Электронный энергетический спектр неоднородных, пространственно ограниченных и слоистых полупроводниковых структур тема диссертации и автореферата по ВАК РФ 01.04.10, доктор физико-математических наук Касаманян, Затик Акопович
- Специальность ВАК РФ01.04.10
- Количество страниц 340
Оглавление диссертации доктор физико-математических наук Касаманян, Затик Акопович
ВВЕДЕНИЕ.
ГЛАВА I. ВОПРОСЫ СТРОГОЙ ТЕОРИИ ЭНЕРГЕТИЧЕСКОГО СПЕКТРА.
ГЛАВА П. МЕТОД ФУНКЦИЙ ГРИНА В ТЕОРИИ ЭНЕРГЕТИЧЕСКОГО
СПЕКТРА И РАССЕЯНИЯ
§ I. Метод последовательного и точного учета взаимодействий.
§ 2. Решение задачи о примесных уровнях в модели короткодействующего потенциала атомов периодической системы.
§ 3. Энергетический спектр одномерной периодической системы с модельным случайным потенциалом
§ 4. Отражение частицы на границе раздела двух сред.
§ 5. Функция Грина одномерной контактной задачи.
§ 6. Энергетический спектр дефектов в одномерной периодической системе
§ 7. К трехмерной теории глубоких уровней в полупроводниках в резко меняющихся полях.
§ 8. Связь между фазовой функцией и функцией Грина
§ 9. О последовательном решении квантовомеханической задачи для различных степеней свободы
§10. Обобщение теории контактных состояний для многоэлектронной системы и на случай других квазичастиц (фононов, плазмонов и фотонов). . . Ю
ГЛАВА Ш. ЭЛЕКТРОННЫЕ СОСТОЯНИЯ НА ПОВЕРХНОСТИ ПОЛУПРОВОДНИКОВ
§11. Одномерная теория собственных поверхностных состояний в модели скачкообразного изменения потенциала поверхности.
§12. Учет искажения периодичности потенциала решетки вблизи поверхности
§13. Поверхностные состояния в улучшенной модели потенциала поверхности.
§14. Матрица функций Грина и поверхностные состояния при нулевых граничных условиях.
§15. Отражение медленных электронов от кристаллической структуры.
§16. Трехмерная теория поверхностных состояний . . . J
§17. Поверхностные состояния в полупроводниках при учете дефектов в приповерхностном слое.
§18. Эффективная масса в поверхностной подзоне в полупроводниках с узкой запрещенной зоной
§19. Распределение поверхностных и пленочных состояний в полупроводниках при случайных граничных условиях.
ГЛАВА 1У. ЭНЕРГЕТИЧЕСКИЙ СПЕКТР ЭЛЕКТРОНА В КВАНТОВАННОЙ ТОНКОЙ ПЛЕНКЕ.
§20. Модель бесконечно высоких потенциальных стенок
§21. Случай периодического поля внутри пленки.
§22. Строгая одномерная теория энергетического спектра электрона в квантованной тонкой пленке.
§23. Трехмерная теория энергетического спектра электрона в квантованной тонкой пленке.
§24. Изменение знака постоянной Холла в полуметаллической тонкой пленке в области квантового превращения в полупроводник
§25. Поглощение света в полупроводниковой тонкой пленке с участием поверхностных состояний.
§26. Отражение медленных электронов от тонкой кристаллической структуры.
ГЛАВА У. ЭНЕРГЕТИЧЕСКИЙ СПЕКТР ГЕТЕРОСТРУКТУРЫ И БОЛЕЕ
СЛОЖНЫХ СЛОИСТЫХ СИСТЕМ.
§27. Контактные уровни на границе раздела двух идеальных одномерных подсистем.
§28. Осцилляции локальной плотности состояний в ге-тероструктурах и системах металл-диэлектрикполупроводник.
§29. Влияние контактных состояний на туннельное прохождение носителей зарядов в структурах металл-нитрид-окисел-полупроводник
§30. Энергетический спектр тонкопленочной гетероструктуры.
§31. Локальная плотность состояний в модельном варизонном полупроводнике.
ГЛАВА У1. ЭНЕРГЕТИЧЕСКИЙ СПЕКТР СВЕРХРЕШЕТКИ.
§32. Энергетический спектр модельной периодической сверхрешетки
§33. Энергетические уровни дефектов в модельной сверхрешетке
§34. Энергетический спектр сверхрешетки из гетеропереходов.
§35. Разрешенные минизоны в запрещенной зоне.
§36. Функция Грина сверхрешетки из гетеропереходов.
§37. Локальная плотность состояний, поверхностный импеданс и другие характеристики сверхрешетки.
§38. Поперечная эффективная масса в тонкопленочной гетероструктуре и сверхрешетке изInJls-GaSS.
Рекомендованный список диссертаций по специальности «Физика полупроводников», 01.04.10 шифр ВАК
Наноразмерные гетеросистемы на основе ферромагнитных металлов и полупроводников2007 год, доктор физико-математических наук Головнев, Юрий Филиппович
Моделирование гетероперехода и сверхрешетки на основе ферромагнитного полупроводника EuS и парамагнитного полупроводника SmS2005 год, кандидат физико-математических наук Парамонов, Андрей Викторович
Гетероструктуры на основе халькогенидов европия и свинца2006 год, кандидат физико-математических наук Никольская, Людмила Владимировна
Транспортные свойства гетероструктур на основе магнитных полупроводников2006 год, кандидат физико-математических наук Ермолов, Алексей Викторович
Энергетический спектр двумерных электронных состояний в гетеро- и МДП-структурах на основе бесцелевого полупроводника HgCdTe1998 год, кандидат физико-математических наук Ларионова, Виола Анатольевна
Введение диссертации (часть автореферата) на тему «Электронный энергетический спектр неоднородных, пространственно ограниченных и слоистых полупроводниковых структур»
Актуальность проблемы. Тенденция развития современной твердотельной электроники (микроминиатюризация приборов и устройств) требует всестороннего исследования физических явлений в тонких слоях и объемах. Неоднородные, пространственно ограниченные и слоистые системы привлекают к себе возрастающее внимание в связи с широкими возможностями их применения в различных областях науки и техники. Примерами могут служить приповерхностная область полупроводника, тонкие пленки, гетероструктура, система металл-диэлектрик-полупроводник, тонкопленочная гетероструктура, сверхрешетка. Интересные физические свойства, лежащие в основе практического применения упомянутых систем, обусловлены, в конечном счете, структурой энергетического спектра данного материала. Поэтому вопросы строгой и последовательной теории энергетического спектра занимают центральное место во всем комплексе физических исследований вещества. Развитие последовательной микроскопической теории электронного энергетического спектра названных выше систем составляет основу диссертационной работы.
Для исследования слоистых структур необходимо прежде всего изучить относительно простую, но все же связанную с немалыми трудностями, задачу о границе раздела двух конденсированных сред (поверхность или гетероструктура). Экспериментальная активность в области исследования поверхности полупроводников, гетерострук-тур, сверхрешеток и т.д. в последние годы привела к появлению огромного числа теоретических работ. В большинстве случаев иссле дование энергетического спектра обычно проводится с помощью тех или иных приближенных методов или расчетов с применением ЭВМ.
Возросшие вычислительные возможности дали мощный толчок численным расчетам. Например, в методе псевдопотенциалов в настоящее время мы имеем хорошо разработанные программы для исследования любой разумно поставленной задачи. Следует помнить, однако, что сколь бы велики ни были возможности вычислительной техники, все же они ограничены. К тому же теперь остро ставится практическая сторона вопроса - экономия машинного времени. По этой причине возрастает и роль качественных исследований относительно сложных систем.
При исследовании энергетического спектра пространственно ограниченных и слоистых кристаллических структур из рассмотрения ранее часто выпадала существенная область запрещенной зоны полупроводника, где могут возникнуть поверхностные или контактные состояния. В последовательной микроскопической теории такие состояния должны получаться вместе с объемными автоматически.
В реальных условиях потенциал на границе раздела двух кристаллических тел меняется, как правило, значительно на расстояниях порядка постоянной решетки. В связи с этим, с одной стороны, стандартный метод эффективной массы, являющийся относительно простым и мощным методом исследования энергетического спектра сложных систем, здесь может стать неприменимым. С другой стороны, часто применяемая модель скачкообразного изменения потенциала, как выяснилось в последнее время, имеет существенные недостатки, довольно очевидно, что решить задачу в общем виде чрезвычайно трудно, ибо возникает принципиальная необходимость учитывать периодическое поле решетки и использовать реалистический ход изменения потенциала между двумя кристаллическими телами. Для выяснения вопроса очень полезно иметь качественную теорию с использованием различных моделей этого потенциала. Но для этого, в свою очередь, необходимо развить теорию энергетического спектра при вариации граничных условий в широких пределах как для двух конденсированных сред, так и для слоистых структур, В применяемом в этой работе методе функций Грина, благодаря автоматическому обеспечению необходимых условий сшивания, вариация граничных условий достигается сравнительно легко.
Цель работы. Хотя неприменимость стандартного метода эффективной массы в теории собственно поверхностных состояний обще-признана, при исследовании электронного энергетического спектра квантованных тонких пленок и слоистых структур к началу семидесятых годов на ограниченность этого метода не обращали, за редкими исключениями, должного внимания. Состояния, которые могут возникнуть на границе двух конденсированных сред в общем для них обеих запрещенном участке спектра, должны играть роль в формировании нового энергетического спектра структур, состоящих из нескольких (или произвольного числа) слоев. Цель настоящей работы состоит в разработке эффективного метода решения подобных задач и в развитии на его основе теории электронного энергетического спектра неоднородных, пространственно ограниченных и слоистых полупроводниковых структур (поверхность, гетероструктура, тонкая пленка, тонкопленочная гетероструктура, система металл-диэлектрик-полупроводник, сверхрешетка).
Научная новизна. В работах, положенных в основу диссертации, создано новое направление,заключающееся в развитии микроскопической теории энергетического спектра электронов в гетерогенных системах, содержащих поверхности раздела сред,с учетом резкого изменения потенциальной энергии электронов и при вариации граничных параметров. При развитии этого направления теории энергетического спектра разработан эффективный метод, позволяющий строго учитывать периодическое поле в каждой подсистеме. Такой подход дает возможность последовательно принимать во внимание поверхностные или контактные состояния, которые могут возникнуть на границе раздела двух сред в общем запрещенном участке спектра отдельных подсистем.
