Распознавание изображений в ассоциативной осцилляторной среде тема диссертации и автореферата по ВАК РФ 05.13.05, кандидат технических наук Сидорова, Надежда Андреевна
- Специальность ВАК РФ05.13.05
- Количество страниц 188
Оглавление диссертации кандидат технических наук Сидорова, Надежда Андреевна
Введение.
1. Ассоциативные среды. Выбор типа ассоциативной среды для решения задачи предварительной обработки и распознавания изображений
1.1. Однородные среды.
1.2. Ассоциативные среды и ассоциативная обработка информации.
1.3. Обзор ассоциативных сред.
1.3.1. Многокоординатные ассоциативные среды.
1.3.2. Ассоциативная среда с локальными связями.
1.3.3. Ассоциативная среда с командным управлением.
1.3.4. Ассоциативная осцилляторная среда.
1.4. Выбор типа ассоциативной среды для решения задач предварительной обработки и распознавания изображений.
1.5. Выводы.
2. Предварительная обработка изображений в ассоциативной осцилляторной среде.
2.1. Выбор метода предварительной обработки изображений.
2.2. Виды предварительной обработки изображений.
2.3. Математическая морфология.
2.3.1. Морфологические операции.
2.4. Использование механизма ассоциации.
2.5. Морфологическая обработка одного пикселя изображения в АОС.
2.6. Морфологическая обработка полутоновых изображений в АОС.
2.7. Алгоритмы морфологической обработки изображений в АОС.
2.8. Выводы.
3. Распознавание изображений в ассоциативной осцилляторной среде.
3.1. Обзор методов распознавания в ассоциативных средах.
3.2. Метод секущих функций в теории распознавания изображе
3.3. Построение дерева в ассоциативной осцилляторной среде.
3.4. Система распознавания изображений в ассоциативной осцилляторной среде.
3.5. Программный комплекс для моделирования распознавания изображений в ассоциативной осцилляторной среде.
3.5.1. Массивы с заданным законом распределения.
3.5.2. Энциклопедический словарь Брокгауза и Ефрона.
3.5.3. Китайские иероглифы.
3.5.4. Рукописные символы.
3.6. Выводы.
4. Аппаратная реализация на ПЛИС ассоциативной осцилляторной среды предварительной обработки и распознавания изображений
4.1. Обзор ПЛИС. Выбор ПЛИС для моделирования.
4.2. Методика аппаратной реализации дерева секущих с использованием встроенной памяти ПЛИС.
4.3. Аппаратная реализация базовых клеточных ансамблей ассоциативной осцилляторной среды.
4.4. Аппаратная реализация на ПЛИС ассоциативной осцилляторной среды предварительной морфологической обработки изображений
4.5. Аппаратная реализация на ПЛИС ассоциативной осцилляторной среды распознавания изображений методом секущих функций.
4.6. Выводы.
Рекомендованный список диссертаций по специальности «Элементы и устройства вычислительной техники и систем управления», 05.13.05 шифр ВАК
Метод, алгоритмы и устройства фрагментарного сжатия видеопотока2014 год, кандидат наук Горьков, Алексей Геннадьевич
Методы, алгоритмы и устройства распознавания речи в ассоциативной осцилляторной среде2015 год, кандидат наук Парамонов Павел Александрович
Исследование и разработка ассоциативных сред и методов обработки информации2002 год, кандидат технических наук Комаров, Александр Николаевич
Исследование и разработка методов распознавания символов в ортокоординатной ассоциативной среде2004 год, кандидат технических наук Мд. Абдул Малек
Параллельные цифровые нейрокомпьютеры и их применение в задачах распознавания зрительных образов1997 год, доктор технических наук Галуев, Геннадий Анатольевич
Введение диссертации (часть автореферата) на тему «Распознавание изображений в ассоциативной осцилляторной среде»
Актуальность темы.
Темп прогресса вычислительной техники много выше, нежели в других технических областях. Однако, повышению производительности вычислительных устройств препятствует несколько проблем [1,2].
