Электрическое управление оптоэлектронными свойствами графена для детектирования терагерцового и инфракрасного излучения/ Electrical Control of Graphene’s Optoelectronic Properties for Terahertz and Infrared Photodetection тема диссертации и автореферата по ВАК РФ 00.00.00, кандидат наук Титова Елена Игоревна
- Специальность ВАК РФ00.00.00
- Количество страниц 165
Оглавление диссертации кандидат наук Титова Елена Игоревна
Contents
List of Figures viii
List of Tables xix
Introduction
Graphene for Long-wavelength Radiation Detection
Aim of the work
The research objects of the dissertation
Proposition for The Defense
Scientific Novelty
Theoretical and Practical Importance
Presentations and Validation of Research Results
Publications
Personal Contribution
Thesis Structure
1 Graphene for Infrared and Terahertz Detection: a short review
1.1 THz and IR Photodetection
1.2 Graphene and its Properties
1.2.1 Bilayer Graphene
1.2.2 Graphene Plasmons
1.3 Key Figures of Merit in Photodetectors
1.4 Photodetection Mechanisms in Graphene
1.5 Graphene for THz Photodetection
1.6 IR polarization-sensitive detectors on graphene
1.7 Hexagonal Boron Nitride and its Properties 28 1.7.1 Optical Properties of hBN
1.8 Graphene-hBN Structures for Near-Field Optics
2 Fabrication and Measurement Techniques
2.1 Fabrication of van der Waals heterostructures
2.1.1 Mechanical exfoliation and stacking of 2D materials
2.1.2 Transfer of CVD graphene
2.1.3 Fabrication of electrical contacts to 2D heterostructures
2.2 Characterization and research methods
2.2.1 Atomic Force Microscopy
2.2.2 Electrical characterization
2.2.3 IR measurements
2.2.4 THz measurements
2.2.5 Scanning Near-field Optical Microscopy
3 Sub-Terahertz Photodetection at p-n Junctions in Gapped Bilayer Graphene
3.1 Fabrication of three-gate transistor structures based on 2D materials
3.2 Measurements
3.3 Transport results
3.4 Sub-THz photoresponse
3.5 Theoretical details
3.6 Results and Perspectives
4 Polarization-Resolving IR Detector Based on CVD Graphene
4.1 Fabrication of field-effect transistors based on CVD graphene
4.2 Transport measurements
4.3 IR polarization-dependent measurements
4.4 Results and Discussion
4.4.1 Graphene-metal p-n junctions
4.4.2 Polarization resolving
5 Electrical Tuning of Ultranarrow Polaritonic Resonances Using Graphene
5.1 Fabrication of hBN nanoresonators on electrically gated graphene
5.2 Near-field measurements of hBN on electrically gated graphene
5.3 Near-field IR imaging of hBN nanoresonators
5.4 Electrostatic Tuning of PhP Resonance in h-BN Nanoresonator Using Graphene
Conclusion
List of Abbreviations
List of Symbols
References
A Route sheets
Рекомендованный список диссертаций по специальности «Другие cпециальности», 00.00.00 шифр ВАК
Плазмонные наноструктуры для оптических метаматериалов2022 год, доктор наук Драчев Владимир Прокопьевич
Разработка массивов оптических и терагерцовых детекторов на основе метаматериалов2020 год, кандидат наук Бейранванд Бехрох Мирмохаммад
Optical properties of graphene and Two dimensional transition metal dichalcogenides/Оптические свойства графена и двумерных дихалькогенидов переходных металлов2022 год, кандидат наук Элсайед Марва Али Абделразик
Полностью волоконные лазеры с синхронизацией мод на основе однослойных углеродных нанотрубок, синтезированных аэрозольным методом2022 год, кандидат наук Мкртчян Арам Арсенович
Управление потоками заряда и тепла в наноразмерных квазиодномерных проводниках2022 год, кандидат наук Бубис Антон Владимирович
Введение диссертации (часть автореферата) на тему «Электрическое управление оптоэлектронными свойствами графена для детектирования терагерцового и инфракрасного излучения/ Electrical Control of Graphene’s Optoelectronic Properties for Terahertz and Infrared Photodetection»
Introduction
Graphene for Long-wavelength Radiation Detection
Infrared (IR) and terahertz (THz) radiation is of significant scientific and technological importance due to its unique properties and many potential applications. The boundaries of these ranges might appear somewhat blurry as different sources may cite varying values. Here we define mid-infrared and terahertz radiation as the electromagnetic waves with wavelength range 3 — 15 ¡m and 30 — 3000 ¡im, respectively. This corresponds to the frequency ranges 100 — 20 THz for mid-IR and 10 — 0.1 THz for terahertz ranges. Researchers generally prefer to work in terms of wavelength when discussing the IR range, and in frequency terms when referring to the THz range, the relationship between these quantities is written as A[im] ~ f Thz\ -
Detection of long-wavelength (IR and THz) radiation presents significant challenges due to the inherent limitations of both semiconductor and radio devices at these wavelengths. As we delve into the IR and THz spectrum from visible range, conventional semiconductor detectors face a decrease in performance due to reaching the limit of interband absorption. Traditional radio-frequency detectors also encounter problems because as the frequency increases, the RC-delays in the circuit increase, which distort the signal. This has resulted in a performance gap in device operation and sensitivity, often referred to as the 'THz gap', which poses a technical challenge in the field of long-wavelength radiation detection. However, long-wave radiation is useful for many fields of science and technology.
THz radiation is non-ionizing: it is safe for humans and other living beings, as it doesn't harm living tissues. The development of efficient THz detectors will ushering in a new era in communications and wireless technologies with incredible data rates that far exceed the limitations of existing wireless technologies [39, 40]. THz imaging is indispensable in the medical field [41], where it can help to distinguish between healthy and cancerous tissues based on their water content and different dielectric properties, which helps in cancer detection. In addition, THz imaging provides information about the depth and severity of burns, which facilitates proper treatment and healing. THz spectroscopy can identify biomolecules such as proteins and DNA, aiding disease diagnosis and drug development [42]. THz radiation is also in high demand in such clXGctS ctS defect inspection [43] and security [44].
IR radiation can penetrate things like fog, dust, and smoke that would obscure visible light [45].
This makes it useful for applications in search and rescue operations, or any situation where visibility is poor. IR radiation has the ability to carry information through air, making it vital in remote control technology for televisions, sound systems, and other devices [46, 47]. Similar to THz radiation, IR is also non-ionizing i.e., it doesn't carry enough energy to ionize atoms or molecules. This makes it safe for use in applications such as medical imaging [48]. The vibrational modes of many molecules lie in the IR range, so IR radiation interacts with molecular vibrations, which is crucial for its use in spectroscopy to identify and analyze chemicals [49]. Astronomy uses IR radiation to observe and analyze celestial bodies that are not visible in the normal spectrum of light due its ability to pass through cosmic dust [50]. IR radiation is also useful for heat detection [51, 52, 53].
Graphene has a unique combination of properties that makes it a promising material for detecting THz and IR radiation. Graphene exhibits high carrier mobility, which makes it possible to create fast IR and THz photodetectors based on graphene [13]. Because of its two-dimensional nature, graphene exhibits a pronounced dependence of the Fermi level on the transverse field, which leads to the possibility of electrostatic control of graphene properties, for example, the wavelength of two-dimensional plasmons in graphene [7]. Due to the high phonon energy (180 meV versus 36 meV
in GaAs) and low heat capacity, photo-excited hot carriers quickly heat other carriers and slowly
thermalized on the cold crystal lattice, making the photo-thermoelectric effect the main cause of detection in the simplest field-effect transistor structures based on graphene [14, 54]. Graphene has frequency-independent light absorption in the undoped state, but in the electrically doped state exhibits a dip in the mid-IR region associated with a decrease in interband transitions, and a peak in the THz region due to the Drude conductivity. However, when detecting is carried out by the photothermoelectric mechanism, interband transitions are not excited, so the absorption dip due to interband transitions does not affect photodetection in this case.
A graphene monolayer is a zero-bandgap semimetal, making graphene's resistance weakly dependent on temperature. In bilayer graphene, the band gap varies from zero to hundreds meV when a transverse electric field is applied [55], allowing a transistor non-linearity to be introduced into graphene-based structures. Due to the non-linearity of the transistor characteristic, the temperature dependence of the graphene resistance is enhanced, which leads, for example, to an enhanced bolometric photoresponse in gapped bilayer graphene [56]. Besides, terahertz photo-rectification at a tunnel p — n junction in gapped graphene has been shown to have excellent performance at cryogenic temperatures: responsivity as high as 4 kV/W, and noise iquivalent power as low as 0.2 pW/Hz1/2 [11]. However, the dependence of the photo-rectifying ability of graphene on the band gap has not been studied until now.
In addition to the radiation power that conventional photodetectors sense, electromagnetic radiation has additional degrees of freedom, one of which is the polarization angle. Polarization contains
a lot of unique information about surrounding objects and matter [57, 58], which is especially important in the IR region of the spectrum. Besides, the polarization of radiation can be used, for example, to increase the density of information when encoding it [59, 60, 61]. Despite the variety of polarization-sensitive materials [62, 63, 64, 65] and structures [66, 67, 68, 20], polarization resolution is not a trivial task, since it requires to distinguish between signal scaling due to power changes and polarization dependence.
To resolve polarization, several structures with selected polarization-sensitive directions, rotated relative to each other by a certain angle, are usually used. Examples of such structures include devices based on gratings [66], antennas [69], or nanowires [70, 71]. Polarization resolution can also be achieved by integrating directional nanoantennas with graphene [20, 68].
