Иерархическая последовательность моделей для исследования напряженного и вибрационного состояния рабочих лопаток паровых турбин тема диссертации и автореферата по ВАК РФ 01.02.06, кандидат технических наук Гаев, Александр Валерьевич
- Специальность ВАК РФ01.02.06
- Количество страниц 157
Оглавление диссертации кандидат технических наук Гаев, Александр Валерьевич
Введение.
1 Классификация актуальных проблем механики рабочих лопаток и анализ методов решения задач динамики и прочности рабочих лопаток последних ступеней паровых турбин.
1.1 Особенности конструкции и силы, действующие на рабочие лопатки паровых турбин.
1.1.1 Профильная часть лопатки.
1.1.2 Хвостовая часть лопатки.
1.1.3 Связи.
1.2 Описание конструкции рабочей лопатки последней ступени паровой турбины длиной 960 мм. Пространственные геометрические модели.
1.2.1 Построение пространственных геометрических моделей двух вариантов конструкции рабочей лопатки.
1.3 Силы, действующие на рабочие лопатки в условиях эксплуатации.
1.4 Анализ методов решения задач динамики и прочности лопаточного аппарата паровых турбин.
1.4.1 Основные соотношения теории упругости и упруго-пластичности. Дифференциальные уравнения равновесия. Граничные условия.
1.4.2 Основы механики контактного взаимодействия.
1.4.3 Изгибно-крутильные колебания естественно закрученных лопаток.
1.4.4 Особенности спектра собственных частот тел, обладающих циклической симметрией.
2 Расчетные методы решения прикладных задач динамики и прочности турбомашин, основанные на методе конечных элементов.
2.1 Конечно-элементное решение задач теории упругости.
2.1.1 Основная концепция метода конечных элементов.
2.1.2 Построение конечно-элементной модели области (дискретизация области).
2.1.3 Построение конечно-элементной модели функции.
2.1.4 Определение элементных матриц жесткости и векторов нагрузки.
2.1.5 Формирование глобальной матрицы жесткости и глобального вектора нагрузки.
2.1.6 Определение деформаций и напряжений.
2.1.7 Особенности глобальных конечно-элементных матриц
2.2 Решение системы конечно-элементных уравнений.
2.2.1 Фронтальный метод.'.
2.2.2 Итерационные методы.
2.3 Решение спектральных задач блочным методом Ланцоша.
2.4 Конечно-элементное моделирование контактного взаимодействия.
2.4.1 Метод множителей Лагранжа.
2.4.2 Метод штрафных функций.
2.5 Концепция инженерного расчета сложных конструкций, основанная на цтМ-принципе и прямом КЭ моделировании.
2.6 Метод многоуровневого субмоделирования
Multilevel Submodeling Method).
3 Разработка методики инженерного расчета напряженнодеформированного состояния профильной части лопатки.
3.1 Конечно-элементное моделирование и исследование пространственного напряженно-деформированного состояния профильной части рабочей лопатки с вильчатым хвостовым соединением.
3.1.1 Описание моделей. Граничные условия. Свойства материалов.
3.1.2 Расчет НДС профильной части рабочей лопатки. Полномасштабная модель, модель I и модель II.
3.1.3 Расчет напряженно-деформированного состояния профильной части лопатки. Макромодель.
3.1.4 Сравнение с результатами, полученными с помощью теории стерлсней.
3.1.5 Уточняющий расчет напряженно-деформированного состояния в зоне галтелей профильной части под демпферные связи при помощи метода субмоделирования.
3.2 Конечно-элементное исследование пространственного напряженно-деформированного состояния профильной части рабочей лопатки с елочным хвостовым соединением.
3.2.1 Расчет напряженно-деформированного состояния профильной части лопатки.
3.3 Сравнение НДС лопаток вариантов 1 и 2.
4 Разработка методики инженерного расчета пространственного напряженно-деформированного состояния узла крепления лопатки с вильчатым хвостовым соединением
4.1 Расчет НДС хвостового соединения рабочей лопатки. Полномасштабная модель и модель 1.
4.2 Расчет НДС узла крепления лопатки. Субмодель 1-го уровня.
4.2.1 Выбор размеров субмодели.
4.2.2 Напряженно-деформированное состояние узла крепления.
4.3 Расчет напряженно-деформированного состояния верхней и нижней заклепок. Субмодели 2-го уровня.
4.4 Основные результаты.
4.5 Методика инженерного расчета напряженно-деформированного состояния узла крепления рабочей лопатки с вильчатым хвостовым соединением.
4.6 Применение разработанной методики инженерного расчета напряженно-деформированного состояния вильчатого хвостового соединения для анализа влияния технологических отклонений на прочность заклепочного узла.
