ТРОПИЧЕСКИЕ ЦИКЛОНЫ И КРУПНОМАСШТАБНАЯ ДИНАМИКА АТМОСФЕРЫ тема диссертации и автореферата по ВАК РФ 25.00.29, кандидат наук Стадхолм Джошуа Генри Пол
- Специальность ВАК РФ25.00.29
- Количество страниц 185
Оглавление диссертации кандидат наук Стадхолм Джошуа Генри Пол
Contents
Introduction
1 Literature Review
1.1 Observational considerations
1.2 Theoretical considerations
1.3 Modelling efforts
2 Concurrent Changes to Hadley Circulation and the Meridional Distribution of Tropical Cyclones
2.1 Introduction
2.2 Data and methodology
2.2.1 Observational TC data
2.2.2 Hadley circulation extent and intensity diagnostics
2.2.3 Study period
2.3 Changes in meridional TC distribution in recent decades
2.3.1 Reference climatology of TCs
2.3.2 Meridional quantile regressions
2.4 Hadley circulation extent and comparison to TC latitudes
2.4.1 Long-term trends
2.4.2 Shared interannual variability
2.5 Hadley circulation intensity and comparison to TC latitudes
2.5.1 Long-term trends
2.5.2 Shared interannual variability
2.6 Potential dynamical linkages
2.7 Summary and discussion
2.A Helmholtz decomposition and zonally-asymmetric mean meridional circulation
2.B Algorithms for diagnosing zonally-asymmetric Hadley circulation
T3
3 Simulating the Terrestrial Atmosphere under Hypohydrostatic Rescal-
ing and Different Meridional Temperature Gradients
3.1 Introduction
3.2 Model formulation
3.2.1 Model details
3.2.2 Hypohydrostatic rescaling
3.3 Evolution of zonally-averaged quantities
3.3.1 Moisture and temperature
3.3.2 Radiative fluxes
3.4 Available potential energy
3.5 Large-scale circulation
3.6 Summary
3.A Computing moist available potential energy
4 Tropical and Extratropical Cyclones in Aquaplanet Simulations with
Different Meridional Sea-Surface Temperature Gradients
4.1 Introduction
4.1.1 Problem statement
4.1.2 Cyclone phase space diagrams
4.2 Formal separation analysis
4.2.1 Clustering algorithm
4.2.2 Cyclone separation
4.3 Cyclone characteristics
4.3.1 Aggregate results
4.3.2 Phase space density distribution and trajectories
4.3.3 Composites
4.4 Comparisons with observations and other simulations
4.4.1 Wind-pressure relation
4.4.2 Comparable aquaplanet simulations
4.5 Summary
4.A Gradient wind balance in tropical cyclones
5 Discussing the Isolation of Meridional SST Gradients' Influence on
Tropical Cyclone Latitudes
5.1 Introduction
5.2 Thermal wind and the subtropical jet
5.3 El Niño diversity and Hadley circulation asymmetry
5.4 Limitations
5.4.1 Numerical representations of TCs
5.4.2 Infinite heat-bath assumption
Summary and Outlook
Bibliography
Рекомендованный список диссертаций по специальности «Физика атмосферы и гидросферы», 25.00.29 шифр ВАК
Numerical simulation of the hydrological cycle of Mars / Численное моделирование гидрологического цикла Марса2019 год, кандидат наук Шапошников Дмитрий Сергеевич
Плазмонные наноструктуры для оптических метаматериалов2022 год, доктор наук Драчев Владимир Прокопьевич
Stability in a Multipolar International System2023 год, кандидат наук Храбина Йозеф
Fake news as а modern media phenomenon: features of formation and functioning in Indonesia (2017-2021) (Фейковые новости как современный медиафеномен: особенности формирования и функционирования в Индонезии (2017-2021 гг.))2022 год, кандидат наук Мукситх Мунадхил Абдул
Введение диссертации (часть автореферата) на тему «ТРОПИЧЕСКИЕ ЦИКЛОНЫ И КРУПНОМАСШТАБНАЯ ДИНАМИКА АТМОСФЕРЫ»
Abstract
Recent observational evidence indicates that the meridional distribution of tropical cyclones has shifted poleward in both hemispheres since at least the 1980s, a time at which global observations may be first considered reliable. Concurrently, the dominant large-scale laminar overturning circulation of the tropical troposphere, Hadley circulation, has been shown to be expanding and potentially weakening. Despite this, no dynamic or thermodynamic consideration of the large-scale processes in the atmosphere and ocean simultaneously governing the meridional distribution of tropical cyclones and Hadley circulation has been provided.
Here, such an analysis is conducted using all available state-of-the-art data: two independent archives for tropical cyclones and the three most modern numerical reanalyses (ERA-Interim, MERRA2, JRA55). Based on Helmholtz theory for vector decomposition, novel metrics are used to define the asymmetric Hadley circulation. All life-cycle stages from the nascent convective vortex, to life-time maximum intensity and warm-core disintegration are considered. Coherent fluctuations in both long-term linear trends and detrended interannual variability are found. Genesis and lifetime-maximum-intensity latitudes share trend sign and magnitude with shifts in local Hadley circulation extent, with rates being ~0.25 °lat decade-1. This concomitant relationship is stable for both hemispheres as a whole, as well as for the western and eastern parts of the Pacific and North Atlantic, where Hadley circulation dynamics account for 35% of the total interannual variability of tropical cyclone trajectories. Further observational analysis of potential dynamical mechanisms and consideration of axisymmetric nearly-viscid theory indicate meridional sea surface temperature gradients as a dominant control on Hadley circulation extent.
The isolated influence of large-scale temperature gradients upon meridional tropical cyclone distribution and Hadley circulation is studied. An idealised model framework is adopted based on the anelastic approximation and using a modification of the vertical momentum equation to permit the explicit representation of moist convection on a near-global domain. These experiments demonstrate a convergence of the
meridional distribution, as well as some of the dynamical properties, of tropical and warm-core seclusion cyclones with midlatitude warming. A criterion for the formal separation between these two is developed and applied. Tropical cyclone response to perturbations of the meridional temperature gradient is poleward, highly nonlinear and nonmonotonic, while Hadley circulation response is a quasi-linear equatorward shift and slight weakening. It is concluded that links between Hadley circulation and tropical cyclones found in the observational data are likely related to changes in the subtropical jet stream, as well as shifts in the intertropical convergence zone and increasing convective stability.
Похожие диссертационные работы по специальности «Физика атмосферы и гидросферы», 25.00.29 шифр ВАК
Заключение диссертации по теме «Физика атмосферы и гидросферы», Стадхолм Джошуа Генри Пол
Summary and Outlook
In sum, this thesis concludes that the contemporary understanding is that there are major open theoretical questions about large-scale constraints on the meridional distribution of TCs and how they might behave across different climate states. In particular, a physically robust theory for tropical cyclogenesis that agrees with the observations is absent as well as an analytical theory that accounts for observed influences of eddies on Hadley circulation and as its thermal coupling to the ocean on longer timescales. A consistent poleward shift in the TC latitude of lifetime maximum intensity has been identified in the observations dating back to the 1980s. Palaeo-climatological records indicate a consistent poleward shift in North Atlantic strong hurricanes dating back to at least 1550 A.D. These shifts are implicitly and explicitly related to concurrent changes in Hadley circulation, although no detailed consideration of potential dynamical linkages was presented in the literature prior to this thesis.
We have identified poleward trends in seasonal-mean latitudes of TCs and quantified these in both existing observational records over the period of reliable global coverage (1981-2016). The zonally-asymmetric Hadley circulation has been defined by employing Helmholtz theory for vector decomposition. From this, overturning terminus latitudes and intensity are estimated in the three state-of-the-art reanalyses (ERA-Interim, MERRA2, JRA55) across all TC basins and in both hemispheres. Long-term trends covering 1981-2016 are computed. Interannual variability in TC latitudes, Hadley circulation extent, and intensity is decomposed into the long-term trend and detrended interannual variability components. TC genesis and lifetime maximum intensity latitudes share both trend sign and magnitude with shifts in local Hadley circulation extent, with rates both being ~0.25 ±0.1 ° latitude decade-1. Both these lifecycle stages in hemispheric means and all Pacific TC basins, as well as poleward-extreme North Atlantic lysis latitudes, share ~35% of their interannual variability with Hadley circulation extent. Local overturning intensity is linked only
to eastern North Pacific TC latitudes, where strong local overturning corresponds to equatorward shifts. Examination of potential dynamical linkages implicates La Niña-like sea surface temperature gradients to poleward Hadley circulation termini. This corresponds to increased tropical and reduced subtropical vertical wind shear everywhere except in the North Atlantic and western North Pacific, where the opposite is true.
The hypohydrostatic rescaling approach to the vertical momentum equation has been leveraged to explicitly simulate moist convection in a near-global model. This yields an effective resolution for the 15 km horizontal resolution model of 1 km. This is sufficient to represent eyewall convective processes without parameterisation and thus significantly improves the representation of TCs. A formal separation analysis has been developed and applied to distinguish TCs from extratropical warm-core seclusion cyclones. This is necessary since in the warmer-wetter climates the physical properties of the two types converge and overlap in their meridional distribution. The TC meridional distribution is altered significantly as the meridional SST gradient is relaxed. However, the response is strongly non-linear and the mid-latitudes become additionally active for tropical cyclogenesis in the warmer-wetter climates. Meanwhile, the Hadley circulation exhibits a very different response and in fact weakens and shifts slightly equatorward. It is concluded that the concurrency found in the observations is likely related to changes in the subtropical jet, and potentially the latitude of the ITCZ. Further work should focus on more complex forcings and coupled models.
Список литературы диссертационного исследования кандидат наук Стадхолм Джошуа Генри Пол, 2018 год
Bibliography
Adames, Á. F., J. Patoux, and R. C. Foster, 2014: The Contribution of Extratropical Waves to the MJO Wind Field. Journal of the Atmospheric Sciences, 71 (1), 155-176, doi:10.1175/JAS-D-13-084.1, URL http://journals.ametsoc. org/doi/abs/10.1175/JAS-D-13-084.1.
Akperov, M. G., M. Y. Bardin, E. M. Volodin, G. S. Golitsyn, and I. I. Mokhov, 2007: Probability distributions for cyclones and anticyclones from the NCEP/NCAR reanalysis data and the INM RAS climate model. Izvestiya, Atmospheric and Oceanic Physics, 43 ( 6), 705-712, doi:10.1134/S0001433807060047, URL http: //link.springer.com/10.1134/S0001433807060047.
Allen, R. J. and M. Kovilakam, 2017: The role of natural climate variability in recent tropical expansion. Journal of Climate, 30 (16), 6329-6350, doi: 10.1175/JCLI-D-16-0735.1, URL http://journals.ametsoc.org/doi/10.1175/ JCLI-D-16-0735.1.
Allen, R. J., S. C. Sherwood, J. R. Norris, and C. S. Zender, 2012: Recent Northern Hemisphere tropical expansion primarily driven by black carbon and tropospheric ozone. Nature, 485 (7398), 350-354, doi:10.1038/nature11097, URL http://dx. doi.org/10.1038/nature11097.
Amaya, D. J., N. Siler, S. P. Xie, and A. J. Miller, 2018: The interplay of internal and forced modes of Hadley Cell expansion: lessons from the global warming hiatus. Climate Dynamics, 51 (1-2), 305-319, doi:10.1007/s00382-017-3921-5, URL http: //link.springer.com/10.1007/s00382-017-3921-5.
Archer, C. L. and K. Caldeira, 2008: Historical trends in the jet streams. Geophysical Research Letters, 35 (8), L08 803, doi:10.1029/2008GL033614, URL http://doi. wiley.com/10.1029/2008GL033614.
Arnold, N. P. and D. A. Randall, 2015: Global-scale convective aggregation: Implications for the Madden-Julian Oscillation. Journal of Advances in Modeling Earth Systems, 7 (4), 1499-1518, doi:10.1002/2015MS000498, URL http://doi.wiley. com/10.1002/2015MS000498.
Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. Journal of Geophysical Research: Oceans,
112 (11), C11007, doi:10.1029/2006JC003798, URL http://doi.wiley.com/10. 1029/2006JC003798.
Baker, A., J. C. Hellstrom, B. F. J. Kelly, G. Mariethoz, and V. Trouet, 2015: A composite annual-resolution stalagmite record of North Atlantic climate over the last three millennia. Scientific Reports, 5 (1), 10 307, doi:10.1038/srep10307, URL http://www.nature.com/articles/srep10307.
Bakkensen, L. A. and R. O. Mendelsohn, 2016: Risk and Adaptation: Evidence from Global Hurricane Damages and Fatalities. Journal of the Association of Environmental and Resource Economists, 3 (3), 555-587, doi:10.1086/685908, URL https://doi.org/10.1086/685908.
Baldini, L. M., et al., 2016: Persistent northward North Atlantic tropical cyclone track migration over the past five centuries. Scientific Reports, 6, 37 522, doi:10. 1038/srep37522, URL http://www.nature.com/articles/srep37522.
Ballinger, A. P., T. M. Merlis, I. M. Held, and M. Zhao, 2015: The sensitivity of tropical cyclone activity to off-equatorial thermal forcing in aqua-planet simulations. Journal of the Atmospheric Sciences, 150325075806006, doi: 10.1175/JAS-D-14-0284.1, URL http://journals.ametsoc.org/doi/abs/10. 1175/JAS-D-14-0284.1.
Barcikowska, M., F. Feser, and H. von Storch, 2012: Usability of Best Track Data in Climate Statistics in the Western North Pacific. Monthly Weather Review, 140 (9), 2818-2830, doi:10.1175/MWR-D-11-00175.1, URL http://journals. ametsoc.org/doi/abs/10.1175/MWR-D-11-00175.1.
Becker, E., G. Schmitz, and R. Geprags, 1997: The feedback of midlatitude waves onto the Hadley cell in a simple general circulation model. Tellus A, 49 (2), 182-199, doi:10.1034/j.1600-0870.1997.t01-1-00003.x, URL http://tellusa.net/ index.php/tellusa/article/view/14464.
Bell, M. M. and M. T. Montgomery, 2008: Observed Structure, Evolution, and Potential Intensity of Category 5 Hurricane Isabel (2003) from 12 to 14 September. Monthly Weather Review, 136 (6), 2023-2046, doi:10.1175/2007MWR1858.1, URL http://journals.ametsoc.org/doi/abs/10.1175/2007MWR1858.!.
Bengtsson, L., B. H., and M. Kanamitsu, 1982: Simulation of hurricane-type vortices in a general circulation model. Tellus, 34 (5), 440-457, doi: 10.1111/j.2153-3490.1982.tb01833.x, URL https://www.tandfonline.com/ doi/full/10.3402/tellusa.v34i5.10830http://tellusa.net/index.php/ tellusa/article/view/10830.
Bengtsson, L., K. I. Hodges, M. Esch, N. Keenlyside, L. Kornblueh, J. J. Luo, and T. Yamagata, 2007: How may tropical cyclones change in a warmer climate? Tellus, Series A: Dynamic Meteorology and Oceanography, 59 A (4), 539-561, doi:10.
1111/j.1600-0870.2007.00251.x, URL https://www.tandfonline.com/doi/full/ 10.1111/j.1600-0870.2007.00251.x.
Bin, W., R. L. Elsberry, W. Yuqing, and W. Liguang, 1998: Dynamics in tropical cyclone motion: A review. Chin. J. Atmos. Sci., 22, 416-434.
Birner, T., 2010: Recent widening of the tropical belt from global tropopause statistics: Sensitivities. Journal of Geophysical Research, 115 (D23), D23 109, doi: 10.1029/2010JD014664, URL http://doi.wiley.com/10.1029/2010JD014664.
Bischoff, T. and T. Schneider, 2014: Energetic Constraints on the Position of the Intertropical Convergence Zone. Journal of Climate, 27 (13), 4937-4951, doi: 10.1175/jCLI-D-13-00650.1, URL http://journals.ametsoc.org/doi/abs/10. 1175/JCLI-D-13-00650.1.
Bjerknes, J., 1966: A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus, 18 (4), 820-829, doi:10.3402/tellusa. v18i4.9712, URL http://tellusa.net/index.php/tellusa/article/view/ 9712https://www.tandfonline.com/doi/full/10.3402/tellusa.v18i4.9712.
Bogatyrev, G. P. and B. L. Smorodin, 1996: Physical model of the rotation of a tropical cyclone. Journal of Experimental and Theoretical Physics Letters, 63 (1), 28-32, doi:10.1134/1.566958, URL http://link.springer.com/10.1134Z1.566958.
Boos, W. R., A. V. Fedorov, and L. Muir, 2016: Convective Self-Aggregation and Tropical Cyclogenesis under the Hypohydrostatic Rescaling. Journal of the Atmospheric Sciences, 73 (2), 525-544, doi:10.1175/JAS-D-15-0049.1, URL http: //journals.ametsoc.org/doi/10.1175/JAS-D-15-0049.1.
Boubnov, B. M. and G. S. Golitsyn, 1995: Convection in Rotating Fluids. Springer Netherlands, 244 pp.
Bourne, D. E. and P. C. Kendall, 1992: Vector Analysis and Cartesian Tensors, Vol. 2. Third edit ed., Routledge, New York and London, 1967 pp.
Bove, M. C., J. B. Elsner, C. W. Landsea, X. Niu, and J. J. O'Brien, 1998: Effect of El Niño on U.S. Landfalling Hurricanes, Revisited. Bulletin of the American Meteorological Society, 79 (11), 2477-2482, doi:10.1175/1520-0477(1998)079<2477: E0EN00>2.0.C0;2, URL http://journals.ametsoc.org/doi/abs/10.1175/ 1520-0477{%}281998{%}29079{%}3C2477{%}3AE0EN00{%}3E2.0.C0{%}3B2.
Brayshaw, D. J., B. Hoskins, and M. Blackburn, 2008a: The Storm-Track Response to Idealized SST Perturbations in an Aquaplanet GCM. Journal of the Atmospheric Sciences, 65 (9), 2842-2860, doi:10.1175/2008JAS2657.1, URL http://journals. ametsoc.org/doi/abs/10.1175/2008JAS2657.1.
Brayshaw, D. J., B. Hoskins, and M. Blackburn, 2008b: The Storm-Track Response to Idealized SST Perturbations in an Aquaplanet GCM. Journal of the Atmospheric
Sciences, 65 (9), 2842-2860, doi:10.1175/2008JAS2657.1, URL http://journals. ametsoc.org/doi/abs/10.1175/2008JAS2657.1.
Bretherton, C. S., P. N. Blossey, and M. F. Khairoutdinov, 2005: An Energy-Balance Analysis of Deep Convective Self-Aggregation above Uniform SST. Journal of the Atmospheric Sciences, 62 (12), 4273-4292, doi:10.1175/JAS3614.1, URL http: //journals.ametsoc.org/doi/abs/10.1175/JAS3614.1.
