Изучение угловой зависимости анализирующих способностей реакций -dd→3Hen и -dd→3H p при энергии дейтрона 270 МэВ тема диссертации и автореферата по ВАК РФ 01.04.16, кандидат физико-математических наук Янек, Мариан

  • Янек, Мариан
  • кандидат физико-математических науккандидат физико-математических наук
  • 2007, Дубна
  • Специальность ВАК РФ01.04.16
  • Количество страниц 97
Янек, Мариан. Изучение угловой зависимости анализирующих способностей реакций -dd→3Hen и -dd→3H p при энергии дейтрона 270 МэВ: дис. кандидат физико-математических наук: 01.04.16 - Физика атомного ядра и элементарных частиц. Дубна. 2007. 97 с.

Оглавление диссертации кандидат физико-математических наук Янек, Мариан

Введение

I Постановка эксперимента на ускорительном комплексе RIKEN

1.1 Общая схема измерения.

1.2 Источник поляризованных ионов.

1.3 Поляриметры.

1.4 Спектрометр SMART.

1.5 Детектирование.

1.6 Триггер.

II Получение анализирующих способностей реакций dd —> 3Неп и dd 3Нр 25 II. 1 Получение полезных и фоновых событий для определения поляризации дейтронного пучка.

11.2 Поляризация дейтронного пучка.

11.3 Отбор полезных событий для реакций dd —»3Неп и dd —»3Нр.

11.4 Эффективность восстановления трека из информации многопроволочной дрейфовой камеры.

11.5 Углы рассеяния

11.6 Процедура CD2 — С вычитания.

11.7 Получение полезныхбытий в угловом диапазоне от 7° до 26° ц. м. в случае детектирования 3Не

11.8 Получение анализирующих способностей.

И.8.1 Получение анализирующих способностей при углах больше 7°

II.8.2 Получение анализирующих способностей при углах меньше 7°

III Результаты 40 III. 1 Однонуклонный обмен

111.2 Анализирующие способности реакций dd —» 3Неп и dd 3Нр при энергии 270 МэВ

111.3 Поиск нарушения зарядовой симметрии в зеркальных каналах 3Яе п и 3Н р при энергии 270 МэВ.

IV Эксперименты по исследованию структуры легких ядер на Нукло-троне

IV. 1 Исследование параметров пучка Нуклотрона в рамках проекта РНеЗ. . 59 IV.2 Измерение векторной поляризации выведенного дейтронного пучка . . 65 IV.3 Использование реакции dp упругого рассеяния для измерения поляризации дейтронного пучка на станции внутренней мишени Нуклотрона

Рекомендованный список диссертаций по специальности «Физика атомного ядра и элементарных частиц», 01.04.16 шифр ВАК

Введение диссертации (часть автореферата) на тему «Изучение угловой зависимости анализирующих способностей реакций -dd→3Hen и -dd→3H p при энергии дейтрона 270 МэВ»

Стандартная модель на фундаментальном уровне описывает сильное взаимодействие с помощью кварков и глюонов. Неудобство проявляется в том, что кварки сами по себе не наблюдаются и их исследуют лишь по косвенным проявлениям. Вейнберг показал [1], что эффективная теория сильных взаимодействий, использующая нуклоны и мезоны в определенной энергетической области, является эквивалентом КХД. Описание структуры легких ядер начинается с создания нуклон-нуклонного (NN) потенциала и нуклонной модели ядра. Сравнивая предсказания модели с экспериментальными результатами, можно проверить правильность выбора нуклон-нуклонного потенциала и используемой модели нуклонного взаимодействия. Такая схема применима на больших расстояниях между нуклонами. Однако, на расстояниях, когда нуклоны в ядре могут перекрываться, следует учесть несколько факторов.

Во-первых, фундаментальные степени свободы сильного взаимодействия, кварки и глюоны, могут проявляться на расстояниях, сравнимых с размером нуклона. На этом уровне к NN взаимодействию необходимо добавить вклад ненуклонных степеней свободы.

Во-вторых, на малых межнуклонных расстояниях следует учитывать релятивистские эффекты. Релятивистская теория необходима для описания свойств сильного взаимодействия и структуры легких ядер.

Для подробного описания структуры и свойств малонуклонных систем необходимо также учесть влияние разности масс кварков в изучаемой системе. Из разности масс кварков вытекают малые, но интересные эффекты, например, найденная разница в энергии связи зеркальных ядер [2].

Ниже перечисленные эксперименты и связанные с ними проблемы в их описании послужили мотивацией к измерению угловой зависимости поляризационных наблюдаемых реакций dd —» 3Неп и dd3Нр в представленной диссертации. Первой частью мотивации является изучение высоко-импульсной спиновой части волновой функции 3Не и 3Н на малых межнуклонных расстояниях. Вторая часть посвящена поиску возможного нарушения зарядовой симметрии в зеркальных каналах 3Ле п и 3Я р. Преимущество в сравнении анализирующих способностей зеркальных каналов заключается в том, что в первом приближении теории возмущений электромагнитный член не вносит вклада.

Первые количественные модели нуклон-нуклонного взаимодействия создавались в начале 60-ых. Это было сразу после открытия тяжелых мезонов. Модели, основанные на одно-бозонном обмене [3], воспроизводили главные свойства ядерных сил, но не умели хорошо описывать некоторые фазы нуклон-нуклонного рассеяния, такие, например, как 1Р\ и 3L>2. В семидесятых годах были построены потенциалы, основанные на дисперсионных отношениях (Парижский [4]) и полевом приближении (Боннский [5]), которые учитывали 27г-обмен. Оба из этих подходов дали неплохое описание экспериментальных данных [5]. Интенсивные теоретические и экспериментальные исследования, проведенные в последние годы, привели к новому поколению реалистических NN потенциалов, таких как, AVig [6], CD-Bonn [7], Наймеген I, II и 93 [8]. Эти потенциалы воспроизводят существующие данные по нуклон-нуклонному рассеянию вплоть до 350 МэВ с беспрецедентной точностью. Главное различие NN потенциалов проявляется во внемассовом поведении нуклон-нуклонных сил.