5 Конечно-элементное моделирование и исследование вибрационного состояния рабочей лопатки с елочным хвостовым соединением.
5.1 Влияние центробежных сил на собственные частоты колебаний лопаток.
5.2 Конечно-элементное моделирование и исследование свободных колебаний рабочей лопатки с елочным хвостовым соединением.
5.2.1 Конечно-элементное моделирование на основе иерархической последовательности моделей.
5.2.2 КЭ модели 1-го и 2-го уровней. Исследование влияния демпферных связей на динамические частоты свободных колебаний лопаток.
5.2.3 КЭ модели 2-го и 3-го уровней. Исследование влияния диска на динамические частоты свободных колебаний лопаток.
5.2.4 КЭ модели 3-го и 4-го уровней. Исследование влияния контактного взаимодействия в хвостовике, бандаже и демпферных связях на динамические частоты свободных колебаний лопаток.
5.2.5 Основные результаты КЭ исследований. Сравнение расчетных значений собственных частот лопаточного венца с экспериментальными данными.
5.3 Конструкционное демпфирование в демпферных связях и бандаже при вибрации лопаток.
5.3.1 Система с распределенным конструкционным трением. Тестовая задача.
5.3.2 Исследование систем с распределенным конструкционным трением для оценки величины конструкционного демпфирования.
5.3.3 Исследование возможности использования одномерной теории упруго-фрикционного демпфирования для моделирования рассеяния энергии в демпферных связях рабочих лопаток последних ступеней паровых турбин.
5.3.4 Разработка новой методики оценки рассеяния энергии в демпферных связях и хвостовых соединениях рабочих лопаток.
Рекомендованный список диссертаций по специальности «Динамика, прочность машин, приборов и аппаратуры», 01.02.06 шифр ВАК
Влияние эксплуатационных и конструктивных факторов на вибрационную надежность рабочих лопаток паровых турбин1983 год, кандидат технических наук Клебанов, Михаил Давыдович
Разработка и реализация метода расчета вынужденных колебаний венцов рабочих лопаток турбомашин1985 год, кандидат технических наук Орлов, Владимир Васильевич
Усовершенствованная методика расчетов напряженно-деформированного состояния и частотных характеристик рабочих лопаток паровых турбин2002 год, кандидат технических наук Гаврилов, Сергей Николаевич
Повышение надежности ГТД на основе компьютерных технологий проектирования и вибродиагностики повреждений лопаток методом эквивалентных масс2001 год, кандидат технических наук Михайлов, Александр Леонидович
Моделирование собственных колебаний циклически симметричных систем на базе конечных элементов со смешанной аппроксимацией перемещений полиномами высших порядков2001 год, кандидат технических наук Насонов, Дмитрий Александрович
Введение диссертации (часть автореферата) на тему «Иерархическая последовательность моделей для исследования напряженного и вибрационного состояния рабочих лопаток паровых турбин»
Увеличение мощности и усложнение конструкции паровых турбомашин сопровождается повышением требований к их качеству. В связи с этим, в настоящее время при разработке и освоении паровых турбин необходимо применять эффективные расчетные и экспериментальные методы определения характеристик динамики и прочности.
В современных мощных паровых турбинах наиболее нагруженными элементами лопаточного аппарата являются рабочие лопатки последних ступеней, т.к. они имеют большую длину, и, как следствие, большую массу. Длина лопаток последних ступеней изменяется в широких пределах — от 960 до 1500 мм в зависимости от мощности турбомашины. При этом диаметр диска, на котором установлены лопатки, составляет, соответственно, от 1500 до 2000 и более миллиметров. Для быстроходных паровых турбин величина центробежной силы, действующей на лопатку, достигает 100 и более тонн.
Принимая во внимание указанные особенности лопаток последних ступеней, для создания надежно работающей конструкции на этапе проектирования необходимо проводить расчетные и экспериментальные исследования напряженно-деформированного состояния (НДС) лопаток.
Для получения наиболее достоверных данных о НДС лопаток последних ступеней на начальном этапе проектирования необходимо располагать эффективными методиками инженерных расчетов, результаты которых подтверждаются экспериментальными данными.
В настоящее время для исследования напряженно-деформированного и вибрационного состояния лопаток широко используются различные экспериментальные и расчетные методы.
Экспериментальные методы позволяют исследовать практически все особенности работы конструкции с высокой степенью точности, однако основными их особенностями являются очень высокая стоимость и техническая сложность. Также немаловажным фактором являются временные затраты на проведение эксперимента. Тем не менее, в настоящий момент только экспериментальные методы позволяют решать некоторые задачи вибронадежности (например, исследование автоколебаний и др.).
