Изучение регуляции транскрипции генов бактериофагов во время инфекции хозяйской клетки тема диссертации и автореферата по ВАК РФ 03.01.03, кандидат биологических наук Климук, Евгений Иванович

  • Климук, Евгений Иванович
  • кандидат биологических науккандидат биологических наук
  • 2013, Москва
  • Специальность ВАК РФ03.01.03
  • Количество страниц 101
Климук, Евгений Иванович. Изучение регуляции транскрипции генов бактериофагов во время инфекции хозяйской клетки: дис. кандидат биологических наук: 03.01.03 - Молекулярная биология. Москва. 2013. 101 с.

Оглавление диссертации кандидат биологических наук Климук, Евгений Иванович

Обозначения и сокращения.

Общая характеристика работы.

Актуальность проблемы.

Цели работы.

Научная новизна.

Практическая значимость работы.

Публикации и апробация работы.

Литературный обзор.

Рекомендованный список диссертаций по специальности «Молекулярная биология», 03.01.03 шифр ВАК

Заключение диссертации по теме «Молекулярная биология», Климук, Евгений Иванович

Выводы

1) Показана функциональная активность in vivo трех временных классов промоторов бактериофага Т5. Идентифицировано два промотора, активных на предранней стадии инфекционного цикла, восемь ранних промоторов и три поздних промотора. Показано, что ранние промоторы бактериофага Т5 содержат идентичную последовательность 5'-АТАТТ-3' между «-10»-элементом и стартовой точкой транскрипции.

2) Показано, что мутации в генах D5, D15 и С2 бактериофага Т5 не влияют на профиль транскрипции генов фага. Продукты генов Al и А2 необходимы для ингибирования транскрипции предранних генов.

3) В препаратах РНКП, выделенных из клеток, инфицированных фагом Т5, обнаружен белок gp26. gp26 прочно связывается с РНКП Е. coli (Кд < 1 нМ). Взаимодействие с РНКП происходит за счет связывания с участками ß-субъединицы, расположенными между аминокислотными остатками 1-151 и 703-795. gp26 ингибирует взаимодействие о70-холофермента РНКП с дискриминаторным участком промотора. В ходе инфекции gp26 необходим для оптимального ингибирования транскрипции ранних и, в меньшей степени, предранних генов и стимуляции синтеза поздних транскриптов.

4) У фКМУ-подобных бактериофагов Pseudomonas биоинформатически предсказаны гомологи ингибитора бактериальной РНКП - белка gp2 бактериофага Т7. Функциональный анализ in vivo и in vitro подтвердил гомологию gp2-noflo6Hbix белков фКМУ-подобных бактериофагов и белка gp2 бактериофага Т7.

Список работ, опубликованных по теме диссертации

Тезисы конференций:

1) Климук Е И Изучение регуляции экспрессии генов бактериофагов Е coli Т5 и phiEco32 для поиска антибактериальных препаратов Научно-техническая конференция «Биотехнологические аспекты фундаментальной науки БиоНаноскопия» УРАН ИБГ РАН, Москва 2010

2) Е Klimuk, N Akulenko and К Sevennov Regulation of gene expression of bacteriophage T5 revisited International conference "Viruses of Microbes", 2010, Pans, France

3) E Klimuk, N Akulenko and К Sevennov Regulation of gene expression of bacteriophage T5 International conference "Microbial Viruses Genomics, Evolution and Applications in Ecology, Biotechnology and Medicine", 2011, Belfast, UK

4) E Klimuk, N Akulenko and К Sevennov Regulation of gene expression of bacteriophage T5 FEMS Congress'11, 2011, Geneva, Switzerland

5) E Klimuk, N Akulenko, К Makarova, К Sevennov Identification and characterization of host RNA polymerase inhibitors encoded by phages of phiKMV-group International conference "Viruses of Microbes", 2012, Brussels, Belgium

6) E Klimuk, К Sevennov Identification and characterization of host RNA polymerase inhibitors encoded by phages of phiKMV-group International conference "Postgenome 2012", 2012, Kazan, Russia

Публикации в журналах:

7) Pavlova, О , Lavysh, D , Klimuk, E , Djordjevic, M , Ravcheev, D A , Gelfand, M S , Sevennov, К , Akulenko, N , Temporal regulation of gene expression of the Escherichia coli bacteriophage phiEco32 J Mol Biol, 2012 416(3) p 389-99

