Аппроксимативный анализ взаимных корреляционно-спектральных характеристик временных рядов с помощью ортогональных функций Лагерра тема диссертации и автореферата по ВАК РФ 05.13.18, кандидат технических наук Иващенко, Антон Владимирович
- Специальность ВАК РФ05.13.18
- Количество страниц 189
Оглавление диссертации кандидат технических наук Иващенко, Антон Владимирович
Список сокращений.
Введение.
1 Анализ существующих методов и средств исследования взаимных корреляционно-спектральных характеристик временных рядов.
1.1 Основные понятия и определения во взаимном корреляционно-спектральном анализе.
1.2 Обзор существующих методов аппроксимативного анализа корреляционно-спектральных характеристик случайных процессов с различной дискретизацией.
1.3 Обзор существующих автоматизированных систем взаимного корреляционно-спектрального анализа временных рядов.
1.4 Постановка задачи исследования.
2 Аппроксимативные методы анализа взаимных корреляционноспектральных характеристик временных рядов.
2.1 Аппроксимация взаимных корреляционных функций ортогональными функциями Лагерра.
2.2 Построение аналитических выражений для взаимных спектральных плотностей мощности.
Выводы и результаты.
3 Исследование методов аппроксимативного взаимного корреляционно-спектрального анализа временных рядов.
3.1 Анализ методических погрешностей оценки взаимных корреляционных функций.
3.2 Исследование методов и средств для аппроксимативного взаимного корреляционно-спектрального анализа временных рядов методом имитационного моделирования.
Выводы и результаты.
4 Комплекс программных средств для аппроксимативного анализа взаимных корреляционно-спектральных характеристик временных рядов.
4.1 Описание программного комплекса.
4.2 Подсистема аппроксимативного анализа взаимных корреляционных функций в составе авотматизированной системы.
4.3 Подсистема имитационного моделирования в составе автоматизированной системы.
Выводы и результаты.
5 Результаты экспериментальных исследований.
Основные результаты.
Рекомендованный список диссертаций по специальности «Математическое моделирование, численные методы и комплексы программ», 05.13.18 шифр ВАК
Аппроксимативный анализ взаимных корреляционно-спектральных характеристик временных рядов с помощью ортогональных функций Лежандра, Дирихле2006 год, кандидат технических наук Графкин, Алексей Викторович
Ортогональные модели и программный комплекс анализа структурно-спектральных характеристик случайных процессов со стационарными приращениями2009 год, кандидат технических наук Графкин, Владимир Викторович
Аппроксимативный анализ законов распределения ортогональными полиномами и нейросетевыми моделями2007 год, кандидат технических наук Лёзина, Ирина Викторовна
Программный комплекс аппроксимативного анализа законов распределения случайных процессов ортогональными функциями2006 год, кандидат технических наук Дегтярева, Ольга Александровна
Методы, алгоритмы и комплекс программ аппроксимативного корреляционно-спектрального анализа в ортогональном базисе Бесселя2013 год, кандидат технических наук Соловьева, Яна Владимировна
Введение диссертации (часть автореферата) на тему «Аппроксимативный анализ взаимных корреляционно-спектральных характеристик временных рядов с помощью ортогональных функций Лагерра»
Актуальность темы
Функциональные характеристики взаимосвязи — взаимные корреляционные функции (ВКФ) и спектральные плотности мощности - занимают особое место в статистическом анализе и используются для решения самых разнообразных задач научных исследований, связанных с обработкой больших массивов данных, имеющих вероятностный (случайный) характер. Они, как правило, требуют серьезных вычислительных затрат, однако несут в себе существенную информацию об исследуемых процессах. Исходной информацией для построения этих характеристик являются временные ряды, представленные совокупностью отсчетов, причем, как значений, так и меток времени. Учитывая тот факт, что на практике часто встречаются случайные процессы с малой выборкой или неравномерной дискретизацией, весьма актуальным является получение возможности определения аналитических выражений для взаимных корреляционно-спектральных характеристик неэквидистантных временных рядов.
Задача аппроксимативного анализа корреляционно-спектральных характеристик случайных процессов сводится к их численному определению и получению аналитического выражения характеристики. Такое выражение может быть найдено путем однозначного разложения функции в некоторой полной и ортогональной системе негармонических функций, выбор которой тесно связан с видом исследуемых функциональных характеристик. Для большинства акустических и машинных сигналов наиболее удобными являются функции Лагерра.