A recent proposal suggests the use of an electrical control signal to reduce the number of detectors in a polarization-resolving pixel and simplify circuitry by greatly altering the angle-dependence of photoresponse [72]. In Ref. [72], this dependence was essentially different for forward- and backward-biased photodiode based on black phosphorous/molybdenum disulphide 2d heterostructure (bias-selectable detector). After adding a proper control signal, just two rotated detectors are sufficient for design of polarization-resolving pixel. Of course, using bias current as a 'control' leads to large shot noise and increases the noise equivalent power. Usage of graphene-based devices for resolving radiation polarization can resolve many problems related with sensitivity, noises and complexity of device manufacturing [73, 74].
Hexagonal boron nitride (hBN) is often used as a support material in graphene-based transistors as it is an ideal encapsulating material for graphene due to its dielectric nature and close crystal lattices. However, hBN itself also exhibits interesting optical properties in the mid-IR range. It supports hyperbolic phonon-polaritons, which allow to compress electromagnetic radiation and manipulate it at nanoscales well beyond the diffraction limit [28]. Hyperbolic phonon-polaritons manifest themselves in the presence of a certain angle of out-of-plane propagation in the material, due to which standing waves can be observed in hBN flakes of nanometer thickness. Resonances associated with phonon-polariton modes can be used to induce high absorption in graphene. In Refs. [75, 76], a hBN resonator was combined with a graphene-based detector with induced p — n junction. This made it possible to increase the room-temperature responsivity to ~ 20 mA/W and reduce the equivalent noise power to 80 pW/Hz1/2 in the mid-IR range. It was shown that propagating phonon-polaritons hybridize with the intrinsic graphene plasmons [33], which makes it possible to tune the spectral position of the resonance by the gate. However, the interaction of confined in a nanoresonator phonon-polariton modes with graphene plasmons has not yet been studied, while phonon-polaritons confined in the resonator provide more freedom in controlling the electromagnetic field, and also demonstrate a greater degree of compression of the latter [77, 78].
Aim of the Work
The main goal of the research is to study the optoelectronic properties of graphene in IR and THz frequency ranges, focusing on three tasks:
• bandgap-dependent THz cryogenic detection in bilayer graphene;
• polarization-dependent IR detection at 'CVD graphene-metal' junction;
• the investigation of near-field IR response in 'graphene-hBN nanoresonator' polaritonic nanoresonators at different electron concentration in graphene.
The Research Objects of the Dissertation
The research objects were optoelectronic devices based on single- or bi-layer graphene. Several types of graphene-based field-effect transistors were fabricated and investigated. Electrical metal contacts were fabricated to the graphene layer, and silicon substrate was used as a bottom gate in all structures studied in this dissertation.
To study the terahertz photoresponse, transistor structures based on exfoliated bilayer graphene encapsulated in hexagonal boron nitride were used. The channel of such a transistor is connected to a THz broadband bow-tie antenna, which focuses THz radiation.
To study the infrared response, devices based on CVD graphene with drain-source contacts made of different metals were fabricated.
To study the near-field response, hBN squares placed on top of a graphene monolayer were used.
Proposition for The Defense
• The responsivity of sub-terahertz detectors based on p-n junctions in bilayer graphene increases when a band gap is induced by a transverse electric field. At a temperature of 25K and a band gap change from 0 meV to 20 meV, the responsivity increases from 3 to 20 times (depending on the detector design) and reaches 50 kV/W in voltage and 20 A/W in current, while the equivalent noise power drops to 36 fW/Hz1/2.
• The functional dependence of infrared photovoltage generated at the "metal-graphene" contact on the incident radiation polarization is governed by the charge carriers concentration in graphene: at a certain carrier concentration value, the photovoltage is polarization-insensitive; at other concentration values the photovoltage has a pronounced maximum if the incident electric field is perpendicular to the contact. Photovoltage measurements at these two carrier
concentration values allow for simultaneous determination of the power and polarization of the incident radiation.
• The frequency of electromagnetic resonance in "graphene - hexagonal boron nitride nanores-onator" structures depends on the carrier concentration in graphene due to the hybridization of graphene plasmon modes and boron nitride phonon-polariton modes. A change in carrier concentration from 2.5 • 1012cm-2 to 7 • 1012cm-2 via gate voltage causes a switch between two sequential longitudinal modes of the nano-resonator at a fixed resonance frequency of 1480 cm-1.
Scientific Novelty
All new results are summarized below:
• We experimentally investigated the sub-terahertz photodetection in bilayer graphene as a function of electrically induced band gap.
• We intestigated the rectification mechanisms in a sub-THz photodetector based on p-n junctions in gapped bilayer graphene. We shown that at cryogenic temperatures the dominant rectification mechanism is photothermoelectric, against with the features of another rectifying mechanism, probably a tunnel rectification. At room temperature, the dominant detection mechanism changes from photothermoelectric to, probably, a resistive self-mixing mechanism.
• We have shown that the photodetecting properties (voltage and current responsivity, equivalent noise power) of the detector based on lateral p-n junction in bilayer graphene enhance
in several times (from 3 to 20) with electrical induction of band gap from 0 meV to 20-25 meV at sub-THz irradiation.
• We have presented a polarization-resolving infrared room-temperature detection method on the 'graphene-metal' junction. We showed that the photodetector is operational when using commercial scalable CVD graphene of low quality (^ ~ 103cm2/V/s).
• We have demonstrated the reversible in-situ electrical tuning of ultra-narrow phonon-polariton resonances in 'gated graphene - hBN nano-resonator' structures. The resonances were tuned by transverse electric field, which changed the carrier concentration in graphene.
Theoretical and Practical Importance
The practical value of the dissertation results lies in the investigation of new types of THz and IR
photodetectors, which has a huge implication for the development of commercial photodetectors.
The new types of terahertz and infrared photodetectors explored could offer potentially superior performance in terms of responsivity, noise equivalent power and range, which are key parameters in many applications including imaging, communication, and spectroscopy. The research constitutes a major step towards prototyping commercial photodetectors that meet the increasing demands of diverse sectors, ranging from communication and health to security and space exploration.
Presentations and Validation of Research Results
This thesis' findings were presented at the following conferences and seminars:
1. EP2DS-24/MSS-20, Toyama, Japan, 11/2021
2. XV Russian conference on semiconductor physics, Nizhny Novgorod, 3-7 October 2022
3. The 5-th International Conference TERAHERTZ AND MICROWAVE RADIATION: GENERATION, DETECTION AND APPLICATIONS, TERA 2023, 27 February - 2 March 2023, Moscow, Russia
4. 65th All-Russian Scientific Conference of the MIPT in honor of the 115th anniversary of L.D. Landau, Dolgoprudny, April 2023
5. 11th International Conference on Materials for Advanced Technologies (ICMAT 2023), Singapore, June 2023
6. 11th International Symposium on Optics and its Applications (OPTICS 11), Yerevan, Armenia, July 2023
Publications
Based on the materials of the dissertation, 3 publications were published, including 3 papers in international journals indexed in Scopus and Web of Science.
Published papers:
[79] (Indexed in Scopus) 1. Elena Titova, Dmitry Mylnikov, Mikhail Kashchenko, Ilya Safonov, Sergey Zhukov, Kirill Dzhikirba, Kostya Novoselov, Denis Bandurin, Georgy Alymov, and Dmitry Svintsov "Ultralow-noise terahertz detection by p-n junctions in gapped bilayer graphene" - ACS Nano 2023, 17, 9, 8223-8232.
[80] (Indexed in Scopus) 2. Valentin Semkin, Dmitry Mylnikov, Elena Titova, Sergey Zhukov, and Dmitry Svintsov "Gate-controlled polarization-resolving mid-infrared detection at metal-graphene junctions", Applied Physics Letters, 120, 191107 (2022).
[81] (Indexed in Scopus) 3. Jiahua Duan, Francisco Javier Alfaro-Mozaz, Javier Taboada-Gutiérrez, Irene Dolado, Gonzalo Álvarez-Pérez, Elena Titova, Andrei Bylinkin, Ana Isabel F. Tresguerres-Mata, Javier Martín-Sánchez, Song Liu, James H. Edgar, Denis A. Bandurin, Pablo Jarillo-Herrero, Rainer Hillenbrand, Alexey Y. Nikitin, Pablo Alonso-González "Active and Passive Tuning of Ultranarrow Resonances in Polaritonic Nanoantennas", Advanced Materials, 2022, 34, 2104954.
Personal Contribution
[79], Chapter 3 . I conducted the measurements, analyzed the results, wrote the paper, participated in formulation of the problem, establishing the technology of sample fabrication and planning the experiments.
[80], Chapter 4 . I fabricated the samples, participated in the planning the experiments and analyzation of the results.
[81], Chapter 5 . I fabricated the samples, set up and carried out the electrical part of the measurements, participated in near-field measurements and analyzation of the results.
Thesis Structure
The thesis consist of introduction, 5 chapters, conclusion, a list of 185 references and 1 Appendix.
The total size of the dissertation is 165 pages including 146 pages of the main text and 19 pages of
titles and contents. The thesis includes 104 figures and 3 tables.
Похожие диссертационные работы по специальности «Другие cпециальности», 00.00.00 шифр ВАК
Extraordinary optical transmission in holographic and polycrystalline structures/Усиленное оптическое пропускание в голографических и поликристаллических наноструктурах2021 год, кандидат наук Ушков Андрей Александрович
Катодные материалы для двухионных аккумуляторов на основе полимерных аминов2022 год, кандидат наук Обрезков Филипп Александрович
Effect of double-cation substitution on the low-energy electrodynamics of M-type hexaferrites/Влияние двухкатионного замещения на низкоэнергетическую электродинамику гексаферритов М-типа2022 год, кандидат наук Ахмед Асмаа Гамаль Мохамед
Анализ нейтринных взаимодействий для поиска сигналов от сверхновой2024 год, кандидат наук Шешуков Андрей Сергеевич
The Role of Carbon and Nanocomposite Hybrid Materials as Supports for Transition Metal Sulfide-based Catalysts in Higher Alcohols Synthesis from Syngas (Роль углерода и нанокомпозитных гибридных материалов в качестве носителей для катализаторов на основе сульфидов переходных металлов в синтезе высших спиртов из синтез-газа)2022 год, кандидат наук Осман Мохамед Изелдин Абдалла
Заключение диссертации по теме «Другие cпециальности», Титова Елена Игоревна
Conclusion
In conclusion, this dissertation has brought to light extensive data supporting the potential of graphene in advancing the field of optoelectronics, particularly for terahertz and infrared photodetection.
