Стохастические интегрируемые процессы и представления группы кос тема диссертации и автореферата по ВАК РФ 01.01.03, кандидат наук Трофимова Анастасия Алексеевна

  • Трофимова Анастасия Алексеевна
  • кандидат науккандидат наук
  • 2022, ФГАОУ ВО «Национальный исследовательский университет «Высшая школа экономики»
  • Специальность ВАК РФ01.01.03
  • Количество страниц 65
Трофимова Анастасия Алексеевна. Стохастические интегрируемые процессы и представления группы кос: дис. кандидат наук: 01.01.03 - Математическая физика. ФГАОУ ВО «Национальный исследовательский университет «Высшая школа экономики». 2022. 65 с.

Оглавление диссертации кандидат наук Трофимова Анастасия Алексеевна

Contents

Introduction

1 Representations of finite-dimensional quotients of C[B3]

1.1 Braid group B3 and its quotients

1.2 Spectra of the central element and of generators

1.3 Low dimensional representations of QX

1.4 Semisimplicity criteria

2 q-boson zero range process

2.1 The model and its observables

2.1.1 Stationary state and scaled current cumulants

2.1.2 Interface growth and KPZ-EW universality

2.2 Exact formulae for scaled current cumulants

2.2.1 Bethe ansatz and T-Q equation

2.2.2 First order calculation

2.2.3 Second order calculation

2.3 Asymptotic analysis

2.3.1 Saddle point approximation

2.3.2 KPZ regime |q| =

2.3.3 KPZ - EW crossover

Conclusion

References

Рекомендованный список диссертаций по специальности «Математическая физика», 01.01.03 шифр ВАК

Введение диссертации (часть автореферата) на тему «Стохастические интегрируемые процессы и представления группы кос»

Abstract

Integrability is an important property of models of quantum mechanics and statistical physics that makes an exact solution possible. One of the main methods that is used to study integrable systems is the Bethe ansatz approach based on the Yang-Baxter equation. The study and classification of existing R-matrices as well as the search of the new ones become a problem of mathematical physics. One of the major sources of R-matrix representations is the representations of the braid group on three strings and its finite-dimensional quotient algebras. New results were obtained in two directions.

The first direction is the classification of low dimensional irreducible representations of the braid group on three strings. We consider families of the finite dimensional quotient algebras of the group algebra of the braid group on three strings by a p-th order generic monic polynomial relation on the elementary braids (also known as Artin generators). These are the cases of power p = 2, 3,4, 5 polynomial relation with the corresponding dimensions of quotient algebras equal to 6, 24, 96, and 600, respectively. We construct a series of representations of dimension < 6 (Proposition 1.3.1) and find the conditions under which they are irreducible (Proposition 1.4.1). For the considered quotient algebras we formulate semisimplicity criteria, and if those criteria are satisfied we give a complete classification of irreducible representations (Theorem 1.4.1). Our classification complements the list of all the irreducible representations of the braid group on three strings of dimensions < 5 found by I. Tuba and H. Wenzl (2001) by adding irreducible representations of dimension 6. The study of these 6-dimensional representations brings new criteria.

Another subject of the research is stochastic integrable particle systems. Our interest concerns the statistics of a particle flow in the q-boson zero range process (ZRP) on a ring. With the use of Bethe ansatz and TQ-relation methods we calculate the first two cumulants of the particle current. The exact formula for the second cumulant is obtained in the form of an infinite sum of double contour integrals (Theorem 2.1.1). This representation allows us to perform the asymptotic analysis of the large system size limit. In this limit we find that at generic values of parameter controlling interparticle interaction the second cumulant reproduces the scaling expected for the models in the Kardar-Parisi-Zhang universality class (Theorem 2.1.1). Another result is the universal scaling function describing the crossover between the Kardar-Parisi-Zhang and Edwards-Wilkinson universality classes. It is obtained from the exact formula for the second cumulant in a scaling limit corresponding to the KPZ-EW transition (Theorem 2.1.2). It agrees with the scaling function first found for the asymmetric simple exclusion process and conjectured to be universal.

Acknowledgments

The author is deeply grateful to her scientific advisors Alexander Povolotsky and Pavel Pyatov for stating the problems, for fruitful discussions and ideas, for guidance, patience and support.

Author is grateful to Higher School of Economics and Skolkovo Institute of Science for the organisation of education procedure that gave a lot of space for research and for supporting trips to scientific conferences.

Author is also grateful to her family for endless support.

