Неабелевы обобщения уравнения Пенлеве IV тема диссертации и автореферата по ВАК РФ 00.00.00, кандидат наук Боброва Ирина Александровна
- Специальность ВАК РФ00.00.00
- Количество страниц 92
Оглавление диссертации кандидат наук Боброва Ирина Александровна
Contents
Introduction
Historical review
Statement of the problem
Main results
1. Matrix analogs
2. Fully non-Abelian analogs
Organization of the thesis
1 Painleve equations
1.1 Local analytical properties of ODEs
Example
1.2 Six classes
Example
1.3 Isomonodromic representations and Hamiltonian structure
Example
1.4 Auto-Backlund transformations
Example
1.5 Determinant structure of solutions
Example
1.6 Towards non-Abelian examples
2 Matrix setting
2.1 Matrix Painleve-Kovalevskaya test
2.2 Homogeneous integrable systems of P4 type
2.2.1 Matrix Painleve-Kovalevskaya test
2.3 Inhomogeneous integrable systems of P4 type
2.3.1 Case a = p =
2.3.2 Case a = 0, p =
2.3.3 Case a = 0, p =
2.4 Isomonodromic Lax pairs
2.4.1 Case P4
2.4.2 Case Pi
2.4.3 Case P^
2.5 Degeneracies
2.5.1 Case a = p =
2.5.2 Case a = 0, £ =
2.5.3 Case a = 0, p =
2.6 Remarks and further questions
2.6.1 Hamiltonian structure
2.6.2 ODEs on an associative algebra
2.6.3 Discussion
3 Fully non-Abelian setting
3.1 Quasideterminants and almost Hankel matrices
3.2 Non-commutative Toda equations
3.3 Backlund transformations and non-Abelian symmetric forms
3.3.1 Backlund transformations
3.3.2 Non-Abelian symmetric forms
3.4 Isomonodromic Lax pairs
3.5 Remarks and further questions
3.5.1 Hamiltonian structure
3.5.2 Discussion
4 On relations between two approaches
4.1 Matrix setting —> Fully non-Abelian setting
4.2 Matrix setting <— Fully non-Abelian setting
Conclusion
References
Рекомендованный список диссертаций по специальности «Другие cпециальности», 00.00.00 шифр ВАК
Изомонодромные деформации и квантовая теория поля2018 год, кандидат наук Гавриленко Павел Георгиевич
Математическое моделирование гидродинамических задач и их применение в многофазных системах / Mathematical modeling of hydrodynamic problems and their applications in multiphase systems2024 год, кандидат наук Абунаб Ахмед Камал Ибрахим
Струнное представление и непертурбативные свойства калибровочных теорий1999 год, кандидат физико-математических наук Антонов, Дмитрий Владимирович
Уравнения Пенлеве и теория представлений2020 год, кандидат наук Щечкин Антон Игоревич
Общий подход к теории и методологии метода анализа сингулярного спектра2023 год, доктор наук Голяндина Нина Эдуардовна
Введение диссертации (часть автореферата) на тему «Неабелевы обобщения уравнения Пенлеве IV»
Introduction
Our aim is to discover integrable matrix and non-abelian analogs of the differential Painlevé IV equation. Their solutions can be understood as new matrix and non-commutative transcendental functions. In addition, such equations can be regarded as quantum or non-abelian versions of the Painleve IV equation:
Historical review
The celebrated Painleve equations appeared as a result of a classification of complex second-order differential equations of the form
where P (z, y(z),y'(z)) is a meromorphic function in z and is a rational function in y (z), y'(z). In order to study these equations, the Painlevé property was introduced. Namely, their general solutions have no movable singular points except of poles . For the first time this property was used by S. Kovalevskaya in [ Kow89]. 50 classes of such equations were found by P. Painleve and his school [Pai00], [Pai02]. Later B. Gambier [Gam10] proved that only six of them define new special functions. The general solutions of the Painleve equations are currently known as the most general class of special functions called the Painlevé transcendents. These six classes of equations of the form ( ) are known as the Painlevé equations. They arise in a wide range of applications in mathematics and physics and have surprisingly rich mathematical structures.
