Одномерные и двухмерные волновые процессы в двухкомпонентных упругих изотропных и трансверсально-изотропных средах тема диссертации и автореферата по ВАК РФ 01.02.04, кандидат технических наук Шукюров, Александр Рамизович
- Специальность ВАК РФ01.02.04
- Количество страниц 94
Оглавление диссертации кандидат технических наук Шукюров, Александр Рамизович
, Стр.
Введение. Цели и общая характеристика работы.
Глава 1. Основные модели двухкомпонентных сплошных деформируемых сред.
1.1. Структура двухкомпонентных сред.
1.2. Краевые задачи динамики двухкомпонентных сред.
1.3. Трансверсально-изотропная предварительно напряженная пористая двухкомпонентная среда.
1.4. Характеристики параметров двухкомпонентной пористой среды.
Выводы.
Глава 2. Одномерные и двухмерные волны в двухкомпонентной пористой среде.
2.1. Одномерные волны в кусочно-однородной пористой среде.
2.2. Воздействие подвижной нагрузки на поверхность полубесконечного слоя.
2.3. Удар тупым телом по торцу полубесконечного слоя.
2.4. Численный анализ полученных результатов.
Выводы.
Рекомендованный список диссертаций по специальности «Механика деформируемого твердого тела», 01.02.04 шифр ВАК
Колебания двухкомпонентного плоского элемента-пластинки на основе модели М. А. Био2000 год, кандидат технических наук Шукюров, Джалил Рамиз оглы
Исследование волновых процессов в насыщенных упруго-пористых средах1983 год, доктор физико-математических наук Мардонов, Батиржан
Колебания и волновые процессы в трёхслойной трансверсально-изотропной пластинке2002 год, кандидат технических наук Степанов, Роман Николаевич
Динамическое взаимодействие плоских элементов строительных конструкций с деформируемым основанием2000 год, доктор технических наук Досжанов, Максут Жарылкасынович
Распространение нестационарных упругих волн в пористых средах2000 год, кандидат физико-математических наук Масликова, Татьяна Ильинична
Введение диссертации (часть автореферата) на тему «Одномерные и двухмерные волновые процессы в двухкомпонентных упругих изотропных и трансверсально-изотропных средах»
Большое число научных и технических проблем связано с
• » исследованием колебательных процессов и распространением волн в сплошных средах.
Изучение их составляет предмет общей теории колебаний и теории волн, получивших в настоящее время широкое развитие.
I •
Результаты данных исследований приносит огромную пользу при рассмотрении стационарных, нестационарных колебательных и волновых процессов в таких разделах науки, как:
Механика деформируемого твердого тела;
Строительная механика;
Геофизика;
Гидродинамика.
Однако в каждом из этих разделов науки возникает ряд вопросов, связанных с реакцией среды на внешние воздействия, способами возбуждения движений, кинематическими характеристиками волн, геометрией тел и т.д., решение которых имеет широкое прикладное значение и достигается при помощи своих типичных для данной области методов. Кроме того, все встречающиеся в природе реальные среды по характеру распространения в них упругих волн разделяются на идеально / ■ упругие и дифференциально-упругие. К первой группе относятся среды, практически состоящие только из одинаковых зерен, связь между ними
• I совершенная, упругие свойства их близки друг к другу. Такие среды ■ I обычно рассматриваются как идеально упругие однородные среды. t < ' В области механики деформируемого твердого тела получены основополагающие результаты, отечественных и зарубежных ученых; ' I свидетельством этому являются опубликованные монографии: Аки К.,
Ричарде П. [1 ], Бреховский JI.M. [10], Ворович И.Й;, Бабешко В;А. [15], Галин Л.А. [16], Горшков А.Г., Григолюк Э.И. [17], Гузь А Н., Кубенко В.Д. [20], Зоммерфельд А. [23], Кольский Г. [24]; Лямб Г. [30], Ляв А. [31], Морс Ф.М., Фешбах Г. [36], Рахматулин Х.А. [50, 51], Снедцон И. [57, 58], Филиппов ИГ. , Егорычев О.А. [21, 66, 68], Франк Ф., Мизес Р. [71], Харкевич А.А. [74], Шемякин Е.И; [76], Черепанов Г.П. [81], Auld В.А. [83], Graff К.Е. [92], Eving M.W., Jardetzky S.W. [91] и др., а также обзорные статьи Бабича В,М., Молоткова И.А. [4] по математическим методам, применяемым в теории упругих волн.