8) Evgeny Klimuk, Natalia Akulenko, Kira S Makarova, Pieter-Jan Ceyssens, Ivan Volchenkov, Rob Lavigne, Konstantin Sevennov Host RNA polymerase inhibitors encoded by phiKMV-like phages of Pseudomonas Virology 436 (2013), pp 67-74

Список литературы диссертационного исследования кандидат биологических наук Климук, Евгений Иванович, 2013 год

1. Borukhov, S, and Nudler, E (2008) RNA polymerase the vehicle of transcription

2. Trends Microbiol 16, 126-134

3. McClure, WR (1985) Mechanism and control of transcription initiation in prokaryotes Annu Rev Biochem 54, 171-204

4. Gross, C A , Chan, C , Dombroski, A , Gruber, T , Sharp, M, Tupy, J , and Young, B1998) The functional and regulatory roles of sigma factors in transcription Cold Spring Harb Symp Quant Biol 63, 141-155

5. Harley, CB, and Reynolds, R.P (1987) Analysis of E coli promoter sequences Nucleic Acids Res 15, 2343-2361

6. Ross, W , Gosink, K K , Salomon, J , Igarashi, K , Zou, C , Ishihama, A , Sevennov, K ,and Gourse, RL (1993) A third recognition element in bacterial promoters DNA binding by the alpha subunit of RNA polymerase Science 262, 1407-1413

7. Estrem, ST, Gaal, T, Ross, W, and Gourse, RL (1998) Identification of an UPelement consensus sequence for bacterial promoters Proc Natl Acad Sci U S A 95, 9761-9766

8. Barne, K A , Bown, J A , Busby, S J , and Minchin, S D (1997) Region 2 5 of the

9. Escherichia coli RNA polymerase sigma70 subunit is responsible for the recognition of the 'extended-10' motif at promoters EMBO J 16, 4034-4040

10. Dombroski, A J , Walter, W A , Record, M T , Jr, Siegele, D A , and Gross, C A1992) Polypeptides containing highly conserved regions of transcription initiation factor sigma 70 exhibit specificity of binding to promoter DNA Cell 70, 501-512

11. Nechaev, S, and Sevennov, K (2003) Bactenophage-induced modifications of host

12. RNA polymerase Annu Rev Microbiol 57, 301-322

13. Molmeux, I J 2006 The T7 group In "The Bacteriophages" R Calendar (Ed) Oxford University Press, NY Chap 20 pp 277-301

14. Garcia, L R and I J Molineux, 1995 Rate of translocation of bacteriophage T7 DNA across the membranes of Escherichia coli J Bacterid 177(14) p 4066-76

15. Kemp, P , L R Garcia, and I J Molineux, 2005 Changes in bacteriophage T7 virion structure at the initiation of infection Virology 340(2) p 307-17

16. Kemp, P, M Gupta, and I J Molineux, 2004 Bacteriophage T7 DNA ejection into cells is initiated by an enzyme-like mechanism Mol Microbiol 53(4) p 1251-65

17. Mark, KK and FW Studier, 1981 Purification of the gene 0 3 protein of bacteriophage T7, an inhibitor of the DNA restriction system of Escherichia coli J Biol Chem 256(5) p 2573-8

18. Studier, FW, 1975 Gene 0 3 of bacteriophage T7 acts to overcome the DNA restriction system of the host J Mol Biol 94(2) p 283-95

19. Walkinshaw, MD, Taylor, P, Sturrock, SS, Atanasiu, C, Berge, T, Henderson, RM , Edwardson, J M , Dryden, D T , 2002 Structure of Oer from bacteriophage T7, a protein that mimics B-form DNA Mol Cell 9(1) p 187-94

20. Sevennova, E, and Sevennov, K (2006) Localization of the Escherichia coli RNA polymerase beta' subunit residue phosphorylated by bacteriophage T7 kinase GpO 7 J Bacterid 188,3470-3476

21. Hesselbach, B A , and Nakada, D (1975) Inactive complex formation between E coli RNA polymerase and inhibitor protein purified from T7 phage infected cells Nature 258, 354-357

22. Nechaev, S, and Sevennov, K (1999) Inhibition of Escherichia coli RNA polymerase by bacteriophage T7 gene 2 protein J Mol Biol 289, 815-826