In particular, they are related to a system of scalar differential equations [7uc0' ], [ Gar12] integrable in the sense of the Frobenius theorem. In the paper [ ?uc0' ], R. Fuchs studied the case of the sixth Painleve equation. The result of R. Fuchs was generalized by R. Garnier who considered irregular singularities [ Garl2 ] and, as a result, found such a representation for other Painleve equations. Let us note that L. Schlesinger and B. Malgrange also worked in this area (see, e.g. [Schl ], [ Ial7z ]). In the paper [JM81], it was established that the Painleve equations can be linearized. This fact is connected with monodromy preserving deformations related to vector bundles of rank 2. Thanks to the isomonodromic property, the space of solutions of the Painleve equations can be parameterized by the monodromy data . Namely, each of the
xIn the case of an rn-th order ODE with m > 2, this criteria is formulated in a different way. Namely, general solutions do not have critical movable points.
2Informally speaking.
P4
y''(z) = P (z,y(z),y'(z)) ,
y(z), z E C,
(1)
equations can be associated with the zero-locus of an affine cubic which is usually called the monodromy surface (e.g., [VDPS0! ]).
One of the reasons behind the ubiquitous appearance of the Painleve equations is that they are innately linked to the Toda hierarchy. In [DZ0z], B. Dubrovin and Y. Zhang proved that the r-function of a generic solution to the extended Toda hierarchy is annihilated by some combinations of the Virasoro operators. It is such Virasoro constraints that regulate the correlation functions of many systems in random matrix theory, in string theory and topological field theory. For instance, in [DZ05], expressions for the genus g > 1 total Gromov-Witten potential were obtained via the genus zero quantities derived from the Virasoro constraints.
Note that the isomonodromic r-function is closely connected with the so-called sigma form for the Painleve equations. This issue was investigated by K. Okamoto [Oka8 ], who developed the Hamiltonian theory of the Painleve differential equations [0ka80] and showed that all Backlund transformations can be obtained as natural affine Weyl groups actions on the sigma form [ )ka87a], [0ka87 ], [0ka8 ], [0ka87< ].
Regarding applications of the Painleve equations in integrable systems, it turns out that these equations can be obtained as reduced ODEs of some integrable PDEs. The Ablowitz-Ramani-Segur conjecture [ARS8( ] states that a nonlinear PDE is solvable by the inverse scattering method [ZS74] only if every nonlinear ODE obtained by an exact reduction has the Painleve property. For example, the first and second Painleve equations are the reductions of the KdV equation, the ODE reduction of the sine-Gordon equation is the third Painleve equation, and the sixth Painleve equation is the reduction of the nonlinear Schrodinger equation. In the paper [JKT07], it was shown that the Painleve III-VI equations are the reductions of the three-wave resonant system.
In recent years, quantum, or more generally, non-abelian extensions of various integrable systems have acquired considerable attention. It was motivated by problematics and needs of modern quantum physics as well as by a natural attempts of mathematicians to extend and to generalize the "classical" integrable structures and systems. In particular, the Painleve transcendents provide a good example of this phenomena.
Quantum versions of the Painleve equations were obtained in [NGR+0 ], where the authors quantized the Poisson brackets related to the so-called symmetric form of the Painleve equations. There is also an interesting non-commutative family of non-autonomous many-particle integrable systems that were introduced in [BCR18]. The authors defined an isomonodromic representation of Takasaki Hamiltonian systems of Painleve-Calogero families [Tak01]. A fully non-abelian version for the second Painleve equation was presented in [RR10]. The authors
3In the authors terminology.
investigated a Hankel quasideterminant structure of the P2 solutions caused by their relation to the non-commutative Toda equations [GR92a]. While it is already known [Kaw15] that each of the Painleve equations has only one matrix Hamiltonian analog, in the recent paper [AS21b], it was shown that the Painleve II equation has at least three non-equivalent matrix generalizations. In order to derive them, the authors have used the matrix Painleve-Kovalevskaya test introduced in [ S98 ]. Since the Painleve equations are close to the orthogonal polynomials, several authors have derived their matrix analogs, by using matrix generalizations of the orthogonal polynomials (e.g., [ CM1 ], [ CM+18]).
