) и в других научных учреждениях.

В основе азимутальных датчиков разрабатываемых инклинометров были положены однокатушечные феррозондовые преобразователи, измеряющие проекции вектора магнитного поля Земли.

Основным недостатком ферромагнитных датчиков является их чувствительность к ферромагнитным аномалиям, вызванных, в частности, использованием обсадных труб из магнитомягких материалов. Поэтому применение таких инклинометров не представляется возможным при «зарезке» стволов кустовых наклонно-направленных скважин, прокладываемых с морских буровых, а также для измерений в стволах уже обсаженных скважин.

Использование сегодня гироскопических инклинометров, основанных на применении традиционных гироскопических датчиков, исключается по причине невозможности последних выдержать жесткие условия эксплуатации. Вопрос применения гироскопа в качестве азимутального датчика ориентации инклинометра, входящего в состав забойной телеметрической системы, до сих пор оставался открытым. Поэтому в практике отечественных и зарубежных фирм нет гироскопических инклинометров, входящих в состав буровой колонны и способных обеспечивать необходимой информацией об угловом положении скважины без нарушения технологии бурения. Соответственно, отсутствуют и математические модели, и алгоритмы функционирования гироскопических инклинометров забойных телеметрических систем.

0.2. Обзор предшествующих работ

Первые сообщения о- разработке инклинометров для забойных телеметрических систем появились в 60-е годы. В основе азимутальных датчиков этих систем использовались ферромагнитные измерители магнитного поля земли [1,7,10,13,14,18,39]. Гироскопические же инклинометры, вплоть до настоящего времени, разрабатывались только для работы либо в дискретном многоточечном режиме, либо с непрерывной регистрацией при спуске-подъеме на кабеле.

Твердотельный волновой гироскоп (ТВГ) как предлагаемый датчик ориентации скважины разрабатывался изначально преимущественно для космической области применения. Описание конструкции гироскопа, принцип его работы и точностные характеристики содержатся в основном в трудах американских и российских ученых [2,9,17,19,28-38,40,41,42]. Такие преимущества ТВГ как монолитность конструкции, отсутствие узлов трения, термостойкость материала и малая потребляемая мощность как нельзя лучше подходят для космического применения. Однако для использования этого гироскопа в новой области применения, отличающейся своими специфическими требованиями, необходима доработка его механической и электронной частей. Описанный в статьях Д.Д. Линча и А. Мэтьюса [35,37] способ управления волновой картиной в резонаторе на переменном токе был разработан в связи с переходом на упрощенную двухдетальную конструкцию гироскопа. Однако предлагаемый вариант построения систем ТВГ отличается сложностью схемотехнических решений и не позволяет достичь требуемых параметров потребляемой мощности и габаритов.

Алгоритмы определения угловой ориентации объекта освящены в работах Кавинова И.В. и Лебедева Р.К. [11,15], посвященных исследованию проблем инерциальной навигации. Решение задачи угловой ориентации объекта в режиме гирокомпасирования в них приводятся в общем виде.

Алгоритмы определения угловой ориентации скважины инклинометрами на основе ферромагнитных датчиков, работающих непосредственно в процессе бурения, и гироскопическими инклинометрами, функционирующими только при спуске-подъеме в скважине, рассматриваются в трудах Ковшова Г.Н., Алимбекова Р.И., Исаченко В.Х., Молчанова А.А., Чеснокова Г.И. [13,14,25]. Приведенные в них алгоритмы определения параметров ориентации скважины гироскопическими инклинометрами в основном ориентированы на решение задачи ориентации в процессе движения инерциального блока. Задача определения взаимного углового положения базовой и географической систем координат, для всех углов ориентации, исследована не достаточно. Так, не учитываются неидентичность электрических параметров самих гироскопических датчиков и углов перекосов осей чувствительности относительно базовой системы координат.

Предлагаемый вариант решения этой задачи в статье Чеснокова Г.И., Галкина В.И. [25], посвященной применению теории конечного поворота для определения углового положения инклинометра в процессе его движения, требует решения соответствующих кинематических уравнений, что в свою очередь порождает необходимость разработки специальных сравнительно сложных численных методов, поскольку выходная информация с инклинометра сильно искажается помехами. Кроме того, для решения кинематических уравнений требуется знать начальное положение базовых осей прибора относительно наземной опорной системы, т.е. возникает та же задача начальной выставки.