Решению задач взаимного корреляционно-спектрального анализа многочисленными исследователями уделялось большое внимание, однако интерес к ним не пропадает. Большой вклад в их решение внесли Лампард Д.Л., Соучек Б, Артамонов Г.Т., Артоболевский И.И., Батищев В.И., Волков И.И., Горелов Г.В., Горбацевич Е.Д., Губарев В.В., Дедус Ф.Ф., Прохоров С.А., Мирский Г.Я., Романенко А.Ф., Сергеев Г.А., Цветков Э.И. и др.
Существующие современные автоматизированные системы математических расчетов позволяют на базе известных алгоритмов решить лишь часть задач взаимного корреляционно-спектрального анализа временных рядов, включая неэквидистантные. Практически все системы позволяют использовать ортогональные функции, однако отсутствуют алгоритмы аппроксимации с использованием ортогональных функций в качестве аппроксимирующих выражений.
В связи с этим актуальной представляется задача разработки алгоритмов аппроксимации взаимных корреляционно-спектральных характеристик временных рядов ортогональными; функциями Лагерра и построения комплекса программ, реализующего эти алгоритмы.
Целью работы является разработка алгоритмов и комплекса программ для аппроксимативного взаимного корреляционно-спектрального анализа временных рядов, включая неэквидистантные.
Задачи исследования
1. Разработка и исследование алгоритмов аппроксимации взаимных корреляционных функций и спектральных плотностей мощности ортогональными функциями Лагерра.
2. Разработка комплекса программ аппроксимативного взаимного корреляционно-спектрального анализа, позволяющего производить:
• моделирование временных рядов, включая неэквидистантные, с различными взаимными корреляционно-спектральными характеристиками;
• оценку взаимных корреляционных функций временных рядов, включая неэквидистантные;
• аппроксимацию взаимных корреляционных функций параметрическими моделями — функциями заданного вида и ортогональными функциями Лагерра;
• определение спектральной плотности мощности по параметрам аппроксимирующих выражений;
• аппроксимацию взаимной спектральной плотности мощности ортогональными функциями Лагерра;
• автоматизированное исследование погрешностей аппроксимации на основе метода имитационного моделирования.
3. Проведение и обработка результатов экспериментов с целью апробации предлагаемых алгоритмов и комплекса программ.
Научная новизна работы заключается в следующих положениях:
• Предложен алгоритм; аппроксимации взаимных корреляционных функций ортогональными функциями Лагерра с разбиением взаимной корреляционной функции на две ветви относительно точки экстремума.
• Предложены алгоритмы определения интервалов корреляции и моментов взаимных корреляционных функций, взаимной спектральной плотности мощности неэквидистантных временных рядов на основе результатов аппроксимации взаимных корреляционных функций.
• Предложен алгоритм аппроксимации взаимных спектральных плотностей мощности ортогональными функциями Лагерра и построения аналитических выражений для взаимных корреляционных функций по результатам аппроксимации.
• • Исследованы алгоритмы аппроксимации взаимных корреляционных функций и спектральных плотностей мощности ортогональными функциями; Лагерра.
Практическая ценность работы заключается в разработке комплекса программ аппроксимативного корреляционно-спектрального анализа, позволяющего решать задачи: моделирования временных рядов, включая неэквидистантные; оценки взаимных корреляционных функций; аппроксимации взаимных корреляционно-спектральных характеристик, - а также в результатах определения звукопоглощающих характеристик конструкций и исследования возбуждения виброакустических колебаний в шестеренном качающем узле.
Положения, выносимые на защиту:
• Алгоритмы аппроксимации взаимных корреляционных функций временных рядов ортогональными функциями Лагерра с выделением точки экстремума.
• Алгоритмы аппроксимации взаимных спектральных плотностей мощности случайных процессов ортогональными функциями Лагерра по результатам аппроксимации взаимных корреляционных функций и с раздельной аппроксимацией вещественной и мнимой частей.
• Комплекс программ аппроксимативного взаимного корреляционно-спектрального анализа временных рядов, включая неэквидистантные.
Внедрение результатов работы
Результаты работы внедрены в институте акустики машин при СГАУ, в специализированном конструкторском бюро ОАО "Моторостроитель", в учебном процессе кафедры ИСТ СГАУ, на ряде предприятий г. Уральска.
