Разработка теоретических основ и эффективного алгоритма электродинамического анализа антенных систем, содержащих тонкие цилиндрические проводники и проводящие поверхности, на основе уравнений Фредгольма тема диссертации и автореферата по ВАК РФ 05.12.07, кандидат физико-математических наук Бузова, Мария Александровна

  • Бузова, Мария Александровна
  • кандидат физико-математических науккандидат физико-математических наук
  • 2005, Самара
  • Специальность ВАК РФ05.12.07
  • Количество страниц 241
Бузова, Мария Александровна. Разработка теоретических основ и эффективного алгоритма электродинамического анализа антенных систем, содержащих тонкие цилиндрические проводники и проводящие поверхности, на основе уравнений Фредгольма: дис. кандидат физико-математических наук: 05.12.07 - Антенны, СВЧ устройства и их технологии. Самара. 2005. 241 с.

Оглавление диссертации кандидат физико-математических наук Бузова, Мария Александровна

ВВЕДЕНИЕ. 1 РАЗРАБОТКА ТЕОРЕТИЧЕСКИХ ОСНОВ ЭЛЕКТРОДИНАМИЧЕСКОГО АНАЛИЗА СИСТЕМ ТОНКИХ ЦИЛИНДРИЧЕСКИХ ПРОВОДНИКОВ НА ОСНОВЕ УРАВНЕНИЙ ФРЕДГОЛЬМА ВТОРОГО РОДА.

1.1 Постановка задачи. Определение граничных условий, на основе которых могут быть получены уравнения второго рода.

1.2 Теорема об инвариантности ядра и параметра уравнения второго рода относительно вида граничного условия в случае прямолинейного проводника при осесимметричном возбуждении.

1.3 Вывод уравнений Фредгольма второго рода для произвольной системы проводников. Условие инвариантности ядра и параметра относительно вида граничного условия.

1.4 Исследование проблемы существования и единственности решения на основе принципа сжимающих отображений Пикара-Банаха.

1.5 Исследование ограничения на величину радиуса проводника снизу, обусловленного погрешностью вычисления «малых разностей».

1.6 Ограничение на величину радиуса проводника сверху, обу-^ словленное ошибкой осевого приближения. Модификация ядра уравнения с учетом ошибки осевого приближения.

1.7 Выводы по разделу.

2 РАЗРАБОТКА ТЕОРЕТИЧЕСКИХ ОСНОВ ЭЛЕКТРОДИНАМИЧЕСКОГО АНАЛИЗА СИСТЕМ ПРОВОДЯЩИХ ПОВЕРХНОСТЕЙ НА ОСНОВЕ УРАВНЕНИЙ ФРЕДГОЛЬМА.

2.1 Классификация металлических рассеивателей.

2.2 Принцип независимой аппроксимации токовой и зарядовой функций. Вариантность выбора искомых величин и граничных условий

2.3 Достаточность двух скалярных граничных условий. Условия корректности задачи.

2.4 Вырождение уравнений второго рода в тавтологические равенk ства в случае незамкнутой поверхности.

2.5 Электродинамическая модель в виде эквивалентного поверхностного источника. Сведение задачи к системе уравнений Фредгольма относительно эквивалентных источников.

2.6 Регуляризация системы уравнений Фредгольма первого рода на основе априорного ограничения вариаций искомых функций.

2.7 Вывод систем уравнений Фредгольма второго рода относительно эквивалентных источников. Исследование ограничения на толщину листа снизу, обусловленного вычислением «малых разностей».

2.8 Выводы по разделу.

3 РАЗРАБОТКА МЕТОДИК РЕШЕНИЯ ПОЛУЧЕННЫХ ИНТЕ

ТРАЛЬНЫХ УРАВНЕНИЙ И ИХ СИСТЕМ.

3.1 Общие соображения по выбору системы базисных функций и модели возбуждения. Принцип совместимости базиса и модели возбуждения.

3.2 Исследование базиса частичных областей на предмет получения разреженных матриц в случаях коллинеарных, компланарных и сла бо искривленных рассеивателей.

3.3 Почти ортогональный базис полной области на основе квазипериодических кусочно-синусоидальных функций для случаев симметричных антенн.

3.4 Методика решения интегральных уравнений для тонких цилиндрических проводников. 3.5 Методика решения систем интегральных уравнений для проводящих поверхностей.

3.6 Выводы по разделу.

4 РАЗРАБОТКА АЛГОРИТМА ЭЛЕКТРОДИНАМИЧЕСКОГО

АНАЛИЗА. РАСЧЕТНО-ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ.

4.1 Разработка алгоритма электродинамического анализа.:.

4.2 Методика расчета входного импеданса антенны на основе уравнения баланса энергии.

4.3 Методики экспериментальных исследований

4.4 Сопоставление с известными методами и профессиональными пакетами для электродинамического анализа антенн.

4.5 Расчетно-экспериментальные исследования антенны Уда-Яги

4.6 Расчетно-экспериментальные исследования шунтового вибратора диапазона 300 МГц в составе изделия ГТИВ.464647.080.

4.7 Расчетно-экспериментальные исследования панельной антенны телевизионного вещания РВДИ.464657.050.

4.8 Выводы по разделу.

Рекомендованный список диссертаций по специальности «Антенны, СВЧ устройства и их технологии», 05.12.07 шифр ВАК

Введение диссертации (часть автореферата) на тему «Разработка теоретических основ и эффективного алгоритма электродинамического анализа антенных систем, содержащих тонкие цилиндрические проводники и проводящие поверхности, на основе уравнений Фредгольма»

Интенсивное развитие вычислительной техники создало благоприятные условия для широкого применения методов математической физики при решении прикладных задач в различных областях техники, в том числе в технике антенн. На этом направлении были достигнуты значительные успехи, но одновременно был выявлен и ряд проблем, препятствующих полной реализации потенциальных возможностей данных методов. Справедливость последнего утверждения следует хотя бы из того факта, что как показывает практика, несмотря на заметное сокращение объемов экспериментальных работ по настройке и доводке изделий, в эксплуатации остаются дорогостоящие измерительные приборы, безэховые камеры, испытательные антенные полигоны и другое экспериментальное оборудование [2-4, 14, 17, 18, 58, 107].

Применительно к области антенн к числу основных проблем реализации методов математической физики следует отнести трудности получения устойчивых вычислительных алгоритмов, обеспечивающих получение достоверных решений, в тех случаях, когда возникают некорректные в смысле Адамара задачи, а также значительные вычислительные затраты, что в свою очередь обусловлено рядом других факторов. В частности, серьезной проблемой остается обеспечение достаточной точности вычисления входного импеданса антенны. Заметим, что степень достаточности может колебаться в достаточно широких пределах. Разумеется, если1 для антенны допустимо качество согласования с коэффициентом стоячей волны напряжения (КСВН), равным 2 и более, то современные методы на основе интегральных уравнений обеспечат достаточную точность; однако в случае более ответственных антенн с КСВН скажем не более 1,1 неизбежно проведение этапа трудоемких и вообще затратных экспериментальных работ [4, 14]. Что касается характеристик излучения в дальней зоне (диаграммы направленности, коэффициент направленного действия и т.д.), то благодаря так называемым стационарным свойствам [31, 51, 110], при их вычислении решение задачи сходится относительно быстро. Однако здесь возникают проблемы, связанные с учетом условий размещения, которые, как правило, предполагают наличие различного рода металлоконструкций, представляющих собой весьма протяженные рассеиватели как проволочного типа (ферменные опоры), так поверхностного (корпуса судов, летательных аппаратов и т.д.)- Все сказанное относится и к задачам расчета ближних полей антенн при решении проблем электромагнитной экологии [4, 67, 92]. И, наконец, необходимо отметить, что пока имелись в виду задачи анализа, тогда как на практике часто речь идет о задачах синтеза, требующих многократного выполнения анализа при соответствующем многократном увеличении объемов вычислительной работы.