Camargo, S. J., 2013: Global and regional aspects of tropical cyclone activity in the CMIP5 models. Journal of Climate, 26 (24), 9880-9902, doi: 10.1175/JCLI-D-12-00549.1, URL http://journals.ametsoc.org/doi/abs/10. 1175/JCLI-D-12-00549.1.
Camargo, S. J., 2016: Tropical Cyclones, Western North Pacific Basin, in "State of the Climate in 2015.". Bull. Amer. Meteor. Soc, 97 (8), 2110-2113, doi:https://doi. org/10.1175/2016BAMSStateoftheClimate.1, URL https://journals.ametsoc. org/doi/10.1175/2016BAMSStateoftheClimate.1.
Camargo, S. J., A. W. Robertson, S. J. Gaffney, P. Smyth, and M. Ghil, 2007a: Cluster analysis of typhoon tracks. Part I. General properties. Journal of Climate, 20 (14), 3635-3653, doi:10.1175/JCLI4188.1, URL http://journals.ametsoc. org/doi/abs/10.1175/JCLI4188.1.
Camargo, S. J., A. W. Robertson, S. J. Gaffney, P. Smyth, and M. Ghil, 2007b: Cluster analysis of typhoon tracks. Part II: Large-scale circulation and ENSO. Journal of Climate, 20 (14), 3654-3676, doi:10.1175/JCLI4203.1, URL http:// journals.ametsoc.org/doi/abs/10.1175/JCLI4203.1.
Camargo, S. J. and A. H. Sobel, 2005: Western North Pacific Tropical Cyclone Intensity and ENSO. Journal of Climate, 18 (15), 2996-3006, doi:10.1175JCLI3457.1, URL http://journals.ametsoc.org/doi/abs/10.1175/JCLI3457.!.
Camargo, S. J. and A. H. Sobel, 2010: Revisiting the influence of the quasi-biennial oscillation on tropical cyclone activity. Journal of Climate, 23 (21), 5810-5825, doi:10.1175/2010JCLI3575.1, URL http://journals.ametsoc.org/doi/abs/10. 1175/2010JCLI3575.1.
Camargo, S. J., M. K. Tippett, A. H. Sobel, G. A. Vecchi, and M. Zhao, 2014: Testing the Performance of Tropical Cyclone Genesis Indices in Future Climates Using the HiRAM Model. Journal of Climate, 27 (24), 9171-9196, doi: 10.1175/JCLI-D-13-00505.1, URL http://journals.ametsoc.org/doi/abs/10. 1175/JCLI-D-13-00505.1.
Camargo, S. J. and A. A. Wing, 2016: Tropical cyclones in climate models. Wiley Interdisciplinary Reviews: Climate Change, 7 (2), 211-237, doi:10.1002/wcc.373.
Chan, J. C. L., 2000: Tropical Cyclone Activity over the Western North Pacific Associated with El Niño and La Niña Events. Journal of Climate, 13 (16), 2960-2972, doi:10.1175/1520-0442(2000)013<2960: TCA0TW>2.0.C0;2, URL http://journals.ametsoc.org/doi/abs/10.1175/ 1520-0442{%}282000{%}29013{%}3C2960{%}3ATCA0TW{%}3E2.0.C0{%}3B2.
Chan, J. C. L. and K. S. Liu, 2004: Global warming and western North Pacific typhoon activity from an observational perspective. Journal of Climate, 17 (23), 4590-4602, doi:10.1175/3240.1, URL http://journals.ametsoc.org/doi/abs/ 10.1175/3240.1.
Chan, J. C. L. and C. K. M. Yip, 2003: Interannual variations of tropical cyclone size over the western North Pacific. Geophysical Research Letters, 30 (24), doi: 10.1029/2003GL018522, URL http://doi.wiley.com/10.1029/2003GL018522.
Chan, K. T. and J. C. Chan, 2016: Tropical cyclone recurvature: An intrinsic property? Geophysical Research Letters, 43 (16), 8769-8774, doi:10.1002/ 2016GL070352, URL http://doi.wiley.com/10.1002/2016GL070352.
Chand, S. S., J. L. Mcbride, K. J. Tory, M. C. Wheeler, and K. J. Walsh, 2013: Impact of different ENS0 regimes on southwest pacific tropical cyclones. Journal of Climate, 26 (2), 600-608, doi:10.1175/JCLI-D-12-00114.1, URL http: //journals.ametsoc.org/doi/abs/10.1175/JCLI-D-12-00114.1.
Charney, J. G. and A. Eliassen, 1964: 0n the Growth of the Hurricane Depression. Journal of the Atmospheric Sciences, 21 (1), 68-75, doi:10.1175/1520-0469(1964) 021<0068:0TG0TH>2.0.C0;2, URL http://journals.ametsoc.org/doi/abs/ 10.1175/1520-0469(1964)021{%}3C0068:0TG0TH{%}3E2.0.C0;2.
Chavas, D. R. and N. Lin, 2016: A Model for the Complete Radial Structure of the Tropical Cyclone Wind Field. Part II: Wind Field Variability. Journal of the Atmospheric Sciences, 73 (8), 3093-3113, doi:10.1175/JAS-D-15-0185.1, URL https://doi.org/10.1175/JAS-D-15-0185.1.
Chavas, D. R., N. Lin, and K. Emanuel, 2015: A Model for the Complete Radial Structure of the Tropical Cyclone Wind Field. Part I: Comparison with 0bserved Structure. Journal of the Atmospheric Sciences, 72 (9), 3647-3662, doi:10.1175/ JAS-D-15-0014.1, URL https://doi.org/10.1175/JAS-D-15-0014.1.
Chavas, D. R., K. A. Reed, and J. A. Knaff, 2017: Physical understanding of the tropical cyclone wind-pressure relationship. Nature Communications, 8 (1), 1360, doi:10.1038/s41467-017-01546-9, URL https://doi.org/10.1038/ s41467-017-01546-9.
Chen, G. and I. M. Held, 2007: Phase speed spectra and the recent poleward shift of Southern Hemisphere surface westerlies. Geophysical Research Letters, 34 (21), L21805, doi:10.1029/2007GL031200, URL http://doi.wiley.com/10. 1029/2007GL031200.
Chen, G., J. Lu, and D. M. Frierson, 2008: Phase speed spectra and the latitude of surface westerlies: Interannual variability and global warming trend. Journal of Climate, 21 (22), 5942-5959, doi:10.1175/2008JCLI2306.1, URL http: //journals.ametsoc.org/doi/abs/10.1175/2008JCLI2306.1.
Chen, S., K. Wei, W. Chen, and L. Song, 2014: Regional changes in the annual mean hadley circulation in recent decades. Journal of Geophysical Research, 119 (13), 7815-7832, doi:10.1002/2014JD021540, URL http://doi.wiley.com/ 10.1002/2014JD021540.
Chia, H. H. and C. F. Ropelewski, 2002: The Interannual Variability in the Genesis Location of Tropical Cyclones in the Northwest Pacific. Journal of Climate, 15 (20), 2934-2944, doi:10.1175/1520-0442(2002)015<2934: TIVITG>2.0.CO;2, URL http://journals.ametsoc.org/doi/abs/10.1175/ 1520-0442{%}282002{%}29015{%}3C2934{%}3ATIVITG{%}3E2.0.C0{%}3B2.
Chiang, J. C. and A. R. Friedman, 2012: Extratropical Cooling, Inter-hemispheric Thermal Gradients, and Tropical Climate Change. Annual Review of Earth and Planetary Sciences, 40 (1), 383-412, doi:10.1146/ annurev-earth-042711-105545, URL http://www. annualreviews.org/doi/10. 1146/annurev-earth-042711-105545.
Chiang, J. C., Y. Kushnir, and S. E. Zebiak, 2000: Interdecadal changes in cast-ern Pacific ITCZ variability and its influence on the Atlantic ITCZ. Geophysical Research Letters, 27 (22), 3687-3690, doi:10.1029/1999GL011268, URL http: //doi.wiley.com/10.1029/1999GL011268.
Chiang, J. C. H., Y. Kushnir, and A. Giannini, 2002: Deconstructing Atlantic Intertropical Convergence Zone variability : Influence of the local cross-equatorial sea surface temperature gradient and remote forcing from the eastern equatorial Pacific. Journal of Geophysical Research, 107 (D1), 4004, doi:10.1029/2000JD000307, URL http://doi.wiley.com/10.1029/2000JD000307.
Clarke, R. and G. Hess, 1975: On the relation between surface wind and pressure gradient, especially in lower latitudes. Boundary-Layer Meteorology, 9 (3), 325-339, doi:10.1007/BF00230774, URL http://link.springer.com/10.1007/ BF00230774.
Colbert, A. J. and B. J. Soden, 2012: Climatological Variations in North Atlantic Tropical Cyclone Tracks. Journal of Climate, 25 (2), 657-673, doi: 10.1175/JCLI-D-11-00034.1, URL http://journals.ametsoc.org/doi/abs/10. 1175/JCLI-D-11-00034.1.
Colbert, A. J., B. J. Soden, and B. P. Kirtman, 2015: The Impact of Natural and Anthropogenic Climate Change on Western North Pacific Tropical Cyclone Tracks*. Journal of Climate, 28 (5), 1806-1823, doi:10.1175/JCLI-D-14-00100.1, URL http://journals.ametsoc.org/doi/10.1175/JCLI-D-14-00100.1.
Collins, M. and Coauthors, 2013: Long-term climate change: projections, commitments and irreversibility. Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change., Stocker T. F., Q. D., P. G-K, T. M, A. S.K., B. J., N. A., X. Y., and M. P. Bex V., Eds., Cambridge University Press, Cambridge., Pp 1029-1136.
Corbosiero, K. L. and J. Molinari, 2002: The Effects of Vertical Wind Shear on the Distribution of Convection in Tropical Cyclones. Monthly Weather Review, 130 (8), 2110-2123, doi:10.1175/1520-0493(2002)130<2110: TEOVWS>2.0.CO;2, URL http://journals.ametsoc.org/doi/abs/10.1175/ 1520-0493{%}282002{%}29130{%}3C2110{%}3ATE0VWS{%}3E2.0.C0{%}3B2.
Daloz, A. S. and S. J. Camargo, 2018: Is the poleward migration of tropical cyclone maximum intensity associated with a poleward migration of tropical cyclone genesis? Climate Dynamics, 50 (1-2), 705-715, doi:10.1007/s00382-017-3636-7, URL https://link.springer.com/article/10.1007/s00382-017-3636-7.
Daloz, A. S., et al., 2015: Cluster analysis of downscaled and explicitly simulated North Atlantic tropical cyclone tracks. Journal of Climate, 28 (4), 1333-1361, doi:10.1175/JCLI-D-13-00646.1, URL http://journals.ametsoc.org/doi/10. 1175/JCLI-D-13-00646.1.
Davis, C. A. and D. A. Ahijevych, 2012: Mesoscale Structural Evolution of Three Tropical Weather Systems Observed during PREDICT. Journal of the Atmospheric Sciences, 69 (4), 1284-1305, doi:10.1175/JAS-D-11-0225.1, URL http: //journals.ametsoc.org/doi/abs/10.1175/JAS-D-11-0225.1.
Davis, N. and T. Birner, 2013: Seasonal to multidecadal variability of the width of the tropical belt. Journal of Geophysical Research Atmospheres, 118 (14), 7773-7787, doi:10.1002/jgrd.50610, URL http://doi.wiley.com/10.1002/jgrd.50610.
Davis, N. and T. Birner, 2017: On the discrepancies in tropical belt expansion between reanalyses and climate models and among tropical belt width metrics. Journal of Climate, 30 (4), 1211-1231, doi:10.1175/JCLI-D-16-0371.1, URL http://journals.ametsoc.org/doi/10.1175/JCLI-D-16-0371.1.
Davis, S. M. and K. H. Rosenlof, 2012: A Multidiagnostic Intercomparison of Tropical-Width Time Series Using Reanalyses and Satellite Observations. Journal of Climate, 25 (4), 1061-1078, doi:10.1175/JCLI-D-11-00127.1, URL http: //journals.ametsoc.org/doi/abs/10.1175/JCLI-D-11-00127.1.
Dee, D. P., et al., 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137 (656), 553-597, doi:10.1002/qj.828, URL http://doi.wiley.com/10. 1002/qj.828.
Defforge, C. L. and T. M. Merlis, 2017: Observed warming trend in sea surface temperature at tropical cyclone genesis. Geophysical Research Letters, 44 (2), 1034-1040, doi:10.1002/2016GL071045, URL http://doi.wiley.com/10.1002/ 2016GL071045.
DeMaria, M., 1996: The Effect of Vertical Shear on Tropical Cyclone Intensity Change. Journal of the Atmospheric Sciences, 53 (14), 2076-2088, doi:10.1175/1520-0469(1996)053<2076:TE0VS0> 2.0.C0;2, URL http://journals.ametsoc.org/doi/abs/10.1175/
1520-0469{%}281996{%}29053{%}3C2076{%}3ATE0VS0{%}3E2.0.C0{%}3B2.
Deser, C. and A. S. Phillips, 2009: Atmospheric circulation trends, 1950-2000: The relative roles of sea surface temperature forcing and direct atmospheric radiative forcing. Journal of Climate, 22 (2), 396-413, doi:10.1175/2008JCLI2453.1, URL http://journals.ametsoc.org/doi/abs/10.1175/2008JCLI2453.1.
Dianskii, N. A., V. Y. Galin, A. V. Gusev, S. P. Smyshlyaev, E. M. Volodin, and N. G. Iakovlev, 2010: The model of the Earth system developed at the INM RAS. Russian Journal of Numerical Analysis and Mathematical Modelling, 25 (5), doi:10.1515/rjnamm.2010.027, URL https://www.degruyter.eom/view/j/rnam. 2010.25.issue-5/rjnamm.2010.027/rjnamm.2010.027.xml.
Dickinson, R. E., 1971: Analytic Model for Zonal Winds in the Tropics. Monthly Weather Review, 99 (6), 511-523, doi:10.1175/1520-0493(1971)099<0511: AMFZWI>2.3.C0;2, URL http://journals.ametsoc.org/doi/abs/10.1175/ 1520-0493{%}281971{%}29099{%}3C0511{%}3AAMFZWI{%}3E2.3.C0{%}3B2.
Diffenbaugh, N. S., M. Scherer, and R. J. Trapp, 2013: Robust increases in severe thunderstorm environments in response to greenhouse forcing. Proceedings of the National Academy of Sciences, 110 (41), 16 361-16 366, doi:10.1073/ pnas.1307758110, URL http://www.ncbi.nlm.nih.gov/pubmed/24062439http: //www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3799355http: //www.pnas.org/cgi/doi/10.1073/pnas.1307758110, arXiv:1408.1149.
Donohoe, A., J. Marshall, D. Ferreira, and D. Mcgee, 2013: The Relationship between ITCZ Location and Cross-Equatorial Atmospheric Heat Transport: From the Seasonal Cycle to the Last Glacial Maximum. Journal of Climate, 26 (11), 3597-3618, doi:10.1175/JCLI-D-12-00467.1, URL http://journals.ametsoc.org/doi/abs/ 10.1175/JCLI-D-12-00467.1.
Dunkerton, T. J., M. T. Montgomery, and Z. Wang, 2009: Tropical cyclogen-esis in a tropical wave critical layer: easterly waves. Atmospheric Chemistry and Physics, 9 (15), 5587-5646, doi:10.5194/acp-9-5587-2009, URL http://www. atmos-chem-phys.net/9/5587/2009/.
Dutra, L. M. M., R. P. da Rocha, R. W. Lee, J. R. R. Peres, and R. de Camargo, 2017: Structure and evolution of subtropical cyclone Anita as evaluated by heat and vor-
ticity budgets. Quarterly Journal of the Royal Meteorological Society, 143 (704), 1539-1553, doi:10.1002/qj.3024, URL http://doi.wiley.com/10.1002/qj.3024.
Dymnikov, V. P., V. N. Lykosov, and E. M. Volodin, 2015: Mathematical simulation of Earth system dynamics. Izvestiya, Atmospheric and Oceanic Physics, 51 (3), 227-240, doi:10.1134/S0001433815030044, URL http://link.springer.com/10. 1134/S0001433815030044.
Eliassen, A., 1951: Slow thermally or frictionally controlled meriodonal circulation in a circular vortex. Astrophysica Norvegica, 5, 19-60, URL http://adsabs. harvard.edu/abs/1951ApNr____5...19E.
Elsner, J. B., R. E. Hodges, and T. H. Jagger, 2012: Spatial grids for hurricane climate research. Climate Dynamics, 39 (1-2), 21-36, doi:10.1007/s00382-011-1066-5, URL http://link.springer.com/10.1007/s00382-011-1066-5.
Elsner, J. B. and A. B. Kara, 1999: Hurricanes of the North Atlantic: Climate and Society. Oxfford University Press, 488 pp., URL https://global.oup.com/ academic/product/hurricanes-of-the-north-atlantic-9780195125085?cc= us{&}lang=en{&}.
Elsner, J. B., J. P. Kossin, and T. H. Jagger, 2008: The increasing intensity of the strongest tropical cyclones. Nature, 455 (7209), 92-95, doi:10.1038/nature07234, URL https://www.nature.com/articles/nature07234.
Elsner, J. B. and K. B. Liu, 2003: Examining the ENSO-typhoon hypothesis. Climate Research, 25 (1), 43-54, doi:10.3354/cr025043, URL http://www.int-res.com/ abstracts/cr/v25/n1/p43-54/.
Elsner, J. B., K. B. Liu, and B. Kocher, 2000: Spatial Variations in Major U.S. Hurricane Activity: Statistics and a Physical Mechanism. Journal of Climate, 13 (13), 2293-2305, doi:10.1175/1520-0442(2000)013<2293: SVIMUS>2.0.CO;2, URL http://journals.ametsoc.org/doi/abs/10.1175/ 1520-0442{/}282000{/}29013{/}3C2293{/}3ASVIMUS{/}3E2.0.C0{/}3B2.
Emanuel, K., 1986: An Air-Sea Interaction Theory for Tropical Cyclones. Part I: Steady-State Maintenance. URL http://journals.ametsoc.org/doi/abs/ 10.1175/1520-0469{/}281986{/}29043{/}3C0585{/}3AAASITF{/}3E2.0. C0{/}3B2, 585-605 pp., doi:10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO; 2.
Emanuel, K., 1988: Toward a General Theory of Hurricanes. American Scientist, 76 (4), 370-379, doi:10.1037/h0052294, URL ftp://texmex.mit.edu/pub/ emanuel/PAPERS/Amer{_}sci.pdf.
Emanuel, K., 1994: Atmospheric Convection. 1st ed., Oxford University Press, New York, 580 pp.
Emanuel, K., 2000: Quasi-equilibrium thinking. General Circulation Model Development, D. A. Randall, Ed., Academic Press, New York, 225-255, URL https: //www.elsevier.com/books/general-circulation-model-development/ randall/978-0-12-578010-0.