Для решения задачи определения параметров тренда модели выходного сигнала чувствительного элемента наибольшее применение получили оптимальные линейные оценки, базирующиеся на методе наименьших квадратов (МНК), в частности, его рекуррентный вариант, описанный в работе Эльясберга П.Я. [27]. С целью исключения из выходной информации аномальных точек, в трудах Смоляка С.А., Титаренко Б.П. [21,24] приведены методы оценивания, учитывающие специфику выходных сигналов датчиков. Однако существующие методы необходимо несколько модифицировать, исходя из учета специфики выходной информации твердотельного волнового гироскопа (ТВГ), разработанного для забойной телеметрической системы.

В книге Бывайкова М. Е., Ромашева А.А. [4] приводится рекуррентный вариант метода наименьших квадратов для оценки коэффициентов аппроксимирующего полинома, который, наряду с рекуррентностью, позволяет в определенной мере отбраковывать аномальные измерения. Однако этот метод не вполне удобен для практической реализации на базе микропроцессора скважинного прибора ТВГ, так как содержит разности больших и близких друг к другу по величине чисел. Для простоты реализации прогнозирующего фильтра на базе микропроцесса управления волновой картиной скважинного ТВГ, необходимо разработать математическую модель и полностью рекуррентный алгоритм, не содержащий разности больших чисел.

0.3. Цель работы и ее задачи

Цель работы состоит в разработке математических моделей и алгоритмов функционирования инклинометра забойной телеметрической системы на базе твердотельного волнового гироскопа, позволяющих уменьшить габаритные размеры и потребляемую мощность ТВГ для инклинометра ЗТС, увеличить возможный диапазон угловых параметров инклинометра и повысить точность определения его углового положения. В связи с поставленной целью решаются задачи разработки алгоритма функционирования электронных систем твердотельного волнового гироскопа (ТВГ) скважинного исполнения, разработки математических моделей и алгоритмов вычисления угловой ориентации инклинометра, а также математических моделей выходного сигнала ТВГ и алгоритмов оценки параметров тренда этих моделей.

0.4. Методы исследований

Разработка математических моделей и алгоритмов определения пространственного положения инклинометра выполняется с применением общей теории твердого тела, как в матрично-векторном описании с помощью углов Эйлера-Крылова, так и в'кватернионной трактовке.

При описании математических моделей выходного сигнала ТВГ и алгоритмов определения параметров трендов этих моделей используются методы идентификации параметров математических моделей и теория линейных конечно-разностных уравнений.

При разработке алгоритма функционирования электронных систем твердотельного волнового гироскопа скважинного исполнения используются методы цифровой обработки сигналов и алгоритмов построения электронных систем этого прибора.

0.5. Научная новизна и практическая значимость работы

Научная новизна состоит в разработке: математической модели и алгоритма определения угловой ориентации гироскопического инклинометра забойной телеметрической системы, с учетом перекосов осей чувствительности датчиков, на основе классического решения с использованием параметров Эйлера-Крылова; алгоритма вычисления ориентации углового положения инклинометра забойной телеметрической системы (ЗТС) относительно географической системы координат, на основе применения фундаментальных теорем алгебры кватернионов; математической модели выходного сигнала твердотельного волнового гироскопа (ТВГ) и устойчивого алгоритма оценки параметров тренда этой модели, с учетом специфики выходной информации; математической модели выходного сигнала ТВГ и алгоритма оценки параметров тренда этой модели, с применением двукратного осреднения выходного сигнала чувствительного элемента, на основе линейных разностных уравнений для прогнозирующих фильтров; алгоритма функционирования электронных систем ТВГ двухдетальной конструкции, применяемой в гироскопическом инклинометре забойной телеметрической системы (ЗТС).