Сквозь всю диссертацию проходит единый методический прием, развиваемый автором: постановка задачи сначала в одномерном виде с последующим обобщением на реалистический трехмерный случай. Первая часть задачи позволяет сравнительно легко выяснить узловые сложные вопросы и получить основные качественные закономерности. Далее эти выводы одномерной теории легко переносятся и на реальные трехмерные системы, когда возможно точное или приближенное разделение переменных. Хотя в задаче о поверхности, тонкой пленке и более сложных слоистых системах такое разделение переменных невозможно, тем не менее при определенных допущениях удается приближенно свести трехмерную теорию к квазиодномерной. В итоге, основные качественные выводы, полученные на основе модели кристалла с разделяющимися переменными, переносятся на случай реальных кристаллов, когда такое разделение принципиально невозможно.
Практическая ценность работы определяется следующими результатами.
Развитое представление о нестандартных мелких уровнях дефектов в полупроводниках углубляют и расширяют наши знания в этой важной для физики полупроводников области (усиление элек-трон-фононного взаимодействия и другие особенности поведения соответствующих уровней).
Результаты и выводы работы позволяют получить из экспериментальных данных важную микроскопическую информацию о границе
раздела двух сред (резонансные поверхностные состояния, распределение контактных состояний в гетероструктурах и др.).
Исследованные в работе эффекты (резонансное туннелирование носителей заряда через контактные состояния в системе металл-нитрид-окисел-полупроводник, особенности поведения локальной плотности состояний в различных частях тонкопленочной гетеро-структуры) могут служить физической основой конструирования новых полупроводниковых приборов с отрицательной дифференциальной проводимостью.
Предсказанные и исследованные новые эффекты (возникновение полосы поглощения в тонких квантованных полупроводниковых пленках до края собственного поглощения в условиях сверхвысокого вакуума, возникновение разрешенной минизоны в общей запрещенной зоне сверхрешетки из гетеропереходов), стимулирующие постановку новых и тонких экспериментов, позволяют углубить наши представления о физических свойствах тонкопленочных материалов и сверхрешеток.
Основные положения, вынесенные на защиту, состоят в следующем:
1. Разработан эффективный метод для построения последовательной микроскопической теории энергетического спектра электронов в неоднородных системах, состоящих из чередующихся кристаллических структур.
2. Построена строгая теория одномерных уровней дефектов в периодическом поле. Предсказано существование и исследованы некоторые особенности поведения нестандартных мелких уровней дефектов в полупроводниках в резко меняющихся полях.
3. Развита теория электронного энергетического спектра квантованных тонких пленок (однородных и неоднородных, когда внутри пленки имеется гетероструктура) с учетом поверхностных состояний и при вариации граничных условий в широких пределах.
4. Предсказаны и исследованы осцилляции локальной плотности состояний в гетероструктурах и системах металл-диэлектрик-полупроводник при произвольных условиях сшивания периодических потенциалов отдельных кристаллов, составляющих систему.
5. Построена общая теория энергетического спектра сверхрешетки из гетеропереходов. Предсказано возникновение разрешенной минизоны в общей запрещенной зоне отдельных кристаллов, составляющих гетероструктуру.
Апробация работы. Основное содержание работы докладывалось на УШ, IX и X Всесоюзных совещаниях по теории полупроводников (Киев, 1975г.; Тбилиси, 1978г. и Новосибирск, 1980г.), на Всесоюзном совещании по физическим явлениям на поверхности полупроводников (Киев, 1977г.), на Всесоюзной школе по избранным вопросам теории твердого тела (Львов, 1978г.), на выездной сессии секции по гетеропереходам АН СССР (Ереван, 1980г.), на семинарах по теории полупроводников МГУ, ИРЭ АН СССР, ЕГУ, ИРФЭ АН Арм.ССР и опубликовано в работах [186, 291-320].
Диссертация состоит из шести глав.
В первой главе обсуждается актуальность проблемы построения строгой и последовательной теории энергетического спектра электронов в неоднородных, пространственно ограниченных и слоистых полупроводниковых системах, состоящих из чередующихся кристаллических структур. В такой теории необходимо иметь возможность исследовать энергетический спектр в широкой области изменения энергии, учитывать резкое изменение потенциала на границе раздела и последовательно включить в рассмотрение поверхностные и контактные состояния, которые могут возникнуть на границе раздела двух конденсированных сред в их общем запрещенном участке • спектра.
Вторая глава посвящена дальнейшему развитию хорошо известного метода функций Грина и его применению в новых, нетрадиционных до недавнего времени, задачах теории энергетического спектра и рассеяния. Здесь предлагается вариант метода последовательного и точного учета взаимодействий электрона с силовым полем, потенциальную энергию которого можно представить в виде двух слагаемых, позволяющий с учетом произвольного периодического поля точно решить ряд модельных задач. Для исследования систем с реалистическими потенциалами развивается метод поверхностных функций Грина применительно к контактным задачам.
В третьей главе исследуются электронные состояния на поверхности полупроводников с конкретной целью выяснения узловых вопросов, касающихся граничных условий и моделей. Проведен подробный анализ роли граничных условий в одномерном случае с последующим приближенным обобщением теории на трехмерный случай.
Четвертая глава посвящена развитию теории энергетического спектра электронов в квантованной тонкой пленке при вариации граничных условий в широких пределах и последовательном учете поверхностных состояний. Рассматриваются также некоторые эффекты, допускающие экспериментальную проверку.
В пятой главе исследуется энергетический спектр гетерострук-туры и более сложных слоистых структур (системы металл-полупроводник-диэлектрик и металл-нитрид-окисел-полупроводник, тонкопленочная гетероструктура, модельный варизонный полупроводник).
В шестой главе развивается общая теория энергетического спектра электронов в сверхрешетке из гетеропереходов, где учитывается, наряду с периодическим полем исходных кристаллов,возмощность резкого изменения дополнительного одномерного периодического потенциала. Такой подход позволяет последовательно принимать во внимание коллективизацию контактных состояний, которые могут возникнуть на границе раздела двух кристаллов, составляющих сверхрешетку из гетеропереходов. Развитый формализм применяется также к исследованию поведения других квазичастиц (фоно-нов, фотонов и др.) в сверхрешетке.
Мы пользуемся системой единиц, где ~h = %т0 ~ 1 (УП0 -масса свободного электрона). Однако, для большей наглядности мы иногда переходим к обычным единицам, восстанавливая fj и (например в §8). Ссылки на формулы в пределах одного параграфа даются с указанием лишь их номера. При ссылках на формулы других параграфов добавляется его номер. Для удобства приведем здесь перечень основных общепринятых сокращенных записей, используемых в тексте: ФГ - функция Грина ВФ - волновая функция ПС - поверхностные состояния МДП- металл-диэлектрик-полупроводник МДМ- металл-диэлектрик-металл МНОП-металл-нитрид-окисел-полупроводник ДМЭ- дифракция медленных электронов ТГС- тонкопленочная гетероструктура КП - коэффициент прохождения. - 14
Похожие диссертационные работы по специальности «Физика полупроводников», 01.04.10 шифр ВАК
Электронные состояния в квантово-размерных и дефектных полупроводниковых структурах2011 год, доктор физико-математических наук Гриняев, Сергей Николаевич
Эмиссия поляризованных электронов из низкоразмерных полупроводниковых структур1999 год, кандидат физико-математических наук Оскотский, Борис Давидович
Высокочастотные электронные процессы в полупроводниковых классических сверхрешетках2002 год, доктор физико-математических наук Гусятников, Виктор Николаевич
Анализ особенностей оптических и электрических свойств сложных алмазоподобных полупроводников и гетероструктур на их основе2004 год, доктор физико-математических наук Борисенко, Сергей Иванович
Закономерности формирования и свойства гетероструктур на основе неупорядоченных полупроводников2002 год, доктор технических наук Шерченков, Алексей Анатольевич
Заключение диссертации по теме «Физика полупроводников», Касаманян, Затик Акопович
- 297 -ЗАКЛЮЧЕНИЕ
Сформулируем основные результаты и выводы, полученные в диссертации.
1. На основе предлагаемого варианта метода последовательного и точного учета взаимодействия электрона с силовым полем, потенциальную энергию которого можно представить в виде нескольких слагаемых, точно решаются задачи с одномерным периодическим полем при наличии дополнительных модельных короткодействующих потенциалов: точечного дефекта, тонкой пленки, сверхрешетки,ва-ризонного полупроводника и лоренцова случайного поля. При этом одномерное периодическое поле считается произвольным и на основе общих аналитических свойств соответствующей функции Грина исследуется энергетический спектр электронов во всем интервале изменения энергии. Показано, что применение сГ -образной модели для дополнительного потенциала может иногда давать модельно неустойчивые решения. В частности, в ранее точно решенной задаче с лоренцовым случайным полем возникновение особенностей плотности состояний оказалось вызванным случайным обстоятельством. Выяснена причина возникновения указанных особенностей и показано, что в несколько улучшенной модели они исчезают.
2. Устанавливается точная связь между функцией Грина одномерного движения (или движения в сферически-симметричном поле) и фазовой функцией.
Получено точное соотношение, позволяющее восстановить функцию Грина при отличных друг от друга одномерных координатах, если она известна только для совпадающих координат.
Получено точное условие квантования энергии в ограниченной системе в терминах функций Грина. При этом появляется и возмож
- 298 ность явного учета многочастичных эффектов.
Построены функции Грина одноконтактной и двухконтактных задач при известных функциях Грина отдельных невзаимодействующих подсистем. Последовательным применением полученной реккурентной формулы можно построить и функцию Грина в системе, состоящей из произвольного числа слоев.
Полученные точные соотношения важны как для самой теории функций Грина, так и для многочисленных ее приложений. В частности, при приближенном вычислении функции Грина электрона в заданном поле эти соотношения ценны как для контроля, так и для нахождения явного вида искомой функции. Предлагается простой вывод явного вида функции Грина электрона в полупроводниках с узкой запрещенной зоной на основе нескольких полученных выше соотношений.
3. Получены явные формулы для коэффициентов отражения и прохождения электрона в контактной задаче в терминах модуля волновой функции и плотности состояний отдельных подсистем. Обсуждается возможность восстановления функции Грина электрона в трехмерном идеальном кристалле по экспериментальным данным о дифракции медленных электронов. С этой целью методом функций Грина развита теория дифракции медленных электронов от полубесконечной и тонкой кристаллической структуры в условиях, когда теория возмущений становится неприменимой.