Дифференциально-упругие среды: представляют собой- различные сочетания твердых, жидких и газообразных компонентов; например, строительные и звукопоглощающие материалы, грунты, осадочные и горные породы. Многие из них состоят из пористого скелета, заполненного различными наполнителями. Скелет может быть образован из зерен, прижатыми друг к другу под действием веса вышележащих пород. Его также можно рассматривать как непрерывную матрицу, содержащую сообщающиеся между собой поры и каналы, либо массу трещиновых пород.
Полученные результаты исследования динамических задач теории насыщенных пористых сред представляют большой интерес в областях строительства (промышленное применение взрывов, антисейсмическое строительство и т.д.), сейсмологии, геофизике. Интерес к этим проблемам неуклонно растет.
Направления исследований по динамике насыщенных пористых сред весьма разнообразны; рассматриваются конкретные задачи с простой геометрией (пространство, полупространство, слой, сфера, пластина, цилиндр и т.д.), особое внимание уделяется контактным (смешанным) задачам;' изучаются волновые процессы отражения, преломления и дифракции, а также вопросы моделирования распространения волн в различных насыщенных пористых средах - слоистых, анизотропных, неоднородных.
Цель данной работы заключается в постановке краевых задач динамики двухкомпонентных сред, выводу приближенных уравнений продольных колебаний пористых сред в двумерной и одномерной постановках с учетом трансверсальной изотропии и предварительной напряженности материала' скелета на основе классического подхода гипотез плоских сечений, решение прикладных задач продольных колебаний.
В настоящее время быстрое развитие строительства, ряда отраслей науки и техники поставили перед современной прикладной механикой и математикой в качестве одной из важнейших проблем исследования t , . волновых процессов в насыщенных пористых средах.
В связи с этим математическое . исследование стационарных и I нестационарных динамических процессов, происходящих в насыщенных пористых телах, связанные с распрортранением волн и колебаний на t основе теории двухкомпонентной среды, являлись и являются актуальной задачей механики деформируемого твердого тела, представляющие I
I , большой теоретический и практический интерес. Актуальность её обусловлена повседневными запросами инженерной науки и практики (зданий и сооружений; строительством, гидротехнических и энергетических сооружений, дамб, плотин и др.) и; необходимостью дальнейшего развития общей * теории двухкомпонентных сред, включающей в себя вопросы построения физико-математических моделей, определение области применения и оценку области применяемости теории, обоснования аналитических и численных методов; решения, дающие достоверные результаты при решении краевых задач. Кроме того, все динамические явления, возникающие в сплошных средах, описывакш^ как правило, системами дифференциальных уравнений; в частных производных; более того, решение краевых задач динамики насыщенных пористых сред в различной постановке, сопряжено со значительными математическими трудностями. В связи с этим разработка аналитических методов' решения одномерных, плоских и пространственных задач динамической теории упругости двухкомпонентных сред имеет теоретическое и практическое значение. I
Еще одна из основных особенностей двухкомпонентных сред (первая компонента - упругий скелет, вторая - жидкая компонента) состоит в том, что каждая элементарная компонента представляет собой конгломерат I частиц, резко отличающихся по физико-механическим и тепловым характеристикам. Естественно, это существенно влияет на процессы деформирования скелета, а также на динамические процессы, происходящие в нем.
Теоретические модели многокомпонентных сред разработаны и развиты многими отечественными и зарубежными учеными; Био М.А. [6I
9], Григорян С.С.[18], Грин А.Е., Нахди П.М.[19], Косачевский Л.Я.[25], Лейбензон А.С. [28], Нигматуллин Р.Н. [39], Николаевский В.Н. [41; 42], Рахматулин Х.А.[50, 51], Филиппов И Г. [64, 65, 67, 69], Флорин В.А. [70], Френкель Я.И: [72], Хорошун Л.П. [75], Эйслер Л.А. [82], Derski W. [90], Men Fu-Hu [96] и др. Особенно большой вклад в теорию двухкомпонентных сред внесли Био М.А. [6-9], Григорян С.С. [18], Косачевский Л.Я. [25], Николаевский В Н.[41, 42], Рахматулин X.А.[50, 51], Филиппов И.Г. [64-69], Френкель Я.И. [72], Хорошун Л.П. [75], Berryman G.G. [84], Bourbie Т. [87], Bowen R.M. [88], Deresiewicz H: [89], Derski W. [90], Fatt J. [92], Kowalcki S.J. [95], IgnachakJ. [94] и др.