Рост производительности ЭВМ в настоящее время осуществляется в основном за счет совершенствования интегральных полупроводниковых технологий, возможности которых рано или поздно будут исчерпаны.
Архитектура современных ЭВМ определяется предложенными фон Нейманом принципами двоичной системы исчисления, программного управления, совместного хранения программ и данных в одной памяти, иерархической организации памяти, наличия команд условного перехода. Такая архитектура приводит к возникновению разрыва между быстродействием процессора и памяти. Это явление зафиксировано в законе Мура, который гласит: «в то время, как быстродействие процессоров возрастает на 60% ежегодно, время доступа к памяти сокращается менее, чем на 7% в год».
Перечисленные проблемы заставляют искать новые архитектурные решения, разрабатывать качественно новые вычислительные средства. В связи с этим, наблюдается возрастающий интерес к клеточным автоматам и однородным средам. Их используют и как способ моделирования разнообразных процессов, и как инструмент для вычислений. Исследования в области нейробиологии формируют предпосылки для моделирования информационных процессов нейронной памяти с помощью клеточных автоматов [2, 3, 4].
Одним из перспективных направлений, реализующих логику клеточных автоматов, является ассоциативная осцилляторная среда. Эта однородная среда совмещает функции хранения и обработки информации и обеспечивает ассоциативный способ доступа к информации.
Ассоциативный способ доступа основан на установлении соответствия, ассоциации между хранимой в среде информацией и поисковыми аргументами. Ассоциативный способ доступа к информации обеспечивает:
• практически одновременный доступ ко всей хранящейся в среде информации;
• относительную независимость времени поиска информации от емкости памяти;
• внесение элементов обработки информации непосредственно в процесс самого доступа;
• обработку информации непосредственно в среде ее хранения.
Эти, а также ряд других отличительных особенностей ассоциативного способа доступа к информации делают его чрезвычайно перспективным в системах обработки данных.
В ассоциативной осцилляторной среде данные обрабатываются непосредственно в логико-запоминающей среде и обеспечивается потоковая обработка информации.
На кафедре Вычислительной техники Московского энергетического института под руководством д.т.н., профессора Огнева И.В. более 25 лет ведутся исследования и разработка новых ассоциативных сред и методов ассоциативной обработки информации [2, 5, 6, 7].
Разработка новых ассоциативных осцилляторных сред (АОС) [3, 4], успехи электронных технологий открыли принципиально новые возможности для решения интеллектуальных задач. Одной из важнейших задач в области искусственного интеллекта является задача распознавания изображений.
Распознавание изображений - научное направление, связанное с разработкой принципов и построением систем, предназначенных для определения принадлежности данного объекта к одному из заранее выделенных классов объектов. Под объектами в распознавании изображений понимают различные предметы, явления, процессы, ситуации, сигналы.
Цель работы состоит в исследовании и разработке ассоциативных сред и методов предварительной обработки и распознавания изображений в этих средах.
Для достижения поставленных целей в диссертации решаются следующие основные задачи:
• выбор ассоциативной среды для решения задач предварительной обработки и распознавания изображений;
• выбор метода предварительной обработки изображений;
• разработка и моделирование аппаратной реализации предварительной обработки изображений в ассоциативной осцилляторной среде;
• выбор метода распознавания изображений;
• разработка программного комплекса для исследования алгоритма распознавания изображений;
• оценка количества операций и точности работы алгоритма распознавания на примерах задач распознавания слов из энциклопедического словаря, изображений китайских иероглифов, изображений рукописных символов;
• разработка и моделирование аппаратной реализации системы распознавания изображений в ассоциативной осцилляторной среде;
• выбор ПЛИС для аппаратной реализации ассоциативной осцилляторной среды предварительной обработки и распознавания изображений;
• оценка временных и ресурсных затрат аппаратной реализации предварительной обработки и распознавания изображений в ассоциативной осцилляторной среде.