Апробация работы
Основные положения и результаты работы докладывались и обсуждались на международных конференциях "Надежность и качество" (Пенза, 2002, 2003), "Проблемы автоматизации и управления в технических системах" (Пенза, 2004), "Интерактивные системы: Проблемы человеко-компьютерного взаимодействия" (Ульяновск, 2003), "Проблемы и перспективы развития двигателестроения" (Самара, 2003), научно-технической конференции с участием международных специалистов "Датчики и преобразователи информации систем измерения, контроля и управления" (2003), межвузовских научно-технических конференциях (Самара).
По результатам исследований опубликовано 18 печатных работ, в том числе 1 монография (в соавторстве) и 10 статей.
Диссертация состоит из введения, пяти глав и заключения. Основное содержание работы изложено на 147 страницах. Список использованных источников включает 110 наименований. Два приложения размещены на 42 страницах.
Похожие диссертационные работы по специальности «Математическое моделирование, численные методы и комплексы программ», 05.13.18 шифр ВАК
Построение моделей корреляционно-спектральных характеристик методом аналитических разложений2011 год, кандидат технических наук Куликовских, Илона Марковна
Дискретное преобразование Фурье неэквидистантных временных рядов2004 год, кандидат технических наук Широков, Олег Юрьевич
Программный комплекс аппроксимации корреляционно-спектральных характеристик случайных процессов параметрическими моделями2004 год, кандидат технических наук Кудрина, Мария Александровна
Программный комплекс аппроксимации двумерных плотностей вероятности2009 год, кандидат технических наук Лёзин, Илья Александрович
Классификация и диагностика систем в рамках спектрально-аналитического подхода2006 год, кандидат физико-математических наук Дергузов, Аркадий Владимирович
Заключение диссертации по теме «Математическое моделирование, численные методы и комплексы программ», Иващенко, Антон Владимирович
Выводы и результаты
1. Разработана структура автоматизированной системы аппроксимативного взаимного корреляционно-спектрального анализа. Проведено проектирование по методологии UML. Система реализована на языке JAVA.
2. Разработан алгоритм задания параметров разработанного программного комплекса и формы данных результата. При этом при анализе неэквидистантных временных рядов интервал принудительной дискретизации может быть задан как средний (в случае адаптивной дискретизации, аддитивной или с дрожанием) или минимальный в потоке (в случае потери отсчетов) или определен вручную на основе информации об исследуемых процессах.
3. В систему включена подсистема имитационного моделирования коррелированных случайных процессов, включая неэквидистантные временные ряды. При этом генерирование случайных процессов производится попарно посредством составления сети функциональных модулей по принципу блочного моделирования.
4. Импульсные переходные характеристики определены на интервале [о, оо), однако в раде случаев разбиение ее на две ветви [0,гш], [гш, оо) позволяет существенно улучшить результаты аппроксимации ортогональными функциями, сократив число членов разложения. Использование ортогональных функций Лагерра на интервале [0,гот] не позволяет восстановить функцию в граничных точках.
5. Аппроксимация ортогональными функциями Лагерра функции нелинейного преобразования производится на интервале [0,l] и признана неудовлетворительной. Результат можно улучшить, определив функцию на расширенном интервале, однако, такой метод дает лишь незначительный выигрыш при минимизации квадратической погрешности.
5 Результаты экспериментальных исследований
Описанные методы и алгоритмы взаимного корреляционно-спектрального анализа могут быть использованы в решении достаточно широкого круга задач, связанных с обработкой экспериментальных данных. Примером такого решения служит использование разработанной автоматизированной системы при определении звукопоглощающих характеристик конструкций [108].
Исследование характеристик авиационных двигателей является достаточно сложной задачей, связанной с необходимостью производить эксперименты в натурных условиях. Шумы, встречающиеся на практике, чаще всего представляют собой случайные процессы, поэтому многие задачи борьбы с шумом не могут быть решены без привлечения методов теории случайных функций. Особый интерес представляют методы исследований, основанные на корреляционно-спектральном анализе случайных процессов. Знание корреляционных функций позволяет определить все представляющие практическую ценность физические характеристики шума. При использовании методов взаимной корреляции применяются принципы разделения акустических сигналов по групповому времени распределения, определяемому из импульсной переходной характеристики линейной электроакустической системы "громкоговоритель-среда-панель-среда-микрофон". Таким образом отпадает необходимость в использовании импульсных сигналов и снимаются трудности, присущие импульсному методу.