4. Развита строгая теория одномерных уровней дефектов в периодической системе, предсказано существование нестандартных мелких уровней в резко меняющихся полях, обсуждается связь с экспериментальными данными для кристаллов GdP и С с! Те . Получена нестандартная зависимость между радиусом локализации электрона и энергией активации ( ЕА ). Строится вари
- 299 ант трехмерной теории глубоких уровней в резко меняющихся по- ' лях, свободной от расходимости, обычно возникающей при использовании сГ-потенциалов.
5. Различные аспекты теории поверхностных состояний исследованы без конкретизации идеального периодического поля. Учитывается также отклонение потенциала от периодического вблизи поверхности, способное привести к возникновению новых состояний в запрещенной зоне полупроводника. Исследованы различные модели потенциала поверхности, выявлены недостатки часто применяемой модели резкого обрыва потенциала решетки поверхностью, доказана необходимость использования реальной модели наклонного падения потенциала поверхности при исследовании состояний в запрещенной зоне (особенно в ее глубине). При разумном выборе модели наклонного падения потенциала поверхности, в соответствии с некоторыми экспериментальными данными, наиболее вероятным оказывается существование донорно-акцепторных пар уровней в одномерном случае. Дается обобщение теории на трехмерный случай, где удается использовать простоту одномерного подхода, но без предположения относительно разделения переменных для кристаллического потенциала. Предлагается простая модель строения поверхности со случайным полем, приводящим к распределению поверхностных состояний в запрещенной зоне. Такая модель со случайным полем применима также для гетеропереходов. Полученное в аналитическом виде распределение собственных поверхностных состояний в запрещенной зоне согласуется с экспериментальными данными как для поверхности, так и для гетероструктуры.
Строится последовательная теория электронного энергетического спектра квантованных тонких пленок в одномерном случае без конкретизации идеального периодического поля и при вариации гра
- 300 ничных условий в широких пределах. С помощью некоторой модели ' учитывается неупорядоченное строение поверхности, приводящее к распределению состояний. Далее строится соответствующая трехмерная теория. В условиях сверхвысокого вакуума в тонкой полупроводниковой пленке предсказана возможность возникновения полосы поглощения с частотами ниже края собственного поглощения массивного образца. Условия на границах тонкой пленки, существенно влияющие на состояния в запрещенной зоне, играют также важную роль в термодинамических свойствах системы, если определяющая роль принадлежит носителям в почти заполненной зоне (дыркам). Этим обстоятельством, в частности, можно объяснить наблюдавшееся ранее изменение знака постоянной Холла. Из проведенного исследования энергетического спектра следует также, что достаточно чистая и тонкая полуметаллическая пленка должна вести себя, в соответствии с имеющимися экспериментальными данными, как двухзонный примесный полупроводник (а не собственный).
7. Точно решается модельная задача об энергетическом спектре электронов в варизонном полупроводнике. Явно вычислена локальная плотность состояний. Вводится точное квантовомеханичес-кое представление о координатной зависимости достаточно широкой области максимума локальной плотности состояний, заменяющее-приближенное представление об искривлении энергетических зон (справедливое лишь в чисто классическом пределе).
8. Показана возможность возникновения контактных состояний в запрещенной зоне гетероструктуры, когда в направлении, перпендикулярном плоской границе раздела, кристаллы имеют различные постоянные решетки. Исследуется поведение локальной плотности состояний как функции одномерной координаты и энергии для гетероструктуры (случаи как резкого, так и плавного перехода) и для
- 301 системы металл-диэлектрик-полупроводник. При этом допускаются произвольные условия сшивания периодических потенциалов отдельных кристаллов, составляющих систему. Локальная плотность состояний в разрешенных зонах имеет осцилляционный характер.
9. Исследован энергетический спектр электрона в тонкой пленке, внутри которой имеется гетероструктура, при учете поверхностных и контактных состояний. Получены простые формулы для плотностей состояний в различных частях. В греющих электрических полях вдоль плоскости тонкой пленки для конкретной структуры ( р - оценивается критическое поле ( 6 ~ 4 кВ/см), при котором возможно возникновение отрицательной дифференциальной проводимости.
10. Рассмотрена задача о прохождении носителей заряда в системе металл-нитрид-окисел-полупроводник при наличии контактных состояний на границе раздела двух диэлектриков. Показано, что коэффициент прохождения при энергиях, близких к энергии контактных состояний, имеет резонансное поведение (соответствующий ток будет иметь максимум с участком отрицательной дифференциальной проводимости). Соответствующие экспериментальные исследования позволили бы получить информацию о наличии поверхностных состояний на границе раздела нитрид-окисел и об энергетическом их распределении.
11. Исследован энергетический спектр сверхрешетки с учетом периодического поля решетки и дополнительного модельного периодического поля. Такая постановка задачи позволяет получить точное решение и исследовать энергетический спектр в целом. Учет отклонения дополнительного поля от периодического приводит к возникновению дискретных одномерных уровней в каждой запрещен-дой минизоне. Рассматривается реалистическая и общая задача о периодической сверхрешетке из гетеропереходов. Найдены явный вид функции Грина электрона (и других квазичастиц), уравнение для определения энергетического спектра, точное и простое выражение для плотностей состояний в различных слоях. Сделан вывод о возможности образования разрешенной минизоны в общей запрещенной зоне двух кристаллов, образующих сверхрешетку из гетеропереходов. Ширина этой минизоны и эффективная масса на ее краях чувствительно зависят от положения минизоны в запрещенной зоне. В частности, если минизона находится в глубине запрещенной зоны, ее ширина экспоненциально мала, а эффективная масса может на несколько порядков превысить эффективную массу электрона в зонах. Возникновение разрешенной минизоны в запрещенном участке спектра исходных кристаллов в реальных структурах могло бы (здесь требуются экспериментальные исследования) существенно сказаться на термодинамических, кинетических, оптических и других свойствах сверхрешетки. На основе полученного явного вида функции Грина исследуются также другие характеристики сверхрешетки: длинноволновые акустические фононы, отражение медленных электронов и отражение света инфракрасного диапазона от сверхрешетки. Обсуждается возможность получения информации о физических параметрах сверхрешетки с помощью опытов по отражению света.
12. Исследована поперечная эффективная масса электрона в сверхрешетке из Infls - GaS$ • Показано, что учет конечного радиуса локализации электрона в области запрещенного объемного спектра GciS'i может привести к увеличению поперечной эффективной массы электрона по сравнению с зависящей от энергии эффективной массой в Jn J?s . Численные оценки при малых тол
- 303 щинах слоев приводят к заметному увеличению (от 20% до 40%), что хорошо согласуется с имеющимися экспериментальными данными.
В заключение автор считает своим приятным долгом выразить глубокую и искреннюю благодарность В.Л.Бонч-Бруевичу за многочисленные научные консультации по всем разделам диссертации, постоянное внимание и бескорыстную помощь, оказанную автору во всей его научной деятельности в течение двух десятилетий. Автор признателен также В.М.Арутюняну за полезные замечания и всестороннюю поддержку при завершении настоящей работы.
Список литературы диссертационного исследования доктор физико-математических наук Касаманян, Затик Акопович, 1982 год
1. Лифшиц й.М. О вырожденных регулярных возмущениях. 1.Дискретный спектр. - ЖЭТФ, 1947, т.17, №11, с.1017-1025.
2. Лифшиц И.М. О вырожденных регулярных возмущениях. П. Квазинепрерывный и непрерывный спектры. ЖЭТФ, 1947, т.17, №12, с.1076-1089.
3. Фаддеев Л.Д. Теория рассеяния для системы из трех частиц. ЖЭТФ, I960, т.39, №5, с.1459-1467.
4. Garcia-Moliner Р., Eubio J. A new method in the quantumtheory of surface states.- J. Phys. C: Solid State Phys., 1969, v.2, No.2, p.1789-1796.
5. Garcia-Moliner F., Eubio J. The quantum theory of one-electron states at surfaces.- Proc. E.Soc. Lond., 1971, v.A324, No.2, p.257-273.
6. Garcia-Moliner F., Heine V., Eubio J. A new formalism for electron states at surfaces. II. application to surface states.- J. Phys. C. Solid State Phys., 1969, v.2, No.2, p.1797-1801.
7. Flores F., Garcia-Moliner F., Eubio J. The principle of factorization of the surface Green function.- Solid State Commun., 1970, v.8, No.13, p.1065-1067.
8. Flores F., Garcia-Moliner F., Eubio J. The Green function method for two-surface problem.-Solid State Commun., 1970, v.8, No.13, p.1069-1071.
9. Yndurian F., Eubio J. Absense of surface states in oxidized Si.- Phys. Eev. Lett., 1971, v.26, No.3, p.138-140.
10. Flores F., Louis E., Eubio J. Critique of the abrupt potential model in the theory of surface states.-J. Phys.C:- 309
11. Solid State Phys., 1972, v. 5, No.24, p.3469-3472.
12. Flores F. Green's functions in the study of surface states or exitations in general.- Nouvo Cimento, 1973, v.l^-B, No.l, p.1-14.
13. Garcia-Moliner F. The physics of surface Green function matching.- Ann. Phys., 1977, v.2, No.3, p.179-200.
14. Tejedor C,, Flores P. A simple approach to heterojunctions.- J. Phys. С: Solid State Phys., 1978, v.11, No.l, p.L19--L23.
15. Flores F., Tejedor C. Energy barriers and interface states at heterojunctions.- J. Phys. C: Solid State Phys., 1979, v.12, No.4, p.731-749.
16. Inglesfield J.E. Green functions, surfaces, and impurities.- J. Phys. C: Solid State Phys., 1971, v.4, No.l, p.L14-L17.
17. Ingles-field J.E. Calculation of Green function in crystals with the matching Green function method.- J. Phys. C: Solid State Phys., 1977, v. 10, No.16, p.3141-3147.
18. Inglesfield J.E. The density of states at surfaces and the phase-shift rule.- J. Phys. Cf Solid States Phys., 1977, v.10, No.20, p.4067-4072.
19. Inglesfield J.E. The electronic structure of surfaces with the matching Green function method. I. General formalism.-Surface Sci#, 1978, v.76, No.2, p.355-373.