This historical review do not pretend to provide full overview of the Painleve theory, so we refer the reader to excellent books [CM0 ], [7IN+0 ], as well as reviews cited in them.
Похожие диссертационные работы по специальности «Другие cпециальности», 00.00.00 шифр ВАК
Развитие алгебраической теории коллективных движений атомных ядер2020 год, доктор наук Ганев Хубен Ганев
Applications of tensor networks toward dynamics of quantum systems2023 год, кандидат наук Изотова Екатерина Александровна
Неклассические методы вероятностного и статистического анализа моделей смеси распределений2022 год, доктор наук Панов Владимир Александрович
Стохастические интегрируемые процессы и представления группы кос2022 год, кандидат наук Трофимова Анастасия Алексеевна
Интегрируемые структуры аффинного Янгиана2022 год, кандидат наук Вильковиский Илья
Заключение диссертации по теме «Другие cпециальности», Боброва Ирина Александровна
Conclusion
In the present thesis, we have discussed different non-abelian analogs for the Painleve IV equation that are integrable in the sense of Definition 0.1. We considered two settings: matrix and fully non-commutative. We submit the results given in Subsections 2.2 - 2.5, 2.6.1 (matrix case) and 3.3 - 3.- , 3.5.1 (fully non-abelian case) for the defense of this PhD thesis.
In the matrix setting, it turns out that the Painleve IV equation has three different analogs labeled as P4, P;J, and P^. They were obtained by using the matrix generalization of the Painleve-Kovalevskaya test, suggested in [ ]. The system can be written only as a system of first-order ODEs, while the remaining systems, P^ and P , reduces to a second-order ODE. All this systems have arbitrary matrix constants. In addition, each of these systems admits the isomonodromic representation. Some limiting transitions connect the P^ - P^ systems with known matrix generalizations of the Painleve II equation with arbitrary constant matrix coefficients [ lS211 ].
In the fully non-abelian setting, there exists only one analog for the Painleve IV equation. This analog generalizes the quantum Painleve IV equation and the matrix P^ system. It can be written as a system only and was derived by using the solutions of the infinite non-commutative one dimensional Toda lattice. Namely, the solutions of the fully non-commutative Painleve IV system can be expressed via the solutions of the infinite non-commutative Toda system. The latter possesses solutions in terms of the Hankel quasideterminants. This implies that the fully non-commutative P4 analog also admits solutions in the Hankel quasideterminants. Besides this property, the fully non-abelian analog has the zero-curvature representation.
The problems for the further study and generalization are discussed in Subsections 2.6.3 and 3.5.2.