Расчетные методы анализа конструкций можно разделить на аналитические и численные.
Аналитические методы исследования НДС и вибрационного состояния основаны на упрощенных соотношениях теории сопротивления материалов, стержней, оболочек, а также теории колебаний. В основе использования этих методов лежит представление исследуемого объекта в виде сравнительно простых расчетных схем.
Преимуществом данной группы методов является относительная простота использования и удобство при проведении оценочных расчетов на начальных этапах проектирования.
Основным недостатком является не всегда удовлетворительное соответствие расчетных данных реально существующим в рассматриваемой конструкции.
В настоящее время для повышения достоверности получаемых расчетных результатов широко используется метод конечных элементов (МКЭ).
Достоинством МКЭ является возможность получения с высокой точностью решения любых практических задач механики деформируемого твердого тела и строительной механики при гораздо меньших затратах, чем при экспериментальных исследованиях. К недостаткам КЭ моделирования следует отнести продолжительное время решения некоторых сложных задач и сильную зависимость времени решения от вычислительных ресурсов.
Существующие на настоящий момент расчетные методики [1,6] основаны на грубых допущениях и не позволяют проводить детального исследования напряженно-деформированного и вибрационного состояния таких элементов как демпферные связи и хвостовые соединения.
В современных условиях, при создании конкурентоспособной продукции необходимо использовать эффективные методы исследования, позволяющие моделировать и обосновывать любые конструктивные изменения, вносимые в объект для улучшения его характеристик при минимизации временных затрат на моделирование.
Принимая во внимание выше отмеченное, тема диссертационной работы, посвященной разработке иерархической последовательности КЭ моделей для исследования напряженного и вибрационного состояния PJI последних ступеней современных паровых турбин является актуальной.
Целями работы являются:
1. Разработка и построение рациональных 3-D КЭ моделей PJI длиной 960 мм, с высокой точностью описывающих 3-D НДС и вибрационное состояние PJI под действием центробежных сил с учетом множественного пространственного контактного взаимодействия между бандажными полками, демпферными проволоками и профильной частью PJI, а также между элементами узла крепления РЛ и диском;
2. Разработка новых методик инженерного расчета:
- 3-D НДС профильной части РЛ и элементов демпферных связей;
- узлов крепления РЛ с вильчатым хвостовым соединением;
- величины рассеяния энергии в хвостовых соединениях и демпферных связях.
Методы исследования. В работе все численные исследования выполнены с помощью метода конечных элементов, одного из самых мощных и эффективных современных численных методов решения разнообразных задач механики конструкций. Этот метод универсален и позволяет учитывать сложную геометрию конструкционных элементов, а также внешние воздействия максимально приближенные к реальным.
Научная новизна полученных в работе результатов состоит в следующем:
1. С помощью разработанных и построенных математических и 3-D КЭ моделей РЛ длиной 960 мм, получены новые результаты исследования 3-D НДС и вибрационного состояния PJI под действием центробежных сил с учетом множественного 3-D контактного взаимодействия между бандажными полками, демпферными проволоками и профильной частью PJI, а также между элементами узла крепления РЛ и диском. Впервые в отечественной инженерной практике установлены размеры и форма зон контакта.
2. На основании разработанной методики инженерного расчета пространственного НДС профильной части РЛ и элементов демпферных связей, впервые установлены размеры и форма площадок контакта между демпферными проволоками и профильной частью лопатки. Уточнены зоны концентрации напряжений в районе отверстий под демпферные проволоки.
3. На основании разработанной методики инженерного расчета узлов крепления РЛ с вильчатым хвостовым соединением установлен допустимый диапазон технологических отклонений геометрических размеров заклепок и вилок вильчатого хвостового соединения.
4. Впервые в отечественной инженерной практике проведен уточненный расчет собственных частот и форм свободных колебаний как отдельной лопатки, так и лопаточных венцов с учетом 3-D контактного взаимодействия между сопрягаемыми элементами. Разработана 3-D КЭ модель лопатки, позволяющая с минимальными временными затратами на геометрическое моделирование и вычисления проводить подобные расчеты.
Достоверность результатов, выводов и рекомендаций определяется строгостью используемого в работе математического аппарата, применением обоснованного современного численного метода - метода конечных элементов и сравнительным анализом результатов, полученных в диссертационной работе, с имеющимися экспериментальными данными. Практическая ценность.