The comprehensive exploration and remarkable discovery in this research field have paved the way for further advancements in building highly responsive, energy efficient and miniaturized photodetectors. However, it must be noted that there are still challenges to address and numerous perspectives to explore. Future work should focus on further enhancing the efficiency of graphene-based photodetectors and addressing practical issues related to device fabrication and stability.
The thesis consists of three main parts - terahertz photodetection in gapped dilayer graphene, infrared polarization-sensitive photodetection on CVD graphene, and active tuning of phonon-polaritons in hBN nanoresonators via graphene.
The main results of the thesis cire 81S follow:
• We investigated the sub-THz photoresponse in BLG-based detectors with gate-induced p-n junction focusing on the gapped state of the channel. We found that introduction of a gap results in enhanced responisivty, both for rectified current and rectified voltage. At operating temperatures of ~ 25 K, the responsivity at 20 meV band gap is from 3 to 20 times larger than that in the gapless state. The maximum voltage responsivity of our devices at 0.13 THz illumination exceeds 50 kV/W, while the noise equivalent power falls down to 36 fW /Hz1/2. The observed sign and pattern of photovoltage with varying the carrier densities at cryogenic temperatures (T ^ 25 K) can be explained by the photo-thermoelectric scenario. At the same time, we evidenced the enhancement of photovoltage as the doping under the two top gates is opposite to that in near-contact regions. This feature may be attributed to an additional rectification mechanism, like, for instance, rectification by tunnel junctions at the contacts. Instructively, at room temperature (T ^ 300 K), the overall sign of photoresponse changes. This indicates the dominance of non-thermoelectric rectification mechanisms, presumably, resistive self-mixing.
• We have shown that gate- and polarization-dependent response of a graphene-metal junction at mid-infrared wavelengths has several features enabling the polarization-resolving action. We shown the presence of carrier density n* (set by the gate) at which the detector response
is insensitive to the light polarization. This working point can be used for power calibration of the device. At other carrier densities (n > n* or n < n*, depending on metal), the photoresponse has strong polarization sensitivity. Operation at these densities, after power calibration, can be used for determination of the polarization angle 9.
• We have demonstrated active tuning of ultranarrow resonances in phononic nanoresonators, namely hBN squares with a nanoscale cross-section. Our nanoimaging experiments and numerical simulations reveal sharp resonances with linewidths of around 9 cm-1 (Q ~ 165), which generate puzzling near-field patterns that allow shrinking mid-infrared light (of incident wavelength A0) to subwavelength dimensions (~ A0/42). We demonstrated the realization of actively tunable nanoresonators with ultranarrow resonances (linewidths of ~ 20 cm-1, i.e., one order of magnitude smaller than the typical linewidths in active graphene nanoresonators) by placing them on top of gated graphene in which we vary the Fermi energy. Our results establish the basis for the control of polaritonic resonances in nanoresonators made of hyperbolic materials, while the combination of refractive-index sensitivity and active tunability of ultranarrow resonances opens exciting prospects for biosensing and the realization of tunable strong coupling phenomena at the nanoscale.
Overall, this study has greatly contributed to the understanding of optoelectronic properties of graphene-based structures, providing a solid foundation for realizing next-generation photodetection technologies.
Список литературы диссертационного исследования кандидат наук Титова Елена Игоревна, 2024 год
[1] Yi Huang, Yaochun Shen, and Jiayou Wang. From Terahertz Imaging to Terahertz Wireless Communications. Engineering, 22:106-124, March 2023.
[2] S. Das Sarma, Shaffique Adam, E. H. Hwang, and Enrico Rossi. Electronic transport in two-dimensional graphene. Reviews of Modern Physics, 83(2):407-470, May 2011.
[3] A. Rogalski. Graphene-based materials in the infrared and terahertz detector families: a tutorial. Advances in Optics and Photonics, 11(2):314, June 2019.
[4] Tony Low and Phaedon Avouris. Graphene Plasmonics for Terahertz to Mid-Infrared Applications. ACS Nano, 8(2):1086-1101, February 2014.
[5] A. Rogalski, Malgorzata Kopytko, and Piotr Martyniuk. Opto-Electronics ReviewOpto-Electronics Review. 2020. Publisher: Polish Academy of Sciences and Association of Polish Electrical Engineers in cooperation with Military University of Technology.
[6] Jianing Chen, Michela Badioli, Pablo Alonso-González, Sukosin Thongrattanasiri, Florian Huth, Johann Osmond, Marko Spasenovic, Alba Centeno, Amaia Pesquera, Philippe Godignon, Amaia Zurutuza Elorza, Nicolas Camara, F. Javier García De Abajo, Rainer Hillenbrand, and Frank H. L. Koppens. Optical nano-imaging of gate-tunable graphene plasmons. Nature, 487(7405):77-81, July 2012.
[7] Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature, 487(7405):82-85, July 2012.
[8] Denis A. Bandurin, Dmitry Svintsov, Igor Gayduchenko, Shuigang G. Xu, Alessandro Principi, Maxim Moskotin, Ivan Tretyakov, Denis Yagodkin, Sergey Zhukov, Takashi Taniguchi, Kenji Watanabe, Irina V. Grigorieva, Marco Polini, Gregory N. Goltsman, Andre K. Geim, and Georgy Fedorov. Resonant terahertz detection using graphene plasmons. Nature Communications, 9(1):5392, December 2018.
[9] José M. Caridad, Óscar Castelló, Sofía M. López Baptista, Takashi Taniguchi, Kenji Watanabe, Hartmut G. Roskos, and Juan A. Delgado-Notario. Room-Temperature Plasmon-Assisted Resonant THz Detection in Single-Layer Graphene Transistors. Nano Letters, page acs.nanolett.3c04300, January 2024.
[10] F. H. L. Koppens, T. Mueller, Ph. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nature Nanotechnology, 9(10):780-793, October 2014.
[11] I. Gayduchenko, S. G. Xu, G. Alymov, M. Moskotin, I. Tretyakov, T. Taniguchi, K. Watanabe, G. Goltsman, A. K. Geim, G. Fedorov, D. Svintsov, and D. A. Bandurin. Tunnel field-effect transistors for sensitive terahertz detection. Nature Communications, 12(1):543, December 2021.
[12] https://www.electricaltechnology.org/2022/07/photodiode.html.
[13] Sebastián Castilla, Bernat Terrés, Marta Autore, Leonardo Viti, Jian Li, Alexey Y. Nikitin, Ioannis Vangelidis, Kenji Watanabe, Takashi Taniguchi, Elefterios Lidorikis, Miriam S. Vitiello, Rainer Hillenbrand, Klaas-Jan Tielrooij, and Frank H.L. Koppens. Fast and Sensitive Terahertz Detection Using an Antenna-Integrated Graphene pn Junction. Nano Letters, 19(5):2765-2773, May 2019.
[14] Xinghan Cai, Andrei B. Sushkov, Ryan J. Suess, Mohammad M. Jadidi, Gregory S. Jenkins, Luke O. Nyakiti, Rachael L. Myers-Ward, Shanshan Li, Jun Yan, D. Kurt Gaskill, Thomas E. Murphy, H. Dennis Drew, and Michael S. Fuhrer. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene. Nature Nanotechnology, 9(10):814-819, October 2014.
[15] Tunnel diodes. https://ecstudiosystems.com/discover/textbooks/basic-electronics/diodes/tunnel-diodes/.
[16] Justin C. W. Song, Mark S. Rudner, Charles M. Marcus, and Leonid S. Levitov. Hot Carrier Transport and Photocurrent Response in Graphene. Nano Letters, 11(11):4688-4692, November 2011.
[17] Nathaniel M. Gabor, Justin C. W. Song, Qiong Ma, Nityan L. Nair, Thiti Taychatanapat, Kenji Watanabe, Takashi Taniguchi, Leonid S. Levitov, and Pablo Jarillo-Herrero. Hot Carrier-Assisted Intrinsic Photoresponse in Graphene. Science, 334(6056):648-652, November 2011.
[18] L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci. Graphene field-effect transistors as room-temperature terahertz detectors. Nature Materials, 11(10):865-871, October 2012.
[19] Domantas Vizbaras, Kçstutis Ikamas, Sandra Pralgauskaite, Jonas Matukas, Andrey A. Generalov, and Alvydas Lisauskas. Optimization of terahertz detectors based on graphene field effect transistors by high impedance antennae. Lithuanian J¡ournal of Physics, 62(4), December 2022.
[20] Jingxuan Wei, Ying Li, Lin Wang, Wugang Liao, Bowei Dong, Cheng Xu, Chunxiang Zhu, Kah-Wee Ang, Cheng-Wei Qiu, and Chengkuo Lee. Zero-bias mid-infrared graphene
photodetectors with bulk photoresponse and calibration-free polarization detection. Nature Communications, 11(1):6404, December 2020.
[21] Magdalena Jedrzejczak-Silicka, Martyna Trukawka, Katarzyna Piotrowska, and Ewa Mi-jowska. Few-Layered Hexagonal Boron Nitride: Functionalization, Nanocomposites, and Physicochemical and Biological Properties. In Muharrem Ince, Olcay Kaplan Ince, and Gabrijel Ondrasek, editors, Biochemical Toxicology - Heavy Metals and Nanomaterials. IntechOpen, July 2020.
[22] https://www.youtube.com/@empossible1577.