Emanuel, K., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436 (7051), 686-688, doi:10.1038/nature03906, URL http://www. nature.com/doifinder/10.1038/nature03906.
Emanuel, K., 2013: Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proceedings of the National Academy of Sciences of the United States of America, 110 (30), 12 219-24, doi:10.1073/ pnas.1301293110, URL http://www.ncbi.nlm.nih.gov/pubmed/23836646http: //www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3725040.
Emanuel, K. and D. S. Nolan, 2004: Tropical cyclone activity and global climate. Proc. of 26th Conference on Hurricanes and Tropical Meteorology, Amer. Meteor. Soc., 240-241, URL https://ams.confex.com/ams/26HURR/techprogram/ paper{_}75463.htm.
Emanuel, K. and R. Rotunno, 2011: Self-Stratification of Tropical Cyclone 0utflow. Part I: Implications for Storm Structure. Journal of the Atmospheric Sciences, 68 (10), 2236-2249, doi:10.1175/JAS-D-10-05024.1, URL https://doi.org/10. 1175/JAS-D-10-05024.1.
Emanuel, K., A. A. Wing, and E. M. Vincent, 2014: Radiative-convective instability. Journal of Advances in Modeling Earth Systems, 6 (1), 75-90, doi: 10.1002/2013MS000270, URL http://doi.wiley.com/10.1002/2013MS000270.
Emanuel, K. A., 1991: The Theory of Hurricanes. Annual Review of Fluid Mechanics, 23 (1), 179-196, doi:10.1146/annurev.fl.23.010191.001143, URL http: //www.annualreviews.org/doi/10.1146/annurev.fl.23.010191.001143.
Evans, J. L. and A. Braun, 2012: A climatology of subtropical cyclones in the South Atlantic. Journal of Climate, 25 (21), 7328-7340, doi:10.1175/JCLI-D-11-00212.1, URL http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-11-00212.1.
Evans, J. L. and R. E. Hart, 2003: 0bjective Indicators of the Life Cycle Evolution of Extratropical Transition for Atlantic Tropical Cyclones. Monthly Weather Review, 131 (5), 909-925, doi:10.1175/1520-0493(2003)131<0909: 0I0TLC>2.0.C0;2, URL http://journals.ametsoc.org/doi/abs/10.1175/ 1520-0493{%}282003{%}29131{%}3C0909{%}3A0I0TLC{%}3E2.0.C0{%}3B2.
Fasullo, J. T. and K. E. Trenberth, 2008: The Annual Cycle of the Energy Budget. Part II: Meridional Structures and Poleward Transports. Journal of Climate, 21 (10), 2313-2325, doi:10.1175/2007JCLI1936.1, URL http://journals. ametsoc.org/doi/abs/10.1175/2007JCLI1936.1.
Fedorov, A. V., C. M. Brierley, and K. Emanuel, 2010: Tropical cyclones and permanent El Niño in the early Pliocene epoch. Nature, 463 ( 7284), 1066-1070, doi: 10.1038/nature08831, URL http://www.nature.com/articles/nature08831.
Feng, J., J. Li, F. Jin, S. Zhao, and J. Zhu, 2018: Relationship between the Hadley circulation and different tropical meridional SST structures during boreal summer. Journal of Climate, 31 (16), 6575-6590, doi:10.1175/JCLI-D-18-0095.1, URL http://journals.ametsoc.org/doi/10.1175/JCLI-D-18-0095.1.
Feulner, G., S. Rahmstorf, A. Levermann, and S. Volkwardt, 2013: On the Origin of the Surface Air Temperature Difference between the Hemispheres in Earth's Present-Day Climate. Journal of Climate, 26 (18), 7136-7150, doi: 10.1175/JCLI-D-12-00636.1, URL http://journals.ametsoc.org/doi/abs/10. 1175/JCLI-D-12-00636.1.
Fine, C. M., R. H. Johnson, P. E. Ciesielski, and R. K. Taft, 2016: The Role of Topographically Induced Vortices in Tropical Cyclone Formation over the Indian Ocean. Monthly Weather Review, 144 (12), 4827-4847, doi:10.1175/MWR-D-16-0102.1, URL http://journals.ametsoc.org/doi/10.1175/MWR-D-16-0102.1.
Frank, W. M. and E. A. Ritchie, 2001: Effects of Vertical Wind Shear on the Intensity and Structure of Numerically Simulated Hurricanes. Monthly Weather Review, 129 (9), 2249-2269, doi:10.1175/1520-0493(2001)129<2249: E0VWS0>2.0.C0;2, URL http://journals.ametsoc.org/doi/abs/10.1175/ 1520-0493{%}282001{%}29129{%}3C2249{%}3AE0VWS0{%}3E2.0.C0{%}3B2.
Frierson, D. M. and Y. T. Hwang, 2012: Extratropical influence on ITCZ shifts in slab ocean simulations of global warming. Journal of Climate, 25 (2), 720-733, doi:10.1175/JCLI-D-11-00116.1, URL http://journals.ametsoc.org/doi/abs/ 10.1175/JCLI-D-11-00116.1.
Frierson, D. M., et al., 2013: Contribution of ocean overturning circulation to tropical rainfall peak in the Northern Hemisphere. Nature Geoscience, 6 (11), 940-944, doi: 10.1038/ngeo1987, URL http://www.nature.com/articles/ngeo1987.
Froude, L. S. R., L. Bengtsson, and K. I. Hodges, 2007a: The Predictability of Extratropical Storm Tracks and the Sensitivity of Their Prediction to the Observing System. Monthly Weather Review, 135 (2), 315-333, doi:10.1175/MWR3274.1, URL http://journals.ametsoc.org/doi/abs/10.1175/MWR3274.!.
Froude, L. S. R., L. Bengtsson, and K. I. Hodges, 2007b: The Prediction of Extratropical Storm Tracks by the ECMWF and NCEP Ensemble Prediction Systems. Monthly Weather Review, 135 (7), 2545-2567, doi:10.1175/MWR3422.1, URL http://journals.ametsoc.org/doi/abs/10.1175/MWR3422.1.
Fu, Q., C. M. Johanson, J. M. Wallace, and T. Reichler, 2006: Enhanced mid-latitude tropospheric warming in satellite measurements. Science, 312 (5777), 1179, doi: 10.1126/science.1125566, URL http://science.sciencemag.org/content/312/ 5777/1179.
Fu, Q. and P. Lin, 2011: Poleward Shift of Subtropical Jets Inferred from Satellite-Observed Lower-Stratospheric Temperatures. Journal of Climate, 24 (21), 5597-5603, doi:10.1175/JCLI-D-11-00027.1, URL http://journals.ametsoc. org/doi/abs/10.1175/JCLI-D-11-00027.1.
Gaffney, S. J., A. W. Robertson, P. Smyth, S. J. Camargo, and M. Ghil, 2007: Probabilistic clustering of extratropical cyclones using regression mixture models. Climate Dynamics, 29 (4), 423-440, doi:10.1007/s00382-007-0235-z, URL http: //link.springer.com/10.1007/s00382-007-0235-z.
Garfinkel, C. I., D. W. Waugh, and L. M. Polvani, 2015: Recent Hadley cell expansion: The role of internal atmospheric variability in reconciling modeled and observed trends. Geophysical Research Letters, 42 (24), 10 824-10 831, doi: 10.1002/2015GL066942, URL http://doi.wiley.com/10.1002/2015GL066942.
Garner, S. T., D. M. Frierson, I. M. Held, O. M. Pauluis, and G. K. Vallis, 2007: Resolving Convection in a Global Hypohydrostatic Model. Journal of the Atmospheric Sciences, 64 (2005), 2061-2075, doi:10.1175/JAS3929.1, URL http: //journals.ametsoc.org/doi/abs/10.1175/JAS3929.1.
Gastineau, G., L. Li, and H. Le Treut, 2011: Some Atmospheric Processes Governing the Large-Scale Tropical Circulation in Idealized Aquaplanet Simulations. Journal of Atmospheric Sciences, 68 (3), 553-575, doi:10.1175/2010JAS3439.1, URL http: //journals.ametsoc.org/doi/abs/10.1175/2010JAS3439.1.
Gelaro, R., et al., 2017: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). Journal of Climate, 30 (14), 5419-5454, doi: 10.1175/JCLI-D-16-0758.1, URL http://journals.ametsoc.org/doi/10.1175/ JCLI-D-16-0758.1.
Ginis, I., 2002: Tropical Cyclone-Ocean Interactions. Advances in Fluid Mechanics, 33, 83-114.
Gleixner, S., N. Keenlyside, K. I. Hodges, W. L. Tseng, and L. Bengtsson, 2014: An inter-hemispheric comparison of the tropical storm response to global warming. Climate Dynamics, 42 (7-8), 2147-2157, doi:10.1007/s00382-013-1914-6, URL http://link.springer.com/10.1007/s00382-013-1914-6.
Golitsyn, G. S., 1973: Introduction to the Dynamics of Planetary Atmospheres. Gidrometeoizdat, Leningrad, 104 pp.
Golitsyn, G. S., 1979: Simple theoretical and experimental study of convection with some geophysical applications and analogies. Journal of Fluid Mechanics, 95 (3), 567-608, doi:10.1017/S0022112079001609, URL http://www.journals. cambridge.org/abstract{_}S0022112079001609.
Golitsyn, G. S., 1980: Investigation of Convection with Geophysical Applications and Analogies. Gidrometeoizdat, Leningrad, 56 pp.
Golitsyn, G. S., 1981: Comparative atmospheric dynamics for terrestrial planets. Advances in Space Research, 1 (8), 141-149, doi:10.1016/0273-1177(81)90493-2, URL https://www.sciencedirect.com/science/article/pii/0273117781904932? via{%}3Dihub.
Golitsyn, G. S., 1997: Statistics and Energetics of Tropical Cyclones. Dokl. Akad. Nauk, 354, 535-538.
Golitsyn, G. S., 2004: Natural processes and phenomena: waves, planets, convection, climate, statistics. FizMatLit, Moscow, 344 pp.
Golitsyn, G. S., 2008: Polar lows and tropical hurricanes: Their energy and sizes and a quantitative criterion for their generation. Izvestiya, Atmospheric and Oceanic Physics, 44 (5), 537-547, doi:10.1134/S0001433808050010, URL http://link. springer.com/10.1134/S0001433808050010.
Golitsyn, G. S., 2009: Tropical cyclones and polar lows: Velocity, size, and energy scales, and relation to the 26C cyclone origin criteria. Advances in Atmospheric Sciences, 26 (3), 585-598, doi:10.1007/s00376-009-0585-z, URL http: //link.springer.com/10.1007/s00376-009-0585-z.
Golitsyn, G. S., I. I. Mokhov, M. G. Akperov, and M. Y. Bardin, 2007: Distribution functions of probabilities of cyclones and anticyclones from 1952 to 2000: An instrument for the determination of global climate variations. Doklady Earth Sciences, 413 (1), 324-326, doi:10.1134/S1028334X07020432, URL http://link.springer.com/10.1134/S1028334X07020432http:
//www.springerlink.com/index/10.1134/S1028334X07020432.
Gray, W. M., 1968: Global View 0f The 0rigin 0f Tropical Disturbances And Storms. Monthly Weather Review, 96 (10), 669-700, doi:10.1175/1520-0493(1968) 096<0669:GV0T00>2.0.C0;2, URL http://journals.ametsoc.org/doi/ abs/10.1175/1520-0493{%}281968{%}29096{%}3C0669{%}3AGV0T00{%}3E2.0. C0{%}3B2.
Gray, W. M., 1984: Atlantic Seasonal Hurricane Frequency. Part I: El Niño and 30 mb Quasi-Biennial 0scillation Influences. Monthly Weather Review, 112 (9), 1649-1668, doi:10.1175/1520-0493(1984)112<1649: ASHFPI>2.0.C0;2, URL http://journals.ametsoc.org/doi/abs/10.1175/ 1520-0493{%}281984{%}29112{%}3C1649{%}3AASHFPI{%}3E2.0.C0{%}3B2.
Grise, K. M., S. M. Davis, P. W. Staten, and 0. Adam, 2018: Regional and Seasonal Characteristics of the Recent Expansion of the Tropics. Journal of Climate, 31 (17), JCLI-D-18-0060.1, doi:10.1175/JCLI-D-18-0060.1, URL http: //journals.ametsoc.org/doi/10.1175/JCLI-D-18-0060.1.
Gualdi, S., E. Scoccimarro, and A. Navarra, 2008: Changes in Tropical Cyclone Activity due to Global Warming: Results from a High-Resolution Coupled General Circulation Model. Journal of Climate, 21 (20), 5204-5228, doi:10.1175/2008JCLI1921. 1, URL http://journals.ametsoc.org/doi/abs/10.1175/2008JCLI1921.1.
Guishard, M. P., J. L. Evans, and R. E. Hart, 2009: Atlantic subtropical storms. Part II: Climatology. Journal of Climate, 22 (13), 3574-3594, doi:10. 1175/2008JCLI2346.1, URL http://journals.ametsoc.org/doi/abs/10.1175/ 2008JCLI2346.1.
Guo, Y.-P. and Z.-M. Tan, 2018a: On the Sensitivity of the Relationship between Hadley Circulation Asymmetry and ENSO in CMIP5 Models. Geophysical Research Letters, doi:10.1029/2018GL079515, URL http://doi.wiley.com/10. 1029/2018GL079515.
Guo, Y.-P. and Z.-M. Tan, 2018b: Relationship between El Niño-Southern Oscillation and the Symmetry of the Hadley Circulation: Role of the Sea Surface Temperature Annual Cycle. Journal of Climate, 31 (13), 5319-5332, doi: 10.1175/JCLI-D-17-0788.1, URL http://journals.ametsoc.org/doi/10.1175/ JCLI-D-17-0788.1.
Gushchina, D. and B. Dewitte, 2012: Intraseasonal Tropical Atmospheric Variability Associated with the Two Flavors of El Niño. Monthly Weather Review, 140 (11), 3669-3681, doi:10.1175/MWR-D-11-00267.1, URL http://journals. ametsoc.org/doi/abs/10.1175/MWR-D-11-00267.1.
Gushchina, D. and B. Dewitte, 2018: Decadal modulation of the relationship between intraseasonal tropical variability and ENSO. Climate Dynamics, 113, doi:10.1007/s00382-018-4235-y, URL http://link.springer.com/10.1007/ s00382-018-4235-y.
Ha, Y., Z. Zhong, Y. Sun, and W. Lu, 2014: Decadal change of South China Sea tropical cyclone activity in mid-1990s and its possible linkage with intraseasonal variability. Journal of Geophysical Research: Atmospheres, 119 (9), 5331-5344, doi: 10.1002/2013JD021286, URL http://doi.wiley.com/10.1002/2013JD021286.
Hadley, G., 1735: Concerning the Cause of the General Trade-Winds: By Geo. Hadley, Esq; F. R. S. Philosophical Transactions of the Royal Society of London, 39 (436-444), 58-62, doi:10.1098/rstl.1735.0014, URL http://rstl. royalsocietypublishing.org/cgi/doi/10.1098/rstl.1735.0014.
Han, R., et al., 2016: An assessment of multimodel simulations for the variability of Western North Pacific tropical cyclones and its association with ENSO. Journal of Climate, 29 (18), 6401-6423, doi:10.1175/JCLI-D-15-0720.1, URL http://journals.ametsoc.org/doi/10.1175/JCLI-D-15-0720.1.
Hart, R. E., 2003: A Cyclone Phase Space Derived from Thermal Wind and Thermal Asymmetry. Monthly Weather Review, 131 (4), 585-616, doi:10.1175/1520-0493(2003)131<0585:ACPSDF> 2.0.CO;2, URL http://journals.ametsoc.org/doi/abs/10.1175/
1520-0493{%}282003{%}29131{%}3C0585{%}3AACPSDF{%}3E2.0.C0{%}3B2.
Hart, R. E., D. R. Chavas, and M. P. Guishard, 2016: The arbitrary definition of the current atlantic major hurricane landfall drought. Bulletin of the American Meteorological Society, 97 (5), 713-722, doi:10.1175/BAMS-D-15-00185.1, URL http://journals.ametsoc.org/doi/10.1175/BAMS-D-15-00185.1.
Held, I. M. and A. Y. Hou, 1980: Nonlinear Axially Symmetric Circulations in a Nearly Inviscid Atmosphere. Journal of the Atmospheric Sciences, 37 (3), 515-533, doi:10.1175/1520-0469(1980)037<0515: NASCIA>2.0.CO;2, URL http://journals.ametsoc.org/doi/abs/10.1175/ 1520-0469{/}281980{/}29037{/}3C0515{/}3ANASCIA{/}3E2.0.C0{/}3B2.
Held, I. M. and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. Journal of Climate, 19 (21), 5686-5699, doi:10.1175/JCLI3990.1, URL http://journals.ametsoc.org/doi/abs/10.1175/JCLI3990.1.
Held, I. M. and M. Zhao, 2008: Horizontally Homogeneous Rotating Radiative-Convective Equilibria at GCM Resolution. Journal of the Atmospheric Sciences, 65 (6), 2003-2013, doi:10.1175/2007JAS2604.1, URL http://journals.ametsoc. org/doi/abs/10.1175/2007JAS2604.1.
Held, I. M. and M. Zhao, 2011: The response of tropical cyclone statistics to an increase in CO2 with fixed sea surface temperatures. Journal of Climate, 24 (20), 5353-5364, doi:10.1175/JCLI-D-11-00050.1, URL http://journals. ametsoc.org/doi/abs/10.1175/JCLI-D-11-00050.1.
Hirschberg, P. A. and J. M. Fritsch, 1993: On Understanding Height Tendency. URL http://journals.ametsoc.org/doi/abs/10.1175/
1520-0493{/}281993{/}29121{/}3C2646{/}3A0UHT{/}3E2.0.C0{/}3B2, 26462661 pp., doi:10.1175/1520-0493(1993)121<2646:OUHT>2.0.CO;2.
Hodges, K. I., 1994: A General Method for Tracking Analysis and Its Application to Meteorological Data. Monthly Weather Review, 122 (11), 2573-2586, doi:10.1175/1520-0493(1994)122<2573:AGMFTA> 2.0.CO;2, URL http://journals.ametsoc.org/doi/abs/10.1175/
1520-0493{/}281994{/}29122{/}3C2573{/}3AAGMFTA{/}3E2.0.C0{/}3B2.
Hodges, K. I., 1995: Feature Tracking on the Unit Sphere. Monthly Weather Review, 123 (12), 3458-3465, doi:10.1175/1520-0493(1995)123<3458: FTOTUS>2.0.CO;2, URL http://journals.ametsoc.org/doi/abs/10.1175/ 1520-0493{/}281995{/}29123{/}3C3458{/}3AFT0TUS{/}3E2.0.C0{/}3B2.