Практическая значимость работы состоит во внедрении следующих результатов в разработки научно-производственного предприятия Медикон (г. Миасс):

1. Математических моделей выходного сигнала ТВГ и алгоритмов оценки параметров трендов этих моделей, позволивших уменьшить случайную составляющую дрейфа гироскопа, и, следовательно, упростить требования к разработке электронных систем управления;

2. Математических моделей и алгоритмов вычисления угловой ориентации, связанной с объектом системы координат, относительно наземной географической системы координат.

3. Алгоритма функционирования электронных систем ТВГ, позволившего упростить схемотехническую реализацию электронных систем, и, как следствие, значительно уменьшить габаритные размеры и потребляемую мощность прибора.

Похожие диссертационные работы по специальности «Математическое моделирование, численные методы и комплексы программ», 05.13.18 шифр ВАК

Заключение диссертации по теме «Математическое моделирование, численные методы и комплексы программ», Бодунов, Сергей Богданович

Основные результаты четвертой главы

1. Проведен математический эксперимент по выявлению наиболее эффективной, с точки зрения оценки точности дрейфа выходного сигнала твердотельного волнового гироскопа (ТВГ), математической модели и следующих алгоритмов:

1) Устойчивого к появлению случайных данных алгоритма Хубера, модифицированного из учета специфики выходной информации ТВГ;

2) Полностью рекуррентного, не содержащего разностей больших чисел алгоритма, на основе метода конечно-разностных уравнений для прогнозирующих фильтров.

Исходя из цели выполнения конечной задачи (определение угловой ориентации инклинометра), из двух предложенных моделей и алгоритмов следует использовать рекуррентный алгоритм на основе метода линейно-разностных для модели выходного сигнала ТВГ в виде полинома третьей степени.

Исходя из выполнения первоначальной задачи разработки оптимального, с точки зрения использования памяти микропроцессора управления, данный алгоритм также является приоритетным, так как разработанное по нему программное обеспечение [52] требует в шесть раз меньше затрат ресурсов, чем программное обеспечение по модифицированному методу Хубера [51]. •

Разработанный алгоритм реализован на базе скважинного микропроцессора «Motorola» М68000, выполняющего функцию управления волновой картиной ТВГ.

2. Для ограниченного диапазона углов ориентации инклинометра забойной телеметрической системы (ЗТС), по моделям с использованием параметров Эйлера-Крылова, на основании выходных сигналов опытного образца инклинометра ЗТС выполнен расчет его искомых углов ориентации. Погрешность определения угловой ориентации (±3ст) составила 0,52° для визирного угла, 0,23° - зенитного угла и. 0,92° для азимутального угла. Достигнутая точность вычисления угловой ориентации инклинометра находится в допустимых пределах.

3. Благодаря реализации разработанного в первой главе алгоритма построения электронных систем ТВГ получен датчик удовлетворяющий требованиям гироскопического инклинометра забойной телеметрической системы. На основе данного чувствительного элемента разработан гироскопический инклинометр ЗТС, включающий в себя, кроме трех ТВГ, также три акселерометра и блок преобразования и передачи информации.

Задача оценки параметров трендов, разработанных в третьей главе моделей выходных сигналов твердотельных волновых гироскопов, решается с помощью микропроцессоров управления волновой картиной ТВГ «Motorola» М68000, установленных внутри инклинометра.

Заключение

1. Предложен алгоритм функционирования электронных систем твердотельного волнового гироскопа (ТВГ) с включением системы импульсного подавления квадратурных колебаний резонатора в единый рабочий цикл. Реализация способа импульсной балансировки, включенной в состав общего цикла управления, не требует сложной системы электродов коррекции и отличается простотой схемотехнических решений.

В целом, применение предложенного алгоритма построения электронных систем ТВГ, с импульсным способом управления волновой картины резонатора, позволило в два раза уменьшить габаритные размеры и потребляемую мощность прибора.

2. Разработаны математическая модель и алгоритм вычисления угловой ориентации гироскопического инклинометра забойной телеметрической системы на основе классического решения, основанного на использовании параметров Эйлера-Крылова. Модель учитывает перекосы осей чувствительности первичных датчиков и не идентичность их электрических параметров.