23. Shadnn A, Sheppard C, Sevennov K, Matthews S, Wigneshweraraj S, 2012

24. Substitutions in the Escherichia coli RNA polymerase inhibitor T7 Gp2 that allow89inhibition of transcription when the primary interaction interface between Gp2 and RNA polymerase becomes compromised Microbiology 158(Pt 11) 2753-64

25. LeClerc, JE, and Richardson, CC (1979) Gene 2 protein of bacteriophage T7 purification and requirement for packaging of T7 DNA in vitro Proc Natl Acad Sci U S A 76, 4852-4856

26. Ontell, MP and D Nakada, 1980 Rescue of abortive T7 gene 2 mutant phage infection by rifampin J Virol 34(2) p 438-45

27. Mooney, P Q , R North, and I J Mohneux, 1980 The role of bacteriophage T7 gene 2 protein in DNA replication Nucleic Acids Res 8(13) p 3043-53

28. Savaha, D , Robins, W , Nechaev, S , Mohneux, 1, Severinov, K , 2010 The role of the T7 Gp2 inhibitor of host RNA polymerase in phage development J Mol Biol 402(1) p 118-26

29. Qimron, U , Kulczyk, A W , Hamdan, S M , Tabor, S , Richardson, C C , 2008 Inadequate inhibition of host RNA polymerase restricts T7 bacteriophage growth on hosts overexpressing udk Mol Microbiol 67(2) p 448-57

30. Eom, S H , Wang, J , and Steitz, T A (1996) Structure of Taq polymerase with DNA at the polymerase active site Nature 382, 278-281

31. Raskin, C A , Diaz, G, Joho, K , and McAllister, W T (1992) Substitution of a single bacteriophage T3 residue in bacteriophage T7 RNA polymerase at position 748 results in a switch in promoter specificity J Mol Biol 228, 506-515

32. Ikeda, R A , and Richardson, C C (1987) Enzymatic properties of a proteolytically nicked RNA polymerase of bacteriophage T7 J Biol Chem 262, 3790-3799

33. Zhang, X 1995 T7 RNA polymerase and T7 lysozyme genetic, biochemical and structural analysis of their interaction and multiple roles in T7 infection PhD thesis, SUNY, Stonybrook, NewYork

34. Jeruzalmi, D , and Steitz, T A (1998) Structure of T7 RNA polymerase complexed to the transcriptional inhibitor T7 lysozyme EMBO J 17, 4101 -4113

35. McAllister, W T , Morris, C , Rosenberg, A H , and Studier, FW (1981) Utilization of bacteriophage T7 late promoters in recombinant plasmids during infection J Mol Biol 153, 527-544

36. McAllister, W T, and Wu, H L (1978) Regulation of transcription of the late genes of bacteriophage T7 Proc Natl Acad Sei U S A 75, 804-808

37. Zhang, X, and Studier, FW (1997) Mechanism of inhibition of bacteriophage T7 RNA polymerase by T7 lysozyme J Mol Biol 269, 10-27

38. Cheetham, G M, and T A Steitz 2000 Insights into transcription structure and function of single-subunit DNA-dependent RNA polymerases Curr Opin Struct Biol 10 117-123

39. Cheetham, G M, and T A Steitz 1999 Structure of a transcribing T7 RNA polymerase initiation complex Science 286 2305-2309

40. Zivin, R , Malone, C , and Rothman-Denes, L B (1980) Physical map of coliphage N4 DNA Virology 104 205-218

41. Schito, GC (1974) Development of coliphage N4 ultrastructural studies J Virol 13 186-196

42. Schito, GC , Satta, G, Pesce, A , and Romanzi, C A (1969) Sintesi macromolecolari m cellule mfettate con il colifago N4 Estratto da atti del XV Congresso Nazionale di Micrologia, Societa' Italiana di Microbiología

43. Rothman-Denes, LB, Haselkorn, R, and Schito, GC (1972) Selective shutoff of catabolite-sensitive host syntheses by coliphage N4 Virology 50 95-102

44. Schito, G C (1973) The genetics and physiology of coliphage N4 Virology 55 254265

45. Satta, G, Pesce, A , and Schito, G C (1969) Fate of the host chromosome during N4 coliphage replication G Microbiol 17 131-139

46. Falco, SC, Zehring, W, and Rothman-Denes, LB (1980) DNA-dependent RNA polymerase from bacteriophage N4 virions Purification and characterization J Biol Chem 255, 4339-4347