Теоретические и экспериментальные исследования в области динамики элементов конструкций и сооружений связаны с работами таких исследователей, как Ахенбах Д.Ж. [2], Болотин В.В. и его ученики [11],
Бреховских JI.M. [10], Варданян Г.С. [12], Власов Б.Ф. [13], Власов В.З.
14], Григолюк Э.И [17], Гузь А.Н. и Кубенко В.Д. [20], Коренев Б.Г. [26], Леонтьев Н.Н. [29], Метод фотоупругости (под редакцией Хесина Г.Л.)
• I
34], Петрашень Г.И. и др. [46], Тимошенко С.П. [60], Уфлянд Я.С. [63], к . • I
Филиппов И.Г. [64-69] и многие другие. I t
Диссертационная работа посвящена: математической постановке краевых задач продольного I колебания двухкомпонентных плоских и одномерных сред на основе линейной теории; выводу приближенных уравнений с учетом трансверсальной изотропии и предварительной напряженности скелета двухкомпонентной среды; решению частных задач, имеющих прикладное значение во многих областях строительного дела, техники и т.д.
Научная новизна представленных в диссертационной работе результатов заключается в следующем:
1. На основе классической гипотезы теории плоских сечений выведены приближенные уравнения продольного колебания плоских и одномерных двухкомпонентных сред с учетом трансверсальной изотропии и предварительной напряженности материала пористого скелета. L
2. Сформулированы необходимые граничные условия по краям i и торцам двумерных и одномерных двухкомпонентных пористых сред.
3. Решен класс прикладных задач продольного колебания.
I • Научное значение исследований, приведенных в диссертации, состоит в ч развитии теории колебаний двумерных и одномерных двухкомпонентных сред.
Практическое значение приведенных в диссертации исследований связано с возможностью применения разработанных приближенных уравнений ; продольного колебания к актуальным прикладным задачам, расчету напряженно-деформированного состояния плоских и одномерных двухкомпонентных сред и т.д.
Достоверность положений и выводов диссертационной работы основана как на общей постановке трехмерной теории двухкомпонентных сред, так и на применении, хорошо обоснованных, гипотез плоских сечений. G сравнением полученных приближенных уравнений для однокомпонентных упругих сред.
Диссертационная работа состоит из введения и обзора литературы, двух глав, заключения и списка литературы.
Похожие диссертационные работы по специальности «Механика деформируемого твердого тела», 01.02.04 шифр ВАК
Распространение волн в двухкомпонентных средах2013 год, кандидат наук Кукарских, Любовь Алексеевна
Динамика разномодульной изотропной упругой среды при ударных воздействиях1998 год, кандидат физико-математических наук Дудко, Ольга Владимировна
Исследование акустических волн в слоистых гидроупругих средах2005 год, кандидат физико-математических наук Ильясов, Хисам Хисамович
Колебания изотропных пластин с учетом температуры2004 год, кандидат технических наук Ургенишбеков, Айтмаганбет Турсынбаевич
Динамика плоских элементов конструкций, взаимодействующих с деформируемой средой2003 год, доктор технических наук Джанмулдаев, Бахитжан Джамаладинович
Заключение диссертации по теме «Механика деформируемого твердого тела», Шукюров, Александр Рамизович
Выводы по главе 2. На основе теоретических результатов предыдущей главы получены аналитические решения задач по распространению одномерных и двумерных волн, применимые как для полупространства так и I полуплоскости или стержня с учетом различных механических характеристик, упругих свойств материалов, предварительной: напряженности, пористости и других свойств.
1. Исследованы зависимости распространения продольных волн в двухкомпонентной пористой среде от вышеуказанных механических характеристик.