Hodges, K. I., 1999: Adaptive Constraints for Feature Tracking. Monthly Weather Review, 127 (6), 1362-1373, doi:10.1175/1520-0493(1999)127<1362: ACFFT>2.0.CO;2, URL http://centaur.reading.ac.uk/163/{/}5Cnhttp: //journals.ametsoc.org/doi/abs/10.1175/1520-0493(1999)127{/}3C1362: ACFFT{/}3E2.0.C0;2.
Hodges, K. I., 2008: Confidence Intervals and Significance Tests for Spherical Data Derived from Feature Tracking. Monthly Weather Review, 136 (5), 17581777, doi:10.1175/2007MWR2299.1, URL http://journals.ametsoc.org/doi/ abs/10.1175/2007MWR2299.1.
Hodges, K. I., A. Cobb, and P. L. Vidale, 2017: How well are tropical cyclones represented in reanalysis datasets? Journal of Climate, 30 (14), 5243-5264, doi: 10.1175/JCLI-D-16-0557.1.
Hodges, K. I., B. J. Hoskins, J. Boyle, and C. Thorncroft, 2003: A Comparison of Recent Reanalysis Datasets Using 0bjective Feature Tracking: Storm Tracks and Tropical Easterly Waves. Monthly Weather Review, 131 (9), 2012-2037, doi:10.1175/1520-0493(2003)131<2012: AC0RRD>2.0.C0;2, URL http://journals.ametsoc.org/doi/abs/10.1175/ 1520-0493{%}282003{%}29131{%}3C2012{%}3AAC0RRD{%}3E2.0.C0{%}3B2.
Holton, J. R. and G. J. Hakin, 2013: An Introduction to Dynamic Meteorology. Academic Press, New York, 532 pp., URL https://www.elsevier.com/books/ an-introduction-to-dynamic-meteorology/holton/978-0-12-384866-6.
Hu, S. and A. V. Fedorov, 2018: Cross-equatorial winds control El Niño diversity and change. Nature Climate Change, 8 (9), 798-802, doi:10.1038/s41558-018-0248-0, URL http://www.nature.com/articles/s41558-018-0248-0.
Hu, Y. and Q. Fu, 2007: 0bserved poleward expansion of the Hadley circulation since 1979. Atmospheric Chemistry and Physics, 7 (19), 5229-5236, doi:10.5194/ acp-7-5229-2007, URL http://www.atmos- chem-phys.net/7/5229/2007/.
Hu, Y., C. Zhou, and J. Liu, 2011: 0bservational evidence for poleward expansion of the Hadley circulation. Advances in Atmospheric Sciences, 28 (1), 3344, doi:10.1007/s00376-010-0032-1, URL http://link.springer.com/10.1007/ s00376-010-0032-1.
Huang, S. and L.-Y. 0ey, 2018: Land-falling typhoons are controlled by the meridional oscillation of the Kuroshio Extension. Climate Dynamics, 113, doi:10.1007/s00382-018-4295-z, URL http://link.springer.com/10.1007/ s00382-018-4295-z.
Hudson, R. D., 2012: Measurements of the movement of the jet streams at mid-latitudes, in the Northern and Southern Hemispheres, 1979 to 2010. Atmospheric Chemistry and Physics, 12 (16), 7797-7808, doi:10.5194/acp-12-7797-2012, URL http://www.atmos-chem-phys.net/12/7797/2012/.
Hudson, R. D., A. D. Frolov, M. F. Andrade, M. B. Follette, R. D. Hudson, A. D. Frolov, M. F. Andrade, and M. B. Follette, 2003: The Total 0zone Field Separated into Meteorological Regimes. Part I: Defining the Regimes. Journal of the Atmospheric Sciences, 60 (14), 1669-1677, doi:10.1175/1520-0469(2003)060<1669:
TTOFSI>2.0.CO;2, URL http://journals.ametsoc.org/doi/abs/10.1175/ 1520-0469{%}282003{%}29060{%}3C1669{%}3ATT0FSI{%}3E2.0.C0{%}3B2.
IMF, 2018: World Economic Outlook: Cyclical Upswing, Structural Change. International Monetary Fund, Washington, D.C., URL http://www.imf.org/en/Publications/WE0/Issues/2018/03/20/ world-economic-outlook-april-2018.
Ingel, L. K. and L. I. Petrova, 2011: New approaches to forecasting the intensity of tropical cyclones and active effects on them. Meteospektr, 3 (106-113).
Jien, J. Y., W. A. Gough, and K. Butler, 2015: The influence of El Niño-Southern Oscillation on tropical cyclone activity in the eastern North Pacific basin. Journal of Climate, 28 (6), 2459-2474, doi:10.1175/JCLI-D-14-00248.1, URL http: //journals.ametsoc.org/doi/10.1175/JCLI-D-14-00248.1.
Jin, F.-F., J. Boucharel, and I.-I. Lin, 2014: Eastern Pacific tropical cyclones intensified by El Niño delivery of subsurface ocean heat. Nature, 516 (7529), 82-85, doi:10.1038/nature13958, URL http://www.nature.com/doifinder/10. 1038/nature13958.
Johanson, C. M. and Q. Fu, 2009: Hadley cell widening: Model simulations versus observations. Journal of Climate, 22 (10), 2713-2725, doi:10.1175/2008JCLI2620. 1, URL http://journals.ametsoc.org/doi/abs/10.1175/2008JCLI2620.1.
Jones, S. C., et al., 2003: The Extratropical Transition of Tropical Cyclones: Forecast Challenges, Current Understanding, and Future Directions. Weather and Forecasting, 18 (6), 1052-1092, doi:10.1175/1520-0434(2003)018<1052: TET0TC>2.0.C0;2, URL http://journals.ametsoc.org/doi/abs/10.1175/ 1520-0434{%}282003{%}29018{%}3C1052{%}3ATET0TC{%}3E2.0.C0{%}3B2.
Kalashnik, A. M. and M. V. Kalashnik, 2011: Analytical model of the intensification of a tropical cyclone. Izvestiya, Atmospheric and Oceanic Physics, 47 (6), 766-779, doi:10.1134/S0001433811060089, URL http://link.springer.com/10. 1134/S0001433811060089.
Kalashnik, M. V. and P. N. Svirkunov, 2014: On the wave wake behind a moving hurricane. Izvestiya, Atmospheric and Oceanic Physics, 50 (3), 278-283, doi:10.1134/S0001433814030062, URL http://link.springer.com/10. 1134/S0001433814030062.
Kanada, S., A. Wada, and M. Sugi, 2013: Future changes in structures of extremely intense tropical cyclones using a 2-km mesh nonhydrostatic model. Journal of Climate, 26 (24), 9986-10 005, doi:10.1175/JCLI-D-12-00477.1, URL http: //journals.ametsoc.org/doi/abs/10.1175/JCLI-D-12-00477.1.
Kang, S. M., I. M. Held, D. M. Frierson, and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a
GCM. Journal of Climate, 21 (14), 3521-3532, doi:10.1175/2007JCLI2146.1, URL http://journals.ametsoc.org/doi/abs/10.1175/2007JCLI2146.1.
Kang, S. M., I. M. Held, and S.-P. Xie, 2014: Contrasting the tropical responses to zonally asymmetric extratropical and tropical thermal forcing. Climate Dynamics, 42 (7-8), 2033-2043, doi:10.1007/s00382-013-1863-0, URL http://link. springer.com/10.1007/s00382-013-1863-0.
Kang, S. M., L. M. Polvani, J. C. Fyfe, and M. Sigmond, 2011: Impact of polar ozone depletion on subtropical precipitation. Science (New York, N.Y.), 332 (6032), 951-4, doi:10.1126/science.1202131, URL http://www.ncbi.nlm. nih.gov/pubmed/21512001.
Kao, H. Y. and J. Y. Yu, 2009: Contrasting Eastern-Pacific and Central-Pacific types of ENSO. Journal of Climate, 22 (3), 615-632, doi:10.1175/2008JCLI2309.1, URL http://journals.ametsoc.org/doi/abs/10.1175/2008JCLI2309.1.
Khain, A. P., 1984: Mathematical modeling of tropical cyclones. Gidrometeoizdat, Leningrad, 248 pp.
Khain, A. P., 1988: A three-dimensional numerical model of a tropical cyclone with allowance for beta- effect. Izvestiya, Atmospheric and Oceanic Physics, 24 (Khain, A. P., 1988: A three-dimensional numerical model of a tropical cyclone with allowance for beta- effect. AO, 24, 266-271.), 266-271.
Khain, A. P. and G. G. Sutyrin, 1983: Tropical cyclones and their interaction with the ocean. Gidrometeoizdat, Leningrad, 272 pp.
Khairoutdinov, M. F. and K. Emanuel, 2010: Aggregated Convection and the Regulation of Tropical Climate. 29th Conference on Hurricanes and Tropical Meteorology, Am. Meteorol. Soc., Tucson, Ariz., P2.69.
Khairoutdinov, M. F. and K. Emanuel, 2013: Rotating radiative-convective equilibrium simulated by a cloud-resolving model. Journal of Advances in Modeling Earth Systems, 5 (4), 816-825, doi:10.1002/2013MS000253, URL http://doi.wiley. com/10.1002/2013MS000253.
Khairoutdinov, M. F. and D. A. Randall, 2003: Cloud Resolving Modeling of the ARM Summer 1997 IOP: Model Formulation, Results, Uncertainties, and Sensitivities. Journal of the Atmospheric Sciences, 60 (4), 607-625, doi:10.1175/1520-0469(2003)060<0607:CRMOTA> 2.0.CO;2, URL http://journals.ametsoc.org/doi/abs/10.1175/
1520-0469{%}282003{%}29060{%}3C0607{%}3ACRM0TA{%}3E2.0.C0{%}3B2.
Kiehl, J. T., J. J. Hack, and J. W. Hurrell, 1998: The energy budget of the NCAR Community Climate Model: CCM3. Journal of Climate, 11 (6), 1151-1178, doi:10.1175/1520-0442(1998)011< 1151: TEBOTN>2.0.CO;2, URL http://journals.ametsoc.org/doi/abs/10.1175/ 1520-0442{%}281998{%}29011{%}3C1151{%}3ATEB0TN{%}3E2.0.C0{%}3B2.
Kim, D., A. H. Sobel, A. D. Genio, Y. Chen, S. J. Camargo, M. S. Yao, M. Kelley, and L. Nazarenko, 2012: The tropical subseasonal variability simulated in the nasa giss general circulation model. Journal of Climate, 25 (13), 4641-4659, doi: 10.1175/JCLI-D-11-00447.1, URL http://journals.ametsoc.org/doi/abs/10. 1175/JCLI-D-11-00447.1.
Kim, H.-k. and S. Lee, 2001: Hadley Cell Dynamics in a Primitive Equation Model. Part II: Nonaxisymmetric Flow. Journal of the Atmospheric Sciences, 58 (19), 2859-2871, doi:10.1175/1520-0469(2001)058<2859: HCDIAP>2.0.CO;2, URL http://journals.ametsoc.org/doi/abs/10.1175/ 1520-0469{%}282001{%}29058{%}3C2859{%}3AHCDIAP{%}3E2.0.C0{%}3B2.
Kimberlain, T. B. and J. B. Elsner, 1998: The 1995 and 1996 North Atlantic hurricane seasons: A return of the tropical-only hurricane. Journal of Climate, 11 (8), 2062-2069, doi:10.1175/1520-0442-11.8.2062, URL http://journals.ametsoc. org/doi/abs/10.1175/1520-0442-11.8.2062.
Klemp, J. B. and R. B. Wilhelmson, 1978: The Simulation of Three-Dimensional Convective Storm Dynamics. Journal of the Atmospheric Sciences, 35 (6), 1070-1096, doi:10.1175/1520-0469(1978)035<1070: TSOTDC>2.0.CO;2, URL http://journals.ametsoc.org/doi/abs/10.1175/ 1520-0469{%}281978{%}29035{%}3C1070{%}3ATS0TDC{%}3E2.0.C0{%}3B2.
Klotzbach, P. J. and C. W. Landsea, 2015: Extremely Intense Hurricanes: Revisiting Webster et al. (2005) after 10 Years. Journal of Climate, 28 (19), 7621-7629, doi: 10.1175/JCLI-D-15-0188.1, URL http://journals.ametsoc.org/doi/10.1175/ JCLI-D-15-0188.1.
Knaff, J. A. and R. M. Zehr, 2007: Reexamination of tropical cyclone wind-pressure relationships. Bulletin of the American Meteorological Society, 88 (3), 71-88, doi: 10.1175/WAF965.1, URL https://journals.ametsoc.org/doi/full/10.1175/ WAF965.1.
Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: the International Best Track Archive for Climate. Bulletin of the American Meteorological Society, 91 (11), 2015, doi:10.1175/2009BAMS2755.1, URL http: //journals.ametsoc.org/doi/10.1175/2009BAMS2755.1.
Knutson, T. R., J. J. Sirutis, S. T. Garner, I. M. Held, and R. E. Tuleya, 2007: Simulation of the recent multidecadal increase of Atlantic hurricane activity using an 18-km-grid regional model. Bulletin of the American Meteorological Society, 88 (10), 1549-1565, doi:10.1175/BAMS-88-10-1549, URL http://journals. ametsoc.org/doi/10.1175/BAMS-88-10-1549.
Kobayashi, S., et al., 2015: The JRA-55 Reanalysis: General Specifications and Basic Characteristics. Journal of the Meteorological Society of Japan. Ser. II, 93 (1), 548, doi:10.2151/jmsj.2015-001, URL https://www.jstage.jst.go.jp/article/ jmsj/93/1/93{_}2015-001/{_}article.
Kociuba, G., S. B. Power, G. Kociuba, and S. B. Power, 2015: Inability of CMIP5 Models to Simulate Recent Strengthening of the Walker Circulation: Implications for Projections. Journal of Climate, 28 (1), 20-35, doi:10.1175/JCLI-D-13-00752.1, URL http://journals.ametsoc.org/doi/10.1175/JCLI-D-13-00752.1.
Korty, R. L. and T. Schneider, 2008: Extent of hadley circulations in dry atmospheres. Geophysical Research Letters, 35 (23), L23 803, doi:10.1029/2008GL035847, URL http://doi.wiley.com/10.1029/2008GL035847.
Kossin, J. P., 2002: Daily Hurricane Variability Inferred from GOES Infrared Imagery. Monthly Weather Review, 130 (9), 2260-2270, doi:10.1175/1520-0493(2002) 130<2260:DHVIFG>2.0.C0;2, URL http://journals.ametsoc.org/doi/ abs/10.1175/1520-0493{%}282002{%}29130{%}3C2260{%}3ADHVIFG{%}3E2.0. CO{%}3B2.
Kossin, J. P., 2017: Hurricane intensification along United States coast suppressed during active hurricane periods. Nature, 541 (7637), 390-393, doi:10.1038/ nature20783, URL http://www.nature.com/doifinder/10.1038/nature20783.
Kossin, J. P., S. J. Camargo, and M. Sitkowski, 2010: Climate modulation of north atlantic hurricane tracks. Journal of Climate, 23 (11), 3057-3076, doi:10. 1175/2010JCLI3497.1, URL http://journals.ametsoc.org/doi/abs/10.1175/ 2010JCLI3497.1.
Kossin, J. P., K. Emanuel, and S. J. Camargo, 2016: Past and projected changes in western north pacific tropical cyclone exposure. Journal of Climate, 29 (16), 57255739, doi:10.1175/JCLI-D-16-0076.1, URL http://journals.ametsoc.org/doi/ 10.1175/JCLI-D-16-0076.1.
Kossin, J. P., K. Emanuel, and G. A. Vecchi, 2014: The poleward migration of the location of tropical cyclone maximum intensity. Nature, 509 (7500), 349-352, doi:10.1038/nature13278, URL http://www.nature.com/doifinder/ 10.1038/nature13278.
Kossin, J. P., T. R. Karl, T. R. Knutson, K. Emanuel, K. E. Kunkel, and J. J. O'Brien, 2015: Reply to "Comments on 'monitoring and understanding trends in extreme storms: State of knowledge'". Bulletin of the American Meteorological Society, 96 (7), 1177-1182, doi:10.1175/BAMS-D-14-00261.1, URL http: //journals.ametsoc.org/doi/10.1175/BAMS-D-13-00211.1.
Kossin, J. P. and D. J. Vimont, 2007: A More General Framework for Understanding Atlantic Hurricane Variability and Trends. Bulletin of the American Meteorological Society, 88 (11), 1767-1782, doi:10.1175/BAMS-88-11-1767, URL http://journals.ametsoc.org/doi/10.1175/BAMS-88-11-1767.
Kuang, Z., P. N. Blossey, and C. S. Bretherton, 2005: A new approach for 3D cloud-resolving simulations of large-scale atmospheric circulation. Geophysical Research
Letters, 32 (2), 1-4, doi:10.1029/2004GL021024, URL http://doi.wiley.com/ 10.1029/2004GL021024.
Kug, J. S., F. F. Jin, and S. I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. Journal of Climate, 22 (6), 1499-1515, doi:10. 1175/2008JCLI2624.1, URL http://journals.ametsoc.org/doi/abs/10.1175/ 2008JCLI2624.1.
Kuhn, H. W., 1955: The Hungarian method for the assignment problem. Naval Research Logistics Quarterly, 2 (1-2), 83-97, doi:10.1002/nav.3800020109, URL http://doi.wiley.com/10.1002/nav.3800020109.
Kurgansky, M. V., 1999: Vorticity genesis in the moist atmosphere. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 24 (8), 959961, doi:10.1016/S1464-1909(99)00110-0, URL https://www.sciencedirect. com/science/article/pii/S1464190999001100.
Kurgansky, M. V., 2009: On time-evolution of a balanced circular vortex. Quarterly Journal of the Royal Meteorological Society, 135 (645), 2168-2178, doi:10.1002/ qj.512, URL http://doi.wiley.com/10.1002/qj.512.
Kurgansky, M. V., 2013: On helical vortex motions of moist air. Izvestiya, Atmospheric and Oceanic Physics, 49 (5), 479-484, doi:10.1134/S000143381305006X, URL http://link.springer.com/10.1134/S000143381305006X.
Landsea, C. W. and J. L. Franklin, 2013: Atlantic Hurricane Database Uncertainty and Presentation of a New Database Format. Monthly Weather Review, 141 (10), 3576-3592, doi:10.1175/MWR-D-12-00254.1, URL http://journals. ametsoc.org/doi/abs/10.1175/MWR-D-12-00254.1.
Landsea, C. W., G. A. Vecchi, L. Bengtsson, and T. R. Knutson, 2010: Impact of Duration Thresholds on Atlantic Tropical Cyclone Counts. Journal of Climate, 23 (10), 2508-2519, doi:10.1175/2009JCLI3034.1, URL http://journals. ametsoc.org/doi/abs/10.1175/2009JCLI3034.1.
LaRow, T. E., Y.-K. Lim, D. W. Shin, E. P. Chassignet, and S. Cocke, 2008: Atlantic Basin Seasonal Hurricane Simulations. Journal of Climate, 21 (13), 3191-3206, doi:10.1175/2007JCLI2036.1, URL http://journals.ametsoc.org/doi/abs/10. 1175/2007JCLI2036.1.