47. Kazmierczak, K M , Davydova, E K , Mustaev, A A , and Rothman-Denes, L B (2002) The phage N4 virion RNA polymerase catalytic domain is related to single-subunit RNA polymerases EMBO J 21, 5815-5823

48. Qucksmann, MA, Markiewicz, P, Malone, C, and Rothman-Denes, LB (1992) Specific sequences and a hairpin structure in the template strand are required for N4 virion RNA polymerase promoter recognition Cell 70, 491-500

49. Davydova, E K , and Rothman-Denes, L B (2003) Escherichia coll single-stranded DNA-binding protein mediates template recycling during transcription by bacteriophage N4 virion RNA polymerase Proc Natl Acad Sei U S A 100, 9250-9255

50. Willis, S H , Kazmierczak, K M, Carter, R H , and Rothman-Denes, L B (2002) N4 RNA polymerase II, a heterodimeric RNA polymerase with homology to the single-subunit family of RNA polymerases J Bacterid 184,4952-4961

51. Carter, R H, Demidenko, A A , Hattingh-Willis, S , and Rothman-Denes, L B (2003) Phage N4 RNA polymerase II recruitment to DNA by a single-stranded DNA-binding protein Genes Dev 17, 2334-2345

52. Cho, N Y , Choi, M , and Rothman-Denes, L B (1995) The bacteriophage N4-coded single-stranded DNA-binding protein (N4SSB) is the transcriptional activator of Escherichia coli RNA polymerase at N4 late promoters J Mol Biol 246, 461-471

53. Kazmierczak, K M a R -D , L B (2006) Bacteriophage N4 In The bacteriophages, R Calendar, ed (Oxford Oxford University Press)

54. Calendar, R ed (2006) The bacteriophages (Oxford Oxford University Press)

55. Jin, D J , Cashel, M , Friedman, D I, Nakamura, Y , Walter, W A , and Gross, C A (1988) Effects of nfampicm resistant rpoB mutations on antitermination and interaction with nusA in Escherichia coli J Mol Biol 204, 247-261

56. Lazinski, D , Grzadzielska, E , and Das, A (1989) Sequence-specific recognition of RNA hairpins by bacteriophage antiterminators requires a conserved arginine-rich motif Cell 59, 207-218

57. Modndje, J, Mali, T-F, Greenblat, J (1995) A protein-RNA interaction network facilitates the template-independent cooperative assembly on RNA polymerase of a stable antitermination complex containing the lambda N protein Genes Dev , 9, 28312845

58. Das, A (1992) How the phage lambda N gene product suppresses transcription termination communication of RNA polymerase with regulatory proteins mediated by signals in nascent RNA J Bacterid 174, 6711-6716

59. Burmann, B M, Schweimer, K , Luo, X , Wahl, M C , Stitt, B L , Gottesman, M E , and Rosch, P A NusE NusG complex links transcription and translation Science 328, 501-504

60. Bank, S, Ghosh, B, Whalen, W, Lazinski, D, and Das, A (1987) An antitermination protein engages the elongating transcription apparatus at a promoter-proximal recognition site Cell 50, 885-899

61. Friedman, DlaG, M (1983) Lytic mode of lambda development In Lambda II, R W Hendnx, Roberts, J W , Stahl, F W , and Weisberg, R A , ed (Cold Spring Harbor Cold Spring Harbor Laboratory Press)

62. Das, A , Pal, M , Mena, J G, Whalen, W , Wolska, K , Crossley, R , Rees, W , von Hippel, PH, Costantino, N, Court, D, et al (1996) Components of multiprotein

63. RNA complex that controls transcription elongation in Escherichia coll phage lambda Methods Enzymol 274, 374-402

64. Ptashne, M (1992) A Genetic Switch, 2 Edition, (Cambridge Cell Press)

65. Marr, M T , Datwyler, S A , Meares, C F , and Roberts, J W (2001) Restructuring of an RNA polymerase holoenzyme elongation complex by lambdoid phage Q proteins Proc Natl Acad Sci U S A 98, 8972-8978

66. Deighan P, Diez CM, Leibman M, Hochschild A, Nickels BE (2008) The bacteriophage lambda Q antiterminator protein contacts the beta-flap domain of RNA polymerase Proc Natl Acad Sci U S A 7,105(40) 15305-10