Таким образом, в настоящее время существует актуальная научно-техническая проблема дальнейшего развития и повышения эффективности численных методов решения задач электродинамического анализа антенн. Настоящая диссертационная работа направлена на решение этой проблемы в части антенн диапазона ОВЧ и низкочастотной части диапазона УВЧ на основе использования уравнений Фредгольма. Отметим, что выбор частотных диапазонов обусловлен основной тематикой НИОКР, выполняемых в ФГУП Самарский отраслевой НИИ Радио (СОНИИР), где проводилось данное диссертационное исследование.

Состояние вопроса в рассматриваемой области характеризуется следующими основными достижениями.

Все многообразие подходов к решению электродинамических задач можно укрупнено разделить на две группы. К первой следует отнести методы, использующие неинтегральные представления поля; это методы, основанные на решении краевых задач для соответствующих дифференциальных уравнений (в том числе при анализе не в частотной, а во временной области), основанные на квазиоптических моделях и т.д. Ко второй группе относятся методы, использующие интегральные (истокообразные [22]) представления поля и предполагающие решение интегрального уравнения или системы интегральных уравнений.

Решение краевых задач для дифференциальных уравнений предполагается в различных вариантах метода конечных элементов, конечно-разностной аппроксимации и т.д. [80, 108, 121, 142]. Подобные подходы эффективны для внутренних электродинамических задач, в случаях же внешних задач (в том числе антенных) они значительно проигрывают интегральным уравнениям с точки зрения потребности в вычислительных ресурсах, так как конечно-разностная схема строится в неограниченном пространстве (конечно, она ограничивается введением граничного условия на бесконечности, но все равно остается весьма протяженной [31,110]).

Что касается анализа во временной области [142], то здесь возникает дополнительное ограничение области целесообразного применения — излучаемый сигнал должен иметь очень широкий спектр (весьма короткий импульс, или последовательность импульсов с очень большой скважностью); такие случаи в настоящей. работе не рассматриваются. Это же относится и к интегральным уравнениям во временной области [31].

Методы, основанные на квазиоптических моделях [11, 40, 53, 102], эффективны при анализе поверхностных рассеивателей специальной формы - в тех случаях, когда методы оптики (коэффициенты Френеля и пр.) дают хорошее приближение на значительной части поверхности рассеивателя (например, при анализе параболического зеркала). Другими словами, такие методы недостаточно универсальны с точки зрения пространственной формы анализируемого объекта, а между тем такая универсальность требуется в данном случае.

Прежде чем перейти к методам на основе интегральных уравнений, отметим подходы, использующие спектральные представления функции Грина [11, 40, 48, 62, 65, 80, 92, 102, 103, 108, 121, 123, 142]. Широкие возможности методов, использующих спектральные представления, оказываются востребованными при наличии плоской границы раздела сред, т.е. в задачах анализа приземных (подземных, подводных и т.п.) антенн, к каковым не относятся рассматриваемые здесь антенны.

Что касается методов, основанных на интегральных уравнениях, то здесь также укрупнено можно выделить два основных направления. К первому относятся методы, основанные на строгой исходной постановке задачи относительно поверхностных источников (ток, заряд) без устранения возникающих при этом особенностей в ядрах интегральных операторов; ко второму — методы на основе постановки задачи относительно эквивалентных (осевых или поверхностных на искусственно вводимых поверхностях) источников, что обеспечивает устранение упомянутых особенностей.

Из числа методов на основе постановки задачи относительно поверхностных источников применительно к задачам анализа проволочных антенн в настоящее время наиболее интенсивно развиваются методы сингулярных интегральных уравнений. При этом обычно используются интегральные уравнения с точными (нефредгольмовскими) ядрами и поверхностными (или кратными) интегралами, которые затем сводятся к сингулярным уравнениям с однократными несобственными интегралами, понимаемыми в смысле главного значения по Коши. Такие методы развиты в трудах A.JI. Бузова, В.А Неганова, И.В. Матвеева, Т.П. Ярового, С.И. Эминова и других ученых [19, 73 - 77, 86, 111, 112, 145, 152]. Они позволяют строить устойчивые вычислительные алгоритмы, однако пока недостаточно универсальны в смысле пространственных форм (уединенный вибратор, квазипериодическая решетка вибраторов и т.п.) и относительно ресурсоемки. Достаточно сказать, что в ядре, как правило, содержится несобственный интеграл с бесконечными пределами, в подынтегральное выражение которого входит цилиндрическая функция.

К числу методов на основе постановки задачи относительно поверхностных источников необходимо отнести также предложенный JI.C. Казанским метод обобщенной эквивалентной цепи и его развитие (М.А. Минкин) применительно к поверхностным рассеивателям [45, 46, 68]. Подобные методы достаточно эффективны, однако они также относительно ресурсоемки вследствие избыточности искомых величин (ток и заряд; последний в методах интегральных уравнений исключается посредством уравнения непрерывности) и предполагают только кусочно-постоянную аппроксимацию решения.

При анализе поверхностных рассеивателей задача, как правило, решается относительно поверхностных источников с использованием векторных интегральных уравнений (относительно двухкомпонентных векторов), эквивалентных системам скалярных уравнений [1, 16, 31, 32, 35 - 37, 55, 82, 87, 110, 143, 144]. Возникающие при этом трудности, связанные с появлением композиций некоммутируемых операторов - дифференциального и интегрального — преодолеваются либо на основе конечно-разностной аппроксимации производных, либо на основе выбора таких базисов (например, кусочно-постоянного), при которых производные во всех точках наблюдения обращаются в нуль. Все это создает определенные сложности при алгоритмизации задачи и ограничивает возможности по выбору систем базисных функций.

Переходя ко второму направлению, следует сразу же отметить большую группу методов на основе так называемого тонкопроволочного (осевого) приближения с использованием уравнений Фредгольма первого рода, явившихся исторически первыми и получившие наиболее широкое распространение в задачах анализа проволочных антенн. Подобные методы развивались в работах Е. Галлена (Е. Hallen), Р.Ф. Харрингтона (R.F. Harrington), Дж.Х. Ричмонда (J.H. Richmond), Г.З. Айзенберга, Г.А. Клигера, А.В. Рунова и многих других ученых [7, 8, 12, 16, 31, 50, 63, 72, 88, 89, 93, 94, 110, 114, 117, 122, 129, 131 -133, 135, 137, 139, 140, 148, 149]. Их отличает простота алгоритмизации, сравнительно небольшая потребность в вычислительных ресурсах, универсальность в смысле пространственных форм и т.д. Основной и достаточно серьезный недостаток этих методов, существенным образом ограничивающий их возможности, заключается в некорректности задачи по Адамару, в результате чего возникают довольно сильные ограничения на величину радиуса проводников.