Структура легких ядер интенсивно изучалась последние десятилетия с помощью электромагнитных и адронных пробников. В результате было накоплено немало экспериментального материала, в основном, по структуре дейтрона. Гораздо меньше существует данных с участием трехнуклонных систем (3Н и Не). Проблемы, связанные с исследованием спиновой структуры 3Н (3Не), заключаются в изготовлении мишени, отсутствии поляризованного пучка 3Н (3Не), и поляриметров для измерения поляризации Н (3Яе). Исследование структуры 3Н еще более затруднено из-за его радиоактивности. Трехнуклонные системы 3Н и 3Не имеют несколько интересных свойств. Они являются сильно связанными системами, и их основные состояния можно описать с помощью Фаддеевских вычислений с различными NN потенциалами. Отличие от многонуклонных систем заключается в том, что спин в трехнуклонных системах создан всеми нуклонами, а в многонуклонных системах он обусловлен спинами нескольких валентных нуклонов. Фаддеевские вычисления предсказывают, что в основном состоянии спин 3Не обусловлен спином нейтрона. Таким образом, 3Не может быть использован как эффективная нейтронная мишень.

Импульсная зависимость компонент волновой функции 3Не может быть исследована в измерении поляризационных наблюдаемых в реакциях с участием 3Не. —*

Реакции 3Не{р,2р) и 3Не(р,рп) исследовались в квазиупругой кинематике при энергии начального пучка 220 [9] и 290 МэВ [10] в TRIUMF. Поляризационные наблюдаемые Аоп, Ап0 и Апп при энергии 290 МэВ были получены до q ~ 80 и 190 МэВ/с соответственно. Полученные результаты показывают, что измеренные анализирующие способности Аоп, Апо и Апп из реакции 3Не(р, 2р) можно описать в рамках импульсного приближения, хотя воспроизвести анализирующие способности реакции 3Не(р,рп) в рамках этого подхода не получается.

Те же самые поляризационные наблюдаемые исследовались в IUCF [11]. При этом использовался поляризованный протонный пучок с энергией 197 МэВ и поляризационные наблюдаемые измерялись до q ~

400 МэВ/с. Полученная поляризация нейтрона 0.98) и протона

0.16) в 3Л"е при нулевом импульсе хорошо согласуется с Фаддеев-скими вычислениями [12]. Из нерелятивистских Фаддеевских вычислений для трехнуклонной системы следует, что доминирующей компонентой волновой функции при малых импульсах является пространственно симметричное S состояние 90%). В этом состоянии спин 3Не определяется спином нейтрона, протоны имеют спины, ориентированные в противоположном направлении. D состояние доминирует при больших импульсах и составляет ~ 8%. В этом состоянии спины нуклонов ориентированы в противоположном направлении к спину ъНе. Смешанное S' состояние составляет ~ 1.5%. Вклад других состояний мал и ими можно пренебречь. При более высоких импульсах наблюдается расхождение, которое может быть связано как с неадекватным знанием волновой функции 3iJe, так и с большими эффектами перерассеяния.

Различные компоненты волновой функции 3Не могут быть изучены в квази-упругом рассеянии поляризованных электронов на поляризованном 3Яе. Экспериментальные результаты по измерению асимметрии в квази-упругом рассеянии поляризованных электронов на поляризованном 3Не [13] согласуются с Фаддеевскими вычислениями, из которых следует, что рассеяние электронов происходит в основном на нейтроне. В вычислениях учитывалось взаимодействие в конечном состоянии (ВКС) и влияние мезонных обменных токов (МОТ).

Данные для поперечной асимметрии поляризованных электронов на поляризованном 3Не [14], полученные в CEBAF при Q2 0.1 и 0.2 (ГэВ/с) 2 удалось описать с помощью Фаддеевских вычислений, включая эффект МОТ, содержающий диаграммы обмена р и о;-мезонами. При больших Q2 достичь согласия не удается, возможно, из-за нерелятивистского подхода.

Поперечное сечение и тензорная анализирующая способность Т20 были измерены в реакции d zHe упругого рассеяния назад при энергии 140-270 МэВ [15]. Данные анализировались на основе плосковолнового импульсного приближения с учетом влияния виртуальных возбуждений, предполагая, что механизм реакции подобен механизму упругого dp рассеяния назад. Полученные результаты подтверждают предположение, что доминирующим механизмом реакции является передача протона от 3Не дейтрону. Глобальное поведение экспериментальных данных удалось описать с помощью плосковолнового импульсного приближения, однако, для количественного согласия потребовалось включить эффект виртуальных возбуждений.

На расстояниях, сравнимых с размером нуклона, могут проявляться ненуклонные степени свободы. Фрагментация релятивистских дейтронов на ядрах, A(d,p)X, является традиционной реакцией для исследования внутренней структуры дейтрона на малых расстояниях.

Тензорная анализирующая способность Т20 фрагментации дейтрона в протоны под нулевым углом была измерена до внутреннего импульса к ~ 1 ГэВ/с [16], определенного в системе бесконечного импульса [17]. Т20 при к ~ 300 МэВ/с не достигает значение — у/2 и имеет большое отрицательное значение ~ —0.3 при больших внутренних импульсах протона. Данное наблюдение находится в противоречии с расчетами, выполненными в рамках релятивистского импульсного приближения, используя волновые функции дейтрона на основе современных NN потенциалов. Включение дополнительных механизмов и ненуклонных степеней свободы в дейтроне не позволяет воспроизвести тензорную анализирующую способность Т20 в полном интервале измеренных импульсов к. Тензорная анализирующая способность Ауу фрагментации дейтрона в протоны на разных ядрах при больших поперечных импульсах протона при 9 ГэВ/с исследовалась в [18-21]. Значения Ауу, полученные при фиксированном значении продольного импульса протона сильно меняются в зависимости от поперечного импульса протона. Полученные результаты указывают на то, что волновая функция дейтрона может зависеть от двух переменных.