Объектом исследований являются ассоциативные осцилляторные среды, средства описания этих сред, а также методы и алгоритмы обработки информации, построенные на их основе.
Методы исследования базируются на теориях арифметических и логических операций, теории системного анализа, теории оптимальных ассоциативных преобразований, функционального анализа, математического анализа, методах клеточной логики. Экспериментальные исследования для подтверждения полученных в ходе диссертационной работы результатов проводились на основе имитационного моделирования на ЭВМ. Научная новизна работы заключается в следующем:
• разработаны методы и алгоритмы решения задач предварительной обработки и распознавания изображений в ассоциативных средах;
• впервые новый метод секущих функций для распознавания изображений применен в ассоциативной осцилляторной среде, что позволило увеличить скорость распознавания изображений;
• впервые в сочетании с методом секущих функций применены операции морфологической обработки искаженных шумами изображений на этапе предварительной обработки изображений в ассоциативной осцилляторной среде;
• разработана методика использования встроенной памяти программируемых логических интегральных схем для аппаратной реализации предварительной обработки и распознавания изображений в ассоциативной осцилляторной среде.
Практическая ценность работы состоит в следующем
• разработан программный комплекс для исследования и апробации метода секущих функций в задачах распознавания изображений.
• рассмотрено практическое применение ассоциативной осцилляторной среды предварительной обработки и распознавания изображений на примерах решения задач распознавания (случайных массивов, слов из словаря Брокгауза и Ефрона, китайских иероглифов, рукописных символов);
• разработана реализация базовых клеточных ансамблей ассоциативной осцилляторной среды на ПЛИС, которая может быть использована для исследования и разработки новых ассоциативных сред.
• разработана аппаратная реализация на ПЛИС системы предварительной обработки и распознавания изображений в ассоциативной осцилляторной среде.
Достоверность научных положений, выводов и практических рекомендаций, сформулированных в диссертации, подтверждается вычислительными экспериментами и данными, полученными при имитационном моделировании, апробацией работы на международных и региональных конференциях.
Реализация результатов работы
Разработанная программная модель ассоциативной осцилляторной среды предварительной обработки и распознавания изображений использована при создании модельного и алгоритмического обеспечения ассоциативных сетей обработки знаний в рамках МИР ООО «НПП «Этна - Информационные технологии».
Научные и практические результаты работы включены в курс лекций «Организация ЭВМ и систем» на кафедре вычислительной техники ГОУ ВПО «МЭИ(ТУ)», используются в лабораторной работе «Ассоциативные запоминающие устройства», в дипломном проектировании студентов.
Апробация работы. Основные результаты работы докладывались на международных научно-технических конференциях «Информационные средства и технологии» 2005, 2007 гг., на 8-ой международной научно-технической конференции «Информационные технологии и системы» 2008 г.; на 16 международной научно-технической конференции студентов и аспирантов «Радиоэлектроника, электротехника и энергетика» в 2010 г.
Публикации. Основные результаты диссертации опубликованы в 6 печатных работах.
Структура и объем диссертационной работы. Диссертационная работа изложена на 188 страницах, из них 152 страницы основного текста, 65 рисунков, 10 таблиц и состоит из введения, четырех глав, заключения, списка литературы из 70 наименований на 8 страницах и приложений на 36 страницах. Основные положения, выносимые на защиту
Похожие диссертационные работы по специальности «Элементы и устройства вычислительной техники и систем управления», 05.13.05 шифр ВАК
Система статистического анализа и нейросетевого распознавания текстурных изображений2007 год, кандидат технических наук Вин Тхей
Методы распознавания 3D изображений на основе их кватернионных моделей2011 год, кандидат технических наук Баев, Алексей Александрович
Нейросетевой подход к интегрированному представлению и обработке информации в интеллектуальных системах2008 год, доктор технических наук Харламов, Александр Александрович
Разработка алгоритмов распознавания рукописных символов на основе аналитических свойств изображения2010 год, кандидат физико-математических наук Сорокин, Андрей Игоревич
Методы и программные средства автоматизации анализа изображений медико-биологических микрообъектов2005 год, кандидат технических наук Степанов, Василий Николаевич
Заключение диссертации по теме «Элементы и устройства вычислительной техники и систем управления», Сидорова, Надежда Андреевна
Основные результаты работы заключаются в следующем:
1. Проведен анализ ассоциативных сред и обоснован выбор ассоциативной осцилляторной среды для решения задачи предварительной обработки и распознавания изображений.