Для ограниченного диапазона углов ориентации инклинометра забойной телеметрической системы (ЗТС) выполнен расчет его искомых .углов ориентации на основании экспериментальных данных с чувствительных элементов. Погрешность определения угловой ориентации (6а) составила 0,52° для визирного угла, 0,19° - зенитного угла и 0,92° для азимутального угла. Достигнутая точность вычисления угловой ориентации инклинометра находится в допустимых пределах.

3. Разработан алгоритм вычисления угловой ориентации гироскопического инклинометра на основании одной из фундаментальных теорем теории кватернионов о возможности поставить в соответствие двум неколлинеарным векторам кватернион конечного поворота одного вектора до совпадения с другим.

Алгоритм отличается простотой реализации на ЭВМ, так как не требует контроля за угловым положением исследуемого объекта.

4. С целью получения надежных оценок о величине проекции угловой скорости вращения Земли на ось чувствительности датчика в течение определенного промежутка времени измерения, проведено исследование различных математических методов оценки параметров тренда модели выходного сигнала твердотельного волнового гироскопа (ТВГ).

Рассмотрен алгоритм сглаживания массива, состоящего непосредственно из выходного сигнала ТВГ, т.е. из приращений углов за такт опроса.

Исходя из математической модели ТВГ, выбран -тренд аппроксимирующей функции угла поворота корпуса ТВГ в виде полинома 2-ой степени по времени, и рассмотрены два варианта оценки коэффициентов этого полинома: метод Хубера и линейно-разностных уравнений для прогнозирующих фильтров. В первом случае процедура Хубера модернизирована таким образом, чтобы учесть специфику выходной информации ТВГ. Выходной сигнал ТВГ есть приращение угла за такт съема, но в качестве математической модели, для которой определяются параметры тренда, используется величина угла в текущий момент времени.

Применение данной модели и устойчивого к появлению случайных данных модернизированного алгоритма Хубера, позволило на нескольких образцах ТВГ уменьшить случайную составляющую дрейфа, по сравнению с методом классического среднего, на 10% при времени измерения 30 сек.

5. Для оценки коэффициентов тренда аппроксимирующей функции угла поворота ТВГ в виде полинома 3-ей степени методом линейно-разностных уравнений для прогнозирующих фильтров, разработан удобный для реализации на ЭВМ, полностью рекуррентный, и не содержащий разности близких по величине больших чисел, алгоритм. Кроме того, данный алгоритм дополняется проверкой на аномальность, и, в случае наличия таких измерений, они естественным образом заменяются прогнозирующими точками.

В целом, полученные модель и алгоритм подобны фильтру Калмана, но проще его по структуре, что позволяет реализовать определение параметров тренда модели выходной информации датчика на базе микропроцессора "Motorola" М68000, выполняющего функцию управления волновой картины твердотельного волнового гироскопа (ТВГ). Использование данной математической модели и алгоритма определения параметров тренда модели позволяет, по сравнению с модернизированным алгоритмом Хубера и известной моделью прогнозирующего фильтра [4], получить шестикратную экономию памяти семейства микропроцессоров М68000.

В результате определения параметров тренда разработанной модели выходного сигнала ТВГ, достигнуто 30% уменьшение случайной составляющей дрейфа за время измерения 30 сек, по сравнению с методом классического среднего.

Список литературы диссертационного исследования кандидат технических наук Бодунов, Сергей Богданович, 2003 год

1. Алиев Т.М., A.M. Мелик-Шахиазаров, А.А. Тер-Хачатуров. Измерительные навигационные системы в нефтяной промышленности. М.: Недра, 1981. -280с.

2. Бранец В.Н., Шмыглевский И.П. Применение кватернионов в задачах ориентации твердого тела. М.: Наука, 1973.

3. Бывайков М.Е., Ромашев А.А. О синтезе разностного уравнения для статистического оценивания и прогнозирования // АиТ. 1987. - № 9. - с. 51-57.

4. Гноенский Л.С., Каменский А.А., Эльсгольц А.Э. Математические основы теории управляемых систем. М.: Наука, 1969. - 512с.

5. Гольденберг Л.М., Матюшин., Поляк М.Н. Цифровая обработка сигналов. -М.: Радио и связь, 1985. -312с.