Импульсные распределения нуклонов, извлеченные из инклюзивных данных по электро-расщеплению дейтрона, d(e,ef)X [22], в рамках у-скейлинга, и из данных по сечению дейтрон-протонного упругого рассеяния назад [23] в рамках ОНО в динамике на световом фронте [24], хорошо согласуются между собой и с импульсным спектром по фрагментации дейтрона в протоны под нулевым углом [25]. Теоретические работы Кобушкина и Визиревой [26] основаны на гипотезе о существовании дополнительных степеней свободы в дейтроне. В модели учитывается шести-кварковая амплитуда, возникающая из 5-конфигурации шести кварков, которая добавляется к стандартной волновой функции дейтрона с относительной фазой. На основе этой модели удалось описать экспериментальные данные по фрагментации дейтрона [25]. Вероятность шести-кварковой конфигурации волновой функции дейтрона составила

Поляризационные наблюдаемые, которые выражаются через интерференцию различных диаграмм, могут содержать информацию не только о NN, но и о NN* корреляциях. Исследование реакций с участием мезонов, которые являются чрезвычайно чувствительными к возбуждению барионных резонансов, могут дать информацию о механизме реакции и внутренней структуре объекта, с которым они взаимодействуют.

Реакция d р 3Нетт° вблизи порога была исследована в работах [27,28]. Большое отрицательное значение Т20 является прямым доказательством того, что поглощение пиона в 3Не происходит главным образом на паре нуклонов с изоспином 0 (квази-дейтрон). Поглощение на паре с изоспином 1 более чем на порядок слабее чем на квази-дейтроне.

Поперечное сечение и тензорная анализирующая способность Т2о реакции dp —> 3Herj° вблизи порога были измерены в работах [29,30], соответственно. Из-за нулевого изоспина ту-мезона данная реакция вблизи порога доминирует через рождение резонанса 5ц(1520) в промежуточном состоянии. Тензорная анализирующая способность Т20 реакции d р —► 3Нет]° вблизи порога составляет лишь Т20 = —0.15 ± 0.05, что может указывать на важность механизмов с участием всех трех нуклонов [31].

Чувствительность поляризационных наблюдаемых к определенным малым амплитудам была найдена в современных экспериментальных и теоретических исследованиях реакции радиационного захвата, d р —Не 7. Данные показывают значительную чувствительность к D-компоненте волновой функции 3Яе [32-34]. Таким образом, высокоимпульсная компонента волновой функции ъНе может быть исследована в реакции dp радиационного захвата.

Реакция радиационного dp захвата исследовалась, используя поляризованный дейтронный пучок с энергией 55, 66.5 и 90 МэВ/нуклон [35]. Полученные данные для векторной Ау и тензорных Ауу, Ахх анализирующих способностей сравнивались с результатами расчетов, основанных на Фаддеевских вычислениях с использованием современных двух- и трех-нуклонных потенциалов. В расчете [36,37] использовались AV18 нуклон-нуклонный потенциал и феноменологическая модель трехнуклонных сил Урбана IX. Расчет [38] был основан на зарядово-зависимом Боннском потенциале и дополнительном учете вклада А-изобары. Расчеты [36-38] и экспериментальные данные находятся в согласии друг с другом в исследованном угловом диапазоне.

Поперечное сечение, векторная Ау и тензорные Ауу, Ахх анализирующие способности реакции d р Не 7 при энергии начального дей-тронного пучка 200 МэВ исследовались в RCNP [39]. Полученные данные сравнивались с Фаддеевскими вычислениями с учетом мезонных обменных токов (МОТ). В то время как поперечное сечение и векторная анализирующая способность Ау воспроизводятся расчетами, тензорная анализирующая способность Ауу и Ахх отклоняется от этих вычислений. Отклонение для Ахх оказалось модельно независимым, и таким образом, показывает на необходимость включения нового вида трехну-клонных сил.

Сечение упругого N d рассеяния в области больших углов в с.ц.м. при промежуточных энергиях сильно отклоняется от Фаддеевских вычислений, основанных на использовании только NN потенциалов [40-46]. Исследование эффектов, связанных с проявлением трехнуклонных сил в отсутствии кулоновского взаимодействия, было выполнено в реакции упругого п d рассеяния в RCNP [47,48] в угловом диапазоне от 10° до 180°. Полученные результаты по поперечному сечению сравнивались с вычислениями, использующими реалистические NN потенциалы вместе с трехнуклонными силами ТМ99 [49]. Включение трехнуклонных сил улучшает ситуацию, хотя и не позволяет описать данные для углов вблизи 180° в с.ц.м. Предполагается, что расхождение возникает из-за недоучета релятивистских эффектов [50]. Однако, проявление релятивистских эффектов кинематически ограничено при углах более 160°, и таким образом, не может объяснить различие между данными и теоретическим описанием [51]. Другой вид трехнуклонных сил, основанный не только на обмене двумя пионами, но и на возбуждении А-изобары на основе зарядово-зависимого Боннского потенциала, был учтен в работе [52]. Однако, данный подход также не смог воспроизвести экспериментальные данные.

Экспериментальных данных для dd упругого рассеяния и реакций 2H(d,n)3He и 2H(d,p)3H при промежуточных энергиях мало. Большое количество данных по поперечному сечению и поляризационным наблюдаемым было накоплено при низких энергиях.

Анализирующие способности реакций 2H(d, n)zHe and 2H{d, р)ъН измерялись при энергии 1.5, 2.0, 2.5, 3.0, 3.5 и 4.0 МэВ [53]. Поперечное сечение и анализирующие способности гТц, Т20, Т21 and Т22 реакции 2H(d,n)3He и 2H(d,p)3H были получены в энергетическом интервале между 3.0 и 11.5 МэВ [54]. Грубер и др. получили угловую зависимость тензорных и векторной анализирующей способностей реакций 2H(d,d)2H при энергии дейтронного пучка 6, 8, 10 и 11.5 МэВ [55]. Векторная и тензорные анализирующие способности этой реакции были также измерены при энергии дейтронного пучка 10 МэВ [56,58] и при 8, 10 и 12 МэВ [57]. Полученные анализирующие способности имеют малые значения при данных энергиях. Расчеты, основанные на фазовом анализе поперечного сечения и векторной анализирующей способности реакции dd упругого рассеяния при энергии дейтронного пучка 10.5 МэВ [59], сравнивались с данными [56]. Наиболее заметное расхождение наблюдалось для Т22, где экспериментальные данные и расчеты имеют различный знак.