Список литературы диссертационного исследования кандидат наук Боброва Ирина Александровна, 2023 год
References
[Adl20] V. E. Adler. Painlevé type reductions for the non-Abelian Volterra lattices. Journal of Physics A: Mathematical and Theoretical, 54(3):035204, 2020. arXiv:2010.09021. ^ 1( , 14, 1! , 54, 55, 70
[AK22] V. E. Adler and M. P. Kolesnikov. Non-Abelian Toda lattice and analogs of Painleve III equation. J. Math. Phys, 63:10350^, 2022. arXiv:2203.09977. ^ 10
[ARS80] M. J. Ablowitz, A. Ramani, and H. Segur. A connection between nonlinear evolution equations and ordinary differential equations of P-type. II. Journal of Mathematical Physics, 21(5): 1006—1015, 1980. ^ 8
[AS21a] V. E. Adler and V. V. Sokolov. Non-Abelian evolution systems with conservation laws. Mathematical Physics, Analysis and Geometry, 24(1):1-24, 2021. arXiv:2008.09174. ^ 35
[AS21b] V. E. Adler and V. V. Sokolov. On matrix Painleve II equations. Theoret. and Math. Phys., 207(2): L88—201, 2021. arXiv:2012.05639. ^ , 12, 14, 15, 39, 5 , 30, 62 , 85
[BCR18] M. Bertola, M. Cafasso, and V. Rubtsov. Noncommutative Painleve equations and systems of Calogero type. Communications in Mathematical Physics, 363(2): 503— 530, 2018. arXiv:1710.00736. ^ 8
[BMM21] A. Branquinho, A. Moreno, and M. Manas. Matrix biorthogonal polynomials: Eigenvalue problems and non-Abelian discrete Painleve equations: a Riemann-Hilbert problem perspective. Journal of Mathematical Analysis and Applications, 494(2):124605 , 2021. ^ 64
[Boa12] P. Boalch. Simply-laced isomonodromy systems. Publications mathématiques de lTHÉS, 116:1-68, 2012. arXiv:1107.0874. ^ 64
[BRRS22] I. Bobrova, V. Retakh, V. Rubtsov, and G. Sharygin. A fully noncommutative analog of the Painleve IV equation and a structure of its solutions. Journal of Physics A: Mathematical and Theoretical, 55(47):47520 , 2022. arXiv:2205.05107. ^ 3 ,34, 35
[BS98] S. P. Balandin and V. V. Sokolov. On the Painleve test for non-Abelian equations. Physics letters A, 246(3-4):267-272 , 1998. ^ , 11, 12, 37, 38, 39, 85
[BS22a] I. Bobrova and V. Sokolov. Classification of Hamiltonian non-abelian Painleve type systems. Journal of Nonlinear Mathematical Physics, pages 1-16, 2022. arXiv:2209.00258. ^ L0
[BS22b] I. Bobrova and V. Sokolov. Non-abelian Painleve systems with generalized Okamoto integral. arXiv preprint arXiv:2206.10580, 2022. ^ 1!, 30
[BS22c] I. A. Bobrova and V. V. Sokolov. On matrix Painleve-4 equations. Nonlinearity, 35(12): 652 , nov 2022. arXiv:2107.11680, arXiv:2110.12159. ^ 17, 19 , 73, 77
[CM08] R. Conte and M. Musette. The Painleve Handbook. Springer, 2008. ^ 9
[CM13] R. Conte and M. Musette. Introduction to the Painleve property, test and analysis. AIP Conference Proceedings, 1562(1):24-29, 2013. arXiv:1406.6510. ^ 23
[CM14] M. Cafasso and D. Manuel. Non-commutative Painleve equations and Hermitetype matrix orthogonal polynomials. Communications in Mathematical Physics, 326(2): 559-583, 2014. arXiv:1301.2116. ^ , 10, 19 , 64
[CM+18] M. Cafasso, D. Manuel, et al. The Toda and Painleve systems associated with semiclassical matrix-valued orthogonal polynomials of Laguerre type. SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, 14:076, 2018. arXiv:1801.08740. ^ 9
[CMR17] L. Chekhov, M. Mazzocco, and V. Rubtsov. Painleve monodromy manifolds, decorated character varieties, and cluster algebras. International Mathematics Research Notices, 2017(24):7639-769 , 2017. arXiv:1511.03851. ^ 25
[DZ04] B. Dubrovin and Y. Zhang. Virasoro symmetries of the extended Toda hierarchy. Comm. Math. Phys., 250:161-193, 2004. ^ 8
[DZ05] B. Dubrovin and Y. Zhang. Normal forms of hierarchies of integrable PDEs. Frobe-nius manifolds and Gromov-Witten invariants, a new, 2005. ^ 8
[EGR97] P. Etingof, I. Gelfand, and V. Retakh. Factorization of differential operators, quasideterminants, and nonabelian Toda field equations. Math. Res. Lett., 4:413-25, 1997. arXiv:q-alg/9701008. ^ 68
[FIN+06] A. S. Fokas, A. R. Its, V. Yu. Novokshenov, A. A. Kapaev, A. I. Kapaev, and V. I.