Похожие диссертационные работы по специальности «Математическая физика», 01.01.03 шифр ВАК

Заключение диссертации по теме «Математическая физика», Трофимова Анастасия Алексеевна

Conclusion

To summarize, for all finite-dimensional quotient algebras of the group algebra C[B3] by p-order generic polynomial relations on elementary braids we have classified all their irreducible representations and found the semisimplicity criteria. Even though the representations of dimension < 5 were already found [11] the choice of diagonal basis for the first elementary generator allows us to find also 6-dimensional irreducible representations and obtain semisimplisity criteria including the new ones. Our result contributes to the list of low-dimensional irreducible representations of the braid group B3. We believe that the problem of construction of a new integrable stochastic R-matrix representations of the braid group leads to the new integrable models and is perspective for future research.

As for the examination of stochastic integrable particle systems we studied a particle flow in the q-boson zero range process with the use of Bethe ansatz and T-Q-relation methods. These methods were effective for the search of the exact expressions for the first two cumulants of the particle current. We reproduced the scaling N3/2 for q = 1, which is expected for the models in the Kardar-Parisi-Zhang universality class. In the limit of q = exp(- ) ^ 1 we found the universal scaling function describing crossover between the Kardar-Parisi-Zhang and Edwards-Wilkinson universality classes. It agrees with the universal scaling crossover function initially found for the asymmetric simple exclusion process and conjectured to be universal.

The exact expressions for the first two cumulants can be considered as a first step in the studies of the large time behaviour of q-boson type models in confined geometry. The next goal could be a construction of the higher cumulants of the model. In particular, it would be interesting to study KPZ-EW crossover not only for particular current cumulants, but also for the whole large deviation function.

The other perspective direction is a study of the q-boson-like models with more parameters, for example, q-Hahn(chipping model) or q,^, v-ZRP. Some of the models are good candidates for research of transitions between KPZ and other than EW types of behaviour. One of the examples of such models is the TASEP with generalized update studied recently in [80]. In that case the Bethe ansatz solution simplifies greatly delivering the whole scaled cumulant generating function by the Derrida-Lebowitz method. The model experience crossover from the KPZ specific behaviour to Gaussian deterministic aggregation regime. The other example is the chipping model [88] with parameter q = 0. In this case the method of Derrida-Lebowitz is inapplicable. The appropriate tool would then be the T-Q relation approach developed in [76] adopted for the q-boson model.

One more intriguing model is the asymmetric avalanche process [89, 79]. It is an ASEP-like 1-dimensional particle model with totally asymmetric avalanche dynamics. At a low (subcritical) particle density the particle flow is intermittent, while at a high particle density, it becomes continuous [69] due to presence of giant avalanches. The subcritical large deviation function of the particle current in AAP in a periodic system obtained in [92] has a universal scaling form specific for KPZ universality class. Increase of density leads to transition of the model to another universality class. In the article recently accepted for publication [87] we also applied the Bethe ansatz and the T-Q relation approach to obtain the exact expressions for the first two scaled cumulants of the particle current in the large time limit. The asymptotic analysis in the large system size limit N ^ ro differs significantly from the q-boson ZRP. It results in interesting scaling behaviour both for the particle current and diffusion coefficient. The approach proved its effectiveness delivering

scaling exponents at three different model regimes and giving crossover functions from the KPZ specific behaviour to to the tilted interface universality class [90, 91].

Finally, one may consider the similar problem for q-boson ZRP on the open segment. By now the current-density diagram was obtained for this model using the matrix product representation of the stationary state, however the further current cumulants and the large deviation function are not known. The generalization of the T-Q approach to this problem is a challenging. However, it is expected that these results match with the corresponding solution of ASEP with open boundaries [72, 41]. This is a matter of further studies.

Список литературы диссертационного исследования кандидат наук Трофимова Анастасия Алексеевна, 2022 год

Publications

The main results of the thesis are presented in two papers:

1. Pyatov P., Trofimova A., Representations of finite-dimensional quotient algebras of the 3-string braid group, Moscow Math. J., 2021, 21, 427-442.

2. A. Trofimova, A. Povolotsky, Current statistics in the q-boson zero range process, J. Phys. A: Math. Theor. 2020, 53, 283003-1-283003-35.