2. Исследованы задачи о воздействии подвижных погрузок на поверхности полубесконечного кусочно-однородного слоя методом плоских волн.
3. При решении задачи об ударе тупым телом по торцу полубесконечного слоя применялся обобщенный метод Вольтера для решения волновых уравнений.
4. Приведен численный анализ некоторых аналитически решенных задач.
Рис.3
Рис. А
FUc.7
0.5 1,0 Do
Рис.9
Pwc.10 М d-ч/Р
Рис.11
Заключение. I' • • . ■
1. На основе теории плоских сечений, применяемой в механике деформируемого I твердого тела, исследована динамика двухкомпонентных деформируемых сред. I
2. Выведены приближенные уравнения распространения продольных одномерных I и двумерных волн в двухкомпонентных средах с учетом различных I механических характеристик материала среды: изотропии, трансверсальной-изотропии, предварительной напряженности материала скелета, пористости и геометрии среды.
3. Сформулированы основные краевые задачи колебания двухкомпонентных сред I с учетом их механических и геометрических характеристик.
4. Проанализированы зависимости констант двухкомпонентной среды от коэффициента пористости.
5. Приведены аналитические решения ряда частных прикладных задач по распространению одно и двумерных волн в двухкомпонентных средах.
6. Выявлено влияние механических и геометрических характеристик двухкомпонентных сред на напряженно деформированное состояние в исследуемых частных прикладных задачах.
Список литературы диссертационного исследования кандидат технических наук Шукюров, Александр Рамизович, 2003 год
1. Аки К., Ричарде П. Количественная сейсмология. М.: Мир, 1983. - T.I.2.I-С.880.
2. Ахенбах Дж., Кешава С., Херрман Г. Движущая нагрузка, приложенная кIпластинке на упругом полупространстве. Прикладная механика, сер. Е, №4,1967.-С. 158-164.
3. Бабешко В.А. Обобщенный метод факторизации в пространственных динамических смешанных задачах теории упругости. М.: Наука, 1984. «-С.254.
4. Бабич В.М., Молотков И.А. Математические методы в теории упругих волн/Механика деформируемого твердого тела. Итоги науки и техники. -М.: ВИНИШ АН СССР, 1977. Т. 10. - С.5-62.
5. Бейтман Г., Эрдей А. Таблицы интегральных преобразований. М.: Наука, 1969.-Т.1.—С.318.
6. Био М.А. Теория упругости и консолидации анизотропной пористой среды/Механика, сб. Пер. И обзор иностр. Пер. литературы. М.: ИЛ -1959.-№1.-С.140-146.
7. Био М.А. Механика деформирования и распространения акустических1 / 1 ■ . • волн в пористой среде // Механика, сб. пер. и обзор иностр.
8. Литературы. М.: ИЛ. - 1963. - № 6. - С. 103-134.• I
9. Био М.А. Обобщенная теория распространения волн в диссипативных пористых средах // Механика, сб. пер.' и обзор иностр. Литературы. М.:I1. ИЛ-1963. -№6.-С. 135-155.
10. Био М.А. Теория деформаций пористого вязкоупругого анизотропного твердого тела//Механика, сб. Пер. и обзор иностр. Литературы. М.: ИЛ -1957.-№5.-С.95-111.
11. Бреховский Л.М. Волны в слоистых средах. М: Изд. АН СССР -1957.1. С.502.
12. Болотин В.В. Современные направления в области динамики пластин и оболочек// Теория пластин и оболочек. Киев: Наукова Думка, 1962. -С.16-32.
13. Варданян Г.С. Применение теории подобия и анализа размерностей к моделированию задач механики деформируемого твердого тела. -М.-МИСИ, 1980.-С.104.
14. Власов Б.Ф. Об уравнениях теории изгиба пластинок. М.: Изд. АН СССР, 1957. - № 12. - С.57-60.
15. Власов В.З. Избранные труды. М.: Изд. АН СССР, 1962. - Т.1. - С.503I524.
16. Ворович И.И., Бабешко В.А. Динамические смешанные задачи теории упругости для неклассических областей. М.: Наука, 1979. - С320.
17. Галин JI.A. Контактные задачи теории упругости и вязкости. М.: Наука,. 1980.-C.303.