Для преодоления отмеченной трудности в рамках тонкопроволочного приближения используется регуляризация. К настоящему времени развиты различные методы регуляризации в работах А.Н. Тихонова, В.Я. Арсенина, А.В. Гончарского и многих других ученых. Разработаны методы как в общей постановке [5, 20, 26 - 28, 33, 34, 43, 56, 59 - 61, 69 - 71, 81, 87, 91, 95 - 99, 100, 120], так и применительно к задачам электродинамики различных диапазонов, вплоть до оптического [41, 49, 52 - 54]. Методы на основе общей постановки зачастую оказываются избыточно универсальными и за счет этого неоправданно ресурсоемкими, методы для диапазонов СВЧ и оптического не соответствуют физическому содержанию рассматриваемых здесь задач. Применительно к анализу проволочных антенн развиты проблемно ориентированные методы, учитывающие физическую специфику задачи. В работах A.JI. Бузова, В.В. Юдина и др. [14 - 16, 115, 116] для регуляризации используются уже упоминавшиеся стационарные свойства характеристик излучения в дальней зоне; однако такой подход позволяет рассчитывать входной импеданс только для одного класса антенн - кольцевых решеток при модовых возбуждениях. В.Е. Назаровым, В.А. Яцкевичем, С.Ф. Каршакевичем и др. [50, 72, 118] предложен метод регуляризации, основанный на отображении функции распределения осевого тока в функцию распределения магнитного поля на поверхности проводника; однако этот метод работоспособен все-таки в ограниченном диапазоне радиусов проводников. В связи с этим представляется целесообразным исследование возможностей регуляризации без указанных ограничений.

Весьма значительный вклад в теорию интегральных уравнений антенной электродинамики внесен работами В.А. Фока, Г.Т. Маркова, Е.Н. Васильева, Г.Д. Малушкова и других ученых [21 - 25, 64, 65, 105, 141]. Существенно, что в указанных работах рассматриваются как проволочные, так и поверхностные рассеиватели при различных граничных условиях, и, как правило, с исключением особенностей в ядрах интегральных операторов. Основополагающие вопросы рассматриваются с общих теоретических позиций, в частности, дается обоснование исключения особенности введением вспомогательной поверхности, на которую переносится источник, что аналогично тонкопроволочному приближению в случае проволочного рассеивателя. Однако, применительно к проволочным рассеивателям (и иным телам вращения) рассматриваются случаи осесимметричного возбуждения, что не дает возможности непосредственно применить эти методы к анализу антенн сложной конфигурации.

Учитывая практическую направленность данной работы (анализ реальных антенн диапазонов ОВЧ и УВЧ), представляется целесообразным в основу исследований положить методы с исключением особенностей (с переходом к фредгольмовским интегральным операторам), позволяющие строить алгоритмы, универсальные с точки зрения пространственных форм; использовать при этом известные достижения в области тонкопроволочного моделирования и анализа поверхностных рассеивателей с исключением особенности.

Переходя к вопросам реализации вычислительных алгоритмов, укажем два основных направления решения проблемы сокращения вычислительных затрат: определение систем базисных и координатных (весовых) функций с учетом априорно известных свойств ожидаемого решения и применение специальных методов вычислительной математики (на основе вейвлет-анализа и пр.), позволяющих получать сильно разреженные матрицы систем линейных алгебраических уравнений (СЛАУ). Относительно систем базисных и координатных функций имеется достаточно обширная литература [31, 47, 119, 124, 134, 136, 138 - 140, 146, 147, 150]; представляется актуальным исследование возможностей построения базисов, сочетающих достоинства известных систем базисных функций разных типов. Методы на основе вейвлет-анализа и родственные им также интенсивно развиваются [9, 10, 29, 30, 85, 101, 113, 125, 126, 128, 130, 151, 153]. Следует отметить, что они относятся сугубо к области вычислительной математики. Поэтому, с одной стороны, эти методы не вполне соответствуют тематике данной работы, которая посвящена все-таки решению конкретной физической задачи (так что речь может идти лишь о применении известных методов), с другой стороны, игнорирование физической конкретики может привести к плохой аппроксимации и снижению эффективности алгоритма [10]; исследование этой проблемы выходит за рамки данной работы. Представляется целесообразным исследовать возможности получения разреженных матриц за счет «естественных» свойств ядер интегральных операторов и использовать известные достижения в области «технологий» работы с таким матрицами.

Цель работы: разработка теоретических основ и эффективного алгоритма электродинамического анализа антенных систем, содержащих тонкие цилиндрические проводники и проводящие поверхности, на основе уравнений Фредгольма.

Для достижения поставленной цели в настоящей диссертационной работе выполнена следующая программа исследований:

1) разработка теоретических основ электродинамического анализа систем тонких цилиндрических проводников на основе уравнений Фредгольма второго рода;

2) разработка теоретических основ электродинамического анализа систем проводящих поверхностей на основе уравнений Фредгольма;

3) разработка методик решения полученных интегральных уравнений и их систем;

4) разработка алгоритма электродинамического анализа на основе методик решения интегральных уравнений и их систем;

5) расчетно-экспериментальные исследования, проверка работоспособности и оценка эффективности разработанного алгоритма.

Диссертационная работа состоит из введения, 4-х разделов, заключения и списка литературы.

Похожие диссертационные работы по специальности «Антенны, СВЧ устройства и их технологии», 05.12.07 шифр ВАК

Заключение диссертации по теме «Антенны, СВЧ устройства и их технологии», Бузова, Мария Александровна

Основные результаты диссертационного исследования изложены также в публикациях автора [154-177].

ЗАКЛЮЧЕНИЕ

Таким образом, в рамках диссертационной работы получены следующие научные и научно-прикладные результаты.

Разработаны теоретические основы электродинамического анализа систем тонких цилиндрических проводников на основе уравнений Фредгольма второго рода.

Определены граничные условия, позволяющие получить интегральные уравнения второго рода, — для азимутальной компоненты магнитного поля и радиальной компоненты электрического поля. Сформулирована и доказана теорема об инвариантности ядра и параметра уравнения относительно вида граничного условия в случае прямолинейного проводника при осесимметрич-ном возбуждении. Применительно к этому случаю получены уравнения Фредгольма второго рода. Выполнено обобщение уравнений на случай произвольной системы проводников, найдены условия инвариантности ядра и параметра для этого случая. Исследована проблема существования и единственности решения на основе принципа сжимающих отображений Пикара-Банаха, определены соответствующие достаточные условия.

Выполнено исследование ограничения на величину радиуса проводника снизу, обусловленного погрешностью вычисления «малых разностей»; показано, что ограничение, хотя и имеется, не является существенным.

Рассмотрены вопросы, связанные с ограничением на величину радиуса проводника сверху, обусловленное ошибкой осевого приближения. Предложена и обоснована модификация ядра уравнения с учетом ошибки осевого приближения, предполагающая введение в ядро заранее рассчитанной (табулированной) поправочной функции-множителя. Показано, что, благодаря такой модификации, ограничение на величину радиуса сверху оказывается таким же как в методах на основе сингулярных уравнений.

Разработаны теоретические основы электродинамического анализа систем проводящих поверхностей на основе уравнений Фредгольма первого и второго рода.