Измерение звукоизоляции и звукопоглощения можно рассматривать как частные случаи общей задачи, состоящей в определении компонент звукового давления, соответствующих различным источникам шума, временам распространения и различным полосам частот.
Особенно метод полезен для оценки звукоизолирующей способности отдельных элементов конструкций. Очевидно, что для определения звукоизоляции панели достаточно установить её между громкоговорителем и микрофоном см. рисунок 5.1). При этом максимальное значение участка кривой функции взаимной корреляции
5.1)
1 О между излучаемым сигналом q(t) и давлением p(t), воспринимаемым микрофоном, пропорциональное интенсивности прямого звука, уменьшится на величину звукоизоляции панели.
Оптимизирование измерения звукоизоляции может быть достигнуто путем введения спектрального разложения предварительно отредактированных взаимных корреляционных функций, измеренных без образца и с образцом
00 \Кчр{т)е~^dr, (5.2)
2к ои и вычисления по ним передаточной функции, характеризующей звукоизолирующую способность образца: bqPxU* где / = —— частота в Дб, 2ж
Sqpx, Sqp2 - взаимные спектральные плотности мощности излучаемого случайного процесса q(t) и принимаемых процессов px{t) и p2{t) с образцом и без образца соответственно.
Если значения снимаются через равные промежутки времени взаимную корреляционную функцию сигналов q и р, принимаемых на двух микрофонах, можно определить, как
J N о о
5-4) где N- число отсчетов принимаемого сигнала,
А т — интервал дискретизации.
Ширина полосы измерительного сигнала определяется, как
А/ = —. Дг
5.5)
Если интервал дискретизации измеряемых случайных процессов, а следовательно и взаимной корреляционной функции - Дг, а количество отсчетов взаимной корреляционной функции - N', интервал дискретизации спектраль
2лной плотности мощности будет определяться как —-—
N'At
В случае неравномерной дискретизации принимаемого сигнала необходимо применять алгоритмы определения взаимной корреляционной функции с использованием интервальной корреляционной функции.
Запись аудиосигналов, вычисление взаимных спектров, передаточных функций являются стандартными функциями современных цифровых двухка-нальных анализаторов, основанных на использовании алгоритмов быстрого преобразования Фурье (БПФ). Больших вычислительных затрат можно избежать с помощью аппроксимации взаимной корреляционной функции и определения спектральной плотности мощности по параметрам аппроксимирующего выражения. Достаточно хороший результат можно получить, аппроксимируя взаимные корреляционные функции ортогональными функциями Лагерра
На рисунке 5.1 представлена измерительная система для экспериментального определения величины звукоизоляции. Динамик, приводимый в действие генератором белого шума, используется в качестве источника звука. Данная система интересна тем, что при использовании двух микрофонов исключаются белого шчмл
Образец
Рисунок 5.1 - Структура измерительной системы искажения корреляционной функции, обусловленные фазочастотными характеристиками динамика.
Сигналы записываются с помощью цифрового магнитофона, встроенного в двухканальный анализатор спектра "Symphonie" компании OldB-Steel (Франция).
Заключение
1. Разработан алгоритм аппроксимации взаимных корреляционных функций ортогональными функциями Лагерра, который имеет следующие особенности:
• разбиение взаимной корреляционной функции на две ветви позволяет использовать ортогональные функции Лагерра, определенные на полубесконечном интервале для аппроксимации на бесконечном интервале;
• в точке разбиения возникает разрыв первого рода, который можно устранить разбиением взаимной корреляционной функции относительно точки максимума (минимума) и нормированием.
2. Разработаны алгоритмы аппроксимации взаимных спектральных плотностей мощности. При этом необходимо раздельно аппроксимировать вещественную и мнимую составляющие спектра на полубесконечном интервале.
3. Разработаны алгоритмы определения интервалов корреляции, взаимных спектральных плотностей мощности по параметрам аппроксимирующих взаимные корреляционные функции выражений и алгоритм определения взаимной корреляционной функции по результатам аппроксимации спектральной плотности мощности.
4. Разработана структура комплекса программ аппроксимативного взаимного корреляционно-спектрального анализа. Проведено проектирование по методологии UML. Система реализована на языке JAVA.
5. В комплекс программ включена подсистема имитационного моделирования коррелированных временных рядов, включая неэквидистантные. При этом предусмотрена возможность аппроксимации импульсных переходных характеристик формирующих фильтров ортогональными функциями Лагерра и получение случайных процессов с законом распределения, отличным от нормального.