[23] Evgenii E. Narimanov and Alexander V. Kildishev. Naturally hyperbolic. Nature Photonics, 9(4):214-216, April 2015.
[24] Zhiwei Guo, Haitao Jiang, and Hong Chen. Hyperbolic metamaterials: From dispersion manipulation to applications. JJournal of Applied Physics, 127(7):071101, February 2020.
[25] Joshua D. Caldwell, Lucas Lindsay, Vincenzo Giannini, Igor Vurgaftman, Thomas L. Reinecke, Stefan A. Maier, and Orest J. Glembocki. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons. Nanophotonics, 4(1):44-68, April 2015.
[26] D. N. Basov, M. M. Fogler, and F. J. García De Abajo. Polaritons in van der Waals materials. Science, 354(6309):aag1992, October 2016.
[27] Joshua D. Caldwell, Andrey V. Kretinin, Yiguo Chen, Vincenzo Giannini, Michael M. Fogler, Yan Francescato, Chase T. Ellis, Joseph G. Tischler, Colin R. Woods, Alexander J. Giles, Minghui Hong, Kenji Watanabe, Takashi Taniguchi, Stefan A. Maier, and Kostya S. Novoselov. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nature Communications, 5(1):5221, October 2014.
[28] S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov. Tunable Phonon Polaritons in Atomically Thin van der Waals Crystals of Boron Nitride. Science, 343(6175):1125-1129, March 2014.
[29] P. Li, I. Dolado, F. J. Alfaro-Mozaz, A. Yu. Nikitin, F. Casanova, L. E. Hueso, S. Vélez, and R. Hillenbrand. Optical Nanoimaging of Hyperbolic Surface Polaritons at the Edges of van der Waals Materials. Nano Letters, 17(1):228-235, January 2017.
[30] Yingjie Wu, Jiahua Duan, Weiliang Ma, Qingdong Ou, Peining Li, Pablo Alonso-González, Joshua D. Caldwell, and Qiaoliang Bao. Manipulating polaritons at the extreme scale in van der Waals materials. Nature Reviews Physics, July 2022.
[31] Irene Dolado, Francisco Javier Alfaro-Mozaz, Peining Li, Elizaveta Nikulina, Andrei Bylinkin, Song Liu, James H. Edgar, Felix Casanova, Luis E. Hueso, Pablo Alonso-González, Saül Vélez, Alexey Y. Nikitin, and Rainer Hillenbrand. Nanoscale Guiding of Infrared Light with Hyperbolic Volume and Surface Polaritons in van der Waals Material Ribbons. Advanced Materials, 32(9):1906530, March 2020.
[32] Peining Li, Irene Dolado, Francisco J Alfaro-Mozaz, Alexey Yu Nikitin, Felix Casanova, Luis E Hueso, Saül Vélez, and Rainer Hillenbrand. Optical Nanoimaging of Hyperbolic Surface Polaritons at the Edges of van der Waals Materials. Nano Letters, page 20.
[33] S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. A. M. Janssen, S-E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nature Nanotechnology, 10(8):682-686, August 2015.
[34] Min Yi and Zhigang Shen. A review on mechanical exfoliation for the scalable production of graphene. JJournal of Materials Chemistry A, 3(22):11700-11715, 2015.
[35] Filippo Pizzocchero. The hot pick-up technique for batch assembly of van der Waals heterostructures. NATURE COMMUNICATIONS, page 10.
[36] Pengfei Li, Caiyun Chen, Jie Zhang, Shaojuan Li, Baoquan Sun, and Qiaoliang Bao. Graphene-based transparent electrodes for hybrid solar cells. Frontiers in Materials, 1, November 2014.
[37] Thorlabs products. https://www.thorlabs.com/.
[38] Bylinkin Andrey. Tight-Binding Terahertz Plasmons in Chemical-Vapor-Deposited Graphene. page 8, 2019.
[39] Tadao Nagatsuma, Guillaume Ducournau, and Cyril C. Renaud. Advances in terahertz communications accelerated by photonics. Nature Photonics, 10(6):371-379, June 2016.
[40] Kaushik Sengupta, Tadao Nagatsuma, and Daniel M. Mittleman. Terahertz integrated electronic and hybrid electronic-photonic systems. Nature Electronics, 1(12):622-635, December 2018.
[41] Liu Yu, Liu Hao, Tang Meiqiong, Huang Jiaoqi, Liu Wei, Dong Jinying, Chen Xueping, Fu Weiling, and Zhang Yang. The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges. RSC Advances, 9(17):9354-9363, 2019.
[42] Liu Yu, Liu Hao, Tang Meiqiong, Huang Jiaoqi, Liu Wei, Dong Jinying, Chen Xueping, Fu Weiling, and Zhang Yang. The medical application of terahertz technology in non-invasive
detection of cells and tissues: opportunities and challenges. RSC Advances, 9(17):9354-9363, 2019.
[43] F. Ellrich, M. Bauer, N. Schreiner, A. Keil, T. Pfeiffer, J. Klier, S. Weber, J. Jonuscheit, F. Friederich, and D. Molter. Terahertz Quality Inspection for Automotive and Aviation Industries. Journal of Infrared, Millimeter, and Terahertz Waves, 41(4):470-489, April 2020.
[44] Gombo Tzydynzhapov, Pavel Gusikhin, Viacheslav Muravev, Alexey Dremin, Yuri Nefyodov, and Igor Kukushkin. New Real-Time Sub-Terahertz Security Body Scanner. Journal of Infrared, Millimeter, and Terahertz Waves, 41(6):632-641, June 2020.
[45] Jaroslaw Szrek, Radoslaw Zimroz, Jacek Wodecki, Anna Michalak, Mateusz Góralczyk, and Magdalena Worsa-Kozak. Application of the infrared thermography and unmanned ground vehicle for rescue action support in underground mine—the amicos project. Remote Sensing, 13(1):69, December 2020.
[46] Jinsoo Han, Chang-Sic Choi, and Ilwoo Lee. More efficient home energy management system based on zigbee communication and infrared remote controls. IEEE Transactions on Consumer Electronics, 57(1):85-89, February 2011.
[47] Yu-Chi Wu, Meng-Jen Chen, Bo-Sen Chang, and Ming-Tsung Tsai. A low-cost web-based infrared remote control system for energy management of aggregated air conditioners. Energy and Buildings, 72:24-30, April 2014.
[48] E F J Ring and K Ammer. Infrared thermal imaging in medicine. Physiological Measurement, 33(3):R33-R46, February 2012.
[49] Tobias W. W. Maß and Thomas Taubner. Incident angle-tuning of infrared antenna array resonances for molecular sensing. ACS Photonics, 2(10):1498-1504, October 2015.
[50] Frank J. Low, G.H. Rieke, and R.D. Gehrz. The beginning of modern infrared astronomy. Annual Review of Astronomy and Astrophysics, 45(1):43-75, September 2007.
[51] Wen Lei, Jarek Antoszewski, and Lorenzo Faraone. Progress, challenges, and opportunities for HgCdTe infrared materials and detectors. Applied Physics Reviews, 2(4):041303, December 2015.
[52] Antoni Rogalski. Infrared detectors: status and trends. Progress in Quantum Electronics, 27(2-3):59-210, January 2003.
[53] A. Rogalski. Recent progress in infrared detector technologies. Infrared Physics & Technology, 54(3):136-154, May 2011.
[54] K J Tielrooij, M Massicotte, L Piatkowski, A Woessner, Q Ma, P Jarillo-Herrero, N F Van
Hulst, and F H L Koppens. Hot-carrier photocurrent effects at graphene-metal interfaces. Journal of Physics: Condensed Matter, 27(16):164207, April 2015.
[55] Yuanbo Zhang, Tsung-Ta Tang, Caglar Girit, Zhao Hao, Michael C. Martin, Alex Zettl, Michael F. Crommie, Y. Ron Shen, and Feng Wang. Direct observation of a widely tunable bandgap in bilayer graphene. Nature, 459(7248):820-823, June 2009.
[56] Jun Yan, M-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew. Dual-gated bilayer graphene hot-electron bolometer. Nature Nanotechnology, 7(7):472-478, July 2012.
[57] Shih-Schön Lin, Konstantin M Yemelyanov, Edward N Pugh, and Nader Engheta. Separation and contrast enhancement of overlapping cast shadow components using polarization. Optics express, 14(16):7099-7108, 2006.
[58] Frans Snik and Christoph U Keller. Astronomical polarimetry: polarized views of stars and planets. Planets, Stars and Stellar Systems, 2:175, 2013.
[59] Yuanquan Wang, Chao Yang, Yiguang Wang, and Nan Chi. Gigabit polarization division multiplexing in visible light communication. Optics letters, 39(7):1823-1826, 2014.
[60] GB Xavier, G Vilela de Faria, GP Temporäo, and JP Von der Weid. Full polarization control for fiber optical quantum communication systems using polarization encoding. Optics express, 16(3):1867-1873, 2008.
[61] Wenhao Ran, Zhihui Ren, Pan Wang, Yongxu Yan, Kai Zhao, Linlin Li, Zhexin Li, Lili Wang, Juehan Yang, Zhongming Wei, Zheng Lou, and Guozhen Shen. Integrated polarization-sensitive amplification system for digital information transmission. Nat Commun, 12(1):6476, December 2021.
[62] Ziqi Zhou, Mingsheng Long, Longfei Pan, Xiaoting Wang, Mianzeng Zhong, Mark Blei, Jianlu Wang, Jingzhi Fang, Sefaattin Tongay, Weida Hu, Jingbo Li, and Zhongming Wei. Perpendicular optical reversal of the linear dichroism and polarized photodetection in 2d geas. ACS Nano, 12(12):12416-12423, dec 2018.