18. Григолюк Э.И., Горшков А.Г. Нестационарная гидроупругость оболочек. JL: Судостроение, 1974. - С.208.
19. Гриднев В.В. Аппроксимация экспериментальных данных рядами Фурье в исследованиях вибрационной техники и колебательных процессов. Сб.Трудов МИСИ им. Куйбышева В.В., № 161, - М.: 1978. -С.120-139.
20. Грин А.Е., Нахди П.М. Смесь упругих сред. В сб.: Проблемы механики твердого деформируемого тела. JL: Судостроение, 1970. - С.143-148.
21. Гузь А.Н., Кубенко В.Д., Черевко М.А. Дифракция упругих волн. Киев: Наукова Думка., 1978. - С.308.
22. Егорычев О.А., Филиппов И.Г. Математические методы при исследовании колебаний плоских элементов строительныхконструкций//Труды Российско-Польского семинара
23. Теоретические основы строительства». Варшава. - С.49-55. 22.3валинский Н.В. и др. Динамика деформируемых твердых тел:
24. Сб.Механика в СССР за 50 лет. М.: Наука, 1922. - Т.З. - С.291-323.23.3оммерфельд А. Механика деформируемых сред. М.: ИЛ, 1954. -С.486.I
25. Косачевский Л .Я. О распространении упругих волн вдвухкомпоненгных средах. ПММ, 1959. Вып. 23, №6. - С.115-122.
26. Коренев Б.Г. Конструкции, лежащие на упругом основании.4//Строителъная механика в СССР. М.: Стройиздат, 1967. -С.115-135.
27. Кубенко В.Д. Нестационарное взаимодействие элементов конструкции со средой. Киев: Наукова думка, 1979. - С. 183.
28. Лейбензон Л.С. Движение природных жидкостей и газов в пористой среде. М.: Гостехиздат, 1947. - С.244.
29. Леонтьев Н.Н. Приложение обобщенного вариационного метода
30. Власова-Конторовича к расчету плит на упругом основании: Сб. Некоторые задачи сопротивления материалов. М.: МИСИ, 1969. - № 3.
31. Лямб Г. Динамическая теория звука. М.: Изд. физ.-мат. Наук, 1960. - С.372.I
32. Ляв А. Математическая теория упругости. М.-Л.: ОНТИ, 1935. -С.674.
33. Ляховицкий Ф.М., Рапопорт Л.И. Применение теории Френкеля-Био для расчета скоростей и поглощения упругих волн в насыщенных пористых средах// Прикладная геофизика. 1972. - вып. 66. - С.52-64.
34. Мардонов Б. О некоторых одномерных задачах динамики двухкомпонентных сред, насыщенных вязкой жидкостью//Изв. АН Уз.ССР, сер. Техн.наук, 1983. № 1. - С.56-59.
35. Метод фотоупругости // Под ред. Хесина Г.Л. М.: Стройиздат, 1975. -Т.2. - С.367.
36. Михайлов Г.К., Николаевский В.Н. Движение жидкостей и газов в пористых средах.//Механика в СССР за 50 лет. М.: Наука, 1970. - Т.2. -С.585-648.
37. Морс Ф.М., Фешбах Г. Методы теоретической физики. М.: ИЛ, 1960.-Т.2. С.886.
38. Наримов Ш., Артиков Т.У. Решение динамических задач в двухкомпонентных средах со смешанными граничными условиями. —1.
39. Наримов Ш. Нестационарные волновые процессы вIнасыщенных пористых средах. Диссертация на соискание ученой степени доктора ф.-м. наук. Ташкент, 1988; Киев, 1989
40. Нигматуллин Р.И. Методы механики сплошной среды дляIописания многофазных смесей. ПММ, 1970. - 34, № 6. - С. 1097-1112.
41. Нигматуллин Р.Н. Основы механики гетерогенных сред. М.: Наука, 1978.-С.336.
42. Николаевский В.Н. Механика пористых и трещиноватых сред. -М.: Наука, 1984.-С.232.
43. Николаевский В.Н. и др. Механика насыщенных пористых сред. М.: Недра, 1970.-С.335.
44. Новацкий В. Динамика сооружении. М.: Госстройиздат, 1963. - С.373.