2. Выбран метод предварительной обработки изображений в ассоциативной осцилляторной среде - метод математической морфологии. Разработаны функциональные блоки клеточных ансамблей ассоциативной осцилляторной среды, реализующие операции предварительной обработки изображений.
3. Разработан универсальный элемент ассоциативной осцилляторной среды, обрабатывающий один пиксель черно-белого изображения. Разработан универсальный элемент ассоциативной осцилляторной среды для обработки полутоновых изображений. Проведено моделирование универсальных элементов в системе Quartus II 8.1 Web Edition. Составлены таблицы входных, выходных, управляющих сигналов для универсального элемента. Построены временные диаграммы режимов его работы.
4. На основе матрицы универсальных элементов разработана ассоциативная осцилляторная среда предварительной обработки изображений методами математической морфологии.
5. Исследованы методы распознавания изображений в ассоциативных средах. Выбран метод распознавания изображений в ассоциативной осцилляторной среде - метод секущих функций.
6. Разработана ассоциативная осцилляторная среда распознавания изображений методом секущих функций. Предложена реализация узла дерева распознавания в ассоциативной осцилляторной среде.
7. Разработан программный комплекс для моделирования распознавания изображений; промоделирован ряд примеров (случайные массивы, словарь Брокгауза и Ефрона, китайские иероглифы, рукописные символы), проведена оценка скорости работы и точности метода распознавания изображений в ассоциативной осцилляторной среде.
8. Получены результаты сравнения методов обработки и распознавания изображений в ассоциативной осцилляторной среде с методами обработки и распознавания изображений в ЭВМ классической архитектуры и в других средах.
9. Разработана аппаратная реализация предложенной системы предварительной обработки и распознавания изображений в ассоциативной осцилляторной среде на ПЛИС фирмы ALTERA с использованием САПР QUARTUS II 8.1 Web Edition. Проведена оценка скорости распознавания и сложности реализации.
Заключение.
В диссертационной работе решена научно-техническая задача исследования и разработки новых методов и средств распознавания изображений в ассоциативных средах.
Список литературы диссертационного исследования кандидат технических наук Сидорова, Надежда Андреевна, 2010 год
1. Ревизия первооснов конец застоя?/ Черняк Л. //Открытые системы. -2003 г.-№5.-с. 39-41.
2. Огнев И.В., Борисов В.В. Ассоциативные среды. М.: Радио и связь, 2000. -312с.
3. Комаров А. Н. Исследование и разработка ассоциативных сред и методов обработки информации. Диссертация на соискание учёной степени кандидата технических наук. М.: МЭИ(ТУ), 2002. - 194 с.
4. Подолин П. Б. Исследование ассоциативных осцилляторных сред на примере задачи распознавания образов. Магистерская диссертация. М.: МЭИ(ТУ), 2005,- 117 с.
5. Огнев И.В., Борисов В.В. Интеллектуальные систмы ассоциативной памяти. М.: Радио и связь, 1996. - 176 с.
6. Огнев И. В., Подолин П. Б. Распознавание символов в ассоциативной ос-цилляторной среде. М: Известия высших учебных заведений Поволжского региона. Технические науки №6/27, 2006. - с. 55-67.
7. А. с. № 1718274, МКИ G11С 15/00. Ассоциативное запоминающее устройство / И.В. Огнев, О. В. Исаев, В.В. Борисов и Консташтиювский В.М. — Опубл. 1992, Бюл. № 9.