[63] Jiahong Zhong, Juan Yu, Lingkai Cao, Cheng Zeng, Junnan Ding, Chunxiao Cong, Zongwen Liu, and Yanping Liu. High-performance polarization-sensitive photodetector based on a few-layered PdSe2 nanosheet. Nano Research, 13(6):1780-1786, 2020.
[64] Xiaoyu Tian and Yushen Liu. Van der Waals heterojunction ReSe2/WSe2 polarization-resolved photodetector. JJournal of Semiconductors, 42(3), 2021.
[65] Lei Tong, Xinyu Huang, Peng Wang, Lei Ye, Meng Peng, Licong An, Qiaodong Sun, Yong Zhang, Guoming Yang, Zheng Li, Fang Zhong, Fang Wang, Yixiu Wang, Maithilee Motlag,
Wenzhuo Wu, Gary J. Cheng, and Weida Hu. Stable mid-infrared polarization imaging based on quasi-2D tellurium at room temperature. Nat Commun, 11(1):2308, December 2020.
[66] M. Jestl, I. Maran, A. Kock, W. Beinstingl, and E. Gornik. Polarization-sensitive surface plasmon Schottky detectors. Optics Letters, 14(14):719, jul 1989.
[67] Thomas Antoni, Alexandru Nedelcu, Xavier Marcadet, Hugues Facoetti, and Vincent Berger. High contrast polarization sensitive quantum well infrared photodetectors. Applied Physics Letters, 90(20):201107, may 2007.
[68] Jingxuan Wei, Cheng Xu, Bowei Dong, Cheng-Wei Qiu, and Chengkuo Lee. Mid-infrared semimetal polarization detectors with configurable polarity transition. Nat. Photon., 15(8):614-621, August 2021.
[69] E. Mohammadi and N. Behdad. A wide dynamic range polarization sensing long wave infrared detector. Scientific Reports, 7:17475, 2017.
[70] Hyunsung Park and Kenneth B. Crozier. Elliptical silicon nanowire photodetectors for polarization-resolved imaging. Optics Express, 23(6):7209, mar 2015.
[71] Kun Peng, Dimitars Jevtics, Fanlu Zhang, Sabrina Sterzl, Djamshid A. Damry, Mathias U. Rothmann, Benoit Guilhabert, Michael J. Strain, Hark H. Tan, Laura M. Herz, Lan Fu, Martin D. Dawson, Antonio Hurtado, Chennupati Jagadish, and Michael B. Johnston. Three-dimensional cross-nanowire networks recover full terahertz state. Science, 368(6490):510-513, 2020.
[72] James Bullock, Matin Amani, Joy Cho, Yu-Ze Chen, Geun Ho Ahn, Valerio Adinolfi, Vivek Raj Shrestha, Yang Gao, Kenneth B. Crozier, Yu-Lun Chueh, and Ali Javey. Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature. Nature Photonics, 12(10):601-607, oct 2018.
[73] Yuhang Ma, Huaxin Yi, Huanrong Liang, Wan Wang, Zhaoqiang Zheng, Jiandong Yao, and Guowei Yang. Low-dimensional van der Waals materials for linear-polarization-sensitive pho-todetection: materials, polarizing strategies and applications. Materials Futures, 3(1):012301, March 2024.
[74] Meng Chen, Yingxin Wang, and Ziran Zhao. Monolithic Metamaterial-Integrated Graphene Terahertz Photodetector with Wavelength and Polarization Selectivity. ACS Nano, 16(10):17263-17273, October 2022.
[75] Achim Woessner, Romain Parret, Diana Davydovskaya, Yuanda Gao, Jhih-Sheng Wu, Mark B. Lundeberg, Sébastien Nanot, Pablo Alonso-González, Kenji Watanabe, Takashi
Taniguchi, Rainer Hillenbrand, Michael M. Fogler, James Hone, and Frank H. L. Koppens. Electrical detection of hyperbolic phonon-polaritons in heterostructures of graphene and boron nitride. npj 2D Materials and Applications, 1(1), August 2017.
[76] Sebastián Castilla, Ioannis Vangelidis, Varun-Varma Pusapati, Jordan Goldstein, Marta Autore, Tetiana Slipchenko, Khannan Rajendran, Seyoon Kim, Kenji Watanabe, Takashi Taniguchi, Luis Martín-Moreno, Dirk Englund, Klaas-Jan Tielrooij, Rainer Hillenbrand, Elefterios Lidorikis, and Frank H. L. Koppens. Plasmonic antenna coupling to hyperbolic phonon-polaritons for sensitive and fast mid-infrared photodetection with graphene. Nature Communications, 11(1):4872, September 2020.
[77] F. J. Alfaro-Mozaz, P. Alonso-González, S. Vélez, I. Dolado, M. Autore, S. Mastel, F. Casanova, L. E. Hueso, P. Li, A. Y. Nikitin, and R. Hillenbrand. Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas. Nature Communications, 8(1):15624, June 2017.
[78] Siyuan Dai, Mykhailo Tymchenko, Yafang Yang, Qiong Ma, Marta Pita-Vidal, Kenji Watanabe, Takashi Taniguchi, Pablo Jarillo-Herrero, Michael M. Fogler, Andrea Alù, and Dimitri N. Basov. Manipulation and Steering of Hyperbolic Surface Polaritons in Hexagonal Boron Nitride. Advanced Materials, 30(16):1706358, April 2018.
[79] Elena Titova, Dmitry Mylnikov, Mikhail Kashchenko, Ilya Safonov, Sergey Zhukov, Kirill Dzhikirba, Kostya S. Novoselov, Denis A. Bandurin, Georgy Alymov, and Dmitry Svintsov. Ultralow-noise Terahertz Detection by p-n Junctions in Gapped Bilayer Graphene. ACS Nano, page acsnano.2c12285, April 2023.
[80] Valentin Semkin, Dmitry Mylnikov, and Elena Titova. Gate-controlled polarization-resolving mid-infrared detection at metal-graphene junctions. Applied Physics Letters, page 7, 2022.
[81] Jiahua Duan, Francisco Javier Alfaro-Mozaz, Javier Taboada-Gutiérrez, Irene Dolado, Gonzalo Álvarez Pérez, Elena Titova, Andrei Bylinkin, Ana Isabel F Tresguerres-Mata, Javier Martín-Sánchez, Song Liu, James H Edgar, Denis A Bandurin, Pablo Jarillo-Herrero, Rainer Hillenbrand, Alexey Y Nikitin, and Pablo Alonso-González. Active and Passive Tuning of Ultranarrow Resonances in Polaritonic Nanoantennas. Adv. Mater., page 10, 2022.
[82] Fatma Vatansever and Michael R. Hamblin. Far infrared radiation (FIR): Its biological effects and medical applications. Photonics & Lasers in Medicine, 1(4), January 2012.
[83] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov. Electric Field Effect in Atomically Thin Carbon Films. Science, 306(5696):666-669, October 2004.
[84] Hua Zhong, Zhiyong Zhang, Haitao Xu, Chenguang Qiu, and Lian-Mao Peng. Comparison of mobility extraction methods based on field-effect measurements for graphene. AIP Advances, 5(5):057136, May 2015.
[85] Eduardo V Castro, NMR Peres, J M B Lopes dos Santos, F Guinea, and A H Castro Neto. Bilayer graphene: gap tunability and edge properties. Journal of Physics: Conference Series, 129:012002, October 2008.
[86] P. A. D. Gonçalves and N. M. R. Peres. An introduction to graphene plasmonics. World Scientific, New Jersey, 2016.
[87] D.V. Fateev, K.V. Mashinsky, J.D. Sun, and V.V. Popov. Enhanced plasmonic rectification of terahertz radiation in spatially periodic graphene structures towards the charge neutrality point. Solid-State Electronics, 157:20-24, July 2019.
[88] V Ryzhii, T Otsuji, M Ryzhii, and M S Shur. Double graphene-layer plasma resonances terahertz detector. JJournal of Physics D: Applied Physics, 45(30):302001, August 2012.
[89] Elham Javadi, Dmytro B. But, Kçstutis Ikamas, Justinas Zdanevicius, Wojciech Knap, and Alvydas Lisauskas. Sensitivity of Field-Effect Transistor-Based Terahertz Detectors. Sensors, 21(9):2909, April 2021.
[90] Mohammed Alaloul and Jacob B. Khurgin. Plasmonic Photovoltaic Double-Graphene Detector Integrated Into TiN Slot Waveguides. IEEE Photonics JJournal, 13(6):1-8, December 2021.
[91] Gregory Auton, Dmytro B But, Jiawei Zhang, Ernie Hill, Dominique Coquillat, Christophe Consejo, Philippe Nouvel, Wojciech Knap, Luca Varani, Frederic Teppe, Jeremie Torres, and Aimin Song. Terahertz Detection and Imaging Using Graphene Ballistic Rectifiers. Nano Letters, 17(11):7015-7020, nov 2017.
[92] M. Kravtsov, A. L. Shilov, Y. Yang, T. Pryadilin, M. A. Kashchenko, O. Popova, M. Titova, D. Voropaev, Y. Wang, K. Shein, I. Gayduchenko, G. N. Goltsman, M. Lukianov, A. Kudri-ashov, T. Taniguchi, K. Watanabe, D. A. Svintsov, A. Principi, S. Adam, K. S. Novoselov, and D. A. Bandurin. Anomalous terahertz photoconductivity caused by the superballistic flow of hydrodynamic electrons in graphene, 2024.
[93] Thomas Mueller, Fengnian Xia, and Phaedon Avouris. Graphene photodetectors for highspeed optical communications. Nature Photonics, 4(5):297-301, May 2010.
[94] Leonardo Viti, Alisson R. Cadore, Xinxin Yang, Andrei Vorobiev, Jakob E. Muench, Kenji Watanabe, Takashi Taniguchi, Jan Stake, Andrea C. Ferrari, and Miriam S. Vitiello. Thermo-
electric graphene photodetectors with sub-nanosecond response times at terahertz frequencies. Nanophotonics, 10(1):89-98, July 2020.