Значительный прогресс был сделан в последнее десятилетие в связи с расчетами связанных состояний и наблюдаемыми для трех и четырех нуклонных систем.

Данные по тензорным анализирующим способностям реакции 2H(d, d)2H при 3.0, 4.75 и 6.0 МэВ сравнивались с результатами R-matrix параметризации и микроскопическим расчетом для четырехчастичной задачи [60]. R-matrix параметризация описывает амплитуду и форму углового распределения. Микроскопические расчеты неплохо описывают данные за исключением амплитуды Т22. Также, некоторое разногласие наблюдается для тензорной анализирующей способности Т21.

Теоретические расчеты четырехчастичной задачи реакций упругого рассеяния п3Яе, jftH и dd были выполнены в [61]. Авторы сдела

- И ли ab initio расчеты системы четырех тел, решая уравнения AGS (Alt, Grassberger, Sandhas) [62]. В вычислениях использовались зарядово-зависимый Боннский потенциал [63], AV18 [6], INOY04: [64] и потенциал полученный из киральной теории возмущений N3LO [65]. Поперечное сечение dd упругого рассеяния [66] находится в согласии со сделанными расчетами. С другой стороны, для тензорной анализирующей способности Т20 [60] под углом 90°, было найдено большое отличие. Неплохое согласие наблюдается для поперечного сечения и тензорных анализирующих способностей гТц, Т20, Т21 и Т22 для реакций 2H(d,n)3He [53] и 2H(d,p)3H [54]. Теоретические расчеты реакций п3Не, ffiH и dd упругого рассеяния также выполнены на основе метода гиперсферических гармоник [67] и решения уравнения Фаддеева-Якубовского [68]. Однако, на данный момент произведенные расчеты не могут быть применены для более высоких энергий.

В работе [69] исследовалась реакция dd —> 3Неп и dd 3Нр под нулевым углом при энергии 140, 200 и 270 МэВ. Для описания полученных результатов использовалось приближение однонуклонного обмена. При этих условиях тензорная анализирующая способность Т20 реакции dd —> 3Hen (dd —> 3Нр) определяется спиновой структурой 3Не (3Н). Тензорная анализирующая способность Т20 выражается через D/S волновое отношение этих ядер. Положительный знак и поведение Т20 в зависимости от энергии налетающего дейтрона качественно согласуется с расчетами.

Нарушение изоспиновой симметрии проявляется в электрослабом и сильном взаимодействии. Электрослабое нарушение на нуклонном уровне определяется разностью электрических зарядов нуклонов, а на кварковом уровне разностью электрических зарядов кварков. Нарушение изоспиновой симметрии в сильном взаимодействии связано с разностью масс кварков. Одним из интересных следствий разности масс кварков является динамическое нарушение симметрии, приводящее к смешиванию легких мезонов и нарушению изоспиновой симметрии.

В работе [70,71] исследовалась реакция е+е~ —» 7г+7г~. Данную реакцию удалось описать с помощью смешивания р — со мезонов. В случае сохранения зарядовой симметрии р-мезон - член изоспинового триплета, в то время как со-мезон-синглет. Если зарядовая симметрия нарушена, то физическое состояния р и со являются смесью чистых состояний. Смешивание р — со мезонов является свидетельством нарушения зарядовой симметрии.

При измерении длин нуклон-нуклонного рассеяния в синглетном состоянии 1S'o [72] было обнаружено нарушение зарядовой независимости (1/2апп + 1/2арр — апр = 5.7±0.3фм). Было найдено, что зарядовая симметрия также не сохраняется (арр — апп — 1.5±0.5фм). Расчеты [73-75], основанные на одно и двух пионном обменном потенциале, учитывающие зарядовую зависимость констант связи для нейтральных и заряженных пионов, хорошо описывают экспериментальные данные.

Возможное нарушение зарядовой симметрии исследовалось в упругом пр рассеянии в TRIUMF и IUCF. Анализирующие способности были измерены в реакциях с использованием пучка протонов и нейтронов при энергии 477 МэВ [76] и 183 МэВ [77,78] при углах, где они имеют нулевые значения. Разницу в анализирующих способностях Ар — Ап удалось описать на основе одно и двух пионного обмена вместе с I7, р и р — со обменом. Главный вклад Ар — Ап при энергии 477 МэВ дает одно-пионный обмен, в то время как при энергии 183 МэВ вклад объясняется в основном р — со смешиванием.

Измерение асимметрии дейтронов для реакции пр —> d тг° при энергии 279.5 МэВ выполнялось в TRIUMF [79]. Дейтроны детектировались под углом 30 мрад вперед и назад. Была найдена малая асимметрия.

IUCF коллаборация исследовала реакцию d d —» а 1г° [80], которая является запрещенной из-за зарядовой симметрии. Найденное нарушение зарядовой симметрии объясняется 7г — rj и р — и смешиваниеми, 7 обменом и перерассеянием 7г-мезонов, которое связано с разницей в массах нейтрона и протона [81].

Реакции р d —> ЪН 7г+ и р d —» 3Не 7Г° были исследованы при импульсах пучка 1.56, 1.57, 1.571, 1.59 и 1.7 ГэВ/с [82]. Исследование возможного нарушения зарядовой симметрии было основано на измерении отношения поперечных сечений R реакций р d —» тг+ и р d —> 3Яе 7г°. В случае сохранения зарядовой симметрии R должно равняться 2. В случае нарушения зарядовой симметрии (проявления мезонного смешивания) это значение будет отличным от 2. Измеренное отношение указало на возможное нарушение изоспиновой симметрии в интервале рождения г/ мезона. Эти результаты совпадают с предыдущими измерениями [83,84]. Другие эффекты, которые могли повлиять на отношение R, также обсуждались, но их влияние либо мало, либо приводит к относительному сдвигу, и таким образом, не может описать поведение данных.