Latif, M., N. Keenlyside, and J. Bader, 2007: Tropical sea surface temperature, vertical wind shear, and hurricane development. Geophysical Research Letters, 34 (1), L01710, doi:10.1029/2006GL027969, URL http://doi.wiley.com/10. 1029/2006GL027969.
Lau, W. K. M. and K.-M. Kim, 2015: Robust Hadley Circulation changes and increasing global dryness due to CO2 warming from CMIP5 model projections. Proceedings of the National Academy of Sciences, 112 (12), 201418682, doi:10.
1073/pnas.1418682112, URL http://www.pnas.org/lookup/doi/10.1073/pnas. 1418682112.
Lawler, E. L., 1976: Combinatorial Optimization : Networks and Matroids. 1-374 pp., doi:10.1057/jors.1989.134, URL http://plouffe.fr/simon/math/ Combinatorial0ptimization.pdf.
Leppert, K. D. and D. J. Cecil, 2016: Tropical Cyclone Diurnal Cycle as 0bserved by TRMM. Monthly Weather Review, 144 (8), 2793-2808, doi:10. 1175/MWR-D-15-0358.1, URL http://journals.ametsoc.org/doi/10.1175/ MWR-D-15-0358.1.
Levina, G. V. and I. A. Burylov, 2006: Numerical simulation of helical-vortex effects in Rayleigh-Bénard convection. Nonlinear Processes in Geophysics, 13 (2), 205222, doi:10.5194/npg-13-205-2006, URL www.nonlin-processes-geophys.net/ 13/205/2006/.
Levina, G. V. and M. T. Montgomery, 2010: A first examination of the helical nature of tropical cyclogenesis. Doklady Earth Sciences, 434 (1), 1285-1289, doi: 10.1134/S1028334X1009031X, URL http://hdl.handle.net/10945/36888http: //www.springerlink.com/index/10.1134/S1028334X1009031X.
Levina, G. V. and M. T. Montgomery, 2011: Helical scenario of tropical cyclone genesis and intensification. Journal of Physics: Conference Series, I0P Publishing, Vol. 318, 072012, doi:10.1088/1742-6596/318/7/072012, URL http://stacks.iop.org/1742-6596/318/i=7/a=072012?key=crossref. 197875764897442d566c8937324d9f4d.
Levina, G. V. and M. T. Montgomery, 2014: Numerical diagnosis of tropical cyclogenesis based on a hypothesis of helical self-organization of moist convective atmospheric turbulence. Doklady Earth Sciences, 458 (1), 11431148, doi:10.1134/S1028334X14090189, URL http://link.springer.com/10. 1134/S1028334X14090189.
Levine, X. J. and T. Schneider, 2011: Response of the Hadley Circulation to Climate Change in an Aquaplanet GCM Coupled to a Simple Representation of 0cean Heat Transport. Journal of the Atmospheric Sciences, 68 (4), 769-783, doi:10.1175/2010JAS3553.1, URL http://journals.ametsoc.org/doi/abs/10. 1175/2010JAS3553.1.
Li, T., M. Kwon, M. Zhao, J. S. Kug, J.-J. Luo, and W. Yu, 2010: Global warming shifts Pacific tropical cyclone location. Geophysical Research Letters, 37 (21), n/a-n/a, doi:10.1029/2010GL045124, URL http://doi.wiley.com/10. 1029/2010GL045124.
Lim, E. P., H. H. Hendon, J. M. Arblaster, C. Chung, A. F. Moise, P. Hope, G. Young, and M. Zhao, 2016: Interaction of the recent 50 year SST trend and La Niña
2010: amplification of the Southern Annular Mode and Australian springtime rainfall. Climate Dynamics, 47 (7-8), 2273-2291, doi:10.1007/s00382-015-2963-9, URL http://link.springer.com/10.1007/s00382-015-2963-9.
Lindzen, R. S. and A. V. Hou, 1988: Hadley Circulations for Zon-ally Averaged Heating Centered off the Equator. Journal of the Atmospheric Sciences, 45 (17), 2416-2427, doi:10.1175/1520-0469(1988)045<2416: HCFZAH>2.0.C0;2, URL http://journals.ametsoc.org/doi/abs/10.1175/ 1520-0469{%}281988{%}29045{%}3C2416{%}3AHCFZAH{%}3E2.0.C0{%}3B2.
Lloyd, S. P., 1982: Least Squares Quantization in PCM. IEEE Transactions on Information Theory, 28 (2), 129-137, doi:10.1109/TIT.1982.1056489, URL http: //ieeexplore.ieee.org/document/1056489/.
Lorenz, D. J., 2014: Understanding Midlatitude Jet Variability and Change Using Rossby Wave Chromatography: Poleward-Shifted Jets in Response to External Forcing. Journal of the Atmospheric Sciences, 71 (7), 2370-2389, doi: 10.1175/JAS-D-13-0200.1, URL http://journals.ametsoc.org/doi/abs/10. 1175/JAS-D-13-0200.1.
Lorenz, E. N., 1955: Available Potential Energy and the Maintenance of the General Circulation. Tellus, 7 (2), 157-167, doi:10.1111/j.2153-3490.1955.tb01148.x, URL http://tellusa.net/index.php/tellusa/article/view/8796.
Lorenz, E. N., 1978: Available energy and the maintenance of a moist circulation. Tellus A, 30 (1), 15-31, doi:10.3402/tellusa.v30i1.10308, URL https: //www.tandfonline.com/doi/full/10.3402/tellusa.v30i1.10308.
Lu, J., G. Chen, and D. M. Frierson, 2008: Response of the zonal mean atmospheric circulation to El Niño versus global warming. Journal of Climate, 21 (22), 5835-5851, doi:10.1175/2008JCLI2200.1, URL http://journals.ametsoc.org/ doi/abs/10.1175/2008JCLI2200.1.
Lu, J., G. Chen, and D. M. Frierson, 2010a: The Position of the Midlatitude Storm Track and Eddy-Driven Westerlies in Aquaplanet AGCMs. Journal of the Atmospheric Sciences, 67 (12), 3984-4000, doi:10.1175/2010JAS3477.1, URL http://journals.ametsoc.org/doi/abs/10.1175/2010JAS3477.!.
Lu, J., G. Chen, and D. M. W. Frierson, 2010b: The Position of the Midlatitude Storm Track and Eddy-Driven Westerlies in Aquaplanet AGCMs. Journal of the Atmospheric Sciences, 67 (12), 3984-4000, doi:10.1175/2010JAS3477.1, URL http://journals.ametsoc.org/doi/abs/10.1175/2010JAS3477.1.
Lu, J., C. Deser, and T. Reichler, 2009: Cause of the widening of the tropical belt since 1958. Geophysical Research Letters, 36 (3), doi:10.1029/2008GL036076, URL http://doi.wiley.com/10.1029/2008GL036076.
Lu, J., G. A. Vecchi, and T. Reichler, 2007: Expansion of the Headley cell under global warming. Geophysical Research Letters, 34 (6), L06 805, doi:10.1029/ 2006GL028443, URL http://doi.wiley.com/10.1029/2006GL028443.
Lucas, C., H. Nguyen, and B. Timbal, 2012: An observational analysis of Southern Hemisphere tropical expansion. Journal of Geophysical Research Atmospheres, 117 (17), doi:10.1029/2011JD017033, URL http://doi.wiley.com/10.1029/ 2011JD017033.
Lucas, C., B. Timbal, and H. Nguyen, 2014: The expanding tropics: A critical assessment of the observational and modeling studies. Wiley Interdisciplinary Reviews: Climate Change, 5 (1), 89-112, doi:10.1002/wcc.251, URL https: //onlinelibrary.wiley.com/doi/abs/10.1002/wcc.251.
Luo, J.-J., 2015: Why did CMIP5 models fail to reproduce the recent La Ninalike climate shift. Technical report. ENSO workshop, University of New South Wales, Sydney, URL https://www.climatescience.org.au/sites/default/ files/abstracts{_}sydney2015{_}final.pdf.
Manabe, S., J. L. Holloway, and H. M. Stone, 1970: Tropical Circulation in a Time-Integration of a Global Model of the Atmosphere. Journal of the Atmospheric Sciences, 27 (4), 580-613, doi:10.1175/1520-0469(1970)027<0580: TCIATI>2.0.C0;2, URL http://journals.ametsoc.org/doi/abs/10.1175/ 1520-0469{%}281970{%}29027{%}3C0580{%}3ATCIATI{%}3E2.0.C0{%}3B2.
Manganello, J. V., et al., 2012: Tropical cyclone climatology in a 10-km global atmospheric GCM: Toward weather-resolving climate modeling. Journal of Climate, 25 (11), 3867-3893, doi:10.1175/JCLI-D-11-00346.1, URL http://journals. ametsoc.org/doi/abs/10.1175/JCLI-D-11-00346.1.
Manganello, J. V., et al., 2014: Future changes in the western North Pacific tropical cyclone activity projected by a multidecadal simulation with a 16km global atmospheric GCM. Journal of Climate, 27 (20), 7622-7646, doi: 10.1175/JCLI-D-13-00678.1, URL http://journals.ametsoc.org/doi/abs/10. 1175/JCLI-D-13-00678.1.
Mann, M. E., J. D. Woodruff, J. P. Donnelly, and Z. Zhang, 2009: Atlantic hurricanes and climate over the past 1,500 years. Nature, 460 (7257), 880-883, doi:10.1038/ nature08219, URL http://www.nature.com/articles/nature08219.
Mantsis, D. F., S. Sherwood, R. Allen, and L. Shi, 2017: Natural variations of tropical width and recent trends. Geophysical Research Letters, 44 (8), 3825-3832, doi: 10.1002/2016GL072097, URL http://doi.wiley.com/10.1002/2016GL072097.
Marshall, J., A. Donohoe, D. Ferreira, and D. McGee, 2014: The ocean's role in setting the mean position of the Inter-Tropical Convergence Zone. Climate Dynamics, 42 (7-8), 1967-1979, doi:10.1007/s00382-013-1767-z, URL http://link. springer.com/10.1007/s00382-013-1767-z.
Matveeva, T., D. Gushchina, and B. Dewitte, 2018: The seasonal relationship between intraseasonal tropical variability and ENSO in CMIP5. Geoscientific Model Development, 11 (6), 2373-2392, doi:10.5194/gmd-11-2373-2018, URL https: //www.geosci-model-dev.net/11/2373/2018/.
Maue, R. N. and R. E. Hart, 2005: Warm-seclusion extratropical cyclone development: sensitivity to the nature of the incipient vortex. 21st conference on weather analysis and forecasting/17th conference on numerical weather prediction. Abstract P1.16, URL https://ams.confex.com/ams/pdfpapers/95003.pdf.
McBride, J. L. and R. Zehr, 1981: Observational Analysis of Tropical Cyclone Formation. Part II: Comparison of Non-Developing versus Developing Systems. Journal of the Atmospheric Sciences, 38 (6), 1132-1151, doi:10.1175/1520-0469(1981) 038<1132:OAOTCF>2.0.CO;2, URL http://journals.ametsoc.org/doi/ abs/10.1175/1520-0469{%}281981{%}29038{%}3C1132{%}3A0A0TCF{%}3E2.0. C0{%}3B2.
McLandress, C., T. G. Shepherd, J. F. Scinocca, D. A. Plummer, M. Sigmond, A. I. Jonsson, and M. C. Reader, 2011: Separating the dynamical effects of climate change and ozone depletion. Part II: Southern Hemisphere troposphere. Journal of Climate, 24 (6), 1850-1868, doi:10.1175/2010JCLI3958.1, URL http: //journals.ametsoc.org/doi/abs/10.1175/2010JCLI3958.1.
McPhaden, M. J., T. Lee, and D. McClurg, 2011: El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophysical Research Letters, 38 (15), n/a-n/a, doi:10.1029/2011GL048275, URL http://doi.wiley. com/10.1029/2011GL048275.
Mei, W. and S. P. Xie, 2016: Intensification of landfalling typhoons over the northwest Pacific since the late 1970s. Nature Geoscience, 9 (10), 753-757, doi:10.1038/ ngeo2792, URL http://www.nature.com/doifinder/10.1038/ngeo2792.
Merlis, T. M., M. Zhao, and I. M. Held, 2013: The sensitivity of hurricane frequency to ITCZ changes and radiatively forced warming in aquaplanet simulations. Geophysical Research Letters, 40 (15), 4109-4114, doi:10.1002/grl.50680, URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/grl.50680.
Merlis, T. M., W. Zhou, I. M. Held, and M. Zhao, 2016: Surface temperature dependence of tropical cyclone-permitting simulations in a spherical model with uniform thermal forcing. Geophysical Research Letters, 43 (6), 2859-2865, doi: 10.1002/2016GL067730, URL http://doi.wiley.com/10.1002/2016GL067730.
Merrill, R. T., 1988: Characteristics of the Upper-Tropospheric Environmental Flow around Hurricanes. URL http://journals.ametsoc.org/doi/abs/10.1175/ 1520-0469{%}281988{%}29045{%}3C1665{%}3AC0TUTE{%}3E2.0.C0{%}3B2, 1665-1677 pp., doi:10.1175/1520-0469(1988)045<1665:COTUTE>2.0.CO;2.
Miyamoto, Y., M. Satoh, H. Tomita, K. Oouchi, Y. Yamada, C. Kodama, and J. Kinter, 2014: Gradient Wind Balance in Tropical Cyclones in High-Resolution Global Experiments. Monthly Weather Review, 142 (5), 1908-1926, doi:10.1175/ MWR-D-13-00115.1, URL http://journals.ametsoc.org/doi/abs/10.1175/ MWR-D-13-00115.1.
Mokhov, I. I., E. M. Dobryshman, and M. E. Makarova, 2014: Transformation of tropical cyclones into extratropical: The tendencies of 1970-2012. Doklady Earth Sciences, 454 (1), 59-63, doi:10.1134/S1028334X14010127, URL http://link. springer.com/10.1134/S1028334X14010127.
Molinari, J., D. M. Romps, D. Vollaro, and L. Nguyen, 2012: CAPE in Tropical Cyclones. Journal of the Atmospheric Sciences, 69 (8), 2452-2463, doi: 10.1175/JAS-D-11-0254.1, URL http://journals.ametsoc.org/doi/abs/10. 1175/JAS-D-11-0254.1.
Molinari, J. and D. Vollaro, 2010: Rapid Intensification of a Sheared Tropical Storm. Monthly Weather Review, 138 (10), 3869-3885, doi:10.1175/2010MWR3378.1, URL http://journals.ametsoc.org/doi/abs/10.1175/2010MWR3378.!.
Moon, I. J., S.-H. Kim, P. J. Klotzbach, and J. C. Chan, 2015: Roles of interbasin frequency changes in the poleward shifts of the maximum intensity location of tropical cyclones. Environmental Research Letters, 10 (10), 104 004, doi:10.1088/ 1748-9326/10/10/104004, URL http://stacks.iop.org/1748-9326/10/i=10/a= 104004?key=crossref.262c46bbf0eb0e6b14bbd3d65793c64f.
Muller, C. J. and I. M. Held, 2012: Detailed Investigation of the Self-Aggregation of Convection in Cloud-Resolving Simulations. Journal of the Atmospheric Sciences, 69 (8), 2551-2565, doi:10.1175/JAS-D-11-0257.1, URL http://journals. ametsoc.org/doi/abs/10.1175/JAS-D-11-0257.1.
Muller, C. J., P. A. O'Gorman, and L. E. Back, 2011: Intensification of precipitation extremes with warming in a cloud-resolving model. Journal of Climate, 24 (11), 2784-2800, doi:10.1175/2011JCLI3876.1, URL https://journals.ametsoc.org/ doi/abs/10.1175/2011JCLI3876.1.
Muller, C. J. and D. M. Romps, 2018: Acceleration of tropical cyclogene-sis by self-aggregation feedbacks. Proceedings of the National Academy of Sciences, 115 (12), 2930-2935, doi:10.1073/pnas.1719967115, URL http://www.ncbi.nlm.nih.goV/pubmed/29507192http://www.pubmedcentral. nih.gov/articlerender.fcgi?artid=PMC5866587http://www.pnas.org/ lookup/doi/10.1073/pnas.1719967115.
Munkres, J., 1957: Algorithms for the Assignment and Transportation Problems. Journal of the Society for Industrial and Applied Mathematics, 5 (1), 32-38, doi: 10.1137/0105003, URL http://epubs. siam.org/doi/10.1137/0105003.
Murakami, H., R. Mizuta, and E. Shindo, 2012a: Future changes in tropical cyclone activity projected by multi-physics and multi-SST ensemble experiments using the 60-km-mesh MRI-AGCM. Climate Dynamics, 39 (9-10), 2569-2584, doi:10.1007/s00382-011-1223-x, URL http://link.springer.com/ 10.1007/s00382-011-1223-x.
Murakami, H., B. Wang, and A. Kitoh, 2011: Future change of western North Pacific typhoons: Projections by a 20-km-mesh global atmospheric model. Journal of Climate, 24 (4), 1154-1169, doi:10.1175/2010JCLI3723.1, URL http: //journals.ametsoc.org/doi/abs/10.1175/2010JCLI3723.1.
Murakami, H., B. Wang, T. Li, and A. Kitoh, 2013: Projected increase in tropical cyclones near Hawaii. Nature Climate Change, 3 (8), 749-754, doi:10.1038/ nclimate1890, URL http://www.nature.com/articles/nclimate1890.
Murakami, H., et al., 2012b: Future Changes in Tropical Cyclone Activity Projected by the New High-Resolution MRI-AGCM. Journal of Climate, 25 (9), 3237-3260, doi:10.1175/JCLI-D-11-00415.1, URL http://journals.ametsoc.org/doi/abs/ 10.1175/JCLI-D-11-00415.1.
Murakami, H., et al., 2015: Simulation and prediction of category 4 and 5 hurricanes in the high-resolution GFDL HiFLOR coupled climate model. Journal of Climate, 28 (23), 9058-9079, doi:10.1175/JCLI-D-15-0216.1, URL http:// journals.ametsoc.org/doi/10.1175/JCLI-D-15-0216.1.
Nakamura, J., U. Lall, Y. Kushnir, and S. J. Camargo, 2009: Classifying North Atlantic Tropical Cyclone Tracks by Mass Moments. Journal of Climate, 22 (20), 5481-5494, doi:10.1175/2009JCLI2828.1, URL http://journals.ametsoc.org/ doi/abs/10.1175/2009JCLI2828.1.
Neelin, J. D. and I. M. Held, 1987: Modeling Tropical Convergence Based on the Moist Static Energy Budget. Monthly Weather Review, 115 (1), 3-12, doi:10.1175/1520-0493(1987)115<0003:MTCB0T> 2.0.C0;2, URL http://journals.ametsoc.org/doi/abs/10.1175/
1520-0493{%}281987{%}29115{%}3C0003{%}3AMTCB0T{%}3E2.0.C0{%}3B2.