[95] Aleksandr Shabanov, Maxim Moskotin, Vsevolod Belosevich, Yakov Matyushkin, Maxim Rybin, Georgy Fedorov, and Dmitry Svintsov. Optimal asymmetry of transistor-based terahertz detectors. Applied Physics Letters, 119(16):163505, October 2021.
[96] V. M. Muravev and I. V. Kukushkin. Plasmonic detector/spectrometer of subterahertz radiation based on two-dimensional electron system with embedded defect. Applied Physics Letters, 100(8):082102, February 2012.
[97] Xiaodong Xu, Nathaniel M. Gabor, Jonathan S. Alden, Arend M. van der Zande, and Paul L. McEuen. Photo-Thermoelectric Effect at a Graphene Interface Junction. Nano Letters, 10(2):562-566, February 2010.
[98] Gayathri Rao, Marcus Freitag, Hsin-Ying Chiu, Ravi S. Sundaram, and Phaedon Avouris. Raman and Photocurrent Imaging of Electrical Stress-Induced p-n Junctions in Graphene. ACS Nano, 5(7):5848-5854, July 2011.
[99] Eva C. Peters, Eduardo J. H. Lee, Marko Burghard, and Klaus Kern. Gate dependent photocurrents at a graphene p-n junction. Applied Physics Letters, 97(19):193102, November 2010.
[100] Jing-Jing Chen, Qinsheng Wang, Jie Meng, Xiaoxing Ke, Gustaaf Van Tendeloo, Ya-Qing Bie, Junku Liu, Kaihui Liu, Zhi-Min Liao, Dong Sun, and Dapeng Yu. Photovoltaic Effect and Evidence of Carrier Multiplication in Graphene Vertical Homojunctions with Asymmetrical Metal Contacts. ACS Nano, 9(9):8851-8858, September 2015.
[101] Zhou Zhang, Junxin Chen, Hao Jia, Jianfa Chen, Feng Li, Ximiao Wang, Shaojing Liu, Hai Ou, Song Liu, Huanjun Chen, Ya-Qing Bie, and Shaozhi Deng. A multimode photodetector with polarization-dependent near-infrared responsivity using the tunable split-dual gates control. iScience, 25(10):105164, October 2022.
[102] Davide Spirito, Dominique Coquillat, Sergio L. De Bonis, Antonio Lombardo, Matteo Bruna, Andrea C. Ferrari, Vittorio Pellegrini, Alessandro Tredicucci, Wojciech Knap, and Miriam S. Vitiello. High performance bilayer-graphene terahertz detectors. Applied Physics Letters, 104(6):061111, February 2014.
[103] Minkyung Jung, Peter Rickhaus, Simon Zihlmann, Peter Makk, and Christian Schonenberger. Microwave Photodetection in an Ultraclean Suspended Bilayer Graphene p-n Junction. Nano Letters, 16(11):6988-6993, November 2016.
[104] Tongcheng Yu, Francisco Rodriguez, Fred Schedin, Vasyl G. Kravets, Vladimir A. Zenin,
Sergey I. Bozhevolnyi, Konstantin S. Novoselov, and Alexander N. Grigorenko. Nanoscale light field imaging with graphene. Communications Materials, 3(1):40, December 2022.
[105] W. Miao, F. M. Li, Z. Z. He, H. Gao, Z. Wang, W. Zhang, Y. Ren, K. M. Zhou, J. Q. Zhong, S. C. Shi, C. Yu, Q. B. Liu, and Z. H. Feng. Demonstration of a high-sensitivity and wide-dynamic-range terahertz graphene hot-electron bolometer with Johnson noise thermometry. Applied Physics Letters, 118(1):013104, January 2021.
[106] Kin Chung Fong and K. C. Schwab. Ultrasensitive and Wide-Bandwidth Thermal Measurements of Graphene at Low Temperatures. Physical Review X, 2(3):031006, July 2012.
[107] M. Tarasov, N. Lindvall, L. Kuzmin, and A. Yurgens. Family of graphene-based superconducting devices. JETP Letters, 94(4):329-332, October 2011.
[108] Michael Dyakonov and Michael Shur. Shallow water analogy for a ballistic field effect transistor: New mechanism of plasma wave generation by dc current. Physical Review Letters, 71(15):2465-2468, October 1993.
[109] Mikhail Dyakonov and Michael Shur. Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid. IEEE Transactions on Electron Devices, 43(3):380-387, 1996.
[110] Mathieu Massicotte, Giancarlo Soavi, Alessandro Principi, and Klaas-Jan Tielrooij. Hot carriers in graphene - fundamentals and applications. Nanoscale, 13(18):8376-8411, 2021.
[111] Changlong Liu, Lin Wang, Xiaoshuang Chen, Antonio Politano, Dacheng Wei, Gang Chen, Weiwei Tang, Wei Lu, and Alessandro Tredicucci. Room-temperature high-gain long-wavelength photodetector via optical-electrical controlling of hot carriers in graphene. Advanced Optical Materials, 6(24), October 2018.
[112] D. A. Bandurin, I. Gayduchenko, Y. Cao, M. Moskotin, A. Principi, I. V. Grigorieva, G. Goltsman, G. Fedorov, and D. Svintsov. Dual origin of room temperature sub-terahertz photoresponse in graphene field effect transistors. Applied Physics Letters, 112(14):141101, April 2018.
[113] Florian Ludwig, Andrey Generalov, Jakob Holstein, Anton Murros, Klaara Viisanen, Mika Prunnila, and Hartmut G. Roskos. Photothermoelectric and resistive self-mixing response contributions in graphene field-effect transistor THz detectors, November 2023. arXiv:2311.12382 [cond-mat, physics:physics].
[114] Yejun He, Yaling Chen, Long Zhang, Sai-Wai Wong, and Zhi Ning Chen. An overview of terahertz antennas. China Communications, 17(7):124-165, July 2020.
[115] M. Asgari, L. Viti, O. Balci, S. M. Shinde, J. Zhang, H. Ramezani, S. Sharma, A. Meersha,
G. Menichetti, C. McAleese, B. Conran, X. Wang, A. Tomadin, A. C. Ferrari, and M. S. Vitiello. Terahertz photodetection in scalable single-layer-graphene and hexagonal boron nitride heterostructures. Applied Physics Letters, 121(3):031103, July 2022.
[116] Riccardo Degl'Innocenti, Long Xiao, David S. Jessop, Stephen J. Kindness, Yuan Ren, Hungyen Lin, J. Axel Zeitler, Jack A. Alexander-Webber, Hannah J. Joyce, Philipp Braeuninger-Weimer, Stephan Hofmann, Harvey E. Beere, and David A. Ritchie. Fast Room-Temperature Detection of Terahertz Quantum Cascade Lasers with Graphene-Loaded Bow-Tie Plasmonic Antenna Arrays. ACS Photonics, 3(10):1747-1753, October 2016.
[117] 10.19080/ETOAJ.2018.02.555584 and Biabanifard S. Design and Comparison of Terahertz Graphene Antenna: Ordinary dipole, Fractal dipole, Spiral, Bow-tie and Log-periodic. Engineering Technology Open Access JJournal, 2(2), July 2018.
[118] Gregory Auton, Jiawei Zhang, Roshan Krishna Kumar, Hanbin Wang, Xijian Zhang, Qingpu Wang, Ernie Hill, and Aimin Song. Graphene ballistic nano-rectifier with very high responsivity. Nature Communications, 7(1), May 2016.
[119] V. M. Muravev and I. V. Kukushkin. Plasmonic detector/spectrometer of subterahertz radiation based on two-dimensional electron system with embedded defect. Applied Physics Letters, 100(8):10-13, 2012.
[120] J. A. Delgado-Notario, V. Clerico, E. Diez, J. E. Velázquez-Pérez, T. Taniguchi, K. Watanabe, T. Otsuji, and Y. M. Meziani. Asymmetric dual-grating gates graphene FET for detection of terahertz radiations. APL Photonics, 5(6):066102, June 2020.
[121] Juan A. Delgado-Notario, Wojciech Knap, Vito Clerico, Juan Salvador-Sánchez, Jaime Calvo-Gallego, Takashi Taniguchi, Kenji Watanabe, Taiichi Otsuji, Vyacheslav V. Popov, Denis V. Fateev, Enrique Diez, Jesús E. Velázquez-Pérez, and Yahya M. Meziani. Enhanced terahertz detection of multigate graphene nanostructures. Nanophotonics, 11(3):519-529, January 2022.
[122] Stephane Boubanga-Tombet, Wojciech Knap, Deepika Yadav, Akira Satou, Dmytro B But, Vyacheslav V Popov, Ilya V Gorbenko, Valentin Kachorovskii, and Taiichi Otsuji. Room-temperature amplification of terahertz radiation by grating-gate graphene structures. Phys. Rev. X., 10(3), July 2020.
[123] Sebastián Castilla, Ioannis Vangelidis, Varun-Varma Pusapati, Jordan Goldstein, Marta Autore, Tetiana Slipchenko, Khannan Rajendran, Seyoon Kim, Kenji Watanabe, Takashi Taniguchi, Luis Martín-Moreno, Dirk Englund, Klaas-Jan Tielrooij, Rainer Hillenbrand, Elefterios Lidorikis, and Frank H. L. Koppens. Plasmonic antenna coupling to hyperbolic
phonon-polaritons for sensitive and fast mid-infrared photodetection with graphene. Nature Communications, 11(1):4872, dec 2020.
[124] Andrey A. Generalov, Michael A. Andersson, Xinxin Yang, Andrei Vorobiev, and Jan Stake. A 400-GHz Graphene FET Detector. IEEE Transactions on Terahertz Science and Technology, 7(5):614-616, September 2017.