Выполнена классификация металлических рассеивателей; из множества непроволочных рассеивателей выделены классы существенно двумерных, существенно трехмерных рассеивателей и незамкнутых поверхностей.

Обосновано применение известного принципа независимой аппроксимации токовой и зарядовой функций, что обусловливает вариантность выбора искомых величин и граничных условий; в результате могут рассматриваться системы уравнений первого рода, второго рода, а также системы смешанного типа. Показана достаточность двух скалярных граничных условий в случае единственности решения системы интегральных уравнений.

Определены условия корректности задачи в случае уравнений с фредгольмовскими операторами. Показано, что в случае незамкнутой поверхности любые уравнения второго рода вырождаются в тавтологические равенства; по этой причине признано нецелесообразным рассматривать данный класс рассеивателей в качестве модели.

Применительно к существенно двумерному рассеивателю предложена и исследована модель на основе эквивалентного поверхностного источника, позволяющая получить интегральные операторы фредгольмовского типа; выполнено обобщение на случай существенно трехмерного рассеивателя.

Предложена методика регуляризации системы уравнений Фредгольма первого рода на основе априорного ограничения вариации искомых функций; показано, что такое ограничение эквивалентно переходу к уравнениям второго рода. Получены и исследованы системы уравнений Фредгольма второго рода в рамках модели на основе эквивалентного поверхностного источника.

Разработаны методики решения полученных интегральных уравнений и их систем.

Сформулирован принцип совместимости базиса и модели возбуждения, найдены соответствующие условия совместимости.

Проведено исследование базиса частичных областей на предмет получения разреженных матриц в случаях коллинеарных, компланарных и слабо искривленных рассеивателей. Получены оценки сумм модулей отбрасываемых элементов строки матрицы.

Предложен и исследован почти ортогональный базис полной области на основе квазипериодических кусочно-синусоидальных функций, пригодный для решения любых (из числа рассматриваемых) интегральных уравнений относительно токовых функций. •

Сформулирована и доказана лемма об условиях линейной независимости системы таких функций, исследованы свойства ортогональности. Обосновано использование кусочно-гармонических функций с фактическим волновым числом в качестве порождающих функций. Получена оценка сокращения вычислительных затрат.

На этой основе и на основе результатов предыдущих разделов разработаны методики решения интегрального уравнения для системы тонких цилиндрических проводников и системы интегральных уравнений для системы проводящих поверхностей.

Выполнена алгоритмизация разработанных методик и осуществлена программная реализация алгоритма. Проведены расчетно-экспериментальные исследования.

Обосновано объединение рассеивателей разных классов в общую расчетную модель с использованием разных систем базисных и координатных функций в пределах разных элементов анализируемого объекта.

Рассмотрены вопросы формализации пространственной структуры.

В части расчета антенных характеристик предложена методика расчета входных импедансов активных вибраторов на основе уравнения баланса энергии поля; показано, что такой подход позволяет значительно улучшить сходимость. На этой основе выполнена разработка и программная реализация алгоритма электродинамического анализа.

С целью проверки работоспособности и оценки эффективности алгоритма выполнены расчетно-экспериментальные исследования различных антенн.

Проведено сопоставление разработанного алгоритма с известными методами и профессиональными пакетами (AGAT01, NEC-2D).

Выполнен синтез излучающей структуры 5-элементной антенны Уда-Яги, изготовлен и экспериментально исследован ее макет.

Выполнены расчетно-экспериментальные исследования шунтового вибратора диапазона 300 МГц, разработанного в рамках соответствующей ОКР, проводимой ФГУП СОНИИР, и предназначенного для исследования в качестве элемента антенной решетки в составе изделия ГТИВ.464647.080, которое в настоящее время успешно эксплуатируется.

Выполнены расчетно-экспериментальные исследования панельной антенны телевизионного вещания РВДИ.464657.050, предоставленной ФГУП СОНИИР для сертификационных испытаний. Все проведенные исследования показали работоспособность и достаточную эффективность разработанного алгоритма.

Список литературы диссертационного исследования кандидат физико-математических наук Бузова, Мария Александровна, 2005 год

1. Андреасен А.Д. Рассеяние на цилиндрах с произвольным поверхностным импедансом//ТИИЭР.- 1965.-Т. 53.-№8.-С. 1007- 1013.

2. Антенно-фидерные устройства и распространение радиоволн: Учебник для ВУЗов / Г.А. Ерохин, О.В. Чернышев, Н.Д. Козырев, В.Г. Кочержевский; Под ред. Г.А. Ерохина. 2-е изд., испр. - М.: Горячая линия-Телеком, 2004. -491 с.

3. Антенно-фидерные устройства систем сухопутной подвижной связи / A.JT. Вузов, JI.C. Казанский, В.А. Романов, Ю.М. Сподобаев; Под ред. A.JI. Бу-зова. М.: Радио и связь, 1997. - 150 с.

4. Антенно-фидерные устройства: технологическое оборудование и экологическая безопасность / A.JL Бузов, JI.C. Казанский, В.В. Юдин и др.; Под ред. АЛ. Бузова. М.: Радио и связь, 1998. - 221 с.

5. Арсенин В .Я., Тихонов А.Н. Некорректные задачи / Математическая энциклопедия. М.: Советская энциклопедия, 1982. - Т.З. - С. 930 - 935.

6. Бабенко К.И. Основы численного анализа. — М.: Наука, 1986. 744 с.

7. Бахрах Л.Д. О решении интегрального уравнения линейной антенны // ДАН СССР. 1954. - Т. 92. - № 4. с. 755.

8. Белоусов С.П., Клигер Г.А. Анализ проволочных вибраторов // Труды НИИР. 1982. - №3. - С. 5 - 9.

9. Блатов И.А. Об алгебрах операторов с псевдоразреженными матрицами и их приложениях // Сибирский мат. журнал. 1996. - Т. 37. -№1. — С. 36 - 59.

10. Блатов И.А., Пименов А., Юдин В.В. Применение сплайновых вейв-лет-функций к численному моделированию тонкопроволочных антенн // Инфо-телекоммуникационные технологии. 2003. - Т.1. - №4. - С. 29 - 32.

11. Боровиков В.А., Кинбер Б.Е. Геометрическая теория дифракции. М.: Связь, 1978.-248 с.

12. БраудеЛ.Г. Использование сетчатых моделей для расчета входных сопротивлений самолетных антенн декаметрового диапазона волн // Труды НИИР. 1989. - №3. - С. 79 - 82.

13. Бронштейн И.Н., Семендяев К.А. Справочник по математике. М.: Наука. Гл. ред. физ.-мат. лит., 1981. - 720 с.

14. Бузов А.Л. УКВ антенны для радиосвязи с подвижными объектами, радиовещания и телевидения. -М.: Радио и связь, 1997. -293 с.

15. Бузов А.Л., Казанский Л.С., Юдин В.В. и др. Современные методы электродинамического моделирования антенн и антенных систем диапазонов ВЧ, ОВЧ и УВЧ // Электродинамика и техника СВЧ, КВЧ и оптических частот. 2001. - №3 (31). с. 5 - 17.

16. Бузов А.Л., Кольчугин Ю.И., Никифоров А.Н., Романов В.А. Об особенности аттестации «безэховых» камер // Метрология и измерительная техника в связи. 1998. -№3. - С. 26.