Nguyen, H., A. Evans, C. Lucas, and I. Smith, 2013: The Hadley Circulation in Reanalyses: Climatology, Variability, and Change. Journal of Climate, 26 (10), 3357-3376, doi:10.1175/JCLI-D-12-00224.1, URL http://journals. ametsoc.org/doi/abs/10.1175/JCLI-D-12-00224.1.
Nguyen, H., H. H. Hendon, E. P. Lim, G. Boschat, E. Maloney, and B. Timbal, 2018: Variability of the extent of the Hadley circulation in the southern hemisphere: a regional perspective. Climate Dynamics, 50 (1-2), 129142, doi:10.1007/s00382-017-3592-2, URL http://link.springer.com/10.1007/ s00382-017-3592-2.
Nigam, S. and B. Guan, 2011: Atlantic tropical cyclones in the twentieth century: Natural variability and secular change in cyclone count. Climate Dynamics, 36 (11-12), 2279-2293, doi:10.1007/s00382-010-0908-x, URL http://link. springer.com/10.1007/s00382-010-0908-x.
Nolan, D. S., Y. Moon, and D. P. Stern, 2007: Tropical Cyclone Intensification from Asymmetric Convection: Energetics and Efficiency. Journal of the Atmospheric Sciences, 64 (10), 3377-3405, doi:10.1175/JAS3988.1, URL http://journals. ametsoc.org/doi/abs/10.1175/JAS3988.1.
O'Gorman, P. A., 2010: Understanding the varied response of the extratropical storm tracks to climate change. Proceedings of the National Academy of Sciences, 107 (45), 19 176-19 180, doi:10.1073/pnas.1011547107, URL http://www.ncbi.nlm.nih.goV/pubmed/20974916http://www.pubmedcentral. nih.gov/articlerender.fcgi?artid=PMC2984218http://www.pnas.org/cgi/ doi/10.1073/pnas.1011547107.
O'Gorman, P. A., 2011: The Effective Static Stability Experienced by Eddies in a Moist Atmosphere. Journal of the Atmospheric Sciences, 68 (1), 75-90, doi:10.1175/2010JAS3537.1, URL http://journals.ametsoc.org/doi/abs/10. 1175/2010JAS3537.1.
O'Neill, M. E., D. Perez-Betancourt, and A. A. Wing, 2017: Accessible Environments for Diurnal-Period Waves in Simulated Tropical Cyclones. Journal of the Atmospheric Sciences, 74 (8), JAS-D-16-0294.1, doi:10.1175/JAS-D-16-0294.1, URL http://journals.ametsoc.org/doi/10.1175/JAS-D-16-0294.1.
Oort, A. H. and E. M. Rasmusson, 1970: on the Annual Variation of the Monthly Mean Meridional Circulation. Monthly Weather Review, 98 (6), 423-442, doi:10.1175/1520-0493(1970)098<0423:OTAVOT> 2.3.CO;2, URL http://journals.ametsoc.org/doi/abs/10.1175/
1520-0493{%}281970{%}29098{%}3C0423{%}3A0TAV0T{%}3E2.3.C0{%}3B2.
Oort, A. H. and J. J. Yienger, 1996: Observed interannual variability in the Hadley circulation and its connection to ENSO. Journal of Climate, 9 (11), 2751-2767, doi:10.1175/1520-0442(1996)009<2751: OIVITH>2.0.CO;2, URL http://journals.ametsoc.org/doi/abs/10.1175/ 1520-0442{%}281996{%}29009{%}3C2751{%}3A0IVITH{%}3E2.0.C0{%}3B2.
Ooyama, K., 1969: Numerical Simulation of the Life Cycle of Tropical Cyclones. Journal of the Atmospheric Sciences, 26 (1), 3-40, doi:10.1175/1520-0469(1969) 026<0003:NSOTLC>2.0.CO;2, URL http://journals.ametsoc.org/doi/ abs/10.1175/1520-0469{%}281969{%}29026{%}3C0003{%}3ANS0TLC{%}3E2.0. C0{%}3B2.
Patricola, C. M., S. J. Camargo, P. J. Klotzbach, R. Saravanan, and P. Chang, 2018: The Influence of ENSO Flavors on Western North Pacific Tropical Cyclone
Activity. Journal of Climate, 31 (14), 5395-5416, doi:10.1175/JCLI-D-17-0678.1, URL http://journals.ametsoc.org/doi/10.1175/JCLI-D-17-0678.1.
Patricola, C. M., P. Chang, and R. Saravanan, 2016: Degree of simulated suppression of Atlantic tropical cyclones modulated by flavour of El Niño. Nature Geoscience, 9 (2), 155-160, doi:10.1038/ngeo2624, URL http://www.nature.com/articles/ ngeo2624.
Pauluis, O. M., D. M. W. Frierson, S. T. Garner, I. M. Held, and G. K. Vallis, 2006: The hypohydrostatic rescaling and its impacts on modeling of atmospheric convection. Theoretical and Computational Fluid Dynamics, 20 (5), 485-499, doi:10. 1007/s00162-006-0026-x, URL https://doi.org/10.1007/s00162-006-0026-x.
Persing, J., M. T. Montgomery, J. C. McWilliams, and R. K. Smith, 2013: Asymmetric and axisymmetric dynamics of tropical cyclones. Atmospheric Chemistry and Physics, 13 (24), 12 299-12 341, doi:10.5194/acp-13-12299-2013, URL https: //www.atmos-chem-phys.net/13/12299/2013/.
Pielke, R. A. and C. N. Landsea, 1999: La Niña, El Niño, and Atlantic Hurricane Damages in the United States. Bulletin of the American Meteorological Society, 80 (10), 2027-2033, doi:10.1175/1520-0477(1999)080<2027: LNAENO>2.0.CO;2, URL http://journals.ametsoc.org/doi/abs/10.1175/ 1520-0477{%}281999{%}29080{%}3C2027{%}3ALNAEN0{%}3E2.0.C0{%}3B2.
Pokhil, A. E., 1990: On the interaction between tropical cycones in the Pacific Ocean. Russian Meteorology and Hydrology, (6), 60-67.
Pokhil, A. E., 2012: Interesting cases of the interaction between a pair of tropical cyclones and the polar front. Russian Meteorology and Hydrology, 37 (5), 307-314, doi:10.3103/S1068373912050032, URL http://www.springerlink.com/ index/10.3103/S1068373912050032.
Pokhil, A. E., 2016: Study of the cases of formation of "small" eddies in the atmosphere. Proceedings of the Hydrometcentre of Russia., 362, 172-192.
Pokhil, A. E. and E. S. Glebova, 2011: On the interaction of tropical cyclones with each other and with different atmospheric structures. Russian Meteorology and Hydrology, 36 (9), 569-579, doi:10.3103/S1068373911090019, URL http://www. springerlink.com/index/10.3103/S1068373911090019.
Pokhil, A. E., E. S. Glebova, and A. V. Smirnov, 2013: Studying an interaction between tropical cyclones and jet streams using the numerical simulation data. Russian Meteorology and Hydrology, 38 (3), 141-149, doi:10.3103/S1068373913030011, URL http://link.springer.com/10.3103/S1068373913030011.
Pokhil, A. E. and N. Nicolskaya, 1997: Behaviour characteristics of some typhoons in the western North Pacific during the 1994 season. Russian Meteorology and Hydrology, (3), 19-23.
Pokhil, A. E., I. G. Sitnikov, and S. A. Galkin, 1997: An interaction of three ideal vortices in the numerical model and the behaviour of the group of real tropical cyclones over the Pacific Ocean. Russian Meteorology and Hydrology, (2), 28-32.
Pokrovskaya, I. V. and E. A. Sharkov, 2000: Global features of the generation rate of tropical cyclones. Doklady Akademiia Nauk, 373 (5), 851-854.
Polvani, L. M., M. Previdi, and C. Deser, 2011: Large cancellation, due to ozone recovery, of future Southern Hemisphere atmospheric circulation trends. Geophysical Research Letters, 38 (4), doi:10.1029/2011GL046712, URL http://doi.wiley. com/10.1029/2011GL046712.
Quan, X. W., M. P. Hoerling, J. Perlwitz, H. F. Diaz, and T. Xu, 2014: How fast are the tropics expanding? Journal of Climate, 27 (5), 1999-2013, doi:10.1175/ JCLI-D-13-00287.1, URL https://journals.ametsoc.org/doi/pdf/10.1175/ JCLI-D-13-00287.1.
Ralph, T. U. and W. A. Gough, 2009: The influence of sea-surface temperatures on Eastern North Pacific tropical cyclone activity. Theoretical and Applied Climatology, 95 (3-4), 257-264, doi:10.1007/s00704-008-0004-x, URL http://link. springer.com/10.1007/s00704-008-0004-x.
Ramage, C. S., 1959: Hurricane Development. Journal of Meteorology, 16 (3), 227-237, doi:10.1175/1520-0469(1959)016<0227:HD> 2.0.CO;2, URL http://journals.ametsoc.org/doi/abs/10.1175/
1520-0469{%}281959{%}29016{%}3C0227{%}3AHD{%}3E2.0.C0{%}3B2.
Ramsay, H. A. and A. H. Sobel, 2011: Effects of Relative and Absolute Sea Surface Temperature on Tropical Cyclone Potential Intensity Using a Single-Column Model. Journal of Climate, 24 (1), 183-193, doi:10.1175/2010JCLI3690.1, URL http: //journals.ametsoc.org/doi/abs/10.1175/2010JCLI3690.1.
Rangarajan, K. and M. Shah, 1991: Establishing motion correspondence. CVGIP: Image Understanding, 54 (1), 56-73, doi:10.1016/1049-9660(91)90075-Z, URL http://ieeexplore.ieee.org/document/139669/.
Rappin, E. D. and D. S. Nolan, 2012: The effect of vertical shear orientation on tropical cyclogenesis. Quarterly Journal of the Royal Meteorological Society, 138 (665), 1035-1054, doi:10.1002/qj.977, URL http://doi.wiley.com/10.1002/qj.977.
Rashid, H. A. and A. C. Hirst, 2016: Investigating the mechanisms of seasonal ENSO phase locking bias in the ACCESS coupled model. Climate Dynamics, 46 (3-4), 1075-1090, doi:10.1007/s00382-015-2633-y, URL http://link.springer.com/ 10.1007/s00382-015-2633-y.
Reasor, P. D., M. T. Montgomery, and L. D. Grasso, 2004: A New Look at the Problem of Tropical Cyclones in Vertical Shear Flow: Vortex Resiliency. Journal of the Atmospheric Sciences, 61 (1), 3-22, doi:10.1175/1520-0469(2004)061<0003:
ANLATP>2.0.C0;2, URL http://journals.ametsoc.org/doi/abs/10.1175/ 1520-0469{%}282004{%}29061{%}3C0003{%}3AANLATP{%}3E2.0.C0{%}3B2.
Reed, K. A. and D. R. Chavas, 2015: Uniformly rotating global radiative-convective equilibrium in the Community Atmosphere Model, version 5. Journal of Advances in Modeling Earth Systems, 7 (4), 1938-1955, doi:10.1002/2015MS000519, URL http://doi.wiley.com/10.1002/2015MS000519.
Ren, F., J. Liang, G. Wu, W. Dong, and X. Yang, 2011: Reliability analysis of climate change of tropical cyclone activity over the Western North Pacific. Journal of Climate, 24 (22), 5887-5898, doi:10.1175/2011JCLI3996.1, URL http: //journals.ametsoc.org/doi/abs/10.1175/2011JCLI3996.1.
Riehl, H., 1963: Some Relations Between Wind and Thermal Structure of Steady State Hurricanes. Journal of the Atmospheric Sciences, 20 (4), 276-287, doi:10.1175/1520-0469, URL http://journals.ametsoc.org/doi/abs/10.1175/ 1520-0469{%}281963{%}29020{%}3C0276{%}3ASRBWAT{%}3E2.0.C0{%}3B2.
Riehl, H. and R. J. Shafer, 1944: The recurvature of tropical storms. Journal of Meteorology, 1 (1), 42-54, doi:10.1175/1520-0469(1944)001<0001: TR0TS>2.0.C0;2, URL http://journals.ametsoc.org/doi/abs/10.1175/ 1520-0469{%}281944{%}29001{%}3C0001{%}3ATR0TS{%}3E2.0.C0{%}3B2.
Riemer, M., M. T. Montgomery, and M. E. Nicholls, 2010: A new paradigm for intensity modification of tropical cyclones: Thermodynamic impact of vertical wind shear on the inflow layer. Atmospheric Chemistry and Physics, 10 (7), 3163-3188, doi:10.5194/acp-10-3163-2010, URL http://www.atmos-chem-phys. net/10/3163/2010/.
Rivière, G., 2011: A Dynamical Interpretation of the Poleward Shift of the Jet Streams in Global Warming Scenarios. Journal of the Atmospheric Sciences, 68 (6), 1253-1272, doi:10.1175/2011JAS3641.1, URL http://journals.ametsoc. org/doi/abs/10.1175/2011JAS3641.1.
Roberts, M. J., et al., 2015: Tropical cyclones in the UPSCALE ensemble of high-resolution global climate models. Journal of Climate, 28 (2), 574-596, doi:10.1175/JCLI-D-14-00131.1, URL http://journals.ametsoc.org/doi/10. 1175/JCLI-D-14-00131.1.
Romps, D. M., 2016: Clausius-Clapeyron Scaling of CAPE from Analytical Solutions to RCE. Journal of the Atmospheric Sciences, 73 (9), 3719-3737, doi: 10.1175/JAS-D-15-0327.1, URL http://journals.ametsoc.org/doi/10.1175/ JAS-D-15-0327.1.
Romps, D. M. and Z. Kuang, 2010: Do Undiluted Convective Plumes Exist in the Upper Tropical Troposphere? Journal of the Atmospheric Sciences, 67 (2), 468484, doi:10.1175/2009JAS3184.1, URL http://journals.ametsoc.org/doi/abs/ 10.1175/2009JAS3184.1.
Salari, V. and I. K. Sethi, 1990: Feature Point Correspondence in the Presence of Occlusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12 (1), 87-91, doi:10.1109/34.41387, URL http://ieeexplore.ieee.org/ document/41387/.
Samet, H., 1989: Applications of Spatial Data Structures: Computer Graphics, Image Processing, and GIS. Addison-Wesley, 507 pp., URL https://www.amazon.com/ Applications-Spatial-Data-Structures-Addison-Wesley/dp/020150300X.
Sampe, T., H. Nakamura, A. Goto, and W. Ohfuchi, 2010: Significance of a mid-latitude SST frontal zone in the formation of a storm track and an eddy-driven westerlyjet. Journal of Climate, 23 (7), 1793-1814, doi:10.1175/2009JCLI3163.1, URL http://journals.ametsoc.org/doi/abs/10.1175/2009JCLI3163.!.
Sandgathe, S. A., 1987: Opportunities for tropical cyclone motion research in the northwest Pacific region. Tech. Rep. Naval Postgraduate School, Monterey, CA 93943,, NPS-63-87-, 33pp, URL http: //scholar.googleusercontent.com/scholar?q=cache:hPtZYyWVQYkJ: scholar.google.com/{&}hl=en{&}as{_}sdt=0,5.
Saunders, M. A. and A. S. Lea, 2008: Large contribution of sea surface warming to recent increase in Atlantic hurricane activity. Nature, 451 (7178), 557-560, doi: 10.1038/nature06422, URL http://www.nature.com/articles/nature06422.
Schecter, D. A., 2010: Hurricane intensity in the Ooyama (1969) paradigm. Quarterly Journal of the Royal Meteorological Society, 136 (652), 1920-1926, doi:10.1002/ qj.657, URL https://rmets.onlinelibrary.wiley. com/doi/pdf/10.1002/qj. 657.
Schneider, E. K., 1977: Axially Symmetric Steady-State Models of the Basic State for Instability and Climate Studies. Part II. Nonlinear Calculations. Journal of the Atmospheric Sciences, 34 (2), 280-296, doi:10.1175/1520-0469(1977)034<0280: ASSSMO>2.0.CO;2, URL http://journals.ametsoc.org/doi/abs/10.1175/ 1520-0469{%}281977{%}29034{%}3C0280{%}3AASSSM0{%}3E2.0.C0{%}3B2.
Schneider, E. K., 1984: Response of the Annual and Zonal Mean Winds and Temperatures to Variations in the Heat and Momentum Sources. Journal of the Atmospheric Sciences, 41 (7), 1093-1115, doi:10.1175/1520-0469(1984)041<1093: ROTAAZ>2.0.CO;2, URL http://journals.ametsoc.org/doi/abs/10.1175/ 1520-0469{%}281984{%}29041{%}3C1093{%}3AR0TAAZ{%}3E2.0.C0{%}3B2.
Schneider, T., 2006: The General Circulation of the Atmosphere. Annual Review of Earth and Planetary Sciences, 34 (1), 655-688, doi:10.1146/annurev.earth.34. 031405.125144, URL http://www.annualreviews.org/doi/10.1146/annurev. earth.34.031405.125144.
Schneider, T., T. Bischoff, and G. H. Haug, 2014: Migrations and dynamics of the intertropical convergence zone. Nature, 513 (7516), 45-53, doi:10.1038/nature13636, URL http://www.nature.com/articles/nature13636.
Schneider, T., P. A. O'Gorman, and X. J. Levine, 2010: Water vapor and the dynamics of climate changes. URL https://agupubs.onlinelibrary.wiley.com/doi/ pdf/10.1029/2009RG000302, 3001 pp., doi:10.1029/2009RG000302, 0908.4410.
Schreck, C. J., K. R. Knapp, and J. P. Kossin, 2014: The Impact of Best Track Discrepancies on Global Tropical Cyclone Climatologies using IBTrACS. Monthly Weather Review, 142 (10), 3881-3899, doi:10.1175/MWR-D-14-00021.1, URL http://journals.ametsoc.org/doi/abs/10.1175/MWR-D-14-00021.1.
Schwendike, J., G. J. Berry, M. J. Reeder, C. Jakob, P. Govekar, and R. Wardle, 2015: Trends in the local Hadley and local Walker circulations. Journal of Geophysical Research: Atmospheres, 120 (15), 7599-7618, doi:10.1002/2014JD022652, URL http://doi.wiley.com/10.1002/2014JD022652.
Schwendike, J., P. Govekar, M. J. Reeder, R. Wardle, G. J. Berry, and C. Jakob, 2014: Local partitioning of the overturning circulation in the tropics and the connection to the Hadley and Walker circulations. Journal of Geophysical Research, 119 (3), 1322-1339, doi:10.1002/2013JD020742, URL http://doi.wiley.com/ 10.1002/2013JD020742.
Scoccimarro, E., et al., 2011: Effects of tropical cyclones on ocean heat transport in a high-resolution coupled general circulation model. Journal of Climate, 24 (16), 4368-4384, doi:10.1175/2011JCLI4104.1, URL http://journals.ametsoc.org/ doi/abs/10.1175/2011JCLI4104.1.