20. Inglesfield J.E. The electronic structure of surfaces with the matching Green function method II. fee and bcc transition metal surfaces.- Surface Sci., 1978, v.76, No.2,1. P.379-396.
21. Velicky В., Bartos I. Surface Green function by matching.- J. Phys. 0: Solid State Phys., 1971, v.4, N0.7, L104-L107.
22. Bartos I., Velicky B. Surface Green function in LEED. Application to the selvedge-substrate model. Bull. Am. Phys. Soc., 1973, ser.II, v.18, No.3, p.308.
23. Bartos I. Local state density and reflectivity of electrons at a crystal surface. Czech. J. Phys., 1973, v.B23, No.12, p.1395-1402.
24. Bartos L On surface state resonances.- Surface Sci., 1973, v.34, No.3, p.791-79^.
25. Bartos I., Velicky B. Surface Green function for systems with two interfaces. Czech J. Phys., 1974, v.B24, No.9, p.981-984.
26. Bartos I., Velicky B. Surface Green function method in surface studies.- Surface Sci., 1975, v. 47, No.2, p.495--501.
27. Bartos I., Maca F. Surface Green function for interfaces of general shape.- Czech. J. Phys., 1976, v.B26, jno.6,p.619-625.
28. Velicky В., Kudrnovsky J. Electronic structure of semiin-finite crystals with substitutional disorder in surface layer-,-Surface Sci., 1977, v.64 No.2, p.411-424.
29. Kolar M. On the calculation of the surface density of states in the tight-binding formalism.- Phys. Stat.Sol.(b), 1977, v.83, No.2, p.625-631.
30. Bartos I. Surface Green function for N interfaces.- Phys. Stat. Sol. (b), 1978, v.85, No.2, p.K127-K130.
31. Iadonisi G., Preziosi B. Three-dimensional model for surface states.- Phys. Kev. B: Solid State, 1974, v.9, No.10, p.4178-4183.
32. Kohn W. Green's-function method for crystal films and surfaces.- Phys. Eev. B: Solid State, 1975, v.11, No.10, p.3756-3760.
33. Glasser m.L. A class of interface state models. I. Surface Sci., 1977, v.64, N0.1, p.141-156.
34. Allen E.A. Green's functions for surface physics.- Phys. Eev. B: Solid State, 1979, v.20, No.4, p.1454-1472.
35. Ueba H., Davison S.G. Simple Green function formalism of n-interface problem.- J. Phys. C: Solid State Phys., 1980, v.13, N0.6, p.1175-1183.
36. Чалдышев В.А., Чернышев B.H., Горюнов В.А. Применение комплексной зонной структуры к расчету поверхностных состояний методом функций Грина. Изв.вузов, Физика, 1975, №10, с.97-102.
37. Mekhtiev М.А. Tamm surface states of Hg1-X Cdx Те,-Solid State Commun., 1977, v.22, N0.3, p.433-437.
38. Mekhtiev M.A. Tamm surface states of films Hgj^ Cdx Те. -Solid State Commun, 1978, v.28, No.4, p.299-303.
39. Мехтиев M.A., Калина В.А. Теория поверхностных таммовских состояний между полуметаллом и полупроводником с узкой запрещенной зоной типа Hgxx Cdx Те . докл. АН Аз.ССР, 1980, т.36, №8, с.24-29.
40. Волков Б.А., Пинскер Т.Н. Размерное квантование и поверхностные состояния в полупроводниках. ЖЭТФ, 1976, т.10, №6,с.2268-2278.
41. Волков В.А., Пинскер Т.Н. Закон дисперсии электрона в ограниченном кристалле. ЖЭТФ, 1977, т.72, №3, с.1087-1096.
42. Volkov V.A., Pinsker T.N. Boundary conditions, energy spectrum, and optical transitions of electrons in bounded narrow gap crystals.- Surface Sci., 1979, v.81, No.l,p.181-192.
43. Волков В.А., Пинскер Т.Н. Энергетический спектр и оптические переходы в тонкой полупроводниковой пленке. Оптические исследования полупроводников. -Свердловск, 1980, с.79-82.
44. Васько Ф.Т. Спиновое расщепление спектра двумерных электронов, обусловленное поверхностным потенциалом. Письма в ЖЭТФ, 1979, т.30, №9, с.574-577.
45. Васько Ф.Т. Граничные условия для функции распределения электронов на неидеальной поверхности. ЖЭТФ, 1980, т.79, №3, с.953-960.
46. Васько Ф.Т. Поглощение света электронами при рассеянии на поверхности. ФТТ, 1981, т.23, №4, с.1097-1100.
47. Cottey A. A. Solutions of Schrodinger1s equation at a band edge in a one dimensional crystal.- J. Phys. C; Solid State Phys., 1972, v. 5, No.18, p.2583-2590.
48. Cottey A.A. Band theory of the quantum size effect.- J. Phys. C: Solid State Phys., 1972, v.5, No.18, p.2591-2598.
49. Cottey A.A. Quantum size effect with arbitrary surface potential.- J. Phys. С: Solid State Phys., 1973, v.6, No.15, p.2446-2457.
50. Cottey A.A. Theory of infrared spectrum of size-quantized films.- J. Phys. C: Solid State Phys., 1975, v.8, N0.23, p. 4135-4146.
51. Cottey A.A. Band theory of size-quantum efectron states in thin crystalline films.- Phys. Stat. Sol. (b), 1978, v.8, No.l, p.207-219.
52. Pendry J.В., Gurman S.I. Theory of surface states: General criteria for their existence.- Surface Sci., 1975, v.49, No.l, p.87-105.
53. Kondilarov B.D., Detcheva V., Petrova P.C. Interface states in a linear model of heterojunction.- Phys. Stat.Sol. (b), 1975, v.70, No.2, p.775-783.
54. Detcheva V. Kondilarov B.D. On the position of surface states in the energy gap of narrow gap semiconductors.-Surface Sci., 1977, v.64, No.2, p.785-789.
55. Kandilarov B.L., Detcheva V. Interface states in hetero-junctions between narrow-gap semiconductors.- J. Phys. C: Solid State H^ys., 1977, v.10, No.10, p.1703-1716.
56. Kandilarov B.D., Tashkova M.G., Petrova P.C., Detcheva V.- 314 1.fluence of the position of the interface boundary on the existence of interface states.- Phys. Stat. Sol.(b), 1978, v.86, No.l, p.425—430.
57. Kandilarov B.D., Primatarowa M.T. Energy-band profile and interface states in semiconductor heterojunctions.- J. Phys. C: Solid State :ihys,, 1979, v.12, p.L463-L467.
58. Detcheva V., Kandilarov B.D. Band-edge discontinuities and interface potential step in the two-band narrow-gap approach.-Phys. Stat. Sol. (b), 1979, v. 96, No.2,p.877-882.
59. Kandilarov B.D., Detcheva V., Primaterowa M.T. Energy-band profile and interface potential step in the theory of semiconductor heterojunctions.- Surface Sci., 1980, v.99, No.l, p.174-182.
60. Приматарова M.T., Стоянова И.С. К теории связанных состояний на границе раздела в деформированном гетеропереходе между двухатомными полупроводниками. Объедин. ин-т ядер, исслед. Дубна. Сообщ., 1980, IP17-80-355. -14с.
61. Бабиков В.В. Метод фазовых функций в квантовой механике.-М.: Наука, 1976. -288с.
62. Займан Дж. Вычисление блоховских функций. Пер. с англ./Под ред. М.И.Каганова. -М.: Мир, 1973. -159с.
63. Займан Дж. Современная квантовая теория. Пер. с англ./Под ред. В.Л.Бонч-Бруевича. М.: Мир, 1971. -288с.
64. Tamm I.E. Uber eine mogliche art der electronenbinding on kristalloberflachen.- Sow. Phys., 1932, v.l, No.3, p.733-744.
65. Тамм й.Е. 0 возможности связывания электронов на поверхности кристаллов. ЖЭТФ, 1933, т.З, №1, с.34-45.- 315
66. Goodwin E.T. The approximation of the nearly free electrons. Proc. Cambridge Phys., 1939» v.35, No.l,p.205-220, 221-231, 232-241,
67. Shokley W. On the surface states associated with a periodical potential.- Phys. Eev., 1939, v.56, No.l, p.317-323.
68. Дэвисон С., Левин Дж. Поверхностные (таммовские) состояния. Пер. с англ./Под ред. Д.А.Киржница. М.: Мир, 197I. -288с.
69. Garcia-Moliner F., Flores F. Theory of electronic surface states in semiconductors.- J. Phys. C: Solid State Phys., 1976, v.19, No.9, p.1609-1634.
70. Степанов B.E., Чалдышев В.А., Чернышев В.И. Теория поверхностных состояний в полупроводниках. В кн. Проблемы физической химии поверхности полупроводников. /Под ред. А.В.Ржа-нова. Новосибирск: Наука, 1978. с.5-43.
71. Литовченко В.Г. Основы физики полупроводниковых слоистых систем. Киев: Наук.думка, 1980. -282с.
72. Беленький А.Я. Электронные поверхностные состояния в кристаллах. УФЖ, 1981, т.134, №1, с.125-147.
73. Киселев В.Ф., Крылов О.В. Адсорбционные процессы на поверхности полупроводников и диэлектриков. -М.: Наука, 1978. -256с.
74. Крылов О.В., Киселев В.Ф. Адсорбция и катализ на переходных металлах и их оксидах. -М.: Химия, 1981. -288с.
75. Aerts Е. Surface states of one-dimensional crystals. -Physica, I960, v.26, No.12, p.1047-1072.
76. Phariseau P. Surface states in a one-dimensional perfect semi-infinite crystal. Physica, I960, v.26, No.9,p. 737-793.
77. Phariseau P. Subsurface statesin one-dimensional crystals.- Physica, I960, v.26, No.12, p.1192-1200.
78. Meijer Paul H.E. Surface states for "'dear" and "couted" one-dimensional Kronig-Penney models.- Physica, 1975, v.BC 79, No.5, p.215-229.
79. Neuberger J., Eutberford P.C. Tamm states at a distorted surf ace.-Physica, 1975, v.BC79, N0.3, p.215-229.
80. Steslicka JIaria. Kronig-Penney model for surface states.--Surface Sci., 1974, v.5, No.2, p.157-259.
81. Eoy C.L., Tripathi S.K. Surface states in deformed limit crystals.- Indian J. Phys., 1977, v.51, No.5, p.361-365.
82. Kolar M., Bartos I. On the role of the image potential in electron surface studies.- Czech. J. Phys., 1973» v.23B, No.2, p.179-187.