6. При использовании разработанных алгоритмов уменьшение объема выборки и потеря отсчетов приводят к росту погрешности аппроксимации, однако, работа с малой выборкой и равномерной дискретизацией более предпочтительна в смысле минимума погрешности аппроксимации.
7. Разработанные алгоритмы позволяют производить анализ случайных процессов с достаточно небольшим объемом выборки (Погрешность меньше 10% для 200 отсчетов процесса) и достаточно большой потерей отсчетов (до 30% при потере четверти отсчетов). Однако при небольших объемах выборки аппроксимация взаимной корреляционной функции позволяет снизить погрешность оценки, поэтому квадратическая погрешность аппроксимации оценки взаимной корреляционной функции не является показателем при выборе аналитического выражения для взаимной корреляционной функции.
8. Методы и алгоритмы аппроксимации взаимных корреляционных функций ортогональными функциями Лагерра, реализованные в разработанной автоматизированной системе были использованы для решения задачи определения звукопоглощающих характеристик конструкций и исследования возбуждения виброакустических колебаний в шестеренном качающем узле.
9. Разработанные методы, алгоритмы и комплекс программ внедрены в институте акустики машин при СГАУ, в специализированном конструкторском бюро ОАО "Моторостроитель", в учебном процессе кафедры ИСТ СГАУ, в ряде организаций г. Уральск, что подтверждается соответствующими актами о внедрении.
Список литературы диссертационного исследования кандидат технических наук Иващенко, Антон Владимирович, 2004 год
1. Lampard D.G. A new Method of determining Correlation Function Stationary Time Series. "Proceedings of the Institution of Electrical Engineers", vol. 102, part. C. March, 1955, London, № 1.
2. Soucek В., Prokhorov S. Event Train Correlation and Real - Time Microcomputer Systems/ZMicroprocessing and Microprogramming. — vol. 11 (1983).- № 1. - North Holland Publishing Company. - P. 23-29.
3. Soucek В., Prokhorov S. Event-Train Correlator Based on Small Com-puters//Proceedings of the IV International Symp. «MIMI 80».- Budapest. -1980.-P. 264-267.
4. G. Dattoli A. Torre, Operational methods and two-variable Laguerre polynomials. Atti Accademia di Torino, 132, 1998, 1-7.
5. W. Gautschi, Orthogonal polynomials: applications and computation, Acta Numerica, 5 (1996), 45-119.
6. P. MI Makila, "Approximation of stable systems by Laguerre filters" Auto-matica, vol. 26, pp. 333-345, Feb. 1990.
7. F. Marcel lam, Т.Е. Perrez, M.A. Pinar, Laguerre-Sobolev orthogonal polynomials, J. Comput. Appl. Math. 71 (1996) 245-265.
8. C. Mavriplis, Laguerre polynomails for infinite-domain spectral elements, J. Comput. Phys., 80 (1989), pp. 480-488.
9. H.G. Meijer, M.A. Pinar A generating function for Laguerre-Sobolev orthogonal polynomials Journal of Approximation Theory 120 (2003) 111-123
10. Jie Shen Stable and efficient spectral methods in unbounded domains using Laguerre functions SIAM J. NUMER. ANAL. Vol. 38, No. 4, pp. 1113— 1133 2000
11. P. M. J. Van Den Hof, P. S. C. Heuberger, J. Bokor, "System Identification with Generalized Orthonormal Basis Functions", Automatica, Vol. 31, No. 12, pp. 1821-1834,1995.
12. B. Wahlberg, "System Identification using Laguerre models," IEEE Trans, Automat. Control., vol. 36, pp. 551-562, May. 1991.
13. Prokhorov S. Manual for the Simulation of Random Processes and Dynamic Systems. IRB.- Zagreb. - 1980. - 62 p.
14. Автоматизированные системы научных исследований /Прохоров С.А., Фурсов В.А., Кривошеее А.О., и др.: НПЦ «Авиатор». Самара: 1995. -137 с.
15. Адаптивные телеизмерительные системы /Авдеев Б.Я., Антонюк Е.М., Долинов С.Н., Журавин Л.Г., Семенов Е.И., Фремке А.В./ Л.: Энерго-атомиздат, 1981. - 246 с.