67. Miller, E S , Kutter, E , Mosig, G, Arisaka, F , Kunisawa, T , and Ruger, W (2003) Bacteriophage T4 genome Microbiol Mol Biol Rev 67, 86-156, table of contents

68. Nelson, HC, Finch, JT, Luisi, BF, and Klug, A (1987) The structure of an oligo(dA) ohgo(dT) tract and its biological implications Nature 330, 221-226

69. Mosig, G (1998) Recombination and recombination-dependent DNA replication in bacteriophage T4 Annu Rev Genet 32, 379-413

70. Tiemann, B, Depping, R, and Ruger, W (1999) Overexpression, purification, and partial characterization of ADP-nbosyltransferases modA and modB of bacteriophage T4 Gene Expr 8, 187-196

71. Sevennov K, Kashlev M, Sevennova E, Bass I, McWilliams K, Kutter E, Nikiforov V, Snyder L, Goldfarb A (1994) A non-essential domain of Escherichia coli RNA polymerase required for the action of the termination factor Ale J Biol Chem, 269(19) 14254-9

72. Truncaite, L, Zajanckauskaite, A, and Nivinskas, R. (2002) Identification of two middle promoters upstream DNA ligase gene 30 of bacteriophage T4 J Mol Biol 317, 179-190

73. Ouhammouch, M, Adelman, K, Harvey, SR, Orsini, G, and Brody, EN (1995) Bacteriophage T4 MotA and AsiA proteins suffice to direct Escherichia coli RNA polymerase to initiate transcription at T4 middle promoters Proc Natl Acad Sei U S A 92, 1451-1455

74. Ouhammouch, M, Orsini, G, and Brody, EN (1994) The asiA gene product of bacteriophage T4 is required for middle mode RNA synthesis J Bactenol 176, 39563965

75. Colland, F , Orsini, G, Brody, E N, Buc, H , and Kolb, A (1998) The bacteriophage T4 AsiA protein a molecular switch for sigma 70-dependent promoters Mol Microbiol 27,819-829

76. Sevennova, E , Sevennov, K , and Darst, S A (1998) Inhibition of Escherichia coli RNA polymerase by bacteriophage T4 AsiA J Mol Biol 279, 9-18

77. Herendeen DR, Wilhams KP, Kassavetis GA, Geiduschek EP An RNA polymerase-binding protein that is required for communication between an enhancer and a promoter Science 1990,278 573-578

78. Geiduschek EP, Kassavetis GA Transcription of the T4 late genes Virol J 2010,7 288-300

79. Gnbskov M, Burgess RR Sigma factors from E coli, B subtilis, phage SPOl, and phage T4 are homologous proteins Nucleic Acids Res 1986,14 6745-6763

80. Lonetto M, Gnbskov M, Gross CA The o70 family Sequence conservation and evolutionary relationships J Bacterid 1992,174 3843-3849

81. Lane WJ, Darst SA Molecular evolution of multi-subunit RNA polymerases structural analysis J Mol Biol 2010,395 686-704

82. Wong K, Kassavetis GA, Leonetti J-P, Geiduschek EP Mutational and functional analysis of a segment of the sigma family bacteriophage T4 late promoter recognition protein gp55 J Biol Chem 2003,278 7073-7080

83. Kassavetis GA, Geiduschek EP Defining a bacteriophage T4 late promoter bacteriophage T4 gene 55 protein suffices for directing late promoter recognition Proc Natl Acad Sci USA 1984,81 5101-5105

84. Kolesky SE, Ouhammouch M, Geiduschek EP The mechanism of transcriptional activation by the topologically DNA-hnked sliding clamp of bacteriophage T4 J Mol Biol 2002,321 767-784

85. Nechaev S, Kamali-Moghaddam M, Andre E, Leonetti J-P, Geiduschek EP The bacteriophage T4 late-transcription coactivator gp33 binds the flap domain of Escherichia coli RNA polymerase Proc Natl Acad Sci USA 2004,101 17365-17370

86. Riva S, Cascino A, Geiduschek EP Coupling of late transcription to viral replication in bacteriophage T4 development J Mol Biol 1970,54 85-102

87. Meijer, WJ, Horcajadas, J A, and Salas, M (2001) Phi29 family of phages Microbiol Mol Biol Rev 65, 261-287 , second page, table of contents