Seabold, J. S. and J. Perktold, 2010: Statsmodels: Econometric and Statistical Modeling with Python. Proceedings of the 9th Python in Science Conference., URL https://www.statsmodels.org/stable/index.html.
Seager, R., N. Harnik, W. A. Robinson, Y. Kushnir, M. Ting, H. P. Huang, and J. Velez, 2005: Mechanisms of ENSO-forcing of hemispherically symmetric precipitation variability. Quarterly Journal of the Royal Meteorological Society, 131 (608), 1501-1527, doi:10.1256/qj.04.96, URL http://doi.wiley.com/10.1256/qj.04. 96.
Seager, R., N. Naik, M. Ting, M. A. Cane, N. Harnik, and Y. Kushnir, 2010a: Adjustment of the atmospheric circulation to tropical pacific sst anomalies: Variability of transient eddy propagation in the pacific-north america sector. Quarterly Journal ofthe Royal Meteorological Society, 136 (647), 277-296, doi:10.1002/qj.588, URL http://doi.wiley.com/10.1002/qj.588.
Seager, R., N. Naik, and G. A. Vecchi, 2010b: Thermodynamic and Dynamic Mechanisms for Large-Scale Changes in the Hydrological Cycle in Response to Global
Warming*. Journal of Climate, 23 (17), 4651-4668, doi:10.1175/2010JCLI3655.1, URL http://journals.ametsoc.Org/doi/abs/10.1175/2010JCLI3655.1.
Seeley, J. T. and D. M. Romps, 2015: Why does tropical convective available potential energy (CAPE) increase with warming? Geophysical Research Letters, 42 (23), 10429-10437, doi:10.1002/2015GL066199, URL http://doi.wiley. com/10.1002/2015GL066199.
Seidel, D. J. and W. J. Randel, 2006: Variability and trends in the global tropopause estimated from radiosonde data. Journal of Geophysical Research, 111 (D21), D21101, doi:10.1029/2006JD007363, URL http://doi.wiley.com/ 10.1029/2006JD007363.
Seo, J., S. M. Kang, and D. M. Frierson, 2014a: Sensitivity of intertropical convergence zone movement to the latitudinal position of thermal forcing. Journal of Climate, 27 (8), 3035-3042, doi:10.1175/JCLI-D-13-00691.1, URL http: //journals.ametsoc.org/doi/abs/10.1175/JCLI-D-13-00691.1.
Seo, K. H., D. M. Frierson, and J. H. Son, 2014b: A mechanism for future changes in Hadley circulation strength in CMIP5 climate change simulations. Geophysical Research Letters, 41 (14), 5251-5258, doi:10.1002/2014GL060868, URL http:// doi.wiley.com/10.1002/2014GL060868.
Serra, Y. L., G. N. Kiladis, and K. I. Hodges, 2010: Tracking and mean structure of easterly waves over the Intra-Americas Sea. Journal of Climate, 23 (18), 4823-4840, doi:10.1175/2010JCLI3223.1, URL http://journals.ametsoc.org/ doi/abs/10.1175/2010JCLI3223.1.
Sethi, I. K. and R. Jain, 1987: Finding Trajectories of Feature Points in a Monocular Image Sequence. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-9 (1), 56-73, doi:10.1109/TPAMI.1987.4767872, URL http: //ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4767872.
Shaevitz, D. A., et al., 2014: Characteristics of tropical cyclones in high-resolution models in the present climate. Journal of Advances in Modeling Earth Systems, 6 (4), 1154-1172, doi:10.1002/2014MS000372, URL http://doi.wiley.com/10. 1002/2014MS000372.
Shapiro, L. J. and H. E. Willoughby, 1982: The Response of Balanced Hurricanes to Local Sources of Heat and Momentum. Journal of the Atmospheric Sciences, 39 (2), 378-394, doi:10.1175/1520-0469(1982)039<0378: TR0BHT>2.0.C0;2, URL http://journals.ametsoc.org/doi/abs/10.1175/ 1520-0469{%}281982{%}29039{%}3C0378{%}3ATR0BHT{%}3E2.0.C0{%}3B2.
Sharkov, E. A., G. A. Kim, and I. V. Pokrovskaya, 2011: Energy features of plural tropical cyclogenesis from multispectral satellite observations. Izvestiya, Atmospheric and Oceanic Physics, 47 (9), 1084-1091, doi:10.1134/S0001433811090155, URL http://link.springer.com/10.1134/S0001433811090155.
Sharmila, S. and K. J. E. Walsh, 2018: Recent poleward shift of tropical cyclone formation linked to Hadley cell expansion. Nature Climate Change, 8 (8), 730736, doi:10.1038/s41558-018-0227-5, URL http://www.nature.com/articles/ s41558-018-0227-5.
Shi, X. and C. S. Bretherton, 2015: Large-scale character of an atmosphere in rotating radiative-convective equilibrium. Journal of Advances in Modeling Earth Systems, 6 (3), 616-629, doi:10.1002/2014MS000342, URL https://agupubs. onlinelibrary.wiley.com/doi/abs/10.1002/2014MS000342.
Shmerlin, B. and M. Shmerlin, 2012: Hydromechanical Model of a Tropical Cyclones motion. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa,, 9 (2), 243-249, URL http://jr.rse.cosmos.ru/article.aspx?id= 1033{&}lang=eng.
Shuleykin, V. V., 1973: Calculating the paths of tropical hurricanes. Izv., Atmos. Ocean. Phys, 9 (12), 1227-1238.
Singh, M. S., Z. Kuang, E. D. Maloney, W. M. Hannah, and B. O. Wolding, 2017: Increasing potential for intense tropical and subtropical thunderstorms under global warming. Proceedings of the National Academy of Sciences, 114 (44), 201707603, doi:10.1073/pnas.1707603114, URL http://www.ncbi.nlm.nih.gov/pubmed/ 29078312http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid= PMC5676896http://www.pnas.org/lookup/doi/10.1073/pnas.1707603114.
Singh, M. S. and P. A. O'Gorman, 2013: Influence of entrainment on the thermal stratification in simulations of radiative-convective equilibrium. Geophysical Research Letters, 40 (16), 4398-4403, doi:10.1002/grl.50796, URL http://doi. wiley.com/10.1002/grl.50796.
Slingo, J. M., K. R. Sperber, J. Morcrette, and G. L. Potter, 1992: Analysis of the temporal behaviour of tropical convection in the ECMWF model. PCMDI Report No. 2, Lawrence Liver-more UCRL-JC-109815., URL https://www.ecmwf.int/en/elibrary/ 12323-analysis-temporal-behaviour-convection-tropics-ecmwf-model.
Smith, S. R., J. Brolley, J. J. O'Brien, and C. A. Tartaglione, 2007: ENSO's impact on regional U.S. hurricane activity. Journal of Climate, 20 (7), 14041414, doi:10.1175/JCLI4063.1, URL http://journals.ametsoc.org/doi/abs/ 10.1175/JCLI4063.1.
Sobel, A. H. and S. J. Camargo, 2011: Projected future seasonal changes in tropical summer climate. Journal of Climate, 24 (2), 473-487, doi:10.1175/2010JCLI3748. 1, URL http://journals.ametsoc.org/doi/abs/10.1175/2010JCLI3748.1.
Sobel, A. H., S. J. Camargo, T. M. Hall, C. Y. Lee, M. K. Tippett, and A. A. Wing, 2016: Human influence on tropical cyclone intensity. American Association for the
Advancement of Science, URL http://science.sciencemag.org/content/353/ 6296/242, 242-246 pp., doi:10.1126/science.aaf6574.
Soloviev, A. V., R. Lukas, M. A. Donelan, B. K. Haus, and I. Ginis, 2017: Is the State of the Air-Sea Interface a Factor in Rapid Intensification and Rapid Decline of Tropical Cyclones? Journal of Geophysical Research: Oceans, 122 (12), 10174-10183, doi:10.1002/2017JC013435, URL http://doi.wiley. com/10.1002/2017JC013435.
Son, S.-W., et al., 2010: Impact of stratospheric ozone on Southern Hemisphere circulation change: A multimodel assessment. Journal of Geophysical Research, 115 (D3), D00M07, doi:10.1029/2010JD014271, URL http://doi.wiley.com/ 10.1029/2010JD014271.
Song, J. and P. J. Klotzbach, 2018: What Has Controlled the Poleward Migration of Annual Averaged Location of Tropical Cyclone Lifetime Maximum Intensity 0ver the Western North Pacific Since 1961? Geophysical Research Letters, 45 (2), 1148-1156, doi:10.1002/2017GL076883, URL http://doi.wiley.com/10. 1002/2017GL076883.
Stachnik, J. P. and C. Schumacher, 2011: A comparison of the Hadley circulation in modern reanalyses. Journal of Geophysical Research Atmospheres, 116 (22), 1-14, doi:10.1029/2011JD016677.
Stansifer, E. M., P. A. 0'Gorman, and J. I. Holt, 2017: Accurate computation of moist available potential energy with the Munkres algorithm. Quarterly Journal of the Royal Meteorological Society, 143 (702), 288-292, doi:10.1002/qj.2921, URL http://doi.wiley.com/10.1002/qj.2921.
Staten, P. W., J. Lu, K. M. Grise, S. M. Davis, and T. Birner, 2018: Re-examining tropical expansion. Nature Climate Change, 8 (9), 768775, doi:10.1038/s41558-018-0246-2, URL http://www.nature.com/articles/ s41558-018-0246-2.
Staten, P. W., J. J. Rutz, T. Reichler, and J. Lu, 2012: Breaking down the tropospheric circulation response by forcing. Climate Dynamics, 39 (9-10), 2361-2375, doi:10.1007/s00382-011-1267-y, URL http://link.springer.com/ 10.1007/s00382-011-1267-y.
Stewart, R., 2008: Introduction to Physical Oceanography. Texas A&M University, 345 pp., doi:10.1119/1.18716, URL http://www.sci.buu.ac.th/Oanukul/texts/ text1/title.pdf.
Strachan, J., P. L. Vidale, K. Hodges, M. Roberts, and M. E. Demory, 2013: Investigating global tropical cyclone activity with a hierarchy of AGCMs: The role of model resolution. Journal of Climate, 26 (1), 133-152, doi: 10.1175/JCLI-D-12-00012.1, URL http://journals.ametsoc.org/doi/abs/10. 1175/JCLI-D-12-00012.1.
Sugi, M., H. Murakami, and J. Yoshimura, 2009: A Reduction in Global Tropical Cyclone Frequency due to Global Warming. SOLA, 5, 164-167, doi:10.2151/sola. 2009-042, URL http://joi.jlc.jst.go.jp/JST.JSTAGE/sola/2009-042?from= CrossRef.
Sugi, M., A. Noda, and N. Sato, 2002: Influence of the Global Warming on Tropical Cyclone Climatology: An Experiment with the JMA Global Model. Journal of the Meteorological Society of Japan, 80 (2), 249-272, doi:10.2151/jmsj.80.249, URL http://joi.jlc.jst.go.jp/JST.JSTAGE/jmsj/80.249?from=CrossRef.
Sun, Y., L. Z. Li, G. Ramstein, T. Zhou, N. Tan, M. Kageyama, and S. Wang, 2018: Regional meridional cells governing the interannual variability of the Hadley circulation in boreal winter. Springer Berlin Heidelberg, URL http://link.springer. com/10.1007/s00382-018-4263-7, 1-23 pp., doi:10.1007/s00382-018-4263-7.
Sutyrin, G. G. and A. P. Khain, 1984: Influence of interaction between ocean and atmosphere on intensity of moving tropical cyclone. Fiz. Atmos. i Okeana,(USSR), 20 (9), 787-794.
Tang, B. and K. Emanuel, 2010: Midlevel Ventilation's Constraint on Tropical Cyclone Intensity. Journal of the Atmospheric Sciences, 67 (6), 1817-1830, doi:10.1175/2010JAS3318.1, URL http://journals.ametsoc.org/doi/abs/10. 1175/2010JAS3318.1.
Tao, D. and F. Zhang, 2014: Effect of environmental shear, sea-surface temperature, and ambient moisture on the formation and predictability of tropical cyclones: An ensemble-mean perspective. Journal of Advances in Modeling Earth Systems, 6 (2), 384-404, doi:10.1002/2014MS000314, URL http://doi.wiley. com/10.1002/2014MS000314.
Tao, D. and F. Zhang, 2015: Effects of vertical wind shear on the predictability of tropical cyclones: Practical versus intrinsic limit. Journal of Advances in Modeling Earth Systems, 7 (4), 1534-1553, doi:10.1002/2015MS000474, URL http://doi. wiley.com/10.1002/2015MS000474.
Tao, L., L. Wu, Y. Wang, and J. Yang, 2012: Influence of Tropical Indian Ocean Warming and ENSO on Tropical Cyclone Activity over the Western North Pacific. Journal of the Meteorological Society of Japan, 90 (1), 127-144, doi:10.2151/jmsj. 2012-107, URL http://joi.jlc.jst.go.jp/JST.JSTAGE/jmsj/2012-107?from= CrossRef.
Thompson, L. G., E. Mosley-Thompson, M. E. Davis, P. N. Lin, K. A. Henderson, J. Cole-Dai, J. F. Bolzan, and K. B. Liu, 1995: Late glacial stage and holocene tropical ice core records from huascaran, peru. Science (New York, N.Y.), 269 (5220), 46-50, doi:10.1126/science.269.5220.46, URL http://www.ncbi.nlm. nih.gov/pubmed/17787701.
Timmermann, A., et al., 2018: El Nino-Southern Oscillation complexity. Nature, 559 (7715), 535-545, doi:10.1038/s41586-018-0252-6, URL http://www.nature. com/articles/s41586-018-0252-6.
Torn, R. D. and C. Snyder, 2012: Uncertainty of Tropical Cyclone Best-Track Information. Weather and Forecasting, 27 (3), 715-729, doi:10.1175/WAF-D-11-00085. 1, URL http://journals.ametsoc.org/doi/abs/10.1175/WAF-D-11-00085.1.
Trenberth, K. E., D. P. Stepaniak, and J. M. Caron, 2000: The global monsoon as seen through the divergent atmospheric circulation. Journal of Climate, 13 (22), 3969-3993, doi:10.1175/1520-0442(2000)013<3969:TGMAST>2.0.C0;2.
Troitskaya, Y. I., O. S. Ermakova, A. A. Kandaurov, D. S. Kozlov, D. A. Sergeev, and S. S. Zilitinkevich, 2017: Non-monotonous dependence of the ocean surface drag coefficient on the hurricane wind speed due to the fragmentation of the ocean-atmosphere interface. Doklady Earth Sciences, 477 (1), 1373-1378, doi:10.1134/S1028334X17110265, URL http://link.springer.com/ 10.1134/S1028334X17110265.
Troitskaya, Y. I. and G. V. Rybushkina, 2008: Quasi-linear model of interaction of surface waves with strong and hurricane winds. Izvestiya, Atmospheric and Oceanic Physics, 44 (5), 621-645, doi:10.1134/S0001433808050083, URL http://link. springer.com/10.1134/S0001433808050083.
van Hengstum, P. J., J. P. Donnelly, P. L. Fall, M. R. Toomey, N. A. Albury, and B. Kakuk, 2016: The intertropical convergence zone modulates intense hurricane strikes on the western North Atlantic margin. Scientific Reports, 6 (1), 21728, doi:10.1038/srep21728, URL http://www.nature.com/articles/srep21728.
Vecchi, G. A., S. Fueglistaler, I. M. Held, T. R. Knutson, and M. Zhao, 2013: Impacts of Atmospheric Temperature Trends on Tropical Cyclone Activity. Journal of Climate, 26 (11), 3877-3891, doi:10.1175/JCLI-D-12-00503.1, URL http: //journals.ametsoc.org/doi/abs/10.1175/JCLI-D-12-00503.1.
Vecchi, G. A. and B. J. Soden, 2007a: Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature, 450 (7172), 10661070, doi:10.1038/nature06423, URL http://www.nature.com/doifinder/10. 1038/nature06423.
Vecchi, G. A. and B. J. Soden, 2007b: Global warming and the weakening of the tropical circulation. Journal of Climate, 20 (17), 4316-4340, doi:10.1175/JCLI4258.1, URL http://journals.ametsoc.org/doi/abs/10.1175/JCLI4258.!.
Vecchi, G. A. and B. J. Soden, 2007c: Increased tropical Atlantic wind shear in model projections of global warming. Geophysical Research Letters, 34 (8), doi: 10.1029/2006GL028905, URL http://doi.wiley.com/10.1029/2006GL028905.
Vecchi, G. A., K. L. Swanson, and B. J. Soden, 2008: Whither Hurricane Activity? Science, 322 (5902), 687-689, doi:10.1126/SCIENCE.1164396, URL http://science.sciencemag.org/content/322/5902/687.
Veren, D., J. L. Evans, S. Jones, and F. Chiaromonte, 2009: Novel Metrics for Evaluation of Ensemble Forecasts of Tropical Cyclone Structure. Monthly Weather Review, 137 (9), 2830-2850, doi:Doi10.1175/2009mwr2655.1, URL http://journals. ametsoc.org/doi/abs/10.1175/2009MWR2655.1.
Villarini, G. and G. A. Vecchi, 2012: Twenty-first-century projections of North Atlantic tropical storms from CMIP5 models. Nature Climate Change, 2 (8), 604-607, doi:10.1038/nclimate1530, URL http://www.nature.com/articles/ nclimate1530.
Villarini, G., G. A. Vecchi, and J. A. Smith, 2010: Modeling the Dependence of Tropical Storm Counts in the North Atlantic Basin on Climate Indices. Monthly Weather Review, 138 (7), 2681-2705, doi:10.1175/2010MWR3315.1, URL http: //journals.ametsoc.org/doi/abs/10.1175/2010MWR3315.1.
Vimont, D. J. and J. P. Kossin, 2007: The Atlantic Meridional Mode and hurricane activity. Geophysical Research Letters, 34 (7), L07709, doi:10.1029/2007GL029683, URL http://doi.wiley.com/10.1029/2007GL029683.
Vitart, F., et al., 2007: Dynamically-based seasonal forecasts of Atlantic tropical storm activity issued in June by EUROSIP. Geophysical Research Letters, 34 (16), doi:10.1029/2007GL030740, URL http://doi.wiley.com/10.1029/ 2007GL030740.
Volodin, E. M., 2005: Response of the Tropical Atmospheric Circulation in July-August to Two Types of El Nino. Meteorology and Hydrology, 11, 5-10, URL http: //www.mig-journal.ru/meditorialkoboard?id=1492.
Volodin, E. M., 2017: Representation Of Heat, Moisture And Momentum Fluxes In Climate Models: Convection And Condensation [In Russian]. Fundamental and Applied Climatology, 2, 26-41, doi:10.21513/2410-8758-2017-2-26-41, URL http://downloads.igce.ru/journals/FAC/FAC02017/FAC0201702/ Volodin0E0M0FAC020170N2.pdf.