16. Артамонов Г.Т., Тюрин В.Д. Анализ информационно-управляющих систем со случайным интервалом квантования сигнала по времени. — М.: Энергия, 1977. 112 с.
17. Артоболевский И.И., Бобровницкий Ю.И., Генкин М.Д. Введение в акустическую динамику машин. М.: Наука. Главная редакция физико-математической литературы, 1979, 296 с.
18. Батищев В.И. Разработка и исследование аппроксимативных методов и средств оценки корреляционных характеристик случайных процессов: для ИИС статистического анализа. Дисс. . канд. техн. наук — Куйбышев, 1980.-228 с.
19. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы: Учеб. пособие. М.: Наука. Гл. ред. физ.-мат. лит., 1987. - 600 с.
20. Белолипецкий В.Н. Алгоритмы и устройства корреляционного анализа неравномернодискретизированных сигналов. Дисс. . канд. техн. наук -Куйбышев, 1984.-233 с.
21. Бендат Дж., Пирсол А. Измерение и анализ случайных процессов М.: Мир, 1974.-464 с.
22. Билинский И .Я., Микелсон А.К. Стохастическая цифровая обработка непрерывных сигналов. Рига: Зинатне, 1983. — 292 с.
23. Брайан Мейсо Visual J++: основы программирования: Пер. с англ. К.: Издательская группа BHV, 1997. - 400 с.
24. Вебер Д. Технология Java в подлиннике: Пер. с англ. СПб.: БХВ-Петербург, 2000. - 1104 е.: ил.
25. Вентцель Е.С. Теория вероятностей. М.: Наука, 1969. - 576 с.
26. Вентцель Е.С., Овчаров Л.А. Теория вероятностей. — М.: Наука, 1965. — 368 с.
27. Волков И.И., Прохоров С.А., Батищев В.И. Методы и аппаратура для аппроксимативной оценки корреляционных характеристик с применением функций Лагерра. Куйбышев, ЮПИ, 1977. - 55 с.
28. Гайдышев И. Анализ и обработка данных: специальный справочник — СПб: Питер, 2001: 752 с.: ил.
29. Танеев Р.М. Математические модели в задачах обработки сигналов. -М.: Горячая линия-Телеком, 2002. — 83 е.: ил.
30. Генкин М.Д., Соколова А.Г. Виброакустическая диагностика машин и механизмов. М.: Машиностроение, 1987. - 288 е.: ил.
31. Герштейн М.С. Динамика магистральных трубопроводов. — М.: Недра, 1992.-283 е.:ил.
32. Голд Б., Рейдер Ч. Цифровая обработка сигналов. М.: Сов. Радио, 1973.-368 с.
33. Гома X. UML. Проектирование систем реального времени, параллельных и распределенных приложений: Пер. с англ. М.: ДМК Пресс, 2002.-704 е.: ил.
34. Горбацевич Е.Д. Коррелометры с аппроксимацией. — М.: Энергия, 1971. 125с.
35. Горелов Г.В. Нерегулярная дискретизация сигналов. М.: Радио и связь, 1982. - 256 е., ил. (стат. теория связи. Вып. 17).
36. Градштейн И.С., Рыжик И.М. Таблицы интегралов, сумм, рядов и произведений. М.: Физматгиз, 1963. — 1100 с.
37. Грибанов Ю.И., Веселова Г.П., Андреев В.Н. Автоматические цифровые корреляторы. М.: Энергия, 1971. - 240 е., ил.
38. Грибанов Ю.И., Мальков B.JI. Спектральный анализ случайных процессов. -М.: Энергия, 1974. 240 е., ил.
39. Губарев В.В. Алгоритмы статистических измерений. — М.: Энергоатомиздат, 1985.-272 с.
40. Двайт Г.Б. Таблицы интегралов и другие математические формулы. М.:Наука. 1973.
41. Демидович Б.П., Марон И.А. Основы вычислительной математики. М.: Наука, 1970.
42. Дженкинс Г., Ватте Д. Спектральный анализ и его приложения. 4.1. — М.: Мир, 1971.-320 с.
43. Дженкинс Г., Ватте Д. Спектральный анализ и его приложения.Ч.2. -М.: Мир, 1972.-288 с.
44. Дьяконов В. MATLAB. Обработка сигналов и изображений. Специальный справочник. — СПб.: Питер, 2002. 608 е.: ил.