83. Peisert J. Surface states in a model one-dimensional crystal with external field.- Acta Phys. Pol., 1977, v.A52, No.l, p.17-22.
84. Levin J.D., Mark P. Evolution of surface-state theories. -Phys. Eev., 1969, v.182, N0.3, p.926-935.
85. Eubio J., Flores F. Eeconstruction and surface states of (III) surfaces of Si.-Ann. de Fisica, 1974, v.70, No.4, p.316-320.
86. Дьяконов М.И., Хаецкий А.В. Поверхностные состояния в бесщелевом полупроводнике. Письма в ЖЭТФ, 198I, т.33, №2,с.115-118.
87. Горюнов В.А., Чалдышев В.А., Чернышев В.И. Поверхностные состояния в арсениде галлия. Изв. вузов, Физика, 1979, №2, с.124-125.
88. Шека Д.И., Воскобойников A.M., Стриха В.И. Таммовские состояния у поверхности высокой симметрии кубического полупроводника типа АШВУ. -ФТП, 1979, т.13, №6, с.1068-1072.
89. Тавгер Б.А., Демиховский В.Я. Квантовые размерные эффекты в полупроводниковых и полуметаллических пленках.-УФН, 1968, т.96, №1, с.61-86.
90. Комник Ю.Ф. Физика металлических пленок. Размерные и структурные эффекты. М.: Атомиздат, 1979. -264с.
91. Garcia N. Као I.N., Strongin М. Galvan^omagnetic studies of bismuth films in the quantum-size effect region.-Phys. Eev. B: Solid State, 1972, v.5, No.6, p.2029-2039.
92. Кечиев M.M., Филатов O.H., Шилова M.B., Карпович И.А., Электрические свойства пленок антимонида индия переменной толщины. ФТП, 1974, т.8, №11, с.2080-2083.
93. Константинов О.В., Филатов О.Н., Шик А.Я. Квантовые размерные эффекты в полупроводниковых пленках с поверхностными состояниями. ФТП, 1973, т.7, №4, с.786-789.
94. Филатов О.Н., Карпович И.А. Структура края полосы поглощения тонких пленок антимонида индия. ФТТ, 1969, т.II, №6, с.1637-1638.
95. Стасенко А.Г. О зависимости ширины запрещенной зоны в пленках сульфида кадмия от их толщины. ФТТ, 1968,т.10, №1, с.248-252.
96. Dobozynski L., Cunningham S.L., Weinberg W.H. Existence of localized electronig states at interfaces.-Surface Sci., 1976, v.61, No.2, p.550-562.
97. Baraff G.A., Appelbaum J.A., Hamann D.E. Self-consistent calculation of the electronic structure at an abrupt GaAs-Ge interface.- Phys. Eev. Lett., 1977, v.38, No.5, p.237-240.
98. Pickett W.E., Louis S.G., Cohen M.L. Ge-GaAs (110) interface: a self-consistent calculation of interface states and electronic structure. Phys. Eev. Lett., 1977, v.39, No.2, p.109-112.
99. Herman Frank, Kasowski E.V. Electronic structure of (110) Ge-GeAs superlattices and interfaces.- Phys. Eev. B: Condens. Matter.(Solid State), 1978, v.17, No.2,p.672-674.
100. Djafari-Eouhani В., Dobrzynski L., Lanoo M. Surface and interface states at (III) semiconductors.- Surface Sci.,1978, v.78, No.l, p.24-36.
101. Djafari—Eouhani В., Dobrzynski L., Flores F., Lanoo M. Tejedor C. Interface states at (III) heterojunctions. -Surface Sci., 1979, v.80, No.l, p.134-140.
102. James D. Brasher, Dy K.S. Exact tight-binding solution- 319 for interface states and resonances.- Phys. Eev.B: Condens. Matter, 1980, v.22, No.10, p.4868-4-875.
103. Dandekar N.V., Madhuker A., Lowy D.N. Study of the electronic structure of model (110) surfaces and interfaces of semi-infinite III-V compound semiconductors. The CaSb-InAs system.- Phys. Eev. B: Condens. Matter, 1980, v.21, p.5687-5705.
104. Ghosh S.K., Lasker A.K. Energy states of the interface of two semi-infinite one-dimensional crystals.- Indian Journ. Phys., 1963, v.37, No.10, p.534-539.
105. Русанов M.M. Поверхностные состояния в граничной области гетеропереходов. Письма в ЖТФ, 1975, т.1, №5, с.216-220.
106. Туннельные явления в твердых телах. /Под ред. Э.Бурштейна и С.Лундквиста. Пер. с англ./ Под ред. В.И.Переля. -М.: Мир, 1973. -421с.
107. Иогансен Л.В. О возможности резонансного прохождения электронов в кристаллах через системы барьеров. ЖЭТФ, 1963, т.45, №2, с.207-213.
108. Иогансен Л.В. О резонансном туннелировании электронов в кристаллах. ЖЭТФ, 1964, т.47, №1, с.270-277.
109. Иогансен Л.В. Тонкопленочные электронные интерферометры. УФН, 1965, т.86, №1, с.175-179.
110. Гогадзе Г.А., Кулик И.О. Осцилляции туннельного тока из тонких металлических слоев. ФТТ, 1965, т.7, №2, с.432-440.
111. Роговская Э.Т. Влияние размерного квантования на проводимость систем металл-окисел-полупроводник. -ФТП, 1973, т.7, №6, с.1209-1212.
112. Стриха В.И. Теоретические основы работы контакта металл-полупроводник. Киев.: Наук.думка, 1974. -264с.
113. Чаплин А.В., Энтин М.В. Влияние локализованных состояний в барьере на туннелирование электронов. ЖЭТФ, 1974, т.67, №1, с.208-218.12J. Cott&y A.A. Resonant tunneling into a size-quantized, metal film.- Phys. Stat. Sol. (b), 1975, v.67, No.2, p.619-622.
114. Перельман Н.Ф. Теория туннелирования в криталлах при произвольных соотношениях между ширинами запрещенных и разрешенных зон. ЖЭТФ, 1977, т.73, №4, с.1526-1536.
115. Mukherji D., Nag В.Е. Tunneling of the electrons in semiconductor heterojunctions.- Solid State Electron.,1978', v.21, No.3, p.555-559.
116. Шкорняков C.M., Сальников М.П., Семилетов С.А. Туннелирование электронов через тонкие слои изолятора. ФТТ, 1978,т.20, №6, с.1699-1702.
117. Литовченко В.Г., Горбань А.П. Основы физики микроэлектронных систем металл-диэлектрик-полупроводник. Киев: Наук.думка, 1978. -316с.
118. Генкин В.М. О влиянии магнитного поля на туннельный ток между размерно-квантованными пленками. Письма в ЖЭТФ, 1980, т.32, №10, с.590-592.
119. Martinez J., Calleja Е., Piqueras J. Resonant tunneling in thermally degenerated molybdenum and platinum silicon Schottky diodes.-Phys. Stat. Sol.(a), 1980, v.60, No.l, p.277-296.
120. Король Э.Н., Посудиевский О.Ю. Влияние примесей на туннельный ток в полупроводниках. ФТПД981, т.15, №7, с.1396-1400.
121. Белоголовский М.А., Хачатуров А.И. Туннельная проводимость контактов металл-диэлектрик-металл с двуслойным изолятором. УФЖ, 1982, т.27, №2, с.305-307.
122. Chang L.L., Esaki L., Segmuler A., Tsu E. Eesonant electron transport in semiconductor barrier structures.- Proc. of the 12-th Int. Conf. on the Phys. of semicond. Stuttgart, 1974, p.688-692.
123. Peterson G.P., Swenson C.M., Maserjian J. Eesonance effect observed at the onset of Fowler-Nordheim tunneling in thin MOS structures.- Sol. State Electron., 1975, v.18, No.5,p.449-454.
124. Popova L.I., Antov B.Z., Vitanov P.K. Switching characteristics of MNOS divices at low fields. -Бокл. Болт. АН, 1978, Т.31, No.9, с.1107-1110.
125. Hesto P. Tunneling-effect through a thin insulating metal-insulator-metal structure.- Thin Solid Films, 1978, v.51, No.l, p.23-32.
126. Christensen N.S., Christensen N.E. Eesonant tunneling via localized impurity states in metal-insulator-metal junctions.- Solid State Commun., 1978, v.27, No.12, p.1259--1261.
127. Cheng Y.C. Electronic states at the silicon-silicon dioxide interface. Progr. Surface Sci., 1977, v.8, No.5, p.181-218.
128. Giber J. The localized states of interfaces and their physical models. New Developments in semiconductor physics.- Proc. Int. Summer. School, Szeded. July 1-6, 1979, Lecture Notes Phys., 1980, .v.122. p.226-252.
129. Ульянов В.В. О квазиклассическом движении в особых случаях.- УФЖ, 1973, т.18, №11, с.1848-1859.
130. Ульянов В.В. Особенности квантовомеханического движения в резко изменяющихся полях. Автореф. канд.дисс. Харьков,1975.
131. Popova L.I., Vitanov Р.К. Antov B.Z. Influence of interface states on the charge injection in MNOS memory structures.- 23 Int. Wiss. Kollog., Ilmenau, 1978, Heft 7. Vortragsr. C,2, C3, Ilmenau, 1978, p.93-96.
132. Гейман К.И., Глобус Т.Р., Матвеенко А.В., Можаев Е.А., Сейсян Р.П. Край фундаментального поглощения и эффект Шуб-никова-де-Гааза в гетероэпитаксиальных слоях теллуридов свинца-олова. ФТП, 1978, т.12, №6, с.1224-1226.
133. Яковлев А.С. МНОП-структуры и транзисторы на их основе.- Обзоры по электронной технике, №11(54), ЦНШ "Электроника", М., 1972.
134. Келдыш JI.B. О влиянии ультразвука на электронный спектр кристалла. ФТТ, 1962, т.4, №8, с.2265-2267.
135. Esaki L., Tsu R. Superlattice and negative differential conductivity in semiconductors.-IBM J. Res. Dev., 1970, v.14, No.l, p.61-65.