Novokshenov. Painleve transcendents: the Riemann-Hilbert approach. American Mathematical Soc., 2006. 9
[FL98] D. R. Farkas and G. Letzter. Ring theory from symplectic geometry. Journal of Pure and Applied Algebra, 125: L55-190, 1998. ^ 79
[FN80] H. Flaschka and A. C. Newell. Monodromy- and spectrum-preserving deformations I. Communications in Mathematical Physics, 76(1):65-116, 1980. ^ 31 , 62
[Fuc07] R. Fuchs. Uber lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singularen Stellen. Mathematische Annalen, 63(3):301-321, 1907. ^ 7
[Gam10] B. Gambier. Sur les equations différentielles du second ordre et du premier degre dont l'integrale generale est à points critiques fixes. Acta Mathematica, 33(1):1-55, 1910. ^ 7, 15, 22, 25
[Gar12] R. Garnier. Sur des equations différentielles du troisieme ordre dont l'integrale generale est uniforme et sur une classe d'equations nouvelles d'ordre superieur dont l'integrale generale a ses points critiques fixes. In Annales scientifiques de l'Ecole normale supérieure, volume 29, pages 1-126, 1912. ^ 7, 27
[GD75] I. M. Gelfand and L. A. Dikii. Asymptotic behaviour of the resolvent of Sturm-Liouville equations and the algebra of the Korteweg-de Vries equations. Russian Mathematical Surveys, 30(5):67-100, 1975. ^ 36
[GGRW05] I. Gelfand, S. Gelfand, V. Retakh, and R. Wilson. Quasideterminants. Advances in Mathematics, 193(1):56-141, 2005. arXiv:math/0208146. ^ 66
[GPZ10] P. R. Gordoa, A. Pickering, and Z. N. Zhu. Backlund transformations for a matrix second Painleve equation. Physics Letters A, 374(34):3422-342 , 2010. ^ 64
[GPZ16] P. R. Gordoa, A. Pickering, and Z. N. Zhu. On matrix Painleve hierarchies. Journal of Differential Equations, 261(2):1128-117 , 2016. ^ 6', 80
[GR91] I. M. Gelfand and V. S. Retakh. Determinants of matrices over noncommutative rings. Functional Analysis and Its Applications, 25(2):91-10 , 1991. ^ 65 , 66, 69
[GR92a] I. Gelfand and V. Retakh. A theory of noncommutative determinants and characteristic functions of graphs. Functional Analysis and Its Applications, 26(4):231-246, 1992. ^ 9, 16
[GR92b] I. M. Gelfand and V. S. Retakh. A theory of noncommutative determinants and characteristic functions of graphs. Functional Analysis and Its Applications, 26(4):231-246, 1992. ^ 68, 69
[GR19] I. Yu. Gaiur and V. N. Rubtsov. Dualities for rational multi-particle Painlevé systems: Spectral versus Ruijsenaars. arXiv preprint arXiv:1912.1258 , 2019. ^ 10
[Hon09] A. Hone. Painleve tests, singularity structure and integrability. Integrability, pages 245-277, 2009. arXiv:nlin/0502017v2. ^ 23
[HTW93] J. Harnad, C. A. Tracy, and H. Widom. Hamiltonian structure of equations appearing in random matrices. In Low-Dimensional Topology and Quantum Field Theory, pages 231-245. Springer, 1993. arXiv:9301051. ^ 29
[IK21] K. Inamasu and H. Kimura. Matrix hypergeometric functions, semi-classical orthogonal polynomials and quantum Painleve equations. Integral Transforms and Special Functions, 32(5-8): 528-544, 2021. ^ 64
[Irf12] M. Irfan. Lax pair representation and Darboux transformation of noncommutative Painleve's second equation. Journal of Geometry and Physics, 62(7):1575-1582, 2012. arXiv:1201.0900. ^ 1(, 62