8. А. с. № 1793475, МКИ G11С 15/00. Ассоциативное запоминающее устройство / И.В. Огнев, В.В. Борисов, О.В. Исаев. Опубл. 1993, Бюл. № 5.
9. А. с. № 1805499, МКИ G11C 15/00. Ассоциативное запоминающее устройство / И.В. Огнев, В.В. Борисов. Опубл. 1993, Бюл. № 12.
10. А. с. № 1824650, МКИ в1 1С 15/00. Ассоциативное запоминающее устройство / И.В. Огнев, В.В. Борисов. Опубл. 1993, Бюл. № 24.
11. Пат. № 2037892, МКИ вПС 15/00. Ассоциативное запоминающее устройство / И.В. Огнев, В.В. Борисов. Опубл. 1995, Бюл. № 17.
12. Пат. № 2025795 РФ, МКИ вПС 15/00. Иерархическая система ассоциативной памяти/ В.В. Борисов, И.В. Огнев. Опубл. 1994, Бюл. № 24.
13. А. с. № 1718275, МКИ вПС 15/00. Ячейка ассоциативной памяти/И.В. Огнев, О.В. Исаев, В.В. Борисов и др. Опубл. 1992, Бюл. № 9.
14. Пат. № 2107995 РФ, МКИ вПС 15/00. Ассоциативная запоминающая матрица/ В.В. Борисов. Опубл. 1998, Бюл. № 9.
15. Пат. № 2025797 РФ, МКИ вПС 15/00. Ассоциативная запоминающая матрица/ И.В. Огнев, В.В. Борисов. Опубл. 1994, Бюл. № 24.
16. Пат. № 2065207 РФ, МКИ СПС 15/00. Ассоциативная запоминающая матрица/ И.В. Огнев, В.В. Борисов. Опубл. 1996, Бюл. № 22.
17. Огнев И. В., Мд. Абдул Малек. Особенности выполнения методов сортировки в ассоциативном ЗУ. Сб. тр. Девятая Международная научно-техническая конференция студентов и аспирантов 2003, М.: 2003. - с. 325 -326.
18. Мд. Абдул Малек. Исследование и разработка методов распознавания в ортокоординатной ассоциативной среде. Диссертация на соискание учёной степени кандидата технических наук. - М.: МЭИ(ТУ), 2004. - 152 с.
19. Огнев И. В., Мд. Абдул Малек. Методы сортировки в многокоординатном ассоциативном ЗУ (МКАЗУ). Сб. тр. МФИ-2002, Международный форум информатизации 2002. Информационные средства и технологии. М.: Янус-К, 2002.-с. 78-81.
20. Матвеев П. С. Исследование и разработка ассоциативной среды с локальными связями, реализующей полный набор операций клеточной логики для связности элемента равной восьми. Магистерская диссертация. М.: МЭИ(ТУ), 2006.- 117 с.
21. Гонсалес Р., Вудс Р. Цифровая обработка изображений: Пер. с англ. М.: Техносфера, 2005. - 1072 с.
22. Потапов A.C. Распознавание образов и машинное восприятие: общий подход на основе принципа минимальной длины описания. СПб.: Политехника, 2007. - 548 с.
23. Шкурский Б. И. Цифровые методы обработки изображений. М: Издательство МЭИ, 2005. - 152 с.
24. Young N. Mathematical Morphology. Graphics&Media Lab Digest December 21,2001 Issue 5.
25. Коневский О. Jl. Адаптивная морфологическая обработка бинарных контуров. / Исследовано в России, том 4. 1722-1731 с.
26. И. В. Огнев, Н. А. Сидорова Обработка изображений методами математической морфологии в ассоциативной осцилляторной среде / Известия высших учебных заведений. Поволжский регион. 2007. - Вып. 4, - С. 87 - 97. -(Технические науки).