Даны практические рекомендации, позволяющие установить на этапе проектирования допустимые для нормальной эксплуатации диапазоны технологических отклонений в элементах вильчатых хвостовых соединений. Установлены размеры и форма всех контактных поверхностей между сопрягаемыми элементами конструкции. Уточнены размеры зон концентрации напряжений и пластических деформаций. Полученные результаты работы и разработанные методики используются в процессе проектирования, создания и эксплуатации PJI турбомашин. На защиту выносятся следующие основные положения:
1. Математические и пространственные КЭ модели:
- PJI последней ступени, подверженной действию центробежных сил;
- PJI последней ступени, предназначенной для исследования собственных частот и форм колебаний как отдельной лопатки, так и лопаточного венца с учетом множественного пространственного контактного взаимодействия между всеми сопрягаемыми элементами конструкции.
2. Методики инженерного расчета:
- 3-D НДС профильной части лопатки и элементов демпферных связей;
- 3-D НДС узлов крепления PJI с вильчатым хвостовым соединением;
- величины рассеяния энергии в хвостовых соединениях и демпферных связях.
Работа состоит из введения, пяти глав и заключения.
В первой главе дана классификация актуальных проблем механики проведен анализ методов решения задач динамики и прочности рабочих лопаток последних ступеней паровых турбин. Рассмотрены особенности конструкции и силы, действующие на рабочие лопатки паровых турбин. Приведены описание конструкции рабочей лопатки последней ступени паровой турбины длиной 960 мм. и алгоритм построения пространственных геометрических моделей на основе чертежных данных. Проведен анализ традиционных аналитических методов решения задач динамики и прочности лопаточного аппарата паровых турбин, сделан обзор исследований основанных на традиционных расчетных методиках и указаны основные недостатки традиционных методик.
Во второй главе представлены постановки и алгоритмы- конечно-элементного решения пространственных нелинейных задач теории упругости, теории колебаний и механики контактного взаимодействия. Описан метод многоуровневого субмоделирования и представлена концепция инженерного расчета сложных конструкций, основанная на (ЛшМ-принципе и прямом КЭ моделировании.
В третьей главе представлены результаты конечно-элементного моделирования и исследования пространственного напряженно-деформированного состояния профильной части рабочей лопатки с вильчатым хвостовым соединением.
Для исследования пространственного напряженно-деформированного состояния пера лопатки, построена иерархическая последовательность пространственных КЭ моделей:
1. Полномасштабная модель, включающая пакет из 2 лопаток и элементы демпферных проволок. Модель учитывает контактное взаимодействие между всеми сопрягаемыми элементами конструкции;
2. Модель I, состоящая из одной лопатки. Модель учитывает контактное взаимодействие между всеми сопрягаемыми элементами конструкции;
3. Макромодель, включающая перо лопатки с бандажной полкой и упрощенным вильчатым хвостовым соединением;
4. Субмодели верхней и нижней галтелей под демпферные связи, учитывающие пространственное контактное взаимодействие пера лопатки с сегментами демпферной проволоки, а также сегментную структуру демпферных связей.
С помощью построенных моделей проведено многовариантное расчетное исследование влияния различных элементов конструкции на НДС профильной части лопатки. Выбрана рациональная КЭ модель, позволяющая без потери точности получать пространственное НДС профильной части лопатки с вильчатым хвостовым соединением.
С помощью метода субмоделирования впервые в отечественной инженерной практике проведено прямое КЭ моделирование НДС демпферных проволок с учетом их сегментной структуры и множественного пространственного контактного взаимодействия с галтелями профильной части лопатки.
Проведено сравнение НДС двух вариантов исполнения рабочей лопатки длиной 960 мм, отличающихся конструкциями бандажных полок и хвостовых соединений.
Четвертая глава посвящена КЭ моделированию и исследованию пространственного НДС узла крепления рабочей лопатки. Для исследования пространственного НДС узла крепления лопатки, построена иерархическая последовательность пространственных КЭ моделей:
1. Полномасштабная модель - модель, включающая пакет из двух лопаток с узлами крепления, бандажными полками и соответствующий сектор диска;
2. Модель I - модель, включающая одну лопатку с узлом крепления, бандажной полкой и соответствующим сектором диска;
3. Макромодель - модель, включающая одну лопатку с упрощенным узлом крепления, бандажной полкой и сектором диска;
4. Субмодель 1-го уровня, включающая узел крепления лопатки и сектор диска;
5. Субмодели 2-го уровня, включающие заклепки узла крепления, а также элементы лопатки и диска.
С помощью построенных моделей проведено многовариантное расчетное исследование влияния различных элементов конструкции на НДС узла крепления лопатки. На основе проведенного многовариантного исследования пространственного НДС узла крепления рабочей лопатки последней ступени, разработана новая методика инженерного расчета НДС элементов вильчатого хвостового соединения. Проведено сравнение напряжений среза и смятия в заклепках, полученных с помощью аналитических формул с результатами, полученными с помощью разработанной методики.