6. Грачев Ю.В., Горсков В.М., Лебедев Ю.В. Опыт разработки и применения телеметрических систем для контроля за проводкой наклонно-направленных скважин // Всесоюзная конференция по наклонному бурению: тез. докл. Баку, 1978. -С.89.

7. Ершов А. А. Стабильные методы оценки параметров//АиТ, 1978, №8.

8. Журавлев В.Ф., Климов Д.М. Волновой твердотельный гироскоп. М.: Наука, 1985.- 125с.

9. Исаченко В.Х. Инклинометрия скважин. М.: Недра, 1987. - 216с.

10. Кавинов И.В. Инерциальная навигация в околоземном пространстве. М.: Машиностроение, 1988.- 144с: ил.

11. Калабеков Б.А. Микропроцессоры и их применение в системах передачи и обработки сигналов. М.: Радиосвязь, 1988. - 368с.

12. Ковшов Г.Н., Алимбеков Р.И., Жибер А.И. Инклнометры. Уфа: Гилем. 1998.-380с.

13. Лебедев Р.К. Стабилизация летательного аппарата бесплатформенной инерциальной системой. М.: Машиностроение, 1977. - 144с.

14. Оценка методик калибровки и испытаний прибора с целью уточнения математической модели. Отчет ИПМ АН СССР в рамках НИР "Салют-1", Москва, 1991.- 135с.

15. Пономарев В.Н., Скважинная магниторазведка: Дисс. докт. техн. наук. Свердловск, 1967. 453с.

16. Прецессия упругих волн во вращающемся теле/ И.В. Батов, Б.П. Бодунов, М.Н. Данчевская, В.М. Лопатин, Б.С. Лунин, В.В. Филатов, М.Ю. Шаталов, В.Е. Юрин// Механика твердого тела. 1992. - № 4, - с.2-6.

17. Роббинс А. Эмперический байесовский подход к статистике. Сб. переводов. Математика. - М.: ил., 1964. - с. 133-140.

18. Смоляк С.А., Титаренко Б.П. Устойчивые методы оценивания. М.: Статистик, 1980, 280с.

19. Системы телеметрического контроля глубинных параметров в бурении нефтяных и газовых скважин с электропроводными каналами связи/ А.А. Тер-хачатуров, А.П. Любарский, М.Е. Фридман, Ю.В. Грачев, О.А.

20. Дмитриевский, B.J1. Фукс, И.Д. Фархидов, Б.А. Молойчино. М. ВНИИОЭНГ, 1971.98с.

21. Устройство для контроля комплекса параметров траектории скважины и угла установки отклонителя бурового инструмента/ Г.Н. Ковшов, Г.В. Миловзоров, В.З. Ахметзянов, А.С. Шулаков Опубл. в Б.И. 1984. №9.

22. Устойчивые статистические методы оценки данных/ Пер. с англ. Ю.И. Малахова; Под. Ред. Н.Г. Волкова. -М.: Машиностроение, 1984.-232с.

23. Форсайт Д., Мальком М., Моулер К. Машинные методы математических вычислений/ Пер. с англ. Х.Д. Икрамова. М.: Мир, 1980. - 179с.

24. Эльясберг П.Я. Измерительная информация: сколько ее нужно? как ее обрабатывать? М.: Главная редакция физико-математической литературы, 1983.-208с.

25. Патент Р.Ф. RU 2011167 CI; G01C 19/56 (1992). Устройство стабилизации амплитуды колебаний полусферического резонатора./ Жабреев B.C., Веретенников С.М.

26. Патент Р.Ф. RU 2011168 CI; G01C 19/56 (1992). Устройство стабилизации амплитуды колебаний полусферического резонатора./ Жабреев B.C., Веретенников С.М.

27. Langdon R.M.: "Vibrating Cylinder Gyro", Marconi Reviw, № 227, 1982, pp.231-249.

28. Loper E.J. and Lynch D.D., "The HRG: A New Low-Noise Inertial Rotation Sensor, PROC. 16th. JT. Services Data Exchange For Inertial Systems, Los Angeles, С A (16-18 November 1982).