Bibliography

[1] Korepin V E Bogoliubov N M and Izergin A G 1993 Quantum inverse scattering method and correlation functions (Cambridge Monographs on Mathematical Physics, Cambridge University Press)

[2] Baxter R J 1982 Exactly solved models in statistical mechanics (London, Academic Press)

[3] Coxeter H S M 1957 Factor groups of the braid group (University of Toronto Press) 95-122

[4] Curtis C and Reiner I Methods of representation theory — with applications to finite groups and orders II (Pure and applied mathematics John Wiley & Sons, Inc., New York)

[5] Halverson T and Ram A 2005 European J. Comb. 26 869-921

[6] Hoefsmit P N 1974 Representations of Hecke Algebras of Finite Groups with BN Pairs of Classical Type(Thesis) (University of British Columbia)

[7] Leduc R and Ram A 1997 Adv. Math. 125 1-94

[8] Formanek E, Lee W, Sysoeva I and Vazirani M 2003 J. Algebra and Appl. 2 3 317-333

[9] Albeverio S and Kosyak A 2008 q-Pasqal's triangle and irreducible representations of the braid group B3 in arbitrary dimension ( arXiv:0800.2778)

[10] Birman J S and Brendle T E 2005 Braids: A survey. In Handbook of Knot Theory (Elsevier).

11] Tuba I and Wenzl H 2001 Pacific J. Math. 197 2 491-510

12] Westbury B 1995 'On the character varieties of the modular group, preprint, (University of Nottingham)

13] Le Bruyn L, 2011 J. Pure Appl. Algebra 215 1003-1014

14] Le Bruyn 2013 Most irreducible representations of the 3-string braid group (arXiv:1303.4907)

15] Broue M, Malle G and Rouquer R, 1995 On complex reflection groups and their associated braid groups (CMS Conf. Proc. 16, Amer. Math. Soc., Providence) 1-13

16] Broue M, Malle G and Rouquer R 1998 J. Reine Angew. Math. 500 127-190

17] Malle G and Michel J 2010 LMS J. Comput. Math. 13 426-450

18] Marin I 2014 J. Pure Appl. Algebra 218 704-720

19] Marin I 2017 Report on the Broue-Malle-Rouquier conjectures, (Perspectives in Lie Theory, Springer INdAM Series 19) 359-368

20] Etingof P 2017 Arnold Math. J. 3 3 445-449

21] Boura C, Chavli E, Chlouveraki M and Karvounis K 2020 J. Symb. Comp. 96 62-84

22] Shephard G C and Todd J A 1954 C'anad. J. Math. 6 274

23] Losev I 2015 Algebra Number Theory 9 493-502

24] Chavli E 2016 J. Algebra 159 238-271

25] Chavli E 2018 Comm. in Algebra 46 1 2018 386-464

26] Edwards S F and Wilkinson D R 1982 Proc. Roy. Soc. of London A: Math. and Phys. Sci. 381 17

27] Kardar M, Parisi G and Zhang Y-C 1986 Phys. Rev. Lett. 56 889

28] Halpin-Healy T and Zhang Y-C 1995 Phys. rep. 254 215

29] Krug J 1997 Adv. Phys. 46 139

30] Krug J, Meakin P and Halpin-Healy T 1992 Phys. Rev. A 45 638

31] Liggett T M 2005 Interacting particle systems (Springer)

32] Derrida B, Domany E and Mukamel D 1992 J. Stat Phys. 69 667

33] Derrida B, Evans M R, Hakim V and Pasquier V 1993 J Phys A: Math and Gen 26 1493

34] Derrida B and Evans M R 1993 J. Phys. I France 3 3 (2) 311

35] Derrida B and Lebowitz J L 1998 Phys. Rev. Lett. 80 209

36] Appert-Rolland C, Derrida B, Lecomte V and Van Wijland F 2008 Phys. Rev. E 78 021122

37] Derrida B, Lebowitz J L and Speer E R 2001 Phys.Rev. Lett. 87 150601

38] Derrida B, Lebowitz J L and Speer E R 2002 Phys. Rev. Lett. 89 030601

39] de Gier J and Essler F H 2011 Phys. Rev. Lett. 107 010602

40] Lazarescu A and Mallick K 2011 J. Phys. A: Math. Theor. 44 315001

41] Gorissen M, Lazarescu A, Mallick K and Vanderzande C 2012 Phys. Rev. Lett. 109 170601

[42] Lazarescu A and Pasquier V 2014 J. Phys. A: Math. Theor. 47 295202

[43] Derrida B and Mallick K 1997 J Phys A: Math Gen 30 1031-46

[44] Derrida B. 1998 Phys Rep 301 65

[45] Derrida B J 2007 J Stat Mech. 2007 P07023

[46] Lazarescu A 2015 J. Phys. A: Math. Theor. 48 503001

[47] Johansson K 2000 Comm. Math. Phys. 209(2) 437

[48] Nagao T and Sasamoto T 2004 Nucl. Phys. B 699 487

[49] Prahofer, M and Spohn H. 2002 Current fluctuations for the totally asymmetric simple exclusion process. In and out of equilibrium (Mambucaba, Progress in Probability, 51 Birkhauser Boston), 185-204