136. Овсянников М.И., Романов Ю.А., Шабанов В.И., Логинова Р.Г. Полупроводниковые периодические структуры. ФТП, 1970, т.4, №12, с.2225-2231.
137. Алферов 1,И., Жиляев Ю.В., Шмарцев Ю.В. Расщепление зоны проводимости в "сверхрешетке" на основе СаРх А11-х- ФТП, 1971, №1, с. 196-198.
138. Казаринов Р.Ф., Сурис Р.А. О возможности усиления электромагнитных волн в полупроводнике со сверхрешеткой. ФТП, 197I, т.5, №4, с.797-800.
139. Казаринов Р.Ф., Шмарцев Ю.В. Оптические явления, обусловленные носителями заряда в полупроводнике со сверхрешеткой.- ФТП, 197I, т.5, №4, с.800-802.
140. Романов Ю.А. Периодические полупроводниковые структуры из сверхтонких слоев. ФТП, 1971, т.5, №7, с.1434-1444.
141. Казаринов Р.Ф., Сурис Р.А. К теории электрические и электромагнитных свойств полупроводников со сверхрешеткой.- ФТП, 1972, т.6, №1, с.148-162.
142. Шик А.Я. Сверхрешетки периодические полупроводниковые структуры. - ФТП, 1974, т.З, №10, с.1841-1864.
143. Sai-Halasz G.A., Tsu В., Esaki L. A new semiconductor superlatice Appl. Phys. Lett., 1977, v.30, No.12, p.651-653.
144. Harrison W.A. Elementary theory of heterojunctions.- J. Vac. Sci. Technol., 1977, v.14, No.4, p.1016-1021.
145. Chang C.A., Ludeke E., Chang L.L., Esaki L. Molecular-beam epitaxy (MBE) of In-, vGa As and GaSb-, As. Appl. Phys. Lett., 1977, v.31, No.ll, p.759-761.
146. Sai-Halasz G.A., Esaki L., Harrison W.A. InAs-GaSb superlattice energy structure and its semiconductor-semi-metal transition.- Phys. Eev. Bi Condens. Matter, 1978, v.18, N0.6, p.2812-2818.
147. Sakaki H., Chang L.L., Sai-Halasz G.A., Chang C.A., Esaki L. Two-dimensional electronic structure in InAs-GaSb superlattices.- Solid State Commun., 1978, v.26, N0.9,p.589-592.
148. Nuchp E.N., Madhuker A. Tight binding study of the electronic structure of the InAs-GaSb (001) superlattice.-J. Vac. Sci. Technol., 1978, v.15, No.4, p.1530-1534.
149. Chang L.L., Kawai N., Sai-Halasz G.A., Ludeke В., Esaki L. Observation of semiconductor-semimetal transition in InAs-GaSb superlattices.- Appl. Phys. Lett., 1979, v.35, No.12, p.939-941.
150. Esaki L., Chang L.L. Semiconductor superlattices in high magnetic fields. J. Magn.-Mang Mater., 1979, v.11, No.1-3,p.208-215.
151. Bluyssen H., Maan J.C., Wyder P., Chang L.L., Esaki L.- 325
152. Cyclatron resonance in an InAs-GaSb superlattice.- Sol. State Commun., 1979, v.31, No.l, p.35-38.
153. Chang L.L., Esaki L. Electronic properties of InAs-GaSb 'superlattices.- Surface Sci., 1980, v.98, No.l, p.70-79.
154. Guldner X., Vieren J.P., Voisin P., Voos M., Chang L.L., Esaki L. Cyclotron resonance and far-infrared magneto-absorption experiments of semimetalic InAs-GaSb superlattices.- Phys. Eev. Lett., 1980, v.45, No.21, p.1719-1722.
155. Madhuker A., Sarma S.D. Intrinsic and extrinsic interface states at lattice matched interfaces between III-V compound semiconductors. The InAs-GaSb (110) system.- J. Vac. Sci. Technol.,1980, v.17, No.5, p.1120-1127.
156. Dohler G.H. Electron-Hole subbands at the GaAs-InAs interface.- Surface Sci., 1980, v.98, No.l, p.108-116.
157. Mendez E.E., Chang C.A., Chang L.L., Esaki L., Eollak F.H. Electrorefflectance study of semiconductor superlattices. -J. Phys. Soc. Jap., 1980, v.49, Suppl. A., p.1009-1012.
158. Voisin P., Guldner V., Vieren J.P., Voos M., Benoit Guil-laume C., Kawai N.I., Chang L.L., Esaki L. Optical studies of InAs-GaSb superlattices.- J. Phys. Soc. Jap., 1980, v.49, Suppl. A., P.1005-Ю08.
159. Chang L.L. Semiconductor-semimetal transition in InAs-GaSb superlattices.- J. Phys. Soc. Jap., 1970, v.49, Suppl. A., p.997-1004.
160. Maan J.C., Guldner Y., Vieren J.P., Voisin P., Voos M., Chang L.L., Esaki L. Three-dimensional character of semi-metallic InAs-GaSb superlattices.- Sol. State Commun.,1981,- 326 -v.39, No.5, p.683-686.
161. Mendez E.E., Chang L.L., Landgren G., Ludeke P., Esaki b. Pollak F.H. Observation of superlattice effects on the electronic bands of multilayer heterostructures.- Phys. Eev. Lett., 1981, v.46, No.18, p.1230-1234.
162. Esaki L. Advances in synthesized superlattices.- Lect. Notes Phys., 1982, v.152, p.240-251.
163. Maan J.C. Guldner Y., Vieren J.P., Voisin P., Voos M., Chang L.L., Esaki i. iHeasurement of the subbands widths in semimetallic In As-GaSb superlattices. -Surface Sci., 1982, v.113, No.1-3, p.313-314.
164. Maan J.C. Altarelli M. Sigg H., Wyder P., Chang L.L., Esaki L. Effective mass determination of a highly doped. InAs-GaSb superlattice using helicon wave propagation.-Surface Sci., 1982, v.113, No.1-3, p.347-352.
165. Малеев С.В. О трехмерном обобщении модели Кронига-Пенни.- ФТТ, 1965, т.7, №10, с.2990-2994.
166. Гаспарян В.М. Влияние граничных условий и дефектов структуры на энергетический спектр носителей заряда в тонких пленках. Дисс. на соиск. уч.ст.канд.физ.-мат.наук. Ереван, 198I. -113с.
167. Koster G.F., Slater J.C. Wave function for impurity levels. -Phys. Eev., 1954, v.95, No.5, p.1167-1176.
168. Лифшиц И.М. 0 структуре энергетического спектра и квантовых осцилляциях неупорядоченных конденсированных систем. УФН, 1964, т.83, №4, с.617-663.
169. Барышевский В.Г. Замечание о теории примесных уровней.- ФТТ, 1972, т.14, МО, с.3053-3054.
170. Паносян Д.Р., Гиппиус А.А. Электрон-фононное взаимодействие в люминесценции теллурида кадмия. Проблемы физики соединений AW1. Вильнюс,BifDibH.гос.ун-т, 1972, т.П,с.90-95.
171. Паносян I.P. Излучательная рекомбинация в кристаллах теллурида кадмия. Труды ФИАН СССР, 1973, т.68, с.147-202.
172. Gippius A.A., Panossian J.E., Chapnin V.A. Deep-centre ionization energies in CdTe determined from electrical and optical measurements.- Phys. Stat. Sol.(a), 1974, v.21, No.2, p.753-758.
173. Паносян Ж.P., Меликсетян В.А., Касаманян З.А. О среднем числе фононов, испускаемых при оптических переходах в полупроводниках. ФТП, 1976, т.10, №5, с.918-922.
174. Копылов А.А., Пихтин А.Н. Электрон-фононное взаимодействие на "мелких" донорах в фосфиде галлия. Письма в ЖЭТФ, 1976, т.24, №4, с.193-195.
175. Бычков Ю.А. Об энергетическом спектре одной случайной одномерной системы. Письма в ЖЭТФ, 1973, т.17, №5, с.266-269.
176. Hirota Т., Ishii К. Exactly soluable models of one-dimensional disordered systems.- Progr. Theor. Phys., 1971, v,45 No.5, P.1713-1715.
177. Ishii-K. Localization of eigenstates and transport phenomena in the one-dimensional disordered system.- Progr. Theor. Phys. Suppl., 1973, No.53, p.77-138.
178. Овчинников А.А. Об энергетическом спектре неупорядоченной трехмерной системы. Письма в ЖЭТФ, 1973, т.18, №2, с.145-147.
179. Костадинов И.З. О поведении плотности уровней в неупорядоченных цепочках. Письма в ЖЭТФ, 1975, т.21, №2, с.105-108.
180. Мотт Н. Электроны в неупорядоченных структурах. Пер. с англ. /Под ред. В.Л.Бонч-Бруевича. -М.: Мир, 1969. -172с.
181. Мотт Н., Дэвис Э. Электронные процессы в некристаллических веществах. Пер.с англ. /Под ред. Б.Т.Коломийца. -М.: Мир,1972. -472с.
182. Бонч-Бруевич В.Л., Тябликов С.В. Метод функций Грина в статистической механике. -М.: Физматгиз, 1961. -312с.
183. Hostler L., Pratt Е.Н. Coulomb Green's function in closed form.- Phys. Eev. Lett., 1963, v.10, No.11, p.469-471
184. Hostler L. Coulomb Green's function and Furry approximation.- J. Math. Phys., 1964, v.5, No.5, p.591-611.
185. Бонч-Бруевич В.Л., Миронов А.Г. К теории электронной плазмы в магнитном поле. ФТТ, I960, т.2, N23, с.489-498.
186. Цицишвили Е.Г. Сильно легированный полупроводник в магнитном поле. ФТТ, 1966, т.8, №4, C.II93-I20I.
187. Countaroulis G. Green-function of the free electron in a uniform magnetic field.- Phys. Lett., 1972, v.40A, No.2, p.132-134.
188. Касаманян З.А. Поведение сильно легированного полупроводника в электрическом поле. Вестн.Московск.унив., сер. физ.-астр., 1966, №6, с.41-48.
189. Фейнман Р., Хиббс А. Квантовая механика и интегралы по траекториям. Пер. с англ. /Под ред. В.С.Барашенкова. М.: Мир, 1968. -382с.
190. Моуег С.A. On the Green function for a particle in a uniform electric field.- J. Phys. C: Solid State Phys.,1973, v.6, No.9, p.1461-1466.