[125] Zheyu Fang, Zheng Liu, Yumin Wang, Pulickel M. Ajayan, Peter Nordlander, and Naomi J. Halas. Graphene-antenna sandwich photo detector. Nano Letters, 12(7):3808-3813, June 2012.
[126] Itai Epstein, David Alcaraz, Zhiqin Huang, Varun-Varma Pusapati, Jean-Paul Hugonin, Avinash Kumar, Xander M. Deputy, Tymofiy Khodkov, Tatiana G. Rappoport, Jin-Yong Hong, Nuno M. R. Peres, Jing Kong, David R. Smith, and Frank H. L. Koppens. Far-field excitation of single graphene plasmon cavities with ultracompressed mode volumes. Science, 368(6496):1219-1223, June 2020.
[127] Sichao Du, Wei Lu, Ayaz Ali, Pei Zhao, Khurram Shehzad, Hongwei Guo, Lingling Ma, Xuemei Liu, Xiaodong Pi, Peng Wang, Hehai Fang, Zhen Xu, Chao Gao, Yaping Dan, Pingheng Tan, Hongtao Wang, Cheng-Te Lin, Jianyi Yang, Shurong Dong, Zhiyuan Cheng, Erping Li, Wenyan Yin, Jikui Luo, Bin Yu, Tawfique Hasan, Yang Xu, Weida Hu, and Xiangfeng Duan. A broadband fluorographene photodetector. Advanced Materials, 29(22), April 2017.
[128] By Yongzhe Zhang, Tao Liu, Bo Meng, Xiaohui Li, Guozhen Liang, Xiaonan Hu, and Qi Jie Wang. Broadband high photoresponse from pure monolayer graphene photodetector. Nature Communications, 4(1), May 2013.
[129] Gerasimos Konstantatos, Michela Badioli, Louis Gaudreau, Johann Osmond, Maria Bernechea, F. Pelayo Garcia de Arquer, Fabio Gatti, and Frank H. L. Koppens. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nature Nanotechnology, 7(6):363-368, May 2012.
[130] T. J. Echtermeyer, P. S. Nene, M. Trushin, R. V. Gorbachev, A. L. Eiden, S. Milana, Z. Sun, J. Schliemann, E. Lidorikis, K. S. Novoselov, and A. C. Ferrari. Photothermoelectric and Photoelectric Contributions to Light Detection in Metal-Graphene-Metal Photodetectors. Nano Letters, 14(7):3733-3742, July 2014.
[131] Ye Xin, Xinxin Wang, Zhuo Chen, Dieter Weller, Yingying Wang, Lijie Shi, Xiao Ma, Chunjie Ding, Wei Li, Shuai Guo, and Ruibin Liu. Polarization-Sensitive Self-Powered Type-II GeSe/MoS 2 van der Waals Heterojunction Photodetector. ACS Applied Materials & Interfaces, 12(13):15406-15413, April 2020.
[132] Jongtae Ahn, Ji-Hoon Kyhm, Hee Kyoung Kang, Namhee Kwon, Hong-Kyu Kim, Soohyung Park, and Do Kyung Hwang. 2D MoTe 2 /ReS 2 van der Waals Heterostructure for HighPerformance and Linear Polarization-Sensitive Photodetector. ACS Photonics, 8(9):2650-2658, September 2021.
[133] Qixiao Zhao, Feng Gao, Hongyu Chen, Wei Gao, Mengjia Xia, Yuan Pan, Hongyan Shi, Shichen Su, Xiaosheng Fang, and Jingbo Li. High performance polarization-sensitive self-powered imaging photodetectors based on a p-Te/n-MoSe 2 van der Waals heterojunction with strong interlayer transition. Materials Horizons, 8(11):3113-3123, 2021.
[134] James Bullock, Matin Amani, Joy Cho, Yu-Ze Chen, Geun Ho Ahn, Valerio Adinolfi, Vivek Raj Shrestha, Yang Gao, Kenneth B. Crozier, Yu-Lun Chueh, and Ali Javey. Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature. Nature Photonics, 12(10):601-607, October 2018.
[135] Jiayang Jiang, Weiting Xu, Fuqiang Guo, Shengxue Yang, Weikun Ge, Bo Shen, and Ning Tang. Polarization-Resolved Near-Infrared PdSe 2 p-i-n Homojunction Photodetector. Nano Letters, 23(20):9522-9528, October 2023.
[136] C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone. Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnology, 5(10):722-726, October 2010.
[137] Alexander S. Mayorov, Roman V. Gorbachev, Sergey V. Morozov, Liam Britnell, Rashid Jalil, Leonid A. Ponomarenko, Peter Blake, Kostya S. Novoselov, Kenji Watanabe, Takashi Taniguchi, and A. K. Geim. Micrometer-Scale Ballistic Transport in Encapsulated Graphene at Room Temperature. Nano Letters, 11(6):2396-2399, June 2011.
[138] Sergey S. Kruk, Zi Jing Wong, Ekaterina Pshenay-Severin, Kevin O'Brien, Dragomir N. Neshev, Yuri S. Kivshar, and Xiang Zhang. Magnetic hyperbolic optical metamaterials. Nature Communications, 7(1):11329, April 2016.
[139] Alexander Poddubny, Ivan Iorsh, Pavel Belov, and Yuri Kivshar. Hyperbolic metamaterials. Nature Photonics, 7(12):948-957, December 2013.
[140] Dasol Lee, Sunae So, Guangwei Hu, Minkyung Kim, Trevon Badloe, Hanlyun Cho, Jaekyung Kim, Hongyoon Kim, Cheng-Wei Qiu, and Junsuk Rho. Hyperbolic metamaterials: fusing artificial structures to natural 2D materials. eLight, 2(1):1, December 2022.
[141] M. N. Gjerding, R. Petersen, T. G. Pedersen, N. A. Mortensen, and K. S. Thygesen. Layered
van der Waals crystals with hyperbolic light dispersion. Nature Communications, 8(1):320, August 2017.
[142] Tony Low, Andrey Chaves, Joshua D. Caldwell, Anshuman Kumar, Nicholas X. Fang, Phaedon Avouris, Tony F. Heinz, Francisco Guinea, Luis Martin-Moreno, and Frank Koppens. Polaritons in layered two-dimensional materials. Nature Materials, 16(2):182-194, February
2017.
[143] Jiahua Duan, Yafeng Li, Yixi Zhou, Yuan Cheng, and Jianing Chen. Near-field optics on flatland: from noble metals to van der Waals materials. Advances in Physics: X, 4(1):1593051, January 2019.
[144] Alexander J. Giles, Siyuan Dai, Igor Vurgaftman, Timothy Hoffman, Song Liu, Lucas Lindsay, Chase T. Ellis, Nathanael Assefa, Ioannis Chatzakis, Thomas L. Reinecke, Joseph G. Tischler, Michael M. Fogler, J. H. Edgar, D. N. Basov, and Joshua D. Caldwell. Ultralow-loss polaritons in isotopically pure boron nitride. Nature Materials, 17(2):134-139, February
2018.
[145] Marta Autore, Peining Li, Irene Dolado, Francisco J Alfaro-Mozaz, Ruben Esteban, Ainhoa Atxabal, Felix Casanova, Luis E Hueso, Pablo Alonso-González, Javier Aizpurua, Alexey Y Nikitin, Saül Vélez, and Rainer Hillenbrand. Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit. Light: Science & Applications, 7(4):17172-17172, December 2017.
[146] Andrei Bylinkin, Martin Schnell, Marta Autore, Francesco Calavalle, Peining Li, Javier Taboada-Gutierrez, Song Liu, James H. Edgar, Felix Casanova, Luis E. Hueso, Pablo Alonso-Gonzalez, Alexey Y. Nikitin, and Rainer Hillenbrand. Real-space observation of vibrational strong coupling between propagating phonon polaritons and organic molecules. Nature Photonics, 15(3):197-202, March 2021.
[147] Hanan Herzig Sheinfux, Lorenzo Orsini, Minwoo Jung, Iacopo Torre, Rinu Maniyara, David Barcons Ruiz, Alexander Hötger, Ricardo Bertini, Sebastián Castilla, Niels C H Hesp, Eli Janzen, Alexander Holleitner, Valerio Pruneri, James H Edgar, Gennady Shvets, and Frank H L Koppens. Multimodal interference and bound in the continuum modes in indirectly-patterned hyperbolic cavities. page 55.
[148] Peining Li, Martin Lewin, Andrey V. Kretinin, Joshua D. Caldwell, Kostya S. Novoselov, Takashi Taniguchi, Kenji Watanabe, Fabian Gaussmann, and Thomas Taubner. Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing. Nature Communications, 6(1):7507, June 2015.
[149] Sergey G. Menabde, Sergejs Boroviks, Jongtae Ahn, Jacob T. Heiden, Kenji Watanabe,
Takashi Taniguchi, Tony Low, Do Kyung Hwang, N. Asger Mortensen, and Min Seok Jang. Near-field probing of image phonon-polaritons in hexagonal boron nitride on gold crystals. Science Advances, 8(28):eabn0627, July 2022.
[150] Anshuman Kumar, Tony Low, Kin Hung Fung, Phaedon Avouris, and Nicholas X. Fang. Tunable Light-Matter Interaction and the Role of Hyperbolicity in Graphene-hBN System. Nano Letters, 15(5):3172-3180, May 2015.
[151] Xiaoxia Yang, Feng Zhai, Hai Hu, Debo Hu, Ruina Liu, Shunping Zhang, Mengtao Sun, Zhipei Sun, Jianing Chen, and Qing Dai. Far-Field Spectroscopy and Near-Field Optical Imaging of Coupled Plasmon-Phonon Polaritons in 2D van der Waals Heterostructures. Advanced Materials, 28(15):2931-2938, April 2016.