[50] Ferrari P and Spohn H 2006 Comm. Math. Phys. 265 1

[51] Sasamoto T 2005 J. Phys. A 38(33) L549

[52] Borodin A, Ferrari PL , Prahofer M and Sasamoto T 2007 J. Stat. Phys. 129 1055

[53] Imamura T and Sasamoto T 2007 J. Stat. Phys. 128 799

[54] Povolotsky A M, Priezzhev V B and Schutz G M 2011 J. Stat. Phys. 142 754

[55] Borodin A and Ferrari P 2008 El. J. Prob. 13 1380

[56] Borodin A, Ferrari P L and Sasamoto T 2008 Comm. Math. Phys. 283 417

[57] Poghosyan S S, Povolotsky A M and Priezzhev V B 2012 J. Stat. Mech.: Theor. Exp. 2012 P08013

[58] Johansson K 2019 Prob. Theor. Rel. Fields 175 849

[59] Johansson K and Rahman M 2021 Pure and Appl. Math. 74 12 2561

[60] Prolhac S 2015 J. Phys. A 48(6) 06FT02

[61] Prolhac S 2015 Journal of Stat. Mech.: Theor.Exp. 2015 P11028

[62] Prolhac S 2016 Phys. Rev. Lett. 116 090601

[63] Baik J and Liu Z 2016 J. Stat. Phys. 165 1051

[64] Baik J and Liu Z 2018 Comm. Pure Appl. Math. 71 747

[65] Baik J and Liu Z 2019 J. Amer. Math. Soc. 32 609

[66] Evans M R 2000 Braz. J. Phys. 30, 42

[67] Bogoliubov N M and Bullough R K 1992 J. Phys. A: Math. Gen. 25 4057

[68] Sasamoto T and Wadati M 1998 J. Phys. A: Math. Gen. 31 6057

[69] Povolotsky A M 2004 Phys. Rev. E 69 061109

[70] Borodin A and Corwin I 2014 Prob. Theor. Rel. Fields 158 225

[71] Derrida B, Evans MR and Mukamel D 1993 J. Phys. A: Math.Gen. 26 4911

[72] Derrida B, Evans MR and Mallick 1995 J. Stat. Phys. 79 833

[73] Kim D 1995 Phys. Rev. E 52 3512

[74] Lee D S and Kim D 1999 Phys. Rev. E 59 6476

[75] Amar J G and Family F 1992 Phys. Rev. A 45 R3373

[76] Prolhac S and Mallick K 2008 J. Phys. A: Math. Theor. 41 175002

[77] Crampe N and Nepomechie R I 2018 J. Stat. Mech.: Theor. Exp. 103105

[78] Povolotsky A M and Mendes J F F 2006 J. Stat. Phys. 123 125

[79] Povolotsky A M, Priezzhev V B and Hu C K 2003 J. Stat. Phys. 111 1149

[80] Derbyshev A E, Povolotsky A M and Priezzhev V B 2015 Phys. Rev. E 91(2)022125.

[81] Prolhac S and Mallick K 2009 J. Phys. A: Math. Theor. 42 175001

[82] Michel J 2015 J. Algebra 435 (2015) 308-336

[83] Chow W-L 1948 Ann. of Math.(2) 49 654-658

[84] Chavli E 2020 Algebr. Represent. Theor. 23 1001-1030

[85] Marin I 2012 J. Pure Appl. Algebra 216 2754-2782

[86] Family F and Viseck T 1985 J. Phys. A: Math. Gen. 18 L75

[87] Trofimova A A and Povolotsky A M 2022 J. Phys. A: Math. Theor. 55 025202.

[88] Povolotsky A M 2013 J. Phys. A: Math. Theor. 46 465205

[89] Priezzhev V. B, Ivashkevich E. V, Povolotsky A.M. and Chin-Kun Hu, 2001, Phys. Rev. Lett 87 8 084301-1

[90] Tang L H, Kardar M and Dhar D 1995 Driven depinning in anisotropic media. Phys. Rev. Lett. 74(6) 920

[91] Povolotsky A M, Priezzhev V B and Hu C K 2003 Phys. Rev. Lett. 91(25) 255701

[92] Povolotsky A M, Priezzhev V B and Hu C K 2003 J. Stat. Phys. 111 1149

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.