17. Бузов А.Л., Кольчугин Ю.И., Носов Н.А., Павлов А.В. Измерение параметров антенн в «безэховой» камере // Метрология и измерительная техника в связи. 1998. - №4. - С. 12 - 13.

18. Бузов А.Л., Филиппов Д.В., Юдин В.В. Применение метода Галеркина для решения сингулярного интегрального уравнения тонкого вибратора // Труды НИИР: Сб. статей. М., 2000. - С. 64 - 66.

19. Вайникко Г.М., Веретенников А.Ю. Итерационные процедуры в некорректных задачах. М.: Наука, 1986. - 181 с.

20. Васильев Е.Н. Возбуждение гладкого идеально проводящего тела вращения // Известия высш. уч. зав. Радиофизика 1959. - Т. 2. - № 4. — С. 588 -601.

21. Васильев Е.Н. Алгоритмизация задач дифракции на основе интегральных уравнений. — В кн.: Сб. научно-методических статей по прикладной электродинамике. -М.: Высш. шк. 1977. - Вып. 1. - С. 94 - 128.

22. Васильев Е.Н. Возбуждение тел вращения. М.: Радио и связь, 1987. —272 с.

23. Васильев Е.Н., Каменев В.Г. О численном решении внешней электродинамической задачи для идеально проводящего тела // Известия высш. уч. зав. Радиофизика 1970. - Т. 13. - № 5. - С. 732 - 738.

24. Васильев Е.Н., Малушков Г.Д. Распределение тока на цилиндре средней толщины // Известия высш. уч. зав. Радиофизика — 1967. Т. 10. - № 4. - С. 530-537.

25. Васильева А.Б., Тихонов Н.А. Интегральные уравнения. М.: Изд-во Моск. Ун-та, 1989. - 155 с.

26. Верлань А.Ф., Сизиков B.C. Интегральные уравнения: Методы, алгоритмы, программы. Справочное пособие. Киев: Наукова думка, 1986. - 543 с.

27. Владимиров B.C. Уравнения математической физики. — М.: Наука, 1967.-436 с.

28. Воеводин В.В., Кузнецов Ю.А. Матрицы и вычисления М.: Наука. Гл. ред. физ.-мат. лит-ры, 1984. - 320 с.

29. Воеводин В.В., Тыртышников Е.Е. Вычислительные процессы с теп-лицевыми матрицами. М.: Наука. Гл. ред. физ.-мат. лит., 1987. - 320 с.

30. Вычислительные методы в электродинамике: Под ред. Р. Митры. Пер. с англ. / Под ред. Э.Л. Бурштейна. М.: Мир, 1977. - 487 с.

31. Габриэльян Д.Д., Звездина М.Ю. Решение задачи дифракции на телах сложной формы больших электрических размеров методом интегральных уравнений // Радиотехника и электроника. 1993. - Т. 38 - № 4. - С. 636 - 641.

32. Гахов Ф.Д., Черский Ю.И. Уравнения типа свертки. М.: Наука, 1978. -296 с.

33. Годунов С.К. Уравнения математической физики. -М.: Наука, 1979. -391с.

34. Горинштейн A.M. Численное решение задач радиотехники и техники связи на ЭЦВМ. М.: Связь, 1972. - 200 с.

35. Давыдов А.Г., Захаров Е.В., Пименов Ю.В. Метод численного решения задач дифракции электромагнитных волн на незамкнутых поверхностях вращения // ДАН СССР. 1983. - Т. 269. - № 2. - С. 329 - 333.

36. Давыдов А.Г., Захаров Е.В., Пименов Ю.В. Метод численного решения задач дифракции электромагнитных волн на незамкнутых поверхностях произвольной формы // ДАН СССР. 1984. - Т. 276. - № 1. - С. 96 - 100.

37. Демидович Б. П., Марон И. А., Шувалова Э. 3. Численные методы анализа. 3-е, перераб. - М.: Наука, 1967. - 368 с.

38. Доналдсон Э.Э., Фри У.Р., Робертсон Д.У., Вуди Э. Измерения электромагнитных помех в экранированных камерах // ТИИЭР. 1978. - Т. 66. - № 4.-С. 118-128.

39. Досколович JI.JI., Казанский H.JI. Расчет зеркала для формирования диаграммы направленности излучения. // Автометрия. 2004. — Т. 40. - №5. — С. 104-111.

40. Досколович JI.JI., Котляр В.В., Сойфер В.А. Итеративные методы расчета дифракционных оптических элементов. — В кн.: Методы компьютерной оптики / Под ред. В.А. Сойфера. М.: Физматлит, 2000. - 688 с.

41. Драбкин А.Л., Зузенко В.Л., Кислов А.Г. Антенно-фидерные устройства. 2-е, доп. и перераб. - М.: Сов. радио, 1974. - 536 с.

42. Ильин A.M. Итоги науки и техники. Современные проблемы математики. Фундаментальные направления. 1988. - Т. 34. - С. 175-213.

43. Инженерные расчеты на ЭВМ: Справочное пособие / Под ред. В.А. Троицкого. Л.: Машиностроение. Ленингр. отд-ние, 1979. - 288 с.

44. Казанский JI.C. Способ расчета прямых антенн с помощью обобщенной эквивалентной цепи: провод переменного радиуса // Радиотехника и электроника. 1998.-№ 2. - С. 175- 179.

45. Казанский JI.C. Способ расчета проволочных антенн произвольной конфигурации с помощью обобщенной эквивалентной цепи // Радиотехника и электроника. 1999. - № 6. - С. 705 - 709.

46. Канторович JI.B., Крылов В.И. Приближенные методы высшего анализа. Д.: Физматгиз, 1962. - 708 с.

47. Кинг Р., Смит Г. Антенны в материальных средах. В 2-х книгах. Кн. 2. Пер. с англ. М.: Мир, 1984. - 824 с.

48. Колечицкий Е.С. Расчет электрических полей устройств высокого напряжения. М.: Энергоатомиздат, 1983. - 168 с.

49. Корнилов М.В., Калашников Н.В., Рунов А.В. и др. Численный электродинамический анализ произвольных проволочных антенн // Радиотехника. — 1989.-№7.-С. 82-83.

50. Коротковолновые антенны / Г. 3. Айзенберг, С. П. Белоусов, Э. М. Журбенко и др.; Под ред. Г. 3. Айзенберга. 2-е, перераб. и доп. - М.: Радио и связь, 1985. — 536 с.

51. Котляр В.В., Личманов М.А. Анализ дифракции света на микрообъектах с помощью решения интегрального уравнения методом конечных элементов // Компьютерная оптика, ИСОИ РАН, Самара-Москва. 2001. - № 21. - С. 19-22.

52. Котляр В.В., Сойфер В.А., Панков И.А. Метод расчета функции рельефа отражательной дифракционной решетки в приближении Френеля // Компьютерная оптика. 1996. — Вып. 16. - С. 27 — 30.

53. Кравцов В.В. Интегральные уравнения в задачах дифракции. В кн.: Вычислительные методы и программирование. - М.: Изд. МГУ. - 1966. - Вып. 5.-С. 260-293.

54. Краснов M.JI. Интегральные уравнения. М.: Наука, 1975. - 304 с.

55. Кудрявцев Л.Д. Курс математического анализа. В 3 т. Т. 3. 2-е изд., перераб. и доп. - М.: Высшая школа, 1988. - 352 с.