В реакциях рассеяния 7г+ и 7г~ на и 3Де были измерены следующие отношения: П = Г2 = ^-ь+зне^+зяе) И R = Измерения были проведены в LAMPF на установке EPICS при энергиях 140, 180 и 220 МэВ [85]. Отклонения отношений от единицы, при коррекции на электромагнитное взаимодействие являются явным сигналом нарушения зарядовой симметрии. Из экспериментальных данных следует, что отношение г\ практически постоянное. Его значение близко к единице. Отношения r<i и R значительно отклоняются от единицы, что говорит о явном нарушении зарядовой симметрии.

В настоящие время большое внимание уделяется изучению энергии связи трехнуклонных систем. Так как энергия связи сильно зависит от спиновой части ядерных сил, можно ожидать, что исследование спиновой структуры трехнуклонных связанных систем позволит получить ценную информацию для решения задачи недооценки энергии связи.

Энергии связи 3Не и 3Н должны быть одинаковы, если сохраняется зарядовая независимость сильного взаимодействия и пренебрегается электромагнитным взаимодействием. Однако, экспериментально измеренная разница в энергиях связи 3Н и 3Не составляет 764 кэВ. Главный вклад в эту разницу обусловлен электромагнитным отталкиванием протонов в 3#е (693 ± 19 ± 5 кэВ [86,87]). Разница в энергии связи 3Н и 3Не с поправкой на электромагнитное взаимодействие составляет 71 ± 19 ± 5 кэВ. Наиболее убедительное обьяснение оставшейся разницы в энергии связи основано на р — и смешивании [88].

Разницу в энергии связи между ЪН и 3Яе удалось описать на основе 6q модели [89-91]. Данная мешочная модель основана на создании промежуточного 6q состояния одетого ст-полем. Трехнуклонные силы возникают из взаимодействия между 6q состоянием одетого сг-полем и третьим нуклоном. Это взаимодействие дает как минимум половину энергии связи трехнуклонной системы. Вклад ненуклонных компонент в 3Я и 3Не может превысить 10%.

Расчеты, основанные на киральной теории возмущений [92] оценивают нарушение зарядовой симметрии, обусловленное трехнуклонными силами. Их вклад является наименьшим из всех возможных механизмов ведущих к нарушению зарядовой симметрии. Этим механизмом объясняется приблизительно 5 кэВ в разнице энергий связи 3Я -3 Не. Также было исследовано, что вклад от трехнуклонных сил, которые нарушают зарядовую симметрию того же порядка, что и вклад от трехнуклонных сил, которые сохраняют зарядовую симметрию.

Фотоядерные реакции дают возможность извлечь малую, но не нулевую, зарядовую асимметрию из-за чрезвычайной чувствительности поперечного сечения к степени изоспинового смешивания [93]. Радиационные реакции захвата 3Н(р, 7)АНе и 3Яе(п, 7)АНе исследовались в рамках микроскопической многоканальной резонансной групповой модели [94]. Сравнение поперечных сечений зеркальных каналов использовалось для исследования возможного нарушения зарядовой симметрии на ядерном уровне. Найденная разница в поперечных сечениях реакций 7)4Не и 3Не(п,^)4Не объясняется кулоновским взаимодействием и разницей в порогах реакций. Таким образом, нарушение зарядовой симметрии, обусловленное ядерными силами, не было найдено.

Тензорные и векторные анализирующие способности реакций dd —> 3Неп и dd —» 3Нр были исследованы Конигом и др. [95] при энергиях от 1.5 до 15.5 МэВ. Обнаруженная существенная разница в анализирующих способностях была объяснена Кулоновским эффектом во входящем и выходящих каналах.

Возможное нарушение зарядовой симметрии проверялось сравнением векторной Ау и тензорной Ауу анализирующих способностей для реакций dd —> 3Неп и dd —3Нр при энергии 56 МэВ [96]. Полученные значения тензорной и векторной анализирующих способностей совпадают в пределах экспериментальной точности.

Тензорная анализирующая способность Т20 реакций dd —> 3Неп и dd —> 3Нр изучалась при 140, 200 и 270 МэВ под нулевым углом [97]. Данные для зеркальных каналов ъИе п и 3Н р отражают чувствительность к D/S волновому отношению в ъНе и 3Н. Таким образом, различие в структуре данных ядер привело бы к различию в анализирующих способностях. Найденное отклонение находится в пределах экспериментальной точности.

Целью диссертационной работы являлось измерение угловой зависимости векторной Ау и тензорных Ауу, Ахх и Axz анализирующих способностей реакций dd —» 3Неп и dd —> 3Нр, используя поляризованный дейтронный пучок с энергией 270 МэВ на ускорительном комплексе RIKEN [111].

Диссертационная работа состоит из введения, четырех разделов и заключения.

Похожие диссертационные работы по специальности «Физика атомного ядра и элементарных частиц», 01.04.16 шифр ВАК

Заключение диссертации по теме «Физика атомного ядра и элементарных частиц», Янек, Мариан

Заключение

В рамках данной работы были получены следующие результаты.

1. Впервые получены высокоточные данные по векторной Ау и тензорным Ауу, Ахх и Axz анализирующим способностям реакции dd —» 3Неп при энергии 270 МэВ [99-111,118].

Результаты по анализирующим способностям сравнены с предсказаниями модели на основе однонуклонного обмена с использованием Урбанской, Парижской и RSC волновых функций 3Не. Описать экспериментальные данные по тензорным анализирующим способностям удалось только при передних углах и только качественно, в остальном интервале данная модель не воспроизводит данные. Несоответствие между экспериментом и теорией при больших углах в с.ц.м. может быть связано с неадекватным описанием волновой функции 3Не на малых расстояниях и возможным проявлением релятивистских эффектов, которые могут играть существенную роль при данной энергии.