[JKM04] N. Joshi, K. Kajiwara, and M. Mazzocco. Generating function associated with the determinant formula for the solutions of the Painleve II equation. In Loday-Richaud Michele, editor, Analyse complexe, systèmes dynamiques, sommabilité des séries divergentes et théories galoisiennes (II), number 297 in Asterisque. Societe mathematique de France, 2004. arXiv:nlin/0406035. ^ 16, 31 , 80
[JKM06] N. Joshi, K. Kajiwara, and M. Mazzocco. Generating function associated with the Hankel determinant formula for the solutions of the Painleve IV equation. Funkcialaj Ekvacioj, 49(3):451-468, 2006. arXiv:nlin/0512041. ^ 1 , 80
[JKT07] N. Joshi, A. V. Kitaev, and P. A. Treharne. On the linearization of the Painleve III-VI equations and reductions of the three-wave resonant system. Journal of Mathematical Physics, 48(10):10351 , 2007. arXiv:0706.1750v3. ^ , 19, 28, 75, 76
[JKT09] N. Joshi, A. V. Kitaev, and P. A. Treharne. On the linearization of the first and second Painleve equations. Journal of Physics A: Mathematical and Theoretical, 42(5):055208 , 2009. arXiv:0806.0271v1. ^ 30
[JM81] M. Jimbo and T. Miwa. Monodromy perserving deformation of linear ordinary differential equations with rational coefficients. II. Physica D: Nonlinear Phenomena, 2(3):407-448 , 1981. ^ , 19, 27, 28, 30, 75
[Kaw15] H. Kawakami. Matrix Painleve systems. Journal of Mathematical Physics, 56(3):03350; , 2015. ^ , 10, 13, 63, 79
[KH99] A. A. Kapaev and E. Hubert. A note on the Lax pairs for Painleve equations. Journal of Physics A: Mathematical and General, 32(46):8145, 1999. ^ 28
[KMN+01] K. Kajiwara, T. Masuda, M. Noumi, Y. Ohta, and Y. Yamada. Determinant formulas for the Toda and discrete Toda equations. Funkcialaj Ekvacioj, 44:291307, 2001. arXiv:solv-int/9908007. ^ 16, 31
[Kow89] S. Kowalevski. Sur le probleme de la rotation d'un corps solide autour d'un point fixe. Acta Math., 12:177-232, 1889. ^ 7
[Kri81] I. M. Krichever. The periodic non-abelian Toda chain and its two-dimensional generalization. Russ. Math. Surv, 36(2):82-89, 1981. ^ 68
[Mal74] B. Malgrange. Integrales asymptotiques et monodromie. In Annales scientifiques de l'Ecole normale supÉrieure, volume 7, pages 405-430, 1974. ^ 7
[Mik81] A. V. Mikhailov. The reduction problem and the inverse scattering method. Physica D: Nonlinear Phenomena, 3(1-2):73-11 , 1981. ^ 68
[Mik20] A. V. Mikhailov. Quantisation ideals of nonabelian integrable systems. Russian Mathematical Surveys, 75(5):978-98 , 2020. arXiv:2009.01838. ^ 64
[NGR+08] H. Nagoya, B. Grammaticos, A. Ramani, et al. Quantum Painleve equations: from Continuous to discrete. STGMA. Symmetry, Tntegrability and Geometry: Methods and Applications, 4:051 , 2008. ^ , 10, 17, 6 , 73
[Nou04] M. Noumi. Painleve Equations Through Symmetry, volume 223. Springer Science & Business, 2004. ^ 30
[NY00] M. Noumi and Y. Yamada. Affine Weyl group symmetries in Painleve type equations. Citeseer, 2000. ^ 19, 2 , 74, 80