56. Куммер В.Х., Джиллеспи Э.С. Антенные измерения 1978 // ТИИЭР. -1978. - Т. 66.-№ 4. - С. 143 - 173.

57. Лаврентьев М.М., Савельев Л .Я. Линейные операторы и некорректные задачи.-М.: Наука, 1991.-331 с.

58. Лисковец О.А. Вариационные методы решения неустойчивых задач. -Минск: Наука и техника, 1981. 343 с.

59. Лучка А.Ю. Проекционно-итеративные методы решения дифференциальных и интегральных уравнений. Киев: Наукова думка, 1980. - 262 с.

60. Макаров Г.И., Новиков В.В., Рыбачек С.Т. Распространение электромагнитных волн над земной поверхностью М.: Наука, 1991. - 123 с.

61. Малакшинов Н.П., Ерихов В.В. О решении задач дифракции методом интегральных уравнений. В кн.: Антенны. - М.: Связь. - 1975. - Вып. 23. - С. 421-430.

62. Марков Г.Т., Васильев Е.Н. Математические методы прикладной электродинамики. М.: Сов. радио, 1970. — 120 с.

63. Марков Г.Т., Чаплин А.Ф. Возбуждение электромагнитных волн. — 2-е изд., перераб. и доп. М.: Радио и связь, 1983. - 296 с.

64. Мартин Ф. Моделирование на вычислительных машинах. М.: Сов. радио, 1972.-288 с.

65. Маслов О.Н. Электромагнитная безопасность радиоэлектронных средств. М.: МЦИТИ. «Мобильные коммуникации», 2000. - 82 с.

66. Минкин М.А. Электродинамическая теория параметрической чувствительности антенно-фидерных устройств. — М.: Радио и связь, 2001. — 111 с.

67. Михлин С.Г. Лекции по линейным интегральным уравнениям. М.: Физматгиз, 1959.-232 с.

68. Морозов В.А. Регулярные методы решения некорректно поставленных задач. М.: Наука, 1987. - 239 с.

69. Морозов В.А. Методы регуляризации неустойчивых задач. М.: Изд-во Московск. ун-та, 1987. -217 с.

70. Назаров В.Е., Рунов А.В., Подининогин В.Е. Численное решение задач об основных характеристиках и параметрах сложных проволочных антенн // Радиотехника и электроника. Вып. 6. Минск: Высшая школа, 1976. - С. 153 -158.

71. Неганов В.А., Корнев М.Г., Матвеев И.В. Новое интегральное уравнение для расчета тонкого вибратора // Письма в ЖТФ. 2001. - Т. 27. - Вып. 4.-С.62-71.

72. Неганов В.А, Матвеев И.В. Сингулярное интегральное уравнение для расчета тонкого вибратора // Физика волновых процессов и радиотехнические системы. 1999. - Т.2. - № 2. - С. 27-33.

73. Неганов В.А., Матвеев И.В., Медведев С.В. Метод сведения уравнения Поклингтона для электрического вибратора к сингулярному интегральному уравнению // Письма в ЖТФ. 2000. - Т. 26. - Вып. 12. - С. 86 - 93.

74. Неганов В.А., Павловская Э.А., Яровой Г.П. Излучение и дифракция электромагнитных волн / Под ред. В.А. Неганова М.: Радио и связь, 2004. -264 с.

75. Неганов В.А., Раевский С.Б., Яровой Г.П. Линейная макроскопическая электродинамика / Под редакцией Неганова В.А. Т. 1. — М.: Радио и связь, 2000. 509 с.

76. Никольский В.В. Электродинамика и распространение радиоволн. -3-е изд., перераб. и доп. М.: Наука, 1989. - 544 с.

77. Никольский В.В. Антенны. М.: Связь, 1966. - 368 с.

78. Д. Норри, Ж. де Фриз. Введение в метод конечных элементов: Пер. с англ. М.: Мир, 1981.-304 с.

79. Перчик Е. Методология синтеза знаний: преодоление фактора некорректности задач математического моделирования. Текст испр. и доп. -www.pelbook.narod.ru/index/ - Харьков, 2004. - 205 с.

80. Пименов Ю.В. Сведение некоторых осесимметричных задач дифракции к плоским задачам // Радиотехника и электроника. 1967. - Т. 12. - № 12. -С. 2214-2216.

81. Пименов Ю.В., Вольман В.И., Муравцов А.Д. Техническая электродинамика / Под редакцией Пименова Ю.В.: Учебн. пособие для вузов. М.: Радио и связь, 2000. - 536 с.

82. Пионтковская А.Ф. и др. Метрология в технике радиосвязи / Под ред. А.Ф. Пионтковской. -М.: Радио и связь, 1983. 184 с.

83. Писсанецки С. Технология разреженных матриц. М.: Мир, 1988.410 с.

84. Радциг Ю.Ю., Сочилин А.В., Эминов С.И. Исследование методом моментов интегральных уравнений вибратора с точными и приближенными ядрами // Радиотехника. 1995. - №3. - С. 55 - 57.

85. Рихтмайер Р. Принципы современной математической физики: Т. 1. — М.: Мир, 1982.- 486 с.

86. Рунов А.В. О специализации интегрального уравнения тонкой проволочной антенны произвольной геометрии к некоторым частным случаям // Радиотехника и электроника. Вып. 6. Минск: Высшая школа, 1976. - С. 161 — 164.

87. Рунов А.В., Подиночин В.Е., Назаров И.А. Об одной из форм интегрального уравнения несимметричной криволинейной тонкой проволочной антенны // Радиотехника и электроника. Вып. 7. Минск: Высшая школа, 1977. -С. 152- 157.

88. Селективный микровольтметр и измеритель напряжений помех типа SMV 8.5 / Техническое описание и инструкция по эксплуатации. 1980. - 71 с.

89. Соболев C.JI. Уравнения математической физики. -М.: Наука, 1966.443 с.

90. Сподобаев Ю.М., Кубанов В.П. Основы электромагнитной экологии. -М.: Радио и связь, 2000. 240 с.

91. Стрижков В.А. Математическое моделирование электродинамических процессов в проволочных антенных системах // Математическое моделирование. 1989. - Т. 1. -№ 8. - С. 127-141.

92. Стрижков В.А. Особенности численной реализации метода моментов при решении интегральных уравнений проволочных систем // Радиотехника и электроника. 1989.-№ 5.-С. 961-964.

93. Тихонов А.Н. О решении некорректно поставленных задач и методе регуляризации // Доклады АН СССР. 1963. - Т. 151. -№ 3. - С. 501 - 504.

94. Тихонов А.Н., Арсенин В.Я. Методы решения некорректных задач. -Изд. 3-е, исправленное. М.: Наука, 1986. - 288 с.

95. Тихонов А.Н., Гончарский А.В., Степанов В.В., Ягола А.Г. Численные методы решения некорректных задач. — М.: Наука, 1990. 232 с.

96. Тихонов А.Н., Самарский А.А. Уравнения математической физики. — М.: Наука, 1972.-735 с.

97. Треногин В.А. Функциональный анализ: Учебник. 3-е изд., испр. — М.: Физматлит, 2002. - 488 с.

98. Трикоми Ф. Интегральные уравнения. М.: Изд-во иностр. лит., 1960. -299 с.