27. Дьяконов В. П. MATLAB 6.5 SP 1/7/7 SP1 Simukink 5/6. М.: СОЛОН-Пресс, 2005.-400 с.
28. Пенроуз Р. Новый ум короля. О компьютерах, мышлении и законах физики.: Пер. с англ./ Общ. ред. В.О. Малышенко. Предисл. Г.Г. Малинецкого.
29. Изд. 2-е, испр. M.: Едиториал УРСС, 2005. - 400 с.
30. Клорене Д. Распознавание образов. Исследование живых и автоматических распознающих систем.: Пер. с англ. М.: Мир, 1970. - 288 с.
31. Рассел С., Норвиг П. Искусственный интеллект. Современный подход.: Пер. с англ. М.: Вильяме, 2006. - 1408 с.
32. Барский А.Б. Нейронные сети: распознавание, управление, принятие решений. — М.: Финансы и статистика, 2004. -— 176 с.
33. В. С. Симанков, Е. В. Луценко. Адаптивное управление сложными системами на основе теории распознавания образов. Краснодар: Техн. ун-т Ку-бан. гос. технол. ун-та, 1999. — 318 с.
34. Ричардсон Дж. М. Распознавание образов и теория групп.: Пер. с англ. -М.: Мир, 1981. -25 с.
35. Болотов A.A. О метрической кластеризации. / Дискретная математика. Т. 8. Вып. 4, 1996.-62-78 с.
36. Закревский Д.А. Логика распознавания. Минск: Наука и техника, 1988. -119 с.
37. Брусенцов И.П., Владимирова Ю.С. Конструктная компьютеризация силлогистики / Математические методы распознавания образов // 13-я Всероссийская конференция: Сб. докл. М.: МАКС Пресс, 2007. - 10-13 с.
38. Вайнцвайг М.Н. Об ускорении процессов обучения и принятия решений / Математические методы распознавания образов // 13-я Всероссийская конференция: Сб. докл. М.: МАКС Пресс, 2007. - 13- 15с.
39. Гуров СЛ., Потепалов Д.Н., Фатхутдинов Д.Н. Решение задач распознавания с невыполненной гипотезой компактности / Математические методыраспознавания образов // 13-я Всероссийская конференция: Сб. докл. М.: МАКС Пресс, 2007. - 27 - 29с.
40. Зубюк A.B. Алгоритмы идентификации изображений в случайной и нечеткой морфологии / Математические методы распознавания образов // 13-я Всероссийская конференция: Сб. докл. М.: МАКС Пресс, 2007. - 30 - 32с.
41. Капустий Б.Е., Русын Б.П., Таянов В. А. Способы построения оптимальной вероятностной модели систем распознавания / Математические методы распознавания образов // 13-я Всероссийская конференция: Сб. докл. М.: МАКС Пресс, 2007. - 37 - 39с.
42. Неделько В.И. Об эффективности эмпирических функционалов качества решающей функции / Математические методы распознавания образов // 13-я Всероссийская конференция: Сб. докл. М.: МАКС Пресс, 2007. - 47 - 49с.
43. Романов Л.Ю. О согласованных оценках сложности задач и алгоритмов классификации / Математические методы распознавания образов // 13-я Всероссийская конференция: Сб. докл. М.: МАКС Пресс, 2007. - 56 - 59с.
44. Огнев И.В., Сидорова H.A. Реализация системы обработки и распознавания образов в ассоциативной осцилляторной среде / Известия высших учебных заведений. Поволжский регион. 2008. - Спец. вып. 2. - с. 98 - 104. -(Технические науки).
45. Фукунага К. Введение в статистическую теорию распознавания образов.: Пер. с англ. М.: Наука, главная редакция физико-математической литературы, 1979. - 368 с.49 .Дуда Р., Харт П. Распознавание образов и анализ сцен.: Пер. с англ. М.: Мир, 1976.- 507 с.