Разработанная методика апробирована при анализе влияния технологических отклонений геометрических размеров элементов хвостового соединения на НДС узла крепления. Проведена оценка работоспособности конструкции при наличии технологических отклонений.
Пятая глава посвящена исследованию вибрационного состояния PJI и лопаточного венца последней ступени. С помощью разработанной иерархической последовательности пространственных КЭ моделей проведены многовариантные расчетные исследования спектра собственных частот PJI и лопаточного венца. На основании сравнения полученных результатов с экспериментальными данными, из иерархической последовательности выбрана рациональная КЭ модель, позволяющая с высокой степенью адекватности реальной конструкции исследовать спектр собственных частот как отдельной лопатки, так и лопаточного венца.
Для исследования возможности применения методики, предложенной А. Г. Костюком для оценки величины конструкционного демпфирования в демпферных связях лопаток последних ступеней, проведено решение серии тестовых и модельных задач. На основании проведенных расчетных исследований разработана новая уточненная методика, позволяющая оценивать фрикционное демпфирование в цельнофрезерованных бандажах и хвостовых соединениях.
Основные результаты диссертационной работы были представлены:
1. На Всероссийском конкурсе 2004 года на лучшую научную студенческую работу по естественным, техническим и гуманитарным наукам в вузах РФ;
2. На ANSYS Conference and Exhibition' 2004, Pittsburgh, USA 2004;
3. На Конкурсе РАО «ЕЭС России» и Российской академии наук научных работ в области энергетики и смежных наук «Новая генерация» среди молодых ученых Российской академии наук, других учреждений, организаций России и студентов высших учебных заведений России (Москва, 2004 год);
4. На VIII-XI Всероссийских конференциях "Фундаментальные исследования в технических университетах" (С.-Петербург, 2004-2007);
5. На научных семинарах кафедры "Механика и процессы управления " (2004-2007 гг.);
Всего по теме диссертации опубликовано 7 печатных работ. Основные результаты и защищаемые положения диссертации отражены в публикациях [3,4,5,6,7,8,45].
Похожие диссертационные работы по специальности «Динамика, прочность машин, приборов и аппаратуры», 01.02.06 шифр ВАК
Деформирующая способность парных рабочих лопаток газотурбинных двигателей в условиях воздействия центробежных сил и температуры1984 год, кандидат технических наук Адаменко, Александр Яковлевич
Разработка, апробация и реализация методов повышения надежности и восстановления ресурса элементов проточной части паровых теплофикационных турбин2003 год, кандидат технических наук Жученко, Лариса Александровна
Применение моделей различной размерности для оценки вибрации турбинных лопаток2021 год, кандидат наук Москалец Артем Анатольевич
Экспериментальное исследование влияния режимных факторов на вибрационное состояние и ресурс рабочих лопаток последних ступеней мощных теплофикационных турбин2004 год, кандидат технических наук Яганов, Александр Михайлович
Исследование напряженно-деформированного состояния роторов реверсивных на ходу осевых вентиляторов2010 год, кандидат технических наук Русский, Евгений Юрьевич
Заключение диссертации по теме «Динамика, прочность машин, приборов и аппаратуры», Гаев, Александр Валерьевич
5.2.5. Основные результаты КЭ исследований. Сравнение расчетных значений собственных частот лопаточного венца с экспериментальными данными
Для верификации расчетной модели 2-го уровня, проведено сравнение расчетных значений собственных частот (полученных для неподвижной лопатки и неподвижного лопаточного венца) с экспериментальными данными [14].
В табл. 5.4 представлены экспериментальные и расчетные значения собственных частот для одиночной лопатки с защемленным хвостовиком.
ЗАКЛЮЧЕНИЕ
Основные научные и практические результаты диссертационной работы заключаются в следующих положениях.
1. Разработан алгоритм построения пространственных геометрических моделей рабочих лопаток на основе чертежных данных. Построены пространственные геометрические модели двух вариантов рабочей лопатки последней ступени длиной 960мм с вильчатым и елочным хвостовыми соединениями, учитывающие все основные геометрические особенности конструкции.
2. На основании пространственных геометрических моделей построены иерархические последовательности математических и КЭ моделей. Проведены многовариантные КЭ исследования НДС профильной части лопатки в поле центробежных сил с целью обоснованного выбора рациональной расчетной КЭ модели конструкции.
Проведено сравнение полученного НДС с результатами расчетов с помощью традиционных методик, использующих теорию стержней. Установлено, что теория стержней дает завышенные по сравнению с МКЭ значения растягивающих напряжений в профильной части лопатки. Максимальное отличие результатов составляет порядка 30%.