99. Тюринг А. Ошибки округления в матричных процессах // УМН. — 1951. Т. 6. - Вып. 1 (41). - С. 136 - 163.

100. Уфимцев П. Я. Метод краевых волн в физической теории дифракции. М.: Советское радио, 1962. - 43 с.

101. Фейнберг E.JI. Распространение радиоволн вдоль земной поверхности. М.: Изд. АН СССР, 1961. - 870 с.

102. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления: В 3 т. Т. 2 / Пред. и прим. А.А. Флоринского. - 8-е изд. - М.: ФИЗ-МАТЛИТ, Лаборатория знаний, 2003. - 864 с.

103. Фок В.А. Дифракция на выпуклом теле // ЖЭТФ. 1945. - Т. 15. - № 12.-С. 693-698.

104. Фортран 77 для ПЭВМ ЕС: Справ, изд. / З.С. Брич, Д.В. Капилевич, Н.А. Клецкова. М.: Финансы и статистика, 1991. - 288 с.

105. Фрадин А.З., Рыжков Е.В. Измерение параметров антенно-фидерных устройств. М.: Связьиздат, 1962. - 316 с.

106. Ф. Франк и Р. Мизес. Дифференциальные и интегральные уравнения математической физики. Л.-М.: ОНТИ, 1937. - 998 с.

107. Цлаф Л.Я. Вариационное исчисление и интегральные уравнения. — М.: Наука, 1966. 176 с.

108. Электродинамические методы анализа проволочных антенн / А.Л. Бузов, Ю.М. Сподобаев, Д.В. Филиппов, В.В. Юдин; Под ред. В.В. Юдина. М.: Радио и связь, 2000. - 153 с.

109. Эминов С.И. Теория интегрального уравнения тонкого вибратора // Радиотехника и электроника.— Т. 38. 1993. -Вып. 12. -С. 2160 —2168.

110. Эминов С.И. Теория интегро-дифференциальных уравнений вибраторов и вибраторных решеток // Электродинамика и техника СВЧ и КВЧ. 1997. - Т. V. - Вып. 2 (18). - С. 48 - 58.

111. Эстербю О., Златев 3. Прямые методы для разреженных матриц. М.: Мир, 1983.- 120 с.

112. Юдин В.В. Расчет параметров антенн, выполненных в виде замкнутых круговых периодических структур // Труды НИИР. 1995. - С. 57-61.

113. Юдин В.В. Кольцевые антенные решетки: схемно-пространственная мультиплексия и направленное излучение. М.: Радио и связь, 2001. - 189 с.

114. Юдин В.В. Условия корректной постановки антенных задач на основе уравнений Фредгольма 1-го рода // Тезисы докл. IX Российской научной конференции ПГАТИ. Самара, 2002. - С. 95 - 96 .

115. Юдин В.В. Анализ проволочных антенн на основе интегрального уравнения Харрингтона методом моментов с использованием различных весовых функций // Электродинамика и техника СВЧ и КВЧ. 1996. — Т. 4. - № 4. -С. 116-124.

116. Яцкевич В.А., Каршакевич С.Ф. Устойчивость процесса сходимости численного решения в электродинамике // Изв. вузов — Радиоэлектроника. — 1981.-Т. XXIV.-№2.-С. 66-72.

117. Adams R.J. Combined field integral equation formulations for electromagnetic scattering from convex geometries // IEEE Trans, on Ant. and Prop. 2004. - V. 52. - № 5. - P. 1294 - 1303.

118. Adams RJ. Physical and analytical properties of a stabilized electric field integral equation // IEEE Trans, on Ant. and Prop. 2004. - V. 52. - № 2. - P. 362 -372.

119. Axelsson U. Iterative solution methods. Cambridge: University Press, 1996.-129 p.

120. Burge G.J., Poggio A.J. Numerical electromagnetic code (NEC) method of moments. — California: Lawrence Livermore Laboratory, 1981. — 664 p.

121. Cinar G., Buyukaksoy A. Diffraction of a normally incident plane wave by three parallel half-planes with different face impedances // IEEE Trans, on Ant. and Prop. 2004. - V. 52. - № 2. - P. 478 - 486.

122. Chu Y., Chew W.C., Zhao J., Chen S. A surface integral equation formulation for low-frequency scattering from a composite object // IEEE Trans, on Ant. and Prop.-2003.-V. 51.-№ 10.-P. 2837-2844.

123. Demko S., Moss W., Smith P. Decay rates for inverses of band matrices // Math. Comput. 1984. - № 43. p. 491 499.

124. Deng H., Ling H. Fast solution of electromagnetic integral equations using adaptive wavelet packet transform // IEEE Trans, on Ant. and Prop. 1999. - V. 47.- № 4. P. 674-682.

125. Eberhard S. Antennen. Berlin: VEB Verlag Technik, 1968. - 271 p.

126. Eijkhout V., Polman B. Decay rates of banded M-matrices that are near Toeplitz matrices // Linear Algebra Appl. 1988. - № 109. - P. 247 - 277.

127. Glynn R. P., Gunn M. W. An entire-domain Galerkin analysis of the moderately thick dipole // IEEE Trans, on Ant. and Prop. 1980. - V. 28. - № 1. - P. 117-121.

128. Golik W.L. Wavelet packets for fast solution of electromagnetic integral equations // IEEE Trans, on Ant. and Prop. 1998. - V. 46. - № 5. - P. 618 - 624.

129. Hallen E. Theoretical investigation into the transmitting and receiving qualities of antennas//Nova Acta Soc. Sci. Upsal. 1938.-V. l.-№4.-P. 1 -44.

130. Harrington R.F. Field computation by moment method. New York: Macmillan, 1968.-240 p.

131. Junker G. P., Kishk A. A., and Glisson A. W. A novel delta-gap source model for centre fed cylindrical dipoles // IEEE Trans, on Ant. and Prop. 1995. - V. 43.-№5.-P. 537-540.

132. Kang T.W., Kim H.T. Basis function considerations for the method of moments using the fictitious current model // IEEE Trans, on Ant. and Prop. 1999.- V. 47.-№ 6.-P. 1118-1120.

133. King R.W.P. The theory of linear antennas. Cambridge, Mass.: Harvard University Press, 1956. - 384 p.

134. Kluskens M.S. A new algorithm for the complex exponential integral in the method of moments // IEEE Trans, on Ant. and Prop. 1999. - V. 47. - № 5. — P. 803-806.

135. Mei K.K. On the integral equation of thin wire antennas // IEEE Trans, on Ant. and Prop. 1965. - V. 13. -№ 5. - P. 374 - 378.

136. Pan, G.W., Tretiakov, Y.V., Gilbert, B. Smooth local cosine based Galerkin method for scattering problems // IEEE Trans, on Ant. and Prop. — 2003. — V. 51.-№ 6. — P. 1177-1184.

137. Popovic B.D. Polynomial approximation of current along thin symmetrical cylindrical dipoles // Proc. IEE. 1970. - V. 117. - № 5. - P. 873 - 879.

138. Richmond J.H. Computer analysis of three-dimensional wire antennas. — Techn. Rept. № 2708-4. - Ohio, Columbus, Ohio State University: Electro-Science Lab., 1969.- 146 p.