46. Вагин В.Н., Головина Е.Ю., Загорянская A.A., Фомина М.В. Достоверный и правдоподобный вывод в интеллектуальных системах. / Под ред. В.Н. Вагина, Д.А. Поспелова. М.: Физматлит, 2004. - 704 с.
47. Анисимов Б.В., Курганов В.Д., Злобин В.К. Распознавание и цифровая обработка изображений: Учебное пособие для студентов вузов. М.: Высшаяшкола, 1983. 295 с.
48. Ю.И.Журавлев, В.В.Рязанов. О.В.Сеиько Распознавание. Математические методы. Практические применения. Программная система. М.: ФАЗИС, 2005. - 125 с.
49. Ю.И.Журавлев Распознавание. Классификация. Прогноз. // Академия наук СССР / Отделение информатики, вычислительной техники и оптимизации / Мат. методы и их применение. Выпуск 2. М.: Наука, 1989. - 70 с.
50. У LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document récognition // Proceedings of the IEEE, 86(1l):2278-2324, November 1998.
51. Нейман Дж. Теория самовоспроизводящихся автоматов: Пер. с англ. -М.: Мир, 1971.-384 с.
52. Кохонен Т. Ассоциативная память: Пер. с англ. М.: Мир, 1980. - 240 с.
53. Борисов В.В., Полячков А.В. Модель многоуровнего сетевого контроллера на основе ассоциативной среды / Сб. науч. тр. № 6 ВУ ВПВО ВС РФ. Смоленск: Изд-во ВУ ВПВО ВС РФ, 2001. - с. 41 - 44.
54. Чжао Цзюньцай, Шарапов А. П. ИССЛЕДОВАНИЕ И РАЗРАБОТКА АЛГОРИТМОВ ЗАПОЛНЕНИЯ ПУСТОТ ДЛЯ ПОСТРОЕНИЯ ТРЕХМЕРНОГО ИЗОБРАЖЕНИЯ ПО СЕЧЕНИЯМ. Вычислительные сети: теория и практика. №1 (10). - 2007
55. Тарасов И. Е. Разработка цифровых устройств на основе ПЛИС XILINX® с применением языка VHDL. М.: Горячая линия - Телеком, 2005. - 252 с.
56. Угрюмое Е.П., Грушвицкий Р.И., Мурсаев А.Х. Проектирование систем на микросхемах с программируемой структурой. 2-е изд., перераб. и доп. -СПб.: БХВ-Петербург, 2006. - 736 с.
57. Рыжиков Ю.И. Работа над диссертацией по техническим наукам. 2-еизд., перераб. и доп. СПб.: БХВ-Петербург, 2007. - 512 с.
58. Глушков В.М. Синтез цифровых автоматов. М.: Физматгиз, 1962. - 476 с.
59. Потемкин И.С. Функциональные узлы цифровой автоматики. М.: Энер-гоатомиздат, 1988. - 320 с.
60. Стешенко В.Б. ПЛИС фирмы Altera: проектирование устройств обработки сигналов. М.: ДОДЭКА, 2000. - 128 с.
61. Белое A.B. Создаем устройства на микроконтроллерах. Спб.: Наука и техника, 2007. - 307 с.
62. Бродин В.Б., Калинин A.B. Системы на микроконтроллерах и БИС программируемой логики. М: Издательство ЭКОМ, 2002. - 400 с.
63. Комолое Д.А., Мячьк P.A., Зобенко A.A. Филиппов A.C. Системы автоматизированного проектирования фирмы Altera: MAX+plus II и Quartus 11. М.: ИП Радиософт, 2002. - 352 с.
64. Kleene S.C. Representation of events in nerve sets and finite automata / Гп C.E. Shannon and J. McCarthy editors. Automata studies, Princeton University Press, 1956, pp. 3-41.
65. Бутаев M.M., Вашкевич И.П., Гурии Е.И., Конное H.H. Проектирование цифровых устройств на программируемых логических интегральных схемах. Пенза: Изд-во Пенз. гос. техн. ун-та, 1996. - 65 с.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.