Для учета релятивизма данные сравнивались с теоретическим вычислением основанным на минимальной схеме релятивизации с использованием Урбанской волновой функции 3Яе. Хотя разница в релятивистском и нерелятивистском описании данных довольно большая, поведение данных описать не удалось.

В приближении однонуклонного обмена векторная анализирующая способность должна равняться нулю, что не наблюдается. В данных видна структура, которая объясняется наличием дополнительных механизмов реакции.

2. Впервые получены данные по векторной Ау и тензорным Ауу, Ахх и Axz анализирующим способностям реакции dd —» 3Нр при энергии 270 МэВ [99-108,110,118].

Проведено сравнение данных по анализирующим способностям данной реакции с реакцией dd —» 3Не?г при энергии 270 МэВ с целью поиска возможного нарушения зарядовой симметрии. Данные по векторной и тензорных анализирующих способностях зеркальных реакций при соответствующих углах совпадают в пределах достигнутой экспериментальной точности.

3. Получены результаты по измерению параметров выведенного пучка дейтронов на Нуклотроне [112]. Показано, что для дальнейших поляризационных экспериментов необходимо уменьшение эмиттанса пучка, особенно в вертикальном направлении.

Впервые измерена векторная поляризация выведенного пучка дейтронов Нуклотрона с помощью поляриметра, основанного на квазиупругом рр рассеянии [113,114,117]. В ходе измерений интенсивность поляризованного дейтронного пучка при импульсах 3.5 и 5.0 ГэВ/с составляла ~ 2.5 • 107 частиц/цикл. Поляризация выведенного дейтронного пучка, усредненная по спиновым модам, составляла 0.540±0.019 и 0.606±0.014 при 3.5 и 5.0 ГэВ/с, соответственно. Показана возможность использования реакции dp упругого рассеяния при энергии 270 МэВ для измерения поляризации дейтронного пучка на внутренней станции Нуклотрона методом выделения событий по энергетическим потерям частиц в сцинтил-ляторах и разнице времен пролета [115-117].

Работа выполнена в Лаборатории высоких энергий Векслера и Бал-дина, ОИЯИ. Автор выражает благодарность дирекции Института физических наук Университета П. Й. Шафарика и дирекции Лаборатории Высоких Энергий Векслера и Балдина, ОИЯИ, за предоставленную возможность командировки, связанную с участием в экспериментах и обработке данных во время написания диссертационной работы. Огромную благодарность автор выражает В. П. Ладыгину и Г. Мартинской за постановку темы диссертационной работы, за обсуждения в ряде экспери

Список литературы диссертационного исследования кандидат физико-математических наук Янек, Мариан, 2007 год

1. Weinberg S., Physica, 1979, v.96A, p.327.2j Nolen J. A . and Schiffer Jr. J. P., Annu. Rev. Nucl. Sci., 1969, v. 19, p.471.

2. Bryan R. and Scott B. L., Phys. Rev., 1969, v.l77, p.l435.

3. Hau R. Vin et a l , Phys. Lett., 1973, v.B44, p . l ;Hau R. Vin , Mesons in Nuclei, 1979, p.151.

4. Machleidt R. et al., Phys. Reports, 1987, v.l49, p . l .

5. Wiringa R.B. , Stoks V. G. J. and Schiavilla R., Phys.Rev., 1995, v.C51,p.38.

6. Machleidt R., Hohnde K. and Elster Ch., Phys.Rep., 1987, v.l49, p . l ;Machleidt R., Adv. Nucl. Phys., 1989, v.l9, p.189;

7. Stoks V . G. J. et al., Phys.Rev., 1994, v.G49, p.2950.

8. Brash E. J. et a l , Phys. Rev., 1993, v.C47, p.2064.

9. Rahav A . et al., Phys. Lett, 1992, V.B275, p.259;Rahav A . et al., Phys. Rev., 1992, v.C46, p. 1167.

10. Miller M . A . et a l , Phys. Rev. Lett, 1995, v.74, p.502.

11. Friar J. L. et al., Phys. Rev., 1990, v.C42, p.2310.

13. Xu. W. et a l , Phys. Rev. Lett, 2000, v.85, p.2900.

14. Tanifuji M . , Phys. Rev., 1999, v.C61, 024602.- 86

15. Dirac P .A .M. , Rev.Mod.Phys., 1949, v.21, p.392;Weinberg S., Phys.Rev., 1966, v. 150, p.1313; Frankfurt L .L . and Strikman M.I., Phys.Rep., 1981, v.76, p.215.

16. Afanasiev S. V . et al., Phys. Lett, 1998, V.B434, p.21;Azhgirey L. S. et a l , Yad.Fiz., 1999, v.62, p.l796.

17. Ladygin V. P. et a l , Few-Body Systems, 2002, v.32, p. 127;Azhgirey L. S. et a l , Yad. Fiz., 2003, v.66, p.719.

18. Azhgirey L.S. et al., Phys.Lett, 2004, V.B595, p.151;Yad. Fiz., 2005, v.68, p.2191.

19. Ladygin V.P. et al., Phys.Lett, 2005, V.B629, p.60.

20. Bosted P. et al., Phys. Rev. Lett, 1982, v.49, p.l380.

22. Kobushkin A . P., J. Phys. G: Nucl. Phys., 1986, v.l2, p.487.

23. AÓJieeB B. P H Ap., UucMa }K9T0, 1983, T.37, C.196;Ableev V . G. et al., Nucl. Phys., 1983, V.A393, p.491.

24. Kobushkin A . P. and Vizireva L., J. Phys. G: Nucl. Phys., 1982,p.893. - 87

26. Banaigs J. et a l , Phys. Lett., 1974, v.B54, p.394;Berthet P. et ak, Phys. Lett, 1985, V.A433, p.589. 30) Berger J. et ak, Phys. Rev. Lett, 1988, v.61, p.919.