[152] Xinzhong Chen, Debo Hu, Ryan Mescall, Guanjun You, D. N. Basov, Qing Dai, and Mengkun Liu. Modern Scattering-Type Scanning Near-Field Optical Microscopy for Advanced Material Research. Advanced Materials, 31(24):1804774, June 2019.
[153] Richard H. J. Kim, Joong-Mok Park, Samuel J. Haeuser, Liang Luo, and Jigang Wang. Cryogenic Magneto-Terahertz Scanning Near-field Optical Microscope (cm-SNOM). Review of Scientific Instruments, 94(4):043702, April 2023. arXiv:2210.07319 [cond-mat].
[154] Lukas Wehmeier and Mengkun Liu. Nano-Imaging of Landau-Phonon Polaritons in Dirac Heterostructures.
[155] L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean. One-Dimensional Electrical Contact to a Two-Dimensional Material. Science, 342(6158):614-617, November 2013.
[156] E. McCann, D. S.L. Abergel, and V. I. Fal'ko. The low energy electronic band structure of bilayer graphene. The European Physical JJournal Special Topics, 148(1):91-103, September 2007.
[157] Georgy Alymov, Vladimir Vyurkov, Victor Ryzhii, and Dmitry Svintsov. Abrupt current switching in graphene bilayer tunnel transistors enabled by van Hove singularities. Scientific Reports, 6(1):24654, July 2016.
[158] Tony Low, Vasili Perebeinos, Raseong Kim, Marcus Freitag, and Phaedon Avouris. Cooling of photoexcited carriers in graphene by internal and substrate phonons. Physical Review B, 86(4):045413, July 2012.
[159] Alessandro Principi, Mark B. Lundeberg, Niels C. H. Hesp, Klaas-Jan Tielrooij, Frank H. L.
Koppens, and Marco Polini. Super-planckian electron cooling in a van der waals stack. Phys. Rev. Lett., 118:126804, Mar 2017.
[160] J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brinsteiner, M. Fehrenbacher, U. Wurstbauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, R. Yakimova, S. Lara-Avila, S. Kubatkin, and S. D. Ganichev. Dynamic Hall Effect Driven by Circularly Polarized Light in a Graphene Layer. Physical Review Letters, 105(22):227402, nov 2010.
[161] D. A. Bandurin, E. Mönch, K. Kapralov, I. Y. Phinney, K. Lindner, S. Liu, J. H. Edgar, I. A. Dmitriev, P. Jarillo-Herrero, D. Svintsov, and S. D. Ganichev. Cyclotron resonance overtones and near-field magnetoabsorption via terahertz Bernstein modes in graphene. Nature Physics, 18(4):462-467, apr 2022.
[162] Tony Low, Vasili Perebeinos, Raseong Kim, Marcus Freitag, and Phaedon Avouris. Cooling of photoexcited carriers in graphene by internal and substrate phonons. Physical Review B, 86(4):045413, jul 2012.
[163] Justin C. W. Song, Michael Y. Reizer, and Leonid S. Levitov. Disorder-assisted electron-phonon scattering and cooling pathways in graphene. Phys. Rev. Lett., 109:106602, Sep 2012.
[164] Terahertz responsivity of field effect transistors versus their static channel conductivity and loading effects. JJournal of Applied Physics, 110(5):054512, sep 2011.
[165] Scontel heb bolometers. https://www.scontel.ru/terahertz (accessed april 06, 2023).
[166] Insight product heb detectors. https://insight-product.com/detect3.htm (accessed april 06, 2023).
[167] Ir labs bolometers. https://www.irlabs.com/products/bolometers/bolometer-systems (accessed april 06, 2023).
[168] Maris Bauer, Adam Ramer, Serguei A. Chevtchenko, Konstantin Y. Osipov, Dovile Cibiraite, Sandra Pralgauskaite, Kestutis Ikamas, Alvydas Lisauskas, Wolfgang Heinrich, Viktor Krozer, and Hartmut G. Roskos. A High-Sensitivity AlGaN/GaN HEMT Terahertz Detector With Integrated Broadband Bow-Tie Antenna. IEEE Transactions on Terahertz Science and Technology, 9(4):430-444, jul 2019.
[169] A. V. Shchepetilnikov, B. D. Kaysin, P. A. Gusikhin, V. M. Muravev, G. E. Tsydynzhapov, Yu. A. Nefyodov, A. A. Dremin, and I. V. Kukushkin. Optimization of the frequency response of a novel GaAs plasmonic terahertz detector. Optical and Quantum Electronics, 51(12):376, December 2019.
[170] Leonardo Viti, Jin Hu, Dominique Coquillat, Wojciech Knap, Alessandro Tredicucci, Antonio
Politano, and Miriam Serena Vitiello. Black phosphorus terahertz photodetectors. Advanced Materials, 27(37):5567-5572, 2015.
[171] Zhuo Dong, Wenzhi Yu, Libo Zhang, Haoran Mu, Liu Xie, Jie Li, Yan Zhang, Luyi Huang, Xiaoyue He, Lin Wang, Shenghuang Lin, and Kai Zhang. Highly efficient, ultrabroad pdse2 phototransistors from visible to terahertz driven by mutiphysical mechanism. ACS Nano, 15(12):20403-20413, 2021.
[172] B Wittmann, S N Danilov, V V Bel'kov, S A Tarasenko, E G Novik, H Buhmann, C Brüne, L W Molenkamp, Z D Kvon, N N Mikhailov, S A Dvoretsky, N Q Vinh, A F G van der Meer, B Murdin, and S D Ganichev. Circular photogalvanic effect in hgte/cdhgte quantum well structures. Semiconductor Science and Technology, 25(9):095005, aug 2010.
[173] Eike Icking, Luca Banszerus, Frederike Wörtche, Frank Volmer, Philipp Schmidt, Corinne Steiner, Stephan Engels, Jonas Hesselmann, Matthias Goldsche, Kenji Watanabe, Takashi Taniguchi, Christian Volk, Bernd Beschoten, and Christoph Stampfer. Transport Spectroscopy of Ultraclean Tunable Band Gaps in Bilayer Graphene. Advanced Electronic Materials, page 2200510, July 2022.
[174] Yung-Chang Lin, Chun-Chieh Lu, Chao-Huei Yeh, Chuanhong Jin, Kazu Suenaga, and Po-Wen Chiu. Graphene Annealing: How Clean Can It Be? Nano Letters, 12(1):414-419, January 2012.
[175] I A Gayduchenko, G E Fedorov, M V Moskotin, D I Yagodkin, S V Seliverstov, G N Goltsman, A Yu Kuntsevich, M G Rybin, E D Obraztsova, V G Leiman, M S Shur, T Otsuji, and V I Ryzhii. Manifestation of plasmonic response in the detection of sub-terahertz radiation by graphene-based devices. Nanotechnology, 29(24):245204, June 2018.
[176] G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink, and P. J. Kelly. Doping Graphene with Metal Contacts. Physical Review Letters, 101(2):026803, July 2008.
[177] Cheng Gong, Stephen McDonnell, Xiaoye Qin, Angelica Azcatl, Hong Dong, Yves J. Chabal, Kyeongjae Cho, and Robert M. Wallace. Realistic Metal-Graphene Contact Structures. ACS Nano, 8(1):642-649, January 2014.
[178] Weiwei Luo, Alexey B. Kuzmenko, Jialin Qi, Ni Zhang, Wei Wu, Mengxin Ren, Xinzheng Zhang, Wei Cai, and Jingjun Xu. Nanoinfrared Characterization of Bilayer Graphene Conductivity under Dual-Gate Tuning. Nano Letters, 21(12):5151-5157, June 2021.
[179] Achim Woessner, Pablo Alonso-González, Mark B. Lundeberg, Yuanda Gao, Jose E. Barrios-Vargas, Gabriele Navickaite, Qiong Ma, Davide Janner, Kenji Watanabe, Aron W. Cummings,
Takashi Taniguchi, Valerio Pruneri, Stephan Roche, Pablo Jarillo-Herrero, James Hone, Rainer Hillenbrand, and Frank H. L. Koppens. Near-field photocurrent nanoscopy on bare and encapsulated graphene. Nature Communications, 7(1):10783, April 2016.
[180] Andres Castellanos-Gomez, Michele Buscema, Rianda Molenaar, Vibhor Singh, Laurens Janssen, Herre S J Van Der Zant, and Gary A Steele. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Materials, 1(1):011002, April 2014.
[181] Jiahua Duan, Runkun Chen, Jingcheng Li, Kuijuan Jin, Zhigang Sun, and Jianing Chen. Launching Phonon Polaritons by Natural Boron Nitride Wrinkles with Modifiable Dispersion by Dielectric Environments. Advanced Materials, 29(38):1702494, October 2017.
[182] A. Y. Nikitin, P. Alonso-González, S. Vélez, S. Mastel, A. Centeno, A. Pesquera, A. Zurutuza, F. Casanova, L. E. Hueso, F. H. L. Koppens, and R. Hillenbrand. Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators. Nature Photonics, 10(4):239-243, March 2016.
[183] Marta Autore, Irene Dolado, Peining Li, Ruben Esteban, Francisco Javier Alfaro-Mozaz, Ainhoa Atxabal, Song Liu, James H. Edgar, Saül Vélez, Felix Casanova, Luis E. Hueso, Javier Aizpurua, and Rainer Hillenbrand. Enhanced light-matter interaction in 10b monoisotopic boron nitride infrared nanoresonators. Advanced Optical Materials, 9(5), December 2020.
[184] Jacob B. Khurgin and Greg Sun. Scaling of losses with size and wavelength in nanoplasmonics and metamaterials. Applied Physics Letters, 99(21), November 2011.
[185] Daniel Rodrigo, Odeta Limaj, Davide Janner, Dordaneh Etezadi, F. Javier García de Abajo, Valerio Pruneri, and Hatice Altug. Mid-infrared plasmonic biosensing with graphene. Science, 349(6244):165-168, July 2015.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.