Впервые в отечественной инженерной практике проведено исследование пространственного множественного контактного взаимодействия демпферных связей с элементами профильной части лопатки с учетом сегментной структуры демпферных проволок.
Проведено сравнение НДС профильных частей лопатки длиной 960 мм с вильчатым и елочным хвостовым соединением. Установлено, что напряженные состояния профильных частей двух вариантов лопаток последней ступени являются достаточно близкими, однако в зоне корневого сечения эквивалентные по Мизесу напряжения для лопатки с елочным хвостовым соединением на 10 % ниже, чем для лопатки с вильчатым хвостовым соединением.
3. С целью исследования пространственного НДС узла крепления лопатки, построена иерархическая последовательность пространственных КЭ моделей:
- Полномасштабная модель - модель, включающая пакет из двух лопаток с узлами крепления, бандажными полками и соответствующий сектор диска. Модель предназначена для получения эталонного решения;
- Модель I - модель, включающая одну лопатку с узлом крепления, бандажной полкой и соответствующим сектором диска;
- Макромодель - модель, включающая одну лопатку с упрощенным узлом крепления, бандажной полкой и сектором диска;
- Субмодель 1-го уровня, включающая узел крепления лопатки и сектор диска;
- Субмодели 2-го уровня, включающие заклепки узла крепления, а также элементы лопатки и диска.
С помощью построенных моделей проведено многовариантное расчетное исследование влияния различных элементов конструкции на НДС узла крепления лопатки. На основе проведенного многовариантного исследования пространственного НДС узла крепления рабочей лопатки последней ступени, установлено, что максимальные значения интенсивности напряжений по Мизесу наблюдаются в центральной части заклепок. Максимальные значения эквивалентных по Мизесу напряжений, полученные с помощью последовательного использования макромодели и субмодели 1-го уровня отличаются от эталонного решения на 12 %. Максимальные значения эквивалентных по Мизесу напряжений, полученные с помощью субмоделей 2-го уровня отличаются от эталонного решения не более чем на 4 %.
На основе проведенных расчетов разработана новая методика инженерного расчета НДС узла крепления рабочей лопатки последней ступени с вильчатым хвостовым соединением.
Методика основана на поэтапном использовании в расчете моделей и может быть представлена в виде следующего алгоритма:
- Разработка макромодели, включающей профильную часть лопатки, бандажную полку, а также упрощенную модель диска и узла крепления. Расчет НДС профильной и хвостовой части лопатки с помощью макромодели.
- Разработка субмодели 1-го уровня, включающей вильчатое хвостовое соединение и сектор диска. Задание кинематических граничных условий на поверхности отреза субмодели на основе результатов расчета макромодели. Расчет НДС хвостовой части лопатки с помощью субмодели 1-го уровня.
- При необходимости, для получения уточненного напряженного состояния в элементах верхней и нижней заклепок, проводится третий этап анализа с использованием субмоделей второго уровня. На границах сопряжения субмоделей 2-го уровня с субмоделью 1-го уровня задаются кинематические граничные условия, полученные в результате расчета субмодели 1-го уровня.
Установлено, что в результате использования новой методики отличие максимальных значений интенсивности напряжений по Мизесу в наиболее нагруженных элементах хвостового соединения (заклепках) от эталонного решения составляет не более 12 %, при этом время решения задачи сокращается в 8 раз.
Разработанная методика апробирована при анализе влияния технологических отклонений геометрических размеров элементов хвостового соединения на НДС узла крепления. Проведена оценка работоспособности конструкции при наличии технологических отклонений. Установлено, что наличие технологических отклонений в геометрических размерах заклепки (уменьшение ее диаметра более чем на 0.1мм) ведет к потере работоспособности узла крепления лопатки.
4. С целью создания расчетной модели, позволяющей быстро и эффективно проводить инженерные расчеты собственных частот и форм свободных колебаний рабочей лопатки и лопаточного венца, разработана иерархическая последовательность пространственных КЭ моделей:
Модель 1-го уровня, состоящая из отдельной лопатки без диска и демпферных проволок;
Модель 2-го уровня, состоящая из отдельной лопатки без сектора диска. В модели учитываются секторы демпферных проволок;
Модель 3-го уровня, состоящая из отдельной лопатки, сектора диска и секторов демпферных проволок;
Модель 4-го уровня, представляющая собой пакет из двух лопаток и учитывающая все возможные множественные контактные взаимодействия.
В результате проведенных исследований и сравнения полученных результатов с экспериментальными данными, из иерархической последовательности моделей выбрана рациональная КЭ модель лопатки с елочным хвостовым соединением - модель второго уровня, позволяющая с высокой степенью адекватности реальному объекту проводить исследование свободных колебаний как отдельной лопатки, так и лопаточного венца последней ступени.