88. Vlcek, C , and Paces, V (1986) Nucleotide sequence of the late region of Bacillus phage phi 29 completes the 19,285-bp sequence of phi 29 genome Comparison with the homologous sequence of phage PZA Gene 46, 215-225

89. Salas, M (2006) Phage phi29 and its relatives In The bacteriophages, R Calendar, ed (Oxford Oxford University Press), pp 315-331

90. Camacho, A , and Salas, M (1999) Effect of mutations in the "extended-10" motif of three Bacillus subtilis sigmaA-RNA polymerase-dependent promoters J Mol Biol 286, 683-693

91. Barthelemy, I, Mellado, RP, and Salas, M (1989) In vitro transcription of bacteriophage phi 29 DNA inhibition of early promoters by the viral replication protein p6 J Virol 63, 460-462

92. Monsalve, M, Mencia, M , Rojo, F , and Salas, M (1995) Transcription regulation in Bacillus subtilis phage phi 29 expression of the viral promoters throughout the infection cycle Virology 207, 23-31

93. Camacho, A, and Salas, M (2001) Repression of bacteriophage phi 29 early promoter C2 by viral protein p6 is due to impairment of closed complex J Biol Chem 276, 28927-28932

94. Rojo, F, and Salas, M (1991) A DNA curvature can substitute phage phi 29 regulatory protein p4 when acting as a transcriptional repressor EMBO J 10, 34293438

95. Mencia, M , Monsalve, M , Salas, M , and Rojo, F (1996) Transcriptional activator of phage phi 29 late promoter mapping of residues involved in interaction with RNA polymerase and in DNA bending Mol Microbiol 20, 273-282

96. Elias-Arnanz, M, and Salas, M (1999) Functional interactions between a phage histone-like protein and a transcriptional factor in regulation of phi29 early-late transcriptional switch Genes Dev 13, 2502-2513

97. Calles, B , Salas, M , and Rojo, F (2002) The phi29 transcriptional regulator contacts the nucleoid protein p6 to organize a repression complex EMBO J 21, 6185-6194

98. Barthelemy, I, Salas, M, and Mellado, RP (1987) In vivo transcription of bacteriophage phi 29 DNA transcription termination J Virol 61, 1751-1755

99. Yuzenkova, J, Nechaev, S, Berlin, J, Rogulja, D, Kuznedelov, K, Inman, R, Mushegian, A, and Sevennov, K (2003) Genome of Xanthomonas oryzae bacteriophage XplO an odd T-odd phage J Mol Biol 330, 735-748

100. Semenova, E , Djordjevic, M, Shraiman, B , and Sevennov, K (2005) The tale of two RNA polymerases transcription profiling and gene expression strategy of bacteriophage Xp 10 Mol Microbiol 55, 764-777

101. Liao, YD, Tu, J, Feng, TY, and Kuo, TT (1986) Characterization of phage-XplO-coded RNA polymerase Eur J Biochem 157, 571-577

102. Rhoades, M (1982) New physical map of bacteriophage T5 DNA J Virol 43, 566573

103. Rhoades, M, and Rhoades, EA (1972) Terminal repetition in the DNA of bacteriophage T5 J Mol Biol 69, 187-200

104. Rogers, S G, and Rhoades, M (1976) Bacteriophage T5-induced endonucleases that introduce site-specific single-chain interruptions in duplex DNA Proc Natl Acad Sci US A 73, 1576-1580

105. Nichols, B P , and Donelson, J E (1977) Sequence analysis of the nicks and termini of bacteriophage T5 DNA J Virol 22, 520-526

106. Heller, KJ, and Schwarz, H (1985) Irreversible binding to the receptor of bacteriophages T5 and BF23 does not occur with the tip of the tail J Bactenol 162, 621-625

107. Letellier, L, Locher, KP, Plancon, L, and Rosenbusch, JP (1997) Modeling ligand-gated receptor activity FhuA-mediated ferrichrome efflux from lipid vesicles triggered by phage T5 J Biol Chem 272, 1448-1451

108. Lambert, O, Plancon, L, Rigaud, JL, and Letellier, L (1998) Protein-mediated DNA transfer into liposomes Mol Microbiol 30, 761-765

109. Herman, RC, and Moyer, R.W (1974) In vivo repair of the single-strand interruptions contained in bacteriophage T5 DNA Proc Natl Acad Sci U S A 71, 680684