27. Läget J. M . and Lecolley J. P., Phys. Rev. Lett, 1988, v.61, p.2069.

28. Jourdan J. et ak, Phys. Lett, 1986, V.B162, 269.

29. Vettern M . C. et ak, Phys. Rev. Lett, 1985, v.54, p. l l29.

30. Arriaga A . and Santos F. B. , Phys. Rev., 1984, v.C29, p.1945.

31. Mehmandoost-Khajeh-Bad A . A . et ak, Phys. Lett, 2005, V.B617, p.

32. Skibinski R. et ak, Phys. Rev., 2003, v.C67, 054001.

33. Golak J. et ak, Phys. Rev., 2000, v.C62, 054005.

34. Beltuva A . et ak, Phys. Rev., 2004, v.C69, 034004.

35. Yagita T. et ak, Phys. Lett, 2003, v.A18, p.322.

36. Sakamoto N . et ak, Phys.Lett, 1996, V.B367, p.60.

37. Sekiguchi K. et ak, Phys.Rev., 2002, v.C65, 034003.

38. Stephenson E.J . et ak, Phys.Rev., 1999, v.C60, 061001;Bieber R. et ak, Phys.Rev.Lett, 2000, v.84, p.606.

39. Cadman R.V. et ak, Phys.Rev.Lett, 2001, v.86, p.967.

40. Sekiguchi K. et ak, Phys.Rev., 2004, v.C70, 014001.

41. Hatanaka K. et ak, Phys.Rev., 2002, v.C66, 044002.

42. Ermish K. et ak, Phys.Rev., 2005, v.C71, 064004.

43. Yako К. et ak, Nud. Phys., 2001, V.A684, р.ббЗс.

44. Sakai H. et ak, Nud. Instrum. Methods., 1996, V.A369, p.l20.

45. Coon S. A . et ak, Nud. Phys., 1979, V.A317, p.242.

46. Witaia H., et ak, Phys. Rev., 1998, v.C57, p.2111.

47. Witaia H , et ak, Phys. Rev., 2002, v.C71, 054001.

48. Deltuva A . et ak, Phys. Rev., 2003, v.C67, 034001.

49. Dries L. G. et ak, Phys. Lett., 1979, v.80B, p.l76.

50. Grüebler W. et ak, Nud. Phys., 1972, v.A193, p.l29.

51. Grüebler W., Konig V . , Risler R., Schmelzbach P. A. , White R. E., andMarmier P., Nud. Phys., 1972, V.A193, p.l49.

52. Meyer H. 0 . and Schiemenz R , Nud. Phys., 1972, V.A197, p.259.

53. Plattner G. R. and Keller L. G., Phys. Lett, 1969, V.30B, p.327.

54. Bernstein E. M . , Ohlsen G. G., Starkovich V . S., and Simon W. G.,Nud. Phys., 1969, V.A126, p.641.

55. Lien P. В., Nud. Phys., 1972, V.A178, p.375.

56. Crowe III B. J. et ak, Phys. Rev., 2000, v.C61, 034006.

57. Deltuva A . and Fonseca A. C , Phys. Rev., 2007, v.C75, 014005.

58. Grassberger P. and Sandhas W., Nud. Phys., 1967, v.B2, p.l81;Alt E. 0., Grassberger P., and Sandhas W., JINR report No. E4-6688, 1972.

59. Machleidt R., Phys. Rev., 2001, v.C63, 024001.

60. Boleschall P., Phys. Rev., 2004, v.C69, 054001.

61. Entern D. R. and Machleidt R., Phys. Rev., 2003, v.C68, 041001.- 89

62. Blair J. M . et al., Phys. Rev., 1948, v.74, p.1594.

63. Viviani M . , Kievsky A . and Rosati S., Phys.Rev., 2005 v.C71, 024006;Viviani M . et ak, Few-Body Syst, 2006, v.39, p.l59.

64. Ciesielski F. and Carbonell J., Phys.Rev., 1998, v.C58, p.58; LazauskasR. and Carbonell J., Few-Body Syst., 2004, v.34, p.105; Lazauskas R. et ak, ihid., 2005, v.71, 034004.

65. Ladygin V. P. and Ladygina N. B., Phys. Atom. Nucl, 1996, v.59, p.789;Nuovo Cimento, 1999, V.A112, p.855; ihid., 2002, V.65, p.l609.