191. Четвериков В.М. Функция Грина пространственного осциллятора в переменном электромагнитном поле. Изв.вузов, Физика, 1975, № 3, с.17-22.
192. Hioe F.T. Green function for the cubic crystal.- J. Math. Phys., 1978, v.19, No.5, p.1064-1067.
193. Lukes Т., Morgan D.J., Joshua S. Calculation of periodic Green functions, with application to impurity levels in semiconductors.- J*Phys. C: Solid State Plays'., 1971 >v.4, No.16, p.2623-2634.
194. Ройцин А.Б. Теория глубоких центров в полупроводниках. ФТП, 1974, т.8, И, с.3-29.
195. Латтинжер Дж., Кон В. Движение электронов и дырок в возмущенных периодических полях. В кн. Проблемы физики полупроводников. Сборник статей. Пер. с англ. /Под ред. В.Л.Бонч-Бруевича. М., ИЛ, 1957, с.515-539.
196. Келдыш Л.В. Глубокие уровни в полупроводниках. -ЖЭТФ, 1963, т.45, №2, с.364-375.
197. Lucovsky G. On the photoionization of deep impuritycenters in semiconductors.- Solid State Commun., 1965f v.3, No.9, p.299-302.
198. Бонч-Бруевич В.Л. К теории захвата носителей заряда глубокими ловушками в гомополярных полупроводниках. Вестн. Московск.унив. Физ.-астр., 197I, №5, с.586-593.
199. Ярцев B.M. К теории оптического поглощения в полупроводниках с глубокими уровнями в запрещенной зоне. -Вестн.Московок.унив. Физ.-астр., 1975, №1, с.3-8.
200. Перель В.й., Яссиевич И.Н. Модель глубокого примесного центра в полупроводниках в двузонном приближении. ЖЭТФ, 1982, т.82, №1, с.237-245.
201. Фирсов О.Б. К расчету эффективной массы электрона в периодическом поле у границ зоны.-ЖЭТФ, 1975,т.68, N22,0.568-576.
202. Долгов Е.Л., Дугаев В.К., Петров П.П. Примесные состояния в узкощелевых и бесщелевых полупроводниках. Изв. вузов, Физика, 1977, №1, с.108-111.
203. Фреман Н., Фреман П.У. ВКБ-приближение. Пер. с англ./Под ред. А.А.Соколова. -М.: Мир, 1967. -168с.
204. Камке Э. Справочник по обыкновенным дифференциальным уравнениям. -М.: Наука, 1976. -576с.
205. Касаманян Б.А. О возможности образования экситонных молекул в полупроводниках. -ФТП, 1967, т.1, N23, с.415-421.
206. Харрисон У. Псевдопотенциалы в теории металлов. Пер. с англ. Г.Л.Краско и Р.А.Суриса. -М.: Мир, 1968, -366с.
207. Хейне В., Коэн М., Уэйр Д. Теория псевдопотенциалов. Пер. с англ./Под ред. В.Л.Бонч-Бруевича. -М.: Мир, 1973. -557с.
208. Лифшиц Оптическое поведение неидеальных кристаллических решеток в инфракрасной области. ЖЭТФ, 1942, т.12, N23-4, с.117-180.
209. Лифшиц И.М., Розенцвейг Л.Н. Динамика кристаллической решетки, заполняющей полупространство. ЖЭТФ, 1948, №11,1. С.1012-1022.
210. Марадудин А., Монтролл Э., Вейсс Дж. Динамическая теория кристаллической решетки в гармоническом приближении. Пер. с англ. /Под ред. М.И.Петрашень. -М.: Мир, 1965.
211. Марадудин А.А. Дефекты и колебательный спектр кристаллов. Пер. с англ. И.П.Ипатовой. -М.: Мир, 1968. -432с.
212. Косевич A.M. Основы механики кристаллической решетки. -М.: Наука, 1972. -280.с.
213. Inkson J.C. Many-body effects at metal-semiconductor junctions. I. Surface plasmons and electron-electron screened interaction.- J. Phys. C: Solid State Phys.,1972, v.5, No.18, p.2599-2610.
214. Рытова H.C. Экранированный потенциал точечного заряда в тонкой пленке. -Вестн.Московск.унив. Физ.-астр., 1967, №3, с.30-37.
215. Чаплик А.В., Энтин М.В. Заряженные примеси в очень тонких слоях. -ЖЗТФ, 197I, т.61, №6, C.2496-2503.
216. Келдыш Л.В. Кулоновское взаимодействие в тонких пленках полупроводников и полуметаллов. Письма в ЖЭТФ, 1979, т.29, Ml, с.716-719.
217. Ильченко Л.Г., Пашицкий Э.А., Романов Ю.А. Электростатический потенциал зарядов в слоистых системах с пространственной дисперсией. ФТТ, 1980, т.22, №9, с.2700-2710.
218. Ильченко Л.Г., Пашицкий Э.А. Взаимодействие зарядов в слоистых системах. ФТТ, 1980, т.22, Ml, с.3395-3401.
219. Арутюнян Г.М., Неркарарян Х.В. Особенности кулоновского взаимодействия в периодических полупроводниковых структурах. ФТТ, 1981, т.23, М, с.225-228.
220. Арутюнян Г.М., Неркарарян Х.В. Экранированный потенциал точечного заряда в сверхрешетке. -Изв. АН Арм.ССР, Физика, 1982, т.17, №2, с.63-67.
221. Проблемы физики поверхности полупроводников (Под ред. О.В. Снитко). Киев.: Наук.думка, 1981. -331с.
222. Степанов В.Е., Чалдышев В.А. Таммовские состояния в полупроводниках. ФТТ, 1970, т.12, №6, с.167I-1677.
223. Garcia N. Surface states of GaAs (110): pseudopotential calculations.- Solid State Commun., 1975» v.17, No.3, p. 397-399.
224. Elices:M., Flores P., Louis E., Eubio J.Pseudopoten tial calculation of the surface band structure of Si (111) faces.- J. Phys. Cs Solid State Phys. 1974, v.7, No.17, p.3020-3032.
225. Вир Г.Л., Пикус Г.Е. Симметрия и деформационные эффекты в полупроводниках. ~М.: Наука, 1972. -584с.
226. Luttinger J.M. Quantum theory of cyclotron resonance in semiconductors:General theory.- Phys. Eev., 1956, v.102, No.4, p.1030-1041.
227. Киттель Ч. Введение в физику твердого тела. Пер. с англ. /Под ред. А.А.Гусева. М.: Наука, 1978. -791с.
228. Дворянин В.Ф., Митягин А.Ю. Дифракция медленных электронов -метод исследования атомной структуры поверхностей. Кристаллография, 1967, т.12, №6, c.III2-II34.
229. Руденко А.И., Протопопов О.Д. Дифракция медленных электронов как метод исследования поверхности эмиттеров. Обзоры по электронной технике, вып.3(79), ЦНИИ "Электроника", М. 1973. -63с.- 333
230. Наумович А.Г. Исследование структуры поверхностей методом дифракции медленных электронов: достижения и перспективы. -УФЖ, 1978, т.23, №10, с.1585-1607.
231. Pendry J.В. Low energy electron difractioni-London, Acad. Press., 1974. -407p.
232. Шульман A.P., Фридрихов G.A. Вторично-эмиссионные исследования твердого тела. М.: Наука, 1977. -551с.
233. Бродский A.M., Урбах М.И. Отражение медленных электронов и спектр кристаллов. ФТТ, 1975, т.19, №9, с.2669-2676.
234. Погорельский К.С., Дворянин В.Ф., Митягин А.Ю. Рассеяние электронов низкой энергии на трехмерном потенциале Кронига-Пенни. ФТТ, 1969, т.II, №11, с.3225-3229.
235. Pendry J.В. Ion core scattering and low energy electrondiffraction. I. J. Phys. C; Solid State Phys., 1971, v.4, No.16, p.2501-2513.
236. McEae E.G., Jennings P.J. Surface states resonances in low-energy electron diffraction.- Surface Sci., 1969, v.15, No.2, p.345-348.
237. Jennings P.J., Price G.L. The surface harries structure of copper (001). Surface Sci., 1980, v.93, No.2-3, p.L124-128.
238. Flietner H. The E(k) relation for a two-band scheme of semiconductors and the application to the metal-semiconductor contact.- Phys. Stat. Sol.(b), 1972, v.54, No.l, p.201-203.
239. Flietner H. Spectrum and nature surfaces states.- Sur-^ face.Sci.:, 1974, v.46, No.l, p.251-264.
240. Kashkarov P.K. Kiselev V.P. Kozlov S.N. Investigationof slow surface states on a real germanium surface by the optical exitation technique.- Surface Sci., 1978, v.75, No.2, p.231-238.
241. Киселев В.Ф., Крылов O.B. Электронные явления в адсорбции и катализе на полупроводниках и диэлектриках. М.: Наука, 1979. -234с.
242. Grinev V.I., Kiselev V.E. On the nature and energy spectrum of surface recombination centres. Phys. Stat. Sol. (a), 1981, v.A66, No.2, p.493-502.
243. Flietner H. Sinh N.D. Character of Si-Si02 interface states from analisis of the CV term spectra.- Phys.Stat. Sol.(a), 1976, v.37, No.2, p.533-539.
244. Elietner H., Missel W. Sinh N.D. Interface states of the Si-Si02 system and their seperation in groups.- Phys. Stat. Sol.(a), 1977, v.43, No.l, p.K99-K101.
245. Okuyama Katsuro, Sugawara Sumio, Kumagai Vasuji. Surface state density of evaporated Si02~Te MIS structure. -Jap. J. Appl. Phys., 1980, v.19, No.11, p.2299-2300.
246. Hasegawa H., Sawada T. On the distrubution and properties of interface states at compound semiconductor-insulator interfaces.- Surface Sci., 1980, v.98, No.1-3,1. P.597-598.
247. Singh J., Madhukar A. Origin cf U-Shaped background density of interface states of nonlattice matched semiconductor interfaces.- J. Vac. Sci. Technol., 1981, v.19, No.3, p.437-442.
248. Tejedor C., Flores P., Alvarellos E. Surface states and photoemission at (111) Si. -Phys. Lett., 1977, v.A62,1. No.2, p.99-Ю1.