29. Lynch D.D., Vibratory gyro analysis by the method of averaging// 2nd Saint Petersburg Conference on Gyroscopic technology and Navigation, 1995,pp.26-34.

30. Lynch D.D., Coriolis Vibratory Gyros// Symposium Gyro Techology 1998, Stuttgart, Germany, pp. 26-34.

31. Lynch D.D., The Hemispherical Resonator Gyro, Delco Systems Operations (Prepared for the Society of Engineering and Scientific Education), October, 1992.

32. Lynch D.D., Matthews A., Dual-mode hemispherical resonator gyro operating characteristics// 3rd Saint Petersburg International Conference on Integrated Navigation Systems, 1996, pp.37-44.

33. Lynch D.D., Matthews A., Varty G.T., Transfer of Sensor Technology from Oil-Drilling to Space Applications// 5th Saint Petersburg International Conference on Integrated Navigation Systems, 1998, pp. 27-36.

34. Lynch D.D., Matthews A., Varty G.T., Innovative mechanizations to optimize inertial sensors for high or low rate operations, Symposium Gyro Technology 1997, Stuttgurt, Germany, pp. 9.0-9.21.

35. Matthews A., Ryback F.G. , Comparison of hemispherical resonator gyro and optical gyros, Delco Sistems Operations, 1992.

36. Mc.Donalds W.J., Ward Charles E. Boreholes telemetry system is key to continuous down-holes drilling measurements// Oil and Gas J. 1975.73, N.'37. P. 111-118.

37. NASA-Goddard Space Flight Center, Hubble Space Telescope Flight Systems and Servicing Progect, "Key Performance Requirements Matrix for '99 Servicing Mission Rate Gyro Assemblies, 18 March 1994.

38. Stripling W.W. and Baskett J.R., Delco Systems Operations, "Hemispherical Resonator Gyro: Principle, Design, and Performance", May, 1992.

39. Wright D. and Bunke D., " The HRG as Applied to a Satellite Reference System", 17th AAS Guidance and Control Conference Proceedings, February, 1944, AAS 94-004.1. РАБОТЫ АВТОРА

40. Бодунов Б.П., Бодунов С.Б., Лопатин В.М., Чупров В.П. Разработка и испытание волнового твердотельного гироскопа для использования в инклинометрической системе// Гироскопия и навигация.-2001.- № 3, с.74-82.

41. Бодунов С.Б., Гинзбург Р.Е., Лысов А.Н. Применение кватернионов для определения угловых параметров скважины с помощью гироскопических инклинометров// Депонировано в ВИНИТИ 19.10.01 № 2188.- В2001. М.: ВИНИТИ, 2001.-5 с.

42. Бодунов С.Б., Гинзбург Р.Е., Лысов А.Н., Шерстобитова Н.А. Алгоритмы фильтрации выходной информации с чувствительных элементов гироскопических инклинометров// Депонировано в ВИНИТИ 19.10.01 №2189. В2001. -М.: ВИНИТИ, 2001. - 9 с.

43. Bodunov В.Р., Lopatin V.M., Bodunov S.B., Gyroinclinometer for surveying during the drilling process// Symposium Gyro Technology 1999, pp. 11.0-11.9.

44. Бодунов С.Б., Шерстобитова Н.А. Программа обработки выходной информации чувствительных элементов с применением робастного метода ХубераЛ № ОФАП 2116, № госрегистрации - 50200200501 от 22.08.2002.

45. Бодунов С.Б., Шерстобитова Н.А. Программа обработки выходной информации чувствительных элементов в реальном масштабе времени// № ОФАП 2140, № госрегистрации - 50200200533 от 7.10.2002.

46. Акт о реализации научных положений и выводов работ диссертанта

47. Бодунова Сергея Богдановича

48. Настоящим актом констатируется, что работы тов. Бодунова С.Б. по своей тематике соответствуют профилю деятельности научно-производственного предприятия Медикон.

49. Результаты диссертационной работы используются при выполнении договоров на разработку инклинометров забойных телеметрических систем на базе твердотельного волнового гироскопа.1. Руководитель отдела

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.