66. Quenzer A . et ak, Phys. Lett., 1978, v.B76, p.512.

67. Barkov L. M . et ak, Nucl. Phys., 1985, V.B256, p.365.

68. Miller G. A . et. al, Phys. Rept, 1990, v.l94, p . l .

69. Henley E. M . , In Isospin in Nuclear Physics, 1969, p.17.

70. Ericson T. E. 0 . and Miller G. A. , Phys. Lett, 1983, v.B132,p.32;Phys. Rev., 1987, v.C36, p.2707.

71. Cheung C. Y . and Machleidt R., Phys. Rev., 1986, v.C34, p . l l81.

72. Abegg R. et ak, Phys. Rev. Lett., 1986, v.56, p.2571.

73. Vigdor S. E., Current problems in Nuclear Physics, 1986, p.193.

74. Knuttsen L. D. et ak, Nucl. Phys., 1990, V.A508, p.l85c;79. upper A . K. , Phys. Rev. Lett, 2003, v.91, 212302.

75. Stephenson E. J. et ak, Phys. Rev. Lett., 2003, v.91, 142302.

76. Gardestig A. , Phys.Rev., 2004, v.C69, 044606.

77. AbdekBary M . et ak, Phys. Rev., 2003, v.C68, 021603.- 90

78. Berthet P. et a l , Nucí. Phys., 1985, V.A443, p.589.

79. Kerboul et al., Phys. Lett, 1986, V.B181, p.28.

80. Nefkens B. M . K . et al., Phys. Rev. Lett, 1984, v.52, p.735.Pillai et al., Phys. Lett, 1988, V.B207, р.389.

81. Coon S.A. and Barrett R.C., Phys. Rev., 1987, v.C36, p.2189.

82. Friar J. L. and Gibson B. F., Phys. Rev., 1978, v.C18, p.908.

83. Coon S. A. and Scadron M . D., Phys. Rev., 1982, v.C26, p.2402.

84. Koch V. and Miller G.A., Phys. Rev., 1985, v.C31, p.602.

85. Greben J . M . and Thomas A.W. , Phys. Rev., 1984, v.C30, p. 1021.

86. Kukuhn V. I. et al., Nucí. Part Phys., 2004, v.G30, p.287.

87. Friar J. L. et a l , Phys. Rev., 2005, v.C71, 024003.

88. Barker F. C. and Mann A. K., Philos. Mag. 2, 1957, p.5.

89. Wächter В., Mertelmeier Т. and Hofmann Н. М., Phys. Rev., 1988,V.C38, p.1139.

90. Konig V . et ак. Nucí Phys., 1979, V.A331, p . l .

91. Nisimura K . et ak. In: Proc. of Polarization Phenomena In NuclearPhysics, 1980, V.2 , p.1464.

92. Ladygin V . P. et ak, Phys. Lett, 2004, V.B598, p.47;Phys. Atom. Nucl, 2006, v.69, p.l271.

93. Howell C. R. et. al, Phys. Rev., 1993, v.C48, p.2855.

94. BN 80-7097-590-3, 2005, Kosice, p.l43.

95. Khrenov A. N . , Janek M . et ak, The status of preparation of

96. S and PHE3 projects at Nuclotron. In: Proc. of Relativistic NuclearPhysics: from Hundreds of MeV to TeV, August 25 - 30, 2003, Stará 1.sna, Slovak Repubhc; El,2-2003-225, 2003, Dubna, p.236.

97. Azhgirey L. S., Janek M . et ak. Measurement of the extracted deuteronbeam vector polarization at Nuclotron., Phys. Part. Nucl. Lett., 2005, V.2, p.122.; Pisma Fiz.Elem.Chast.Atom.Yadra, 2005, T.2, c.91.

98. Uesaka Т., Janek M . et ak. Proposal on the measurements of dp elastic scattering analyzing powers at 0.3-2.0 GeV at internal target station of the Nuclotron., Phys. Part. Nucl. Lett., 2006, v.3, p.305. - 94

100. Okamura H. et ak, AIP Conf. Proc, 1994, v.293, p.84.

101. Okamura H. et ak, AIP Conf. Proc, 1995, v.343, p.123.

102. Maeda Y . et ak, Nucl. Instr. Meth. in Phys. Rev., 2002, v.490, p.518.

103. Okamura H. et ak, Nucl. Instr. Meth. in Phys. Rev., 2000, v.443, p.l94.

104. Sakamoto N . et ak, Phys. Lett., 1996, V.B367, p.60.

105. Suda K. et ak, AIP Conf Proc, 2001, v.570, p.806;Riken Accel. Prog.Rep. 2002, v.35, p.174.

106. Ichihara T. et ak, Nucl Phys., 1994, V.A569, p.287c.

107. Sakamoto N. , Doctor Thesis, University of Tokyo, 1996.

108. Uesaka T. et ak, RIKEN Accel. Prog. Rep., 2000, v.33, p.253.- 95

109. Ladygin V . P. et al., Part. Nucí. Lett., 2000, v.3100]-2000, p.74.

110. Punjabi V . et al., Phys. Lett, 1995, V.B350, p.178.

111. Uesaka T. et a l , Phys.Lett, 1999, V.B467, p.199;Few-Body Systems Suppl, 2000 v. 12, p.497; Phys.Lett, 2002, V.B533, p . l .

112. Schiavilla R., Pandharipande V.R. , Wiringa R.B., Nucl.Phys., 1986,V.A449, p.219.

113. Läget J. M . et al.. Nucí. Phys., 1981, V.A370, p.479.

114. Santos F.D., Eiro A . M . , Barosso A. , Phys.Rev., 1979, v.C19, p.238.

115. Uzikov Yu.N., Phys. Part Nucl. Lett, 1998, v.29, p.1010.

116. Lacombe M . , Loiseau B., Mau R. V. , Cote J., Pires P., Tourreil R. de,Phys.Lett, 1981, v .BlOl , p.l39.

117. Blankleider B. and Woloshyn R. M . , Phys. Rev., 1984, v.C29, p.538;Fliar J. L., Gibson B. P., Payne G. L., Bernstein A . M . and Chupp T. E., Phys. Rev., 1990, v.C42, p.2310; Schulze R. W. and Sauer P. U. , Phys. Rev., 1993, v.C48, p.38.

118. Eiro A . M . and Santos F.D., J.Phys.G: Nucl.Phys., 1990, v.l6, p.l l39.

119. Uzikov Yu.N., JETP. Lett, 2005, v.81, p.3031.

120. Azhgirey L. S. et ak, Nucl.Phys., 1991, V.A528, p.621.

121. Itoh K. et ak, CNS Annual Report 2003, p.82.

122. Lehar F. et ak, Note CEA-N-2490. GEN Saclay. Gif-sur-Yvette, 1986;Allgower Ch. et ak. Preprint LNS/Ph/97-11. Gif-sur-Yvette, 1997.

123. Ball J. et ak, Eur. Phys. J., 1999, v . C l l , p.51.- 96

124. Azhgirey L. S. et al., Prib. Tekhn. Eksp., 1997, v . l , p.51;Azhgirey L. S. et al., Instr. Exp. Tech., 1997, v.40, p.43.

125. Azhgirey L. S. et a l , Nucl. Instr. Meth., 2003, V.A497, p.340.

126. Anishchenko N . G. et ak, AIP Conf. Proc, 1983, v.95, p.445.

127. Azhgirey L. S. et ak. Part. Nucl Lett., 2002, v.4, p.51.

128. Ажгирей Л. и др.. Письма в Эчая, 2005, Т.2, No. 2(125), с.91.

129. Ladygin V. Р. et ак. In: Proc. of XV Intern. Senil, on High Energy SpinPhysics Problem, 2001, v.2, p.301.

130. Ladygin V . P. et ak. In: Proc. of Intern. Workshop Varna, 2001, v . l ,p.131.

131. Sakai H. et ak, Phys. Rev. Lett, 2000, v.84, p.5288.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.