249. Kreutz E.W. Character of surface states, at GaAs surfaces. Phys. Stat. Sol. (a), 1979, v.56, No.2, p.687-696.
250. Тавгер Б.А., Демиховский В.Я. О некоторых эффектах, обусловленных дискретностью энергетического спектра электрона в тонких пленках. ФТТ, 1963, т.5, №2, с.644-648.
251. Коган В.Г., Кресин В.З. Поглощение света в тонких пленках при наличии квантового размерного эффекта. ФТТ, 1969, т.II, №11, с.3230-3235.
252. Филатов О.Н., Карпович И.А. Квантовые размерные эффекты в тонких пленках inSb . Письма в ЖЭТФ, 1969, т.10, №5, с.224-226.
253. Paskin A., Singh A. Boundary conditions and quantum effects in thin superconductor films. Phys. Eev.,1965, v.140, N0.6A, p.1965-1967.
254. Green M. Hall effect and mobility in thin films of bismuth.- Bull. Amer. Phys. Soc., 1965, ser.II, v.10, p.111.
255. Огрин Ю.Ф., Луцкий B.H., Шефталь P.M., Арифова М.У., Елин-сон М.И. Квантовые размерные эффекты в тонких пленках висмута. -Радиотехника и электроника, 1967, т.12, №4,с.748-749.
256. Шик А.Я. Концентрация носителей в неоднородных образцах и пленках полупроводников. ФТТ, 1974, т.16, №9,с.2801-2803.
257. Милне А., Фойхт Д. Гетеропереходы и переходы металл-полупроводник. Пер. с англ. /Под ред. В.С.Вавилова. М.: Мир, 1975. -432с.
258. Шарма Б.Л., Пурохит Р.К. Полупроводниковые гетеропереходы. Пер. с англ. /Под ред. Ю.В.Гуляева. -М.: Сов.Радио, 1979. -232с.
259. Шик А.Я., Шмарцев Ю.Б. О влиянии состояний на границе раздела на свойствах гетероперехода. ФТП, 1980, т.14, №9, с.1724-1727.
260. Шик А.Я. Вольтамперная и вольтфарадная характеристики реальных гетеропереходов. ФТП, 1980, т.14, №9, с.1728-1738.
261. Appelbaum J.A., Hamann D.E. Surface-induced charge disturbances in filled bands.- Phys. Eev. B: Condens. Matter, 1974, v.10, No.12, p.4973-4979.
262. Бом Д. Квантовая теория. Пер. с англ. /Под ред. С.В.Вонсов-ского. Изд. 2-е, исправл. М.: Наука, 1965. -727с.
263. Пастур Л.А., Фельдман Э.П. О коэффициенте прохождения волны через толстый слой случайно-неоднородной среды. ЖЭТФ,1974, т.67, №2, с.487-493.
264. Лифшиц И.М., Кирпиченков В.Я. О туннельной прозрачности неупорядоченных систем. ЖЭТФ, 1979, т.77, №3, с.989-1016.
265. Бонч-Бруевич В.Л., Звягин И.П., Кайпер Р., Миронов А.Г., Эндерлайн Р., Эссер Б. Электронная теория неупорядоченных полупроводников. -М.: Наука, 1981. -383с.
266. Шкловский Б.И., Эфрос А.Л. Электронные свойства легированных полупроводников. -М.: Наука, 1979. -416с.
267. Корень И.Н., Викторов И.А., Граменок В.Д. Электрические и фотоэлектрические свойства гетероструктур р- GaS£-fi-ZnSe: Тез. докл. 2-ой Всесоюзн. конф. по физическим процессам в полупров. гетероструктурах, Ашхабад, 1978, т.1, с.176-177.
268. Грибников З.С. Отрицательная дифференциальная проводимость в многослойной гетероструктуре. ФТП, 1972, т.6, №2, с.1380-1382.
269. Kroemer Н. Quasi-electric and quasi-magnetiс fields in noninform semiconductors.- ECA. Eev., 1957, v.18, N0.3,p. 332-342.
270. Cora Т., Williams F. Theory of electronic states and transport in graded mixed semiconductors.- Phys. Eev.,1969, v.177, No.3, p.1179-1182.
271. Eeis H. Melquist J.L. Dynamics of an electron in a lattice of leanarly varying <f-function potentials.- Phys. Eev. B: Solid State, 1974, v.10, N0.6, p.2573-2580.
272. Займан Дж. Принципы теории твердого тела: Пер. с 2-го англ. изд. /Под ред. В.Л.Бонч-Бруевича. -М.: Мир, 1974. -472с.
273. Chahold J., Ferrari L., Eusso G. Basic transfer matrics formalism.- Nouvo Cimento, 1975, v.26B, No.l, p.171-180.
274. Виноградова М.Б., Руденко O.B., Сухоруков А.П. Теория волн. -М.: Наука, 1979. -383с.
275. Mukherji D., Nag В.Е. Transferee electron effective mass in a semiconductor superlattice.-Phys. Eev. B: Solid State, 1980, v.21, No.12, p.5857-5859.
276. Касаманян З.А. К теории примесных уровней. ЯЭТФ, 1971, т.61, №9, с.1215-1220.
277. Касаманян З.А. Энергетический спектр модельных многослойных периодических структур. -Изв. АН Арм.ССР, Физика,1974, т.9, №2, с.211-219.
278. Касаманян З.А. Об энергетическом спектре одномерной периодической системы с модельным случайным потенциалом. ЖЭТФ, 1975, т.69, №7, с.281-285.
279. Касаманян З.А. Энергетические уровни нарушений в модельной многослойной периодической структуре. Изв. АН Арм.ССР, Физика, т.II, №2, с.89-93.
280. Касаманян З.А. К одномерной теории поверхностных состояний.- Изв. АН Арм.ССР, Физика, 1976, т.II, №6, с.436-443.
281. Касаманян З.А., Юзбашян Э.С. Об отражении частицы на границе раздела двух сред. Молодой научн.работн. ЕрГУ,1976, Х£(24), с.59-63.
282. Дарбасян А.Т., Касаманян З.А. О контактных уровнях на границе раздела двух идеальных подсистем. Изв. АН Арм.ССР, Физика, 1977, т.12, №1, с.75-77.
283. Варданян А.А., Касаманян З.А. Поверхностные состояния в улучшенной модели потенциала поверхности. Изв. АН Арм. ССР, Физика, 1977, т.12, №2, с.129-133.
284. Касаманян З.А. Энергетический спектр электрона в тонкой пленке с учетом произвольного одномерного поля внутри нее.- Изв.вузов, Физика, 1977, N25, с.7-11.
285. Касаманян З.А., Юзбашян Э.С. Об энергетическом спектре сверхрешетки из гетеропереходов. -ФТТ, 1977, т.19, №2, с.563-566.
286. Касаманян З.А., Юзбашян Э.С. Функция Грина одномерной контактной задачи. Ученые записки ЕрГУ, 1977, №3, с.43-46.
287. Гаспарян В.М., Касаманян З.А. Метод функций Грина в теории поверхностных состояний. В сб.: У1 Всесоюзное совещание по физике поверхностных явлений в полупроводниках (Киев, 1977). Тезисы докладов. -Киев, 1977, т.1, с.73.
288. Барсегян С.Х., Касаманян З.А. О поглощении света в полупроводниковых тонких пленках с участием поверхностных состояний. Изв. АН Арм.ССР, Физика, 1978, т.13, М, с.25-28.
289. Касаманян З.А. К теории глубоких уровней в полупроводниках в резко меняющихся полях. В сб.: IX совещание по теории полупроводников (Тбилиси, 1978). Тезисы докладов. -Тбилиси: изд. ТУ, 1978, с.206.- 339
290. Касаманян З.А., Юзбашян Э.С. Об экспериментальной возможности определения функции Грина в трехмерном кристалле методом дифракции медленных электронов. Ученые записки ЕрГУ, 1979, №1, с.52-57.
291. Касаманян З.А., Гаспарян В.М., Варданян А.А. К.теории электронного энергетического спектра квантованных тонких пленок.- Изв. АН Арм.ССР, Физика, 1979, т.14, №2, с.107-114.
292. Касаманян З.А., Мовсисян С.М., Гаспарян В.М. Энергетический спектр дефектов в одномерной периодической системе.- Изв. АН Арм.ССР, Физика, 1979, т.14, №3, с.185-191.
293. Юзбашян Э.С., Касаманян З.А. К теории отражения медленных электронов от тонкой кристаллической структуры. Изв. АН Арм.ССР, Физика, 1979, т.14, №4, с.247-252.
294. Варданян А.А., Гаспарян В.М., Касаманян З.А. О распределении поверхностных и пленочных состояний в полупроводниках при случайных граничных условиях. Изв. вузов, Физика, 1979, N6, с.123. (Деп. в ВИНИТИ, №. 1515 - 79. -Юс.).
295. Касаманян З.А., Юзбашян Э.С. Влияние контактных состояний на туннельное прохождение носителей заряда в МНОП структурах. ФТП, 1979, т.13, №10, с.2074. (Деп. в ВИНИТИ, 1979, № ДЭ-6139. - Юс.).
296. Гаспарян В.М., Касаманян З.А. Поверхностные состояния в по- 340 лупроводниках при учете дефектов структуры в приповерхностном слое. Аштарак, 1979. - 11с. - Рукопись представлена ИРФЭ АН Арм.ССР 18 декабря 1978г. Деп. в ВИНИТИ 1979, №2313-79.
297. Kasamanyan Z.H., Yuzbashyan E.S. Green's function of heterojunction superlattice.- Phys.Stat.Sol.(b), 1980, v.97, No.l, p.K149-K152.
298. Gasparyan V.M., Kasamanyan Z.H., Energy spectrum of thin film heterostructure.- Phys. Stat. Sol. (b), 1980, v.98, No.2, p.435-438.
299. Касаманян 3.A., Юзбашян Э.С. К теории энергетического спектра сверхрешетки из гетеропереходов. I. Ученые записки ЕрГУ, 1980, №2, с.65-72.
300. Касаманян З.А., Юзбашян Э.С. К теории энергетического спектра сверхрешетки из гетеропереходов. П. Ученые записки ЕрГУ, 1980, №5, с.56-59.
301. Касаманян З.А., Гаспарян В.М. Поперечная эффективная масса поверхностной подзоны в полупроводниках с узкой запрещенной зоной. Изв. АН Арм.ССР, Физика, 1981, т.16, №5, с.402-405.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.