45. Дьяконов В.П. MATLAB 6/6.1/6.5 + Simulink 4/5 в математике и моделировании. Полное руководство пользователя. М.: СОЛОН—Пресс. — 2003.-657 с.
46. Дьяконов В.П. Компьютерная математика. Теория и практика. М.: Но-лидж. 1999 г.: «Нолидж», 2001. 1296 е., ил.
47. Заездный A.M. Основы расчётов по статистической радиотехнике. — М.: Связь, 1969.-447 с.
48. Иващенко А.В. Исследование возможности автоматизации взаимного корреляционно-спектрального анализа./ Электронный журнал "Исследовано в России", 002, стр. (10-15), 2004 г. http://zhurnal.ape.relarn.ru/articles/2004/002.pdf.
49. Кавалеров Г.И., Мандельштам С.М. Введение в информационную теорию измерений. М.: Энергия, 1974. - 375 с.
50. Калашников И.Д., Степанов B.C., Чуркин А.В. Адаптивные системы сбора и передачи информации. М.: Энергия, 1975. - 240 с.
51. Клингман Э. Проектирование микропроцессорных систем. М.: Мир, 1980.-575 с.
52. Коварцев А.Н. Автоматизация разработки и тестирования программных средств/ Самар. гос. аэрокосм. ун-т. Самара, 1999. 150с.: ил.
53. Кратцер А., Франц В. Трансцендентные функции. //Перевод с нем. -М.: Издательство иностранной литературы, 1963. — 466 с.
54. Кулаичев А.П. Полное собрание сочинений в трех томах. Том 1. Методы и средства анализа данных в среде Windows. STADIA. Изд. 3-е, пе-рераб и доп. -М.: Информатика и компьютеры, 1999. 341 е., ил.
55. Курочкин С.С. Многоканальные счётные системы и коррелометры. — М.: Энергия, 1972. 344 е., ил.
56. Леоненков А.В. Самоучитель UML СПб.: БХВ - Петербург, 2001. — 304 е., ил.
57. Лунц Г.Л., Эльсгольц Л.Э. Функции комплексного переменного: Учебник для вузов. 2-е изд. СПб.: Издательство "Лань", 2002. - 304 с.
58. Методы нормирования метрологических характеристик, оценки и контроля характеристик погрешностей средств статистических измерений. РТМ 25 139-74//Минприбор. 1974. - 76 с.
59. Мидлтон Д. Введение в статистическую теорию связи. — М.: "Сов. Радио", 1961, т. 1.
60. Мирский Г.Я. Аппаратурное определение характеристик случайных процессов. — М.: Энергия, 1972. 456 е., ил.
61. Мирский Г.Я. Характеристика стохастической взаимосвязи и их измерения. М.: Энергоиздат, 1982. - 319 с.
62. Морган, Майкл. Java 2. Руководство разработчика.: Пер. с англ.: Уч. пос. М.: Издательский дом "Вильяме", 2000. - 720 с.
63. Никифоров А.Ф., Суслов С.К., Уваров В.Б. Классические ортогональные полиномы дискретной переменной. — М.: Наука, 1985.
64. Нотон n.JAVA: Справ.руководство: Пер.с англ./ Под ред.А.Тихонова.— М.: БИНОМ: Восточ. Кн. Компания, 1996. 447 с.
65. Обобщенный спектрально — аналитический метод обработки информационных массивов: Задачи анализа изобр. и распознавания образов / Ф. Ф. Дедус, С. А. Махортых, М. Н. Устинин, А. Ф. Дедус; Под общ. ред. Ф. Ф. Дедуса. М.: Машиностроение, 1999 — 356с.: ил.
66. Орищенко В.И., Санников В.Г., Свириденко В.А. Сжатие данных в системах сбора и передачи информации. М.: Радио и связь, 1985. - 184 е., ил.
67. Патрик Нотон, Герберт Шилдт Полный справочник по Java.— McGraw-Hill, 1 997, Издательство "Диалектика", 1997
68. Перспективные средства вычислительной техники и автоматизации для создания интеллектуальных АСНИ /Прохоров С.А., Дерябкин В.П., Кривошеев А.О. и др.: НПЦ «Авиатор», Самара, 1994. 99 с.
69. Прохоров С.А. Аппроксимативный анализ случайных процессов. 2-е изд., перераб. и доп./СНЦ РАН, 2001.-380 е., ил.