5. В результате КЭ решения серии модельных задач, а также исследования пространственного НДС элементов демпферных проволок с учетом множественного контактного взаимодействия установлено, что методика, основанная на решении плоских задач упруго-фрикционного взаимодействия полосы с жестким основанием не может быть использована для корректной оценки величины рассеяния энергии в демпферных связях PJI последних ступеней.
6. С целью оценки величины рассеяния энергии в демпферных связях, бандажных полках и хвостовых соединениях лопаток последних ступеней, разработана новая методика оценки величины упруго-фрикционного демпфирования.
Основные положения методики представлены в виде алгоритма: - Проводится линейный анализ собственных форм колебаний лопаточного венца. Выделяются наиболее опасные формы колебаний —Строится серия пространственных КЭ моделей с учетом множественного пространственного контактного взаимодействия и возможных технологических зазоров в демпферных связях, хвостовых соединениях и бандажах. -Импульсными воздействиями на лопатку последовательно возбуждаются полученные в п.1 формы колебаний и проводится пространственный динамический анализ колебаний системы. Результатами расчета являются зависимости перемещений от времени каждой точки лопатки. -Коэффициенты демпфирования в связях и хвостовом соединении определяются исходя из анализа процесса затухания колебаний. -Собственная частота, соответствующая возбуждаемой форме колебаний определяется путем разложения в ряд Фурье зависимости перемещений от времени каждой точки лопатки. Значение собственной частоты будет получено с учетом податливости связей и хвостового соединения
Разработанная методика апробирована при определении первой собственной частоты свободных колебаний отдельной лопатки с елочным хвостовым соединением. Хорошее соответствие полученных результатов экспериментальным данным говорит о корректности новой методики.
Список литературы диссертационного исследования кандидат технических наук Гаев, Александр Валерьевич, 2008 год
1. Бауэр В.О., Шорр Б.Ф. Влияние расстройки частот лопаток на резонансные колебания. // Прочность и динамика авиационных двигателей. Сб. статей, вып. 6. М.: Машиностроение, 1971. С. 75-98.
2. Биргер И.А., Шорр Б.Ф., Иосилевич Г.Б. Расчет на прочность деталей машин. Справочник. -М.: Машиностроение, 1993. 640 с.
3. Боровков А.И., Гаев А.В. Конечно-элементное моделирование напряженно-деформированного состояния вильчатого хвостового соединения рабочей лопатки последней ступени паровой турбины. // Научно-технические ведомости СПбГТУ. 2006. -№6 т.1. - С. 70- 76.
4. Боровков А.И., Гаев А.В. Конечно-элементное моделирование и исследование вибрационного состояния рабочей лопатки последней ступени паротурбинной установки. // Тр. СПбГТУ. СПб. Изд-во СПбГПУ. Вып. 498. Вычислительная математика и механика. - С. 162— 170.
5. Воробьев Ю. С., Шорр Б. Ф. Теория закрученных стержней. Киев: Наук. Думка, 1983. 188 с.
6. Гаврилов С. Н. Усовершенствованная методика расчеиов напряженно-деформированного состояния и частотных характеристик рабочих лопаток паровых турбин: Дис. . канд. техн. наук 05.04.12/АООТ "ЛМЗ". СПб., 2002. - 137 с.
7. Галин JI. А. Развитие теории контактных задач в СССР. — М.: Наука, 1976.-496 с.
8. Горелкин Н. М. Исследование частот вращающихся лопаток паровых турбин и других машин. -Тр. ЛМЗ, 1960, №6, — С. 232-242.
9. Грубин А.Н. Расчет на прочность елочного замка турбин. — Л.: Машиностроение, 1970. 184 с.
10. Демьянушко И.В. Расчет на прочность рабочих колес центробежных нагнетателей. // Прочность и динамика авиационных двигателей. Сб. статей, вып. 5. М.: Машиностроение, 1969. С. 73-90.
11. Джонсон К. Механика контактного взаимодействия: Пер. с англ. — М.: Мир, 1989.-510 с.
12. Иванов В.П. Некоторые вопросы колебаний лопаточных венцов и других упругих тел, обладающих циклической симметрией. // Прочность и динамика авиационных двигателей. Сб. статей, вып. 6. М.: Машиностроение, 1971. С. 113-132.
13. Канцепольский А.А. Кемпнер М. Л. Совместные колебания лопаток турбин со свободной кольцевой связью. // Прочность и динамика авиационных двигателей. Сб. статей, вып. 6. М.: Машиностроение, 1971. -С. 132-156.