110. Lanni, Y (1969) Functions of two genes in the first-step-transfer DNA of bacteriophage T5 J Mol Biol 44, 173-183

111. Bonhivers, M , and Letellier, L (1995) Calcium controls phage T5 infection at the level of the Escherichia coll cytoplasmic membrane FEBS Lett 374, 169-173

112. Herman, R C , and Moyer, R W (1975) In vivo repair of bacteriophage t5 DNA an assay for viral growth control Virology 66, 393-407

113. Killmann, H, Videnov, G, Jung, G, Schwarz, II, and Braun, V (1995) Identification of receptor binding sites by competitive peptide mapping phages Tl, T5, and phi 80 and cohcin M bind to the gating loop of FhuA J Bactenol 177, 694698

114. Gentz, R, and Bujard, H (1985) Promoters recognized by Escherichia coli RNA polymerase selected by function highly efficient promoters from bacteriophage T5 J Bactenol 164, 70-77

115. Wiest, J S , and McCorquodale, D J (1990) Characterization of preearly genes in the terminal repetition of bactenophage BF23 DNA by nucleotide sequencing and restriction mapping Virology 177, 745-754

116. Beckman, LD , Hoffman, M S , and McCorquodale, DJ (1971) Pre-early proteins of bacteriophage T5 structure and function J Mol Biol 62, 551-564

117. Snyder, C E , Jr, and Benzinger, R H (1981) Second-step transfer of bacteriophage T5 DNA punfication and charactenzation of the T5 gene A2 protein J Virol 40, 248257

118. McCorquodale, DJ, Chen, CW, Joseph, M K, and Woychik, R (1981) Modification of RNA polymerase from Escherichia coll by pre-early gene products of bactenophage T5 J Virol 40, 958-962

119. Decker, K , Krauel, V , Meesmann, A , and Heller, K J (1994) Lytic conversion of Escherichia coli by bacteriophage T5 blocking of the FhuA receptor protein by a lipoprotein expressed early during infection Mol Microbiol 12, 321-332

120. Pedruzzi, I, Rosenbusch, J P , and Locher, K P (1998) Inactivation in vitro of the Escherichia coli outer membrane protein FhuA by a phage T5-encoded lipoprotein FEMS Microbiol Lett 168, 119-125

121. Chinnadurai, G, and McCorquodale, DJ (1974) Regulation of expression of late genes of bacteriophage T5 J Virol 13,85-93

122. Sayers, J R, and Eckstein, F (1991) A single-strand specific endonuclease activity copunfies with overexpressed T5 D15 exonuclease Nucleic Acids Res 19, 4127-4132

123. Kaliman, A V , Kulshin, V E , Shlyapnikov, M G, Ksenzenko, V N , and Kryukov, VM (1995) The nucleotide sequence of the bacteriophage T5 ltf gene FEBS Lett 366, 46-48

124. Heller, K, and Braun, V (1982) Polymannose O-antigens of Escherichia coli, the binding sites for the reversible adsorption of bacteriophage T5+ via the L-shaped tail fibers J Virol 41,222-227

125. Heller, K J (1984) Identification of the phage gene for host receptor specificity by analyzing hybrid phages of T5 and BF23 Virology 139, 11-21

126. Heller, K, and Braun, V (1979) Accelerated adsorption of bacteriophage T5 to Escherichia coli F, resulting from reversible tail fiber-lipopolysacchande binding J Bactenol 139, 32-38

127. Ederth, J, Artsimovitch, I, Isaksson, L A , Landick, R , 2002 The downstream DNA jaw of bacterial RNA polymerase facilitates both transcriptional initiation and pausing JBiolChem 277(40) p 37456-63

128. Burgess RR, Arthur TM, Pietz BC 2000 Mapping protein-protein interaction domains using ordered fragment ladder far-western analysis of hexahistidine-tagged fusion proteins Methods Enzymol ,328 141-57

129. Altschul, SF, Madden, TL, Schaffer, A A, Zhang, J, Zhang, Z, Miller, W, Lipman, D J , 1997 Gapped BLAST and PSI-BLAST a new generation of protein database search programs Nucleic Acids Res 25(17) p 3389-402

130. Edgar, R C , 2004 MUSCLE a multiple sequence alignment method with reduced time and space complexity BMC Bioinformatics 5 p 113

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.