[0ka80] K. Okamoto. Polynomial Hamiltonians associated with Painleve equations, I. Proceedings of the Japan Academy, Series A, Mathematical Sciences, 56(6):264-268, 1980. ^ 8, 28
[Oka81] K. Okamoto. On the r-function of the Painleve equations. Physica D: Nonlinear Phenomena, 2(3):525-535, 1981. ^ 8, 32
[Oka86] K. Okamoto. Studies on the Painlevé Equations. III. Second and Fourth Painlevé Equations PII and PIV. Mathematische Annalen, 275:221-25. , 1986. ^ 8
[Oka87a] K. Okamoto. Studies on the Painleve Equations. I. Sixth Painleve equation PIV. Ann. Mat. Pura Appl., 146(4):337—381 , 1987. ^ 8
[Oka87b] K. Okamoto. Studies on the Painleve equations. II. Fifth Painleve equation PV. Japanese journal of mathematics. New series, 13(1):47-71 , 1987. ^ 8
[Oka87c] K. Okamoto. Studies on the Painleve equations. IV. Third Painleve equation PIII. Funkcial. Ekvac, 30(2-3): 305-332, 1987. ^ 8
[OS98] P. J. Olver and V. V. Sokolov. Integrable evolution equations on associative algebras. Communications in Mathematical Physics, 193(2): 245-268, 1998. ^ 1 ,36, 37
[OW00] P. J. Olver and J. P. Wang. Classification of integrable one-component systems on associative algebras. Proceedings of the London Mathematical Society, 81(3): 566586, 2000. ^ 36
[Pai00] P. Painleve. Memoire sur les equations differentielles dont l'integrale generale est uniforme. Bulletin de la Société Mathématique de France, 28:201-261, 1900. ^ 7, 22, 24
[Pai02] P. Painleve. Sur les equations differentielles du second ordre et d'ordre superieur dont l'integrale generale est uniforme. Acta mathematica, 25:1-85, 1902. ^ , 22, 24
[RR10] V. S. Retakh and V. N. Rubtsov. Noncommutative Toda Chains, Hankel Quaside-terminants and Painleve II Equation. Journal of Physics. A, Mathematical and Theoretical, 43(50):50520^ , 2010. arXiv:1007.4168. ^ 8, , 16, 6 , 68, 81
[Sak01] H. Sakai. Rational surfaces associated with affine root systems and geometry of the Painleve equations. Communications in Mathematical Physics, 220(1):165-229, 2001. ^ 25
[Sch12] L. Schlesinger. Uber eine Klasse von Differentialsystemen beliebiger Ordnung mit festen kritischen Punkten. Journal fur die reine und angewandte Mathematik, pages 96-145, 1912. ^ 7
[SW20] V. V. Sokolov and T. Wolf. Non-commutative generalization of integrable quadratic ODE systems. Letters in Mathematical Physics, 110(3):533-55i , 2020. ^ 42
[Tak01] K. Takasaki. Painleve-Calogero correspondence revisited. J. Math. Phys., 42:14431473, 2001. ^ 8
[VDPS09] M. Van Der Put and M.-H. Saito. Moduli spaces for linear differential equations and the Painleve equations. In Annales de l'Institut Fourier, volume 59, pages 2611-2667, 2009. ^ 8
[VS93] A. P. Veselov and A. B. Shabat. Dressing chains and the spectral theory of the Schrodinger operator. Functional Analysis and Its Applications, 27(2): 81-96, 1993. ^ 13 , 17, 80
[WK74] M. Wadati and T. Kamijo. On the extension of inverse scattering method. Progress of theoretical Physics, 52(2):397-414, 1974. ^ 36
[ZS74] V. E. Zakharov and A. B. Shabat. A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I. Functional Analysis and Its Applications, 8(3):43-53, 1974. ^ 8
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.