45. Партон В.З. Одна задача консолидации насыщенных жидкостью уплотняемых пористых сред//Инженерный журнал. -1965. Т.5. - Вып.1. -С.176-180.
46. Партон В.З., Кудрявцев В.А. Контактная задача механики деформации пористых вязкоупругих сред: Сб. Проблемы механики твердого деформируемого тела. Л.: Судостроение, 1970. - С.329-339.
47. Петрашень Г.И. Проблемы инженерной теории колебаний вырожденных систем: Сб. Исследования по упругости и пластичности. Л.: Изд. ЛГУ, 1966.-Xa5.-C.3-33.I
48. Петрашень Г.И. Распространение волн в анизотропных групповых средах. Л.: Наука, 1978. -Вып.18. С.1-247.
49. Поручиков В.Б. Методы динамической теории упругости. М.: Наука,I1986.-С.328.
50. Пшеничнов Г.И. Метод декомпозиции решения уравнения и краевых. -, М.: ДАН СССР, 1985. Т.282. - № 4. - С.792-794.
51. Рахматулин Х.А. и др. Волны в двухкомпонентных средах. Ташкент: Фан, 1974.-С.266.
52. Рахматулин Х.А. и др. Распространение волн деформации. Фрунзе: Илим, 1985.-С.148.
53. Рахмонов Т.Г. Об одном представлении решения уравнения Био. ДАН УзССР, 1984. - № 7. - С.22-23.
54. Сашмонян АЛ. Волны напряжения в сплошных средах. М.: Изд. МГУ,1985.-С.416.1 i ' • . ■
55. Се Ю. Распространение волн в пористой среде, насыщеннойжидкостью Прикладная механика.- Тр. Амер. общ. инж. мех., сер.Е, 1973. -Т.40.-№4.-С.43-49.I
56. Слепяп Л.И. Нестационарные волны. Л.: Судостроение, 1972. - С.372.
57. Снедцон И., Берри Д. Классическая теория упругости. М.: Физматгиз, 1961.-С.253.
58. Снедцон И. Преобразования Фурье. Мл ИЛ, 1955. - С.654.
59. Терцаги К. Теория механики грунтов. Перевод с нем. М.: Госсгройиздат, 1961. - С.507.
60. Тимошенко С.П. Колебания в инженерном деле. М.: Изд. физ.-мат. Литературы, 1959. - С.440.
61. Ткапич B.C. Экстремальная модель упругой пористой среды насыщенной жидкостью//Проблемы гидромех. в освоении океана. Материалы 3 Республиканской конференции по прикл.гидромех. Г.2. - Киев, 1984. -С.174-175.
62. Трусделл К. Первоначальный курс рациональной механики сплошныхIсред. М.: Мир, 1975. - С.592.
63. Уфлянд Я.С. Распространение волн при поперечных колебаниях1.'стержней и пластин. ПММ. - Вып. 12. - №3 -1948. - С.287-300.
64. Филиппов И.Г., Чебан В.Г. Неустановившиеся движения сплошных сжимаемых сред. Кишинев: Штитица, 1973.- С.436.
65. Филиппов И.Г. Динамическая теория относительного течения многокомпонентных сред//Прикладная механика, 1971. № 10. - Т.7. -С.92-99.
66. Филиппов И.Г., Ешрычев О.А. Нестационарные колебания и дифракция волн в акустических и упругих средах. — М.: Машиностроение, 1997. — С.ЗОЗ.
67. Филиппов И.Г., Рахматулин Х.А., Саатов Я.У., Артыков Т.У. Волны в двухкомпонентных средах. -Узб.ССР, Ташкент: Изд. Фан, 1974. С. 264.
68. Филиппов И.Г., Ешрычев О.А. Волновые процессы в линейных вязкоупругих средах. М: Машиностроение, 1983. - С.272.
69. Филиппов И.Г., Чебан В.Г. Математическая теория колебания упругих и вязкоупругих пластин и стержней. Кишинев: ШТИИЦА, 1988.-С. 190.
70. Флорин В.А. Основы механики грунтов. T.I. M.-JL:j
71. Госстройиздат, 1959.-С.358.t
72. Франк Ф., Мизес Р. Дифференциальные и интегральные уравнения математической физики. Л.-М.: 1937. - С.468-617.I
73. Френкель Я.И. К теории сейсмических и сейсмоэлектрических явлений во влажной почве//Изв. АНСССР, сер. географ, и геофиз.,I1944. 8. - № 4. -С. 133-149.