70. Прохоров С.А. Аппроксимативный анализ случайных процессов/Самар. гос. аэрокосм. ун-т. Уральск: 2001. -329 е., ил.
71. Прохоров С.А. Математическое описание и моделирование случайных процессов/Самар. гос. аэрокосм. ун-т. — Уральск: 200 L 209 е., ил.
72. Прохоров С.А. Моделирование и анализ случайных процессов. Лабораторный практикум. — 2-е изд., перераб. и доп./СНЦ РАН, 2002. 277 е., ил.
73. Прохоров С.А. Моделирование и анализ случайных процессов. Лабораторный практикум/Самар. гос. аэрокосм, ун-т, Уральск: 2001 .- 191 е., ил.
74. Прохоров С.А. Прикладной анализ неэквидистантных временных ря-дов/Самар. гос. аэрокосм. ун-т. Уральск, 2001 - 375 е., ил.
75. Прохоров С.А., Иващенко А.В. Автоматизированная система для аппроксимативного анализа взаимных корреляционно-спектральных характеристик временных рядов// Труды международного симпозиума «Надежность и качество», Пенза, 2002. С. 146-149.
76. Прохоров С.А., Иващенко А.В. Ортогональные разложения корреляционно-спектральных функций. Математическое моделирование информационных и технологических систем: Сб. науч. тр. Вып. 6 / Воронеж, гос. технол. акад. — Воронеж, 2003. 228 с.
77. Прохоров С.А., Иващенко А.В., Графкин А.В. Моделирование измерительно-вычислительного канала / Тезисы докладов Межвузовской научно-практической конференции. Самара: СГТУ, 2002
78. Прохоров С.А., Иващенко А.В., Графкин А.В. Моделирование измерительно-вычислительного канала // Компьютерные технологии в науке и образовании. Тезисы докладов Межвузовской научно-практической конференции.- Самара: СГТУ, 2002.
79. Прохоров С.А., Иващенко А.В., Графкин А.В.; Под ред. Прохорова С.А. Автоматизированная система корреляционно-спектрального анализа случайных процессов. СНЦ РАН, 2003. - 286 е., ил.
80. Пугачёв B.C. Введение в теорию вероятностей. М.: Наука, 1968.
81. Пугачёв B.C. Теория случайных функций. -М.: Физматиздат., 1962.
82. Рабинер П., Гоулд Б. Теория и применение цифровой обработки сигналов. //Пер. с англ. /Под ред. Ю.Н. Александрова. — М.: Мир, 1978.
83. Рамбо Дж., Якобсон А., Буч Г. UML: специальный справочник. Спб.: Питер, 2002. - 656 е.: ил.
84. Романенко А.Ф., Сергеев Г.А. Аппроксимативные методы анализа случайных процессов. М.: Энергия, 1974. - 176 е., ил.
85. Романенко А.Ф., Сергеев Г.А. Вопросы прикладного анализа случайных процессов. М.: Сов. радио, 1968 .- 256 с.
86. Свириденко В.А. Анализ систем со сжатием данных. — М.: Связь, 1977. -184 с.
87. Тихомиров Ю.В. MS SQL Server 2000: разработка приложений. -СПб.: БХВ Петербург, 2000. - 368 е., ил.
88. Тюрин Ю.Н., Макаров А.А. Анализ данных на компьютере / Под ред. В.Э. Фигурнова. 3-е изд., перераб. и доп. — М.: ИНФРА-М, 2003.
89. Урмаев А.С. Основы моделирования на аналоговых вычислительных машинах. М.: Наука, 1978. 271 с.
90. Цветков Э.И. Методические погрешности статистических измерений — Л.: Ленинградское отделение Энергоатомиздата, 1984. 144с., ил.
91. Цветков Э.И. Нестационарные случайные процессы и их анализ. -М.: Энергия, 1973.-128 е., ил.
92. Цветков Э.И. Основы теории статистических измерений. 2-е изд., перераб. и доп. - Л.: Энергоатомиздат, Ленингр. отделение, 1982.- 256с.
93. Чеголин П.М. Автоматизация спектрального и корреляционного анализа. — М.: Энергия, 1969. 383 с.
94. Численные методы: Курс лекций/ А.Н. Коварцев. Самар. гос. аэрокосм. ун-т, 2000,177 с.
95. Шорин В.П. Устранение колебаний в авиационных трубопроводах. — М.: Машиностроение, 1980. 156 с.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.