14. Кириллов И. И. Теория турбомашин: М.-Л. Машиностроение, 1964.-512 с.
15. Козлов И.А., Городецкий В.Н., Лещенко В. М. и др. Прочность рабочих колес турбомашин. Киев.: Наукова думка, 1972. - 216 с.
16. Костюк А.Г., Даскал Т. В. Влияние конструктивных и режимных параметров на срывной флаттер лопаток турбомашин. // Изв. Вузов -Энергетика, 1978,№9, -С. 129.
17. Костюк А.Г. Динамика и прочность турбомашин: Учебник для ВУЗов. М.:МЭИ, 2000. - 480с.
18. Костюк А.Г. Теория, метод и результаты расчета демпфирования впроволочных связях рабочих лопаток турбомашин. // Вестник МЭИ. 1996. №1. С. 49-59.
19. Кудевитский Я. В., Лехтман А. П. Измерительное устройство для контроля хвостовых соединений длинных турбинных лопаток. // Измерительная техника, 1974. №2,-С. 16-18.
20. Левин А.В., Боришанский К.Н., Консон Е.Д. Прочность и вибрация лопаток и дисков паровых турбин. Л.: Машиностроение, 1981. -710 с.
21. Лейкин А.С., Несатый И.М. Исследование напряженного состояния и прочности шарнирных замковых соединений. // Прочность и динамика авиационных двигателей. Сб. статей, вып. 5. М.: Машиностроение, 1969. — С. 60-73.
22. Лукин Б. С. Об исследовании колебаний циклически симметричных конструкций методом конечных элементов. В кн.: Динамика и прочность машин. Харьков: Вища школа, 1980, вып. 31, — С. 12-21.
23. Малинин Н.Н. Прочность турбомашин. М.: Машгиз, 1962. -290 с.
24. Малинин Н.Н. Прикладная теория пластичности и ползучести. — М.: Машиностроение, 1975. -400с.
25. Макарук Г.М. Определение коэффициентов концентрации и градиентов напряжений в деталях с выточками и надрезами конечной глубины. // Прочность и динамика авиационных двигателей. Сб. статей, вып. 6. М.: Машиностроение, 1971. С. 206-222.
26. Мустафин Ч.Г. Инженерный метод расчета концентрации напряжений при упруго-пластических деформациях и ползучести. // Прочность и динамика авиационных двигателей. Сб. статей, вып. 5. М.: Машиностроение, 1969. С. 213-231.
27. Нашиф А., Джоунс Д., Хендерсон Дж. Демпфирование колебаний.-М.: Мир, 1988.-448 с.
28. Пановко Я. Г. Механика деформируемого твердого тела. — М.: Наука, 1985.-288 с.
29. Петерсон Дж., Коэффициенты концентраций напряжений, М.: Мир, 1977.
30. Смоленский А.Н. Паровые и газовые турбины. М.: Машиностроение, 1977.-358 с.
31. Тимошенко С.П. Колебания в инженерном деле. -М.: Наука, 1967. -444 с.
32. Трухний А.Д., Крупенников Б. Н., Петрунин С. В. Атлас конструкций деталей турбин. М.:МЭИ, 2000. -148 с.
33. Трухний А. Д. Стационарные паровые турбины. -М.:Энергоатомиздат, 1990.— 640с.
34. Фадеев Д.К., Фадеева В. Н. Вычислительные методы линейной алгебры. M.-JL: Физматгиз, 1963. - 734 с.
35. Фролов К.В. Инновационные технологии в машиностроении. // Вестник РАН, т.75, №4, 2005. С. 305-306.
36. Щегляев А.В. Паровые турбины. -М.: Энергия, 1976. -358 с.
37. Нормы на вибрационную отстройку лопаток паровых турбин. РТМ 108.021.03-77. -Ленинград: СПО Союзтехэнерго, 1978. 8с.
38. РТМ 108.021.03-77. Руководящий технический материал (с изм. 1, 2). Нормы на вибрационную отстройку лопаток паровых турбин. НПО ЦКТИ. Л.: НПО ЦКТИ, 1987.
39. Modelling Microslip Friction Damping and its Influence on Turbine Blade Vibrations. Gabor Csaba. Division of Machine Design Department of Mechanical Engineering Linkoping University, S-581 83 Linkoping Sweden Linkoping, 1998
40. Zhong Zhi-Hua, Finite element procedures for contact impact problems. - Oxford university press, 1993. 371 p.
41. ANSYS Theory Reference. ANSYS inc., Canonsburg, PA. USA. Eleventh edition. ANSYS Release 10.0, 2005. 1286 p.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.