139. Rius J.M., Ubeda E., Parron J. On the testing of the magnetic field integral equation with RWG basis functions in method of moments // IEEE Trans, on Ant. and Prop.-2001.-V. 49.-№ 11.-P. 1150 1553.

140. Salah В., Lionel P., Walid T. An efficient finite-element time-domain method for the analysis of the coupling between wave and shielded enclosure // IEEE Trans. Magn. 2002. - V. 38. - № 2. - part 1. - P. 709 - 712.

141. Shanker В., Ergin A.A., Aygun K., Michielssen E. Analysis of transient electromagnetic scattering from closed surfaces using a combined field integral equation // IEEE Trans, on Ant. and Prop. 2000. - V. 48. - № 7. - P. 1064 - 1074.

142. Song J.M., Lu C.C., Chew W.C., Lee S.W. Fast Illionois solver code (FISC) // IEEE Trans, on Ant. and Prop. 1998. - V. 40. - № 4. - P. 27 - 34.

143. Stynes M., Riordan E. An analysis of a superconvergence result for a singularly perturbed boundary value problem // Math. Comput. 1986. - V. 46. - P. 81-92.

144. Su C., Sarkar Т.К. Adaptive multiscale moment method (AMMM) for analysis of scattering from three-dimensional perfectly conducting structures // IEEE Trans, on Ant. and Prop. 2002. - V. 50. - № 4. - P. 444 - 450.

145. Taylor D.J. Accurate and efficient numerical integration of weakly singular integrals in Galerkin EFIE solutions // IEEE Trans, on Ant. and Prop. — 2003. V. 51. -№ 7. — P. 1630-1637.

146. Tsai L.L. Analysis and measurement of dipole antenna mounted symmetrically on conducting sphere or cylinder. Ph. D. dissertation. - The Ohio State University, Columbus, Ohio, 1970. - 173 p.

147. Turpin R.H. Basis transformation, least square, and characteristic mode techniques for thin-wire scattering analysis. Ph. D. dissertation. - The Ohio State University, Columbus, Ohio, 1969. - 185 p.

148. Venkatarayalu N.V., Ray T. Optimum design of Yagi-Uda antennas using computational intelligence // IEEE Trans, on Ant. and Prop. 2004. - V. 52. - № 7. -P. 1811-1818.

149. Wang G. Application of wavelets on the interval to the analysis of thin-wire antennas and scatterers // IEEE Trans, on Ant. and Prop. — 1997. V. 45. - № 5. -P. 885-893.

150. Wang W.X. The exact kernel for cylindrical antenna // IEEE Trans, on Ant. and Prop. 1991. - V. 39. - № 5. - P. 434 - 435.

151. Zlatev Z. Computational methods for general sparse matrices. -Dordrecht, Boston, London: Kluger Acad. Pub., 1991. 190 p.

152. Бузов A.JI., Бузова M.A. Применение методов математической физики при решении задачи рассеяния электромагнитного поля на проводящих телах произвольной формы // Тезисы докл. IX Российской научной конференции ПГАТИ. Самара, 2002. - С. 89 - 90.

153. Бузова М.А. Анализ вибраторных антенн с использованием интегрального уравнения относительно функции распределения заряда // Тезисы докл. X Российской научной конференции ПГАТИ. Самара, 2003. — С. 101.

154. Бузова М.А., Юдин В.В. Электродинамический анализ излучающих систем с использованием функций распределения заряда // Антенны. 2003. — №1(68).-С. 19-25.

155. Бузова М.А., Юдин В.В. Интегральное уравнение второго рода для линейного вибратора // Вестник СОНИИР. 2003. - № 1 (3). - С. 22 - 27.

156. Бузова М.А. Интегральное уравнение Фредгольма второго рода для линейного вибратора, имеющее смысл граничного условия для магнитного поля // Антенны 2003. - № 9 (76). - С. 18 - 22.

157. Бузова М.А., Юдин В.В. Об использовании принципа сжимающих отображений при исследовании проблемы существования и единственности решения интегральных уравнений второго рода для линейных вибраторов // Антенны 2003. - № 9 (76). - С. 23 - 26.

158. Бузова М.А. Модификация функции Грина в задачах анализа проволочных антенн на основе интегральных уравнений с приближенными ядрами // Вестник СОНИИР 2003. - № 2 (4). - С. 32 - 37.

159. Бузова М.А. Интегрирование функций, имеющих точки разрыва второго рода, при решении задач рассеяния методом интегрального уравнения с точным ядром // Электродинамика и техника СВЧ, КВЧ и оптических частот. — 2003.-T.il.-№ 1 (37).-С. 43-51.

160. Бузова М.А. Об использовании уравнений Фредгольма второго рода при электродинамическом анализе вибраторных антенн // Тезисы докл. XI Российской научной конференции ПГАТИ. Самара, 2004. - С. 135 - 136.

161. Бузова М.А. Эффективный алгоритм численного интегрирования функций, имеющих точки разрыва второго рода, в интегральном операторе сточным ядром // Тезисы докл. XI Российской научной конференции ПГАТИ. -Самара, 2004. С. 136 - 137.

162. Аронов В.Ю., Бузова М.А., Петров М.А. Проблема выбора вида интегрального уравнения при решении задач антенной электродинамики // Радиотехника (журнал в журнале). 2004. - № 1. - С. 57 - 63.

163. Бузова М.А. Инвариантность ядра и параметра уравнения Фредгольма 2-го рода для линейного вибратора относительно вида граничного условия // Радиотехника (журнал в журнале). 2004. - № 1. - С. 73 - 76.

164. Бузова М.А. Уравнение Фредгольма второго рода для проволочной структуры при неосесимметричном возбуждении // Антенны. — 2004. — № 3. — С. 26-30.

165. Бузова М.А., Юдин В.В. Методика расчета входного импеданса проволочной антенны на основе уравнения баланса энергии // Антенны. — 2004. — № 3. С. 31 - 36.

166. Бузова М.А., Юдин В.В. Сведение задачи о рассеянии электромагнитного поля на существенно двумерном проводнике к задаче отыскания эквивалентного поверхностного источника // Вестник СОНИИР. 2004. - № 1.(5). — С. 21-25.

167. Блатов И.А., Бузова М.А., Юдин В.В. Регуляризация уравнений Фредгольма первого рода на основе априорного ограничения вариации искомой функции в задачах антенной электродинамики // Вестник СОНИИР. 2004. - № 2 (6).-С. 19-26.

168. Бузова М.А. О вырождении интегральных уравнений второго рода в тавтологические равенства в задачах о рассеянии электромагнитного поля нанезамкнутых проводящих поверхностях // Вестник СОНИИР. 2004. — № 2 (6). -С. 37-40.

169. Бузова М.А. Почти ортогональный базис на основе квазипериодических кусочно-синусоидальных функций в задачах анализа проволочных антенн // Радиотехника (журнал в журнале). 2005. - № 1. - С. 59 - 64.

170. Бузова М.А. О совместимости базиса и модели возбуждения в задачах антенной электродинамики // Радиотехника (журнал в журнале). 2005. — № 1. -С. 65-68.

171. Бузова М.А. Вариантность выбора граничных условий искомых величин в задачах анализа поверхностных рассеивателей // Тезисы докл. XII Российской научной конференции ПГАТИ. Самара, 2005. - С. 135 - 137.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.