74. Халикулова М., Нурмухамедов Х.Д. Поверхностные волны в двухкомпонентных средах//В кн.: Новые данные по сейсмологии и сейсмогеологии Узбекистана, Ташкента. Фан, 1974. - С. 130-135.
75. Харкевич А.А. Неустановившиеся волновые процессы. М.-Л.: ГИТГЛ. -С.204.
76. Хорошун Л.П. К теории насыщенных пористых сред. ПМ, 1976. -12. -№12. -С.35-41.
77. Шемякин Е.И. Динамические задачи теории упругости и пластичности. Курс лекций. Новосибирск: НГУ, 1968. - С.336.
78. Шукюров А.Р., Айсаутов М.А. Краевые задачи динамики двухкомпонентных сред в строительной механике // Труды четвертой конференции молодых ученых, аспирантов и докторантов
79. МГСУ. Строительство — формирование среды жизнедеятельности.I
80. Ч.Ш. М., 2001. - С. 47-49.
81. Шуюоров А.Р. Динамика двухкомпонентных плоских элементов // Труды пятой конференции молодых ученых, аспирантов и докторантов МГСУ. Строительство — формирование среды жизнедеятельности. Ч.Ш. М., 2002. - С. 54-56.
82. Черепанов Г.П. Механика хрупкого разрушения. М.: Наука, 1974. -С.640.
83. Эйслер JI.А. К вопросу о построении системы уравнений движения водо1. I 1 ■ . ■насыщенного грунта как многокомпонентной среды//Изв. ВИИИГ, 1968.-№86.-С. 236-245.I
84. Auld В.A. Acoustic fields and waves in solids. New York, John Wiley and Sons Inc., 1973; 2,414 p.
85. Berryman G.G. Elastic wave propagation in fluid saturated porous media. G. Acoust. Soc. Amerf, 1981,69, N 2, p. 416-424.
86. Biot MA, Wills D.G. The elastic coefficient of the theory of consolidation. J. Appl. Mech., 1957,24, N 4, p. 594-601.
87. Biot M.A. Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys., 1962,33, N 4, p. 1482-1498.
88. Bourbie Т., Coussy O., Zinszner B. Acoustique des mileux poreure. Paris: Techniq., 1986, XVI, 339 p.
89. Bowen P.M. Incompressible porous media models by use the theory mixmures. Int. J. Engng. Sci., 1980,18, p. 1129-1148.
90. Deresievicz H. The effect of boundaries on wave propagation in a liquid-filled porous solids: 6. Love waves in a double surface layer. Bull. Seis. Soc. Amer., 1964,54, N1, p. 417-423.
91. Derski W. Equations of motion for a fluid-saturated porous solids. Bull. Acad. Polon. Sci. Ser. Sci. Techn., 1978,26, N 1, p. 11-16.
92. Eving M.W., Jardetzky S.W., Press F. Elastic waves in layered media. New Yoric, 1957,380 р.
93. Fatt I. Pore structure in sandstones by compressible sphere-pack models. Bull. Amer. Assoc. Petrol. Geologists, 1958,42, N 8, p. 1914-1923.
94. Graff K.E. Ware motion in elastic solids. Oxford: Clarendon press, 1975, p.666.671.94.1gnachak J. Tensorial equations of motion for motion for a fluid-saturated porous elastic solid. Bull. Acad. Polon. Sci. Ser. Sci. Tech., 1978,26, N 8, p. 705-709.
95. Kowalski S.J. Comparison of the Biot equation of motion for a fluid-saturated porous solid with those of Derski. Bull. Acad. Polon. Sci. Ser. Sci. Tech., 1979, 27, N10-11, p. 455-461.
96. Men Fu-Hu. On wave propagation in fluid-saturated porous media. Soil dun. and Earthquake Eng. Proc. Conf. Southampton 13-15, July, 1982, Rotterdam, 1982,1, p. 225-238.
97. Morland L.M., A simple constitutive theory for a fluid-saturated porous solids. J. Glophys. Res., 1972, p. 890-900.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.