Volodin, E. M., N. A. Dianskii, and A. V. Gusev, 2010: Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations. Izvestiya, Atmospheric and Oceanic Physics, 46 (4), 414-431, doi:10.1134/S000143381004002X, URL http://link.springer.com/10. 1134/S000143381004002X.
Volodin, E. M., et al., 2017: Simulation of the present-day climate with the climate model INMCM5. Climate Dynamics, 49 (11-12), 3715-3734, doi:10. 1007/s00382-017-3539-7, URL https://link. springer.com/content/pdf/10. 100702Fs00382-017-3539-7.pdf.
Walker, C. C. and T. Schneider, 2005: Response of idealized Hadley circulations to seasonally varying heating. Geophysical Research Letters, 32 (6), L06 813, doi: 10.1029/2004GL022304, URL http://doi.wiley.com/10.1029/2004GL022304.
Walsh, K., S. Lavender, E. Scoccimarro, and H. Murakami, 2013: Resolution dependence of tropical cyclone formation in CMIP3 and finer resolution models. Climate Dynamics, 40 (3-4), 585-599, doi:10.1007/s00382-012-1298-z, URL http://link.springer.com/10.1007/s00382-012-1298-z.
Walsh, K. J., M. Fiorino, C. W. Landsea, and K. L. McInnes, 2007: Objectively Determined Resolution-Dependent Threshold Criteria for the Detection of Tropical Cyclones in Climate Models and Reanalyses. Journal of Climate, 20 (10), 2307-2314, doi: 10.1175/JCLI4074.1, URL http://journals.ametsoc.org/doi/ abs/10.1175/JCLI4074.1.
Walsh, K. J., et al., 2016: Tropical cyclones and climate change. Wiley Interdisciplinary Reviews: Climate Change, 7 (1), 65-89, doi:10.1002/wcc.371, URL http://doi.wiley.com/10.1002/wcc.371.
Wang, B. and J. C. Chan, 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. Journal of Climate, 15 (13), 1643-1658, doi:10.1175/1520-0442(2002)015<1643: HSEEAT>2.0.CO;2, URL http://journals.ametsoc.org/doi/abs/10.1175/ 1520-0442{%}282002{%}29015{%}3C1643{%}3AHSEEAT{%}3E2.0.C0{%}3B2.
Wang, C., D. B. Enfield, S. K. Lee, and C. W. Landsea, 2006: Influences of the Atlantic warm pool on western hemisphere summer rainfall and Atlantic hurricanes. Journal of Climate, 19 (12), 3011-3028, doi:10.1175/JCLI3770.1, URL http:// journals.ametsoc.org/doi/abs/10.1175/JCLI3770.1.
Wang, C., L. Wang, X. Wang, D. Wang, and L. Wu, 2016: North-south variations of tropical storm genesis locations in the Western Hemisphere. Geophysical Research Letters, 43 (21), 11,367-11,374, doi:10.1002/2016GL071440, URL http://doi. wiley.com/10.1002/2016GL071440.
Wang, D., et al., 2018: Interaction of Langmuir Turbulence and Inertial Currents in the Ocean Surface Boundary Layer under Tropical Cyclones. Journal of Physical Oceanography, 48 (9), 1921-1940, doi:10.1175/JPO-D-17-0258.1, URL http:// journals.ametsoc.org/doi/10.1175/JP0-D-17-0258.1.
Wang, J. and D. A. Randall, 1994: The Moist Available Energy of a Conditionally Unstable Atmosphere. Part II: Further Analysis of GATE Data. Journal of the Atmospheric Sciences, 51 (5), 703-710, doi:10.1175/1520-0469(1994)051<0703: TMAEOA>2.0.CO;2, URL http://journals.ametsoc.org/doi/abs/10.1175/ 1520-0469(1994)051{%}3C0703{%}3ATMAE0A{%}3E2.0.C0{%}3B2.
Waugh, D., et al., 2018: Revisiting the Relationship among Metrics of Tropical Expansion. Journal of Climate, 31 (18), JCLI-D-18-0108.1, doi: 10.1175/JCLI-D-18-0108.1, URL http://journals.ametsoc.org/doi/10.1175/ JCLI-D-18-0108.1.
Weightman, R. H., 1919: The West India Hurricane of September, 1919, in the Light of Sounding Observations. Monthly Weather Review, 47 (10), 717-721, doi:10.1175/1520-0493(1919)47<717:TWIH0S> 2.0.C0;2, URL http://journals.ametsoc.org/doi/abs/10.1175/
1520-0493{%}281919{%}2947{%}3C717{%}3ATWIH0S{%}3E2.0.C0{%}3B2.
Whitney, L. D. and J. S. Hobgood, 1997: The relationship between sea surface temperatures and maximum intensities of tropical cyclones in the eastern North Pacific Ocean. Journal of Climate, 10 (11), 2921-2930, doi:10.1175/1520-0442(1997) 010<2921:TRBSST>2.0.C0;2, URL http://journals.ametsoc.org/doi/ abs/10.1175/1520-0442{%}281997{%}29010{%}3C2921{%}3ATRBSST{%}3E2.0. C0{%}3B2.
Wilcox, L. J., B. J. Hoskins, and K. P. Shine, 2012: A global blended tropopause based on ERA data. Part II: Trends and tropical broadening. Quarterly Journal of the Royal Meteorological Society, 138 ( 664), 576-584, doi:10.1002/qj.910, URL http://doi.wiley.com/10.1002/qj.910.
Williams, G. P., 2006: Circulation Sensitivity to Tropopause Height. Journal of the Atmospheric Sciences, 63 (7), 1954-1961, doi:10.1175/JAS3762.1, URL http:// journals.ametsoc.org/doi/abs/10.1175/JAS3762.1.
Willoughby, H. E., 1990: Gradient Balance in Tropical Cyclones. J. At-mos. Sci, 47 (2), 265-274, doi:10.1175/1520-0469(1990)047<0265: GBITC>2.0.C0%3B2, URL http://journals.ametsoc.org/doi/abs/10. 1175/1520-0469{%}281990{%}29047{%}3C0265{%}3AGBITC{%}3E2.0.C0{%}3B2.
Willoughby, H. E. and M. E. Rahn, 2004: Parametric Representation of the Primary Hurricane Vortex. Part I: Observations and Evaluation of the Holland (1980) Model. Monthly Weather Review, 132 (12), 3033-3048, doi:10.1175/MWR2831.1, URL http://journals.ametsoc.org/doi/abs/10.1175/MWR2831.1.
Wing, A. A., S. J. Camargo, and A. H. Sobel, 2016: Role of Radia-tive-Convective Feedbacks in Spontaneous Tropical Cyclogenesis in Idealized Numerical Simulations. Journal of the Atmospheric Sciences, 73 (7), 2633-2642, doi: 10.1175/JAS-D-15-0380.1, URL http://journals.ametsoc.org/doi/10.1175/ JAS-D-15-0380.1.
Wing, A. A. and K. Emanuel, 2014: Physical mechanisms controlling self-aggregation of convection in idealized numerical modeling simulations. Journal of Advances in Modeling Earth Systems, 6 (1), 59-74, doi:10.1002/2013MS000269, URL https: //agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2013MS000269.
Wittman, M. A. H., A. J. Charlton, and L. M. Polvani, 2007: The Effect of Lower Stratospheric Shear on Baroclinic Instability. Journal of the Atmospheric Sciences, 64 (2), 479-496, doi:10.1175/JAS3828.1, URL http://journals.ametsoc.org/ doi/abs/10.1175/JAS3828.1.
WMO, 2018: RA IV Hurricane Committee, Fortieth Session. World Meteorological Organization, Fort-De-France, Martinique, France, URL http://www.wmo.int/ pages/prog/www/tcp/HC-40.html.
Wong, K. C., R. Tailleux, and S. L. Gray, 2016: The computation of reference state and APE production by diabatic processes in an idealized tropical cyclone. Quarterly Journal of the Royal Meteorological Society, 142 (700), 2646-2657, doi: 10.1002/qj.2854, URL http://doi.wiley.com/10.1002/qj.2854.
Woollings, T., et al., 2018: Daily to Decadal Modulation of Jet Variability. Journal of Climate, 31 (4), 1297-1314, doi:10.1175/JCLI-D-17-0286.1, URL http: //journals.ametsoc.org/doi/10.1175/JCLI-D-17-0286.1.
Wu, L. and B. Wang, 2004: Assessing Impacts of Global Warming on Tropical Cyclone Tracks*. Journal of Climate, 17 (8), 1686-1698, doi:10.1175/1520-0442(2004) 017<1686:AIOGWO>2.0.CO;2, URL http://journals.ametsoc.org/doi/ abs/10.1175/1520-0442{%}282004{%}29017{%}3C1686{%}3AAI0GW0{%}3E2.0. C0{%}3B2.
Wu, L., C. Wang, and B. Wang, 2015: Westward shift of western North Pacific tropical cyclogenesis. Geophysical Research Letters, 42 (5), 1537-1542, doi: 10.1002/2015GL063450, URL http://doi.wiley.com/10.1002/2015GL063450.
Wu, M. C., W. L. Chang, and W. M. Leung, 2004: Impacts of El Nino-Southern Oscillation events on tropical cyclone landfalling activity in the western North Pacific. Journal of Climate, 17 (6), 1419-1428, doi:10.1175/1520-0442(2004)017<1419: IOENOE>2.0.CO;2, URL http://journals.ametsoc.org/doi/abs/10.1175/ 1520-0442{%}282004{%}29017{%}3C1419{%}3AI0EN0E{%}3E2.0.C0{%}3B2.
Wu, Q. and Z. Ruan, 2016: Diurnal variations of the areas and temperatures in tropical cyclone clouds. Quarterly Journal of the Royal Meteorological Society, 142 (700), 2788-2796, doi:10.1002/qj.2868, URL http://doi.wiley.com/10. 1002/qj.2868.
Xie, S. P., C. Deser, G. A. Vecchi, J. Ma, H. Teng, and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. Journal of Climate, 23 (4), 966-986, doi:10.1175/2009JCLI3329.1, URL http://journals. ametsoc.org/doi/abs/10.1175/2009JCLI3329.1.
Xie, S.-P. and S. G. H. Philander, 1994: A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus A: Dynamic Meteorology and Oceanography, 46 (4), 340-350, doi:10.3402/tellusa.v46i4.15484, URL https://www.tandfonline.com/doi/full/10.3402/tellusa.v46i4.15484.
Yan, X., R. Zhang, and T. R. Knutson, 2017: The role of Atlantic overturning circulation in the recent decline of Atlantic major hurricane frequency. Nature Communications, 8 (1), 1695, doi:10.1038/s41467-017-01377-8, URL http: //www.nature.com/articles/s41467-017-01377-8.
Yanase, W. and H. Niino, 2015: Idealized Numerical Experiments on Cyclone Development in the Tropical, Subtropical, and Extratropical Environments. Journal of the Atmospheric Sciences, 72 (9), 3699-3714, doi:10.1175/JAS-D-15-0051.1, URL http://journals.ametsoc.org/doi/10.1175/JAS-D-15-0051.1.
Yaroshevich, M. I., 2007: Dynamics of Seasonal Values of the Total Intensities of Tropical Cyclones. Dokl. Akad. Nauk, 413 (4), 549-552.
Yaroshevich, M. I., 2014: Tropical cyclone intensity as a function of wind-speed dynamics in the initial stage of cyclone life. Izvestiya, Atmospheric and Oceanic Physics, 50 (2), 221-223, doi:10.1134/S0001433814020133, URL http://link. springer.com/10.1134/S0001433814020133.
Yaroshevich, M. I. and L. K. Ingel, 2013: Diurnal variations in the intensity of tropical cyclones. Izvestiya, Atmospheric and Oceanic Physics, 49 (4), 375-379, doi:10.1134/S0001433813040117, URL http://link.springer.com/10. 1134/S0001433813040117.
Yeh, S. W., J. S. Kug, B. Dewitte, M. H. Kwon, B. P. Kirtman, and F. F. Jin, 2009: El Nino in a changing climate. Nature, 461 (7263), 511-514, doi:10.1038/ nature08316, URL http://www.nature.com/articles/nature08316.
Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophysical Research Letters, 32 (18), 1-4, doi:10.1029/ 2005GL023684, URL http://doi.wiley.com/10.1029/2005GL023684.
Yonekura, E., T. M. Hall, E. Yonekura, and T. M. Hall, 2014: ENSO Effect on East Asian Tropical Cyclone Landfall via Changes in Tracks and Genesis in a Statistical Model. Journal of Applied Meteorology and Climatology, 53 (2), 406-420, doi: 10.1175/JAMC-D-12-0240.1, URL http://journals.ametsoc.org/doi/abs/10. 1175/JAMC-D-12-0240.1.
Yoshimura, J. and M. Sugi, 2005: Tropical Cyclone Climatology in a Highresolution AGCM -Impacts of SST Warming and CO2 Increase-. Sola, 1, 133-136, doi:10.2151/sola.2005-035, URL http://joi.jlc.jst.go.jp/JST.JSTAGE/sola/ 2005-035?from=CrossRef.
Zakharov, V. Y., 1974: Dynamics of a hurricane during the initial stage of its evolution. Izvestiya, Atmospheric and Oceanic Physics, 10 (9), 601-604, URL https://link.springer.com/journal/11485.
Zhan, R., Y. Wang, and Q. Liu, 2017: Salient differences in tropical cyclone activity over the western North Pacific between 1998 and 2016. Journal of Climate, 30 (24),
9979-9997, doi:10.1175/JCLI-D-17-0263.1, URL http://journals.ametsoc.org/ doi/10.1175/JCLI-D-17-0263.1.
Zhang, D.-L., Y. Liu, and M. K. Yau, 2001: A Multiscale Numerical Study of {Hurricane Andrew} (1992). {Part IV}: Unbalanced Flows. Mon. Wea. Rev, 129 (1992), 92-107, doi:10.1175/1520-0493(2001)129<0092: AMNS0H>2.0.C0;2, URL http://journals.ametsoc.org/doi/abs/10.1175/ 1520-0493{%}282001{%}29129{%}3C0092{%}3AAMNS0H{%}3E2.0.C0{%}3B2.
Zhang, G. and Z. Wang, 2013: Interannual Variability of the Atlantic Hadley Circulation in Boreal Summer and Its Impacts on Tropical Cyclone Activity. Journal of Climate, 26 (21), 8529-8544, doi:10.1175/JCLI-D-12-00802.1, URL http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-12-00802.1.
Zhang, J., A. Schweiger, M. Steele, and H. Stern, 2015: Sea ice floe size distribution in the marginal ice zone: theory and numerical experiments. J. Geophys. Res. Oceans, 120, 3484-3498, doi:10.1002/2015JC010770.Received.
Zhang, R. and T. L. Delworth, 2006: Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophysical Research Letters, 33 (17), L17712, doi:10.1029/2006GL026267, URL http://doi.wiley.com/10. 1029/2006GL026267.
Zhang, R., S. M. Kang, and I. M. Held, 2010: Sensitivity of climate change induced by the weakening of the Atlantic meridional overturning circulation to cloud feedback. Journal of Climate, 23 (2), 378-389, doi:10.1175/2009JCLI3118.1, URL http: //journals.ametsoc.org/doi/abs/10.1175/2009JCLI3118.1.
Zhao, M. and I. M. Held, 2010: An analysis of the effect of global warming on the intensity of atlantic hurricanes using a GCM with statistical refinement. Journal of Climate, 23 (23), 6382-6393, doi:10.1175/2010JCLI3837.1, URL http: //journals.ametsoc.org/doi/abs/10.1175/2010JCLI3837.1.
Zhao, M., I. M. Held, and S.-J. Lin, 2012: Some Counterintuitive Dependencies of Tropical Cyclone Frequency on Parameters in a GCM. Journal of the Atmospheric Sciences, 69 (7), 2272-2283, doi:10.1175/JAS-D-11-0238.1, URL http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-11-0238.1.
Zhao, M., I. M. Held, S. J. Lin, and G. A. Vecchi, 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. Journal of Climate, 22 (24), 6653-6678, doi:10. 1175/2009JCLI3049.1, URL http://journals.ametsoc.org/doi/abs/10.1175/ 2009JCLI3049.1.
Zheleznova, I. V. and D. Y. Gushchina, 2015: The response of global atmospheric circulation to two types of El Niño. Russian Meteorology and Hydrology, 40 (3), 170-179, doi:10.3103/S1068373915030036, URL http://link.springer.com/10. 3103/S1068373915030036.
Zheleznova, I. V. and D. Y. Gushchina, 2016: Circulation anomalies in the atmospheric centers of action during the Eastern Pacific and Central Pacific El Niño. Russian Meteorology and Hydrology, 41 (11-12), 760-769, doi:10.3103/S1068373916110030, URL http://link.springer.com/10. 3103/S1068373916110030.
Zheleznova, I. V. and D. Y. Gushchina, 2017: Hadley and Walker circulation anomalies associated with the two types of El Niño. Russian Meteorology and Hydrology, 42 (10), 625-634, doi:10.3103/S1068373917100016, URL http://link.springer. com/10.3103/S1068373917100016.
Zhou, W., 2015: The impact of vertical shear on the sensitivity of tropical cyclo-genesis to environmental rotation and thermodynamic state. Journal of Advances in Modeling Earth Systems, 7 (4), 1872-1884, doi:10.1002/2015MS000543, URL http://doi.wiley.com/10.1002/2015MS000543.
Zhou, W., I. M. Held, and S. T. Garner, 2014: Parameter Study of Tropical Cyclones in Rotating Radiative-Convective Equilibrium with Column Physics and Resolution of a 25-km GCM. Journal of the Atmospheric Sciences, 71 (3), 10581069, doi:10.1175/JAS-D-13-0190.1, URL http://journals.ametsoc.org/doi/ abs/10.1175/JAS-D-13-0190.1.
Zhou, W., I. M. Held, and S. T. Garner, 2017: Tropical Cyclones in Rotating Radiative-Convective Equilibrium with Coupled SST. Journal of the Atmospheric Sciences, 74 (3), 879-892, doi:10.1175/JAS-D-16-0195.1, URL http://journals. ametsoc.org/doi/10.1175/JAS-D-16-0195.1.
Zhou, Y. P., K.-M. Xu, Y. C. Sud, and A. K. Betts, 2011: Recent trends of the tropical hydrological cycle inferred from Global Precipitation Climatology Project and International Satellite Cloud Climatology Project data. Journal of Geophysical Research, 116 (D9), D09101, doi:10.1029/2010JD015197, URL http: //doi.wiley.com/10.1029/2010JD015197.
Zurita-Gotor, P. and P. Álvarez-Zapatero, 2018: Coupled interannual variability of the Hadley and Ferrel cells. Journal of Climate, 31 (12), 4757-4773, doi: 10.1175/JCLI-D-17-0752.1, URL http://journals.ametsoc.org/doi/10.1175/ JCLI-D-17-0752.1.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.