Исследование фотоплазмы в смесях паров натрия с инертными газами на основе 2D моделирования тема диссертации и автореферата по ВАК РФ 01.04.08, кандидат наук Мандур Мохамед Махсуб Махсуб Махсуб

  • Мандур Мохамед Махсуб Махсуб Махсуб
  • кандидат науккандидат наук
  • 2021, ФГБОУ ВО «Санкт-Петербургский государственный университет»
  • Специальность ВАК РФ01.04.08
  • Количество страниц 290
Мандур Мохамед Махсуб Махсуб Махсуб. Исследование фотоплазмы в смесях паров натрия с инертными газами на основе 2D моделирования: дис. кандидат наук: 01.04.08 - Физика плазмы. ФГБОУ ВО «Санкт-Петербургский государственный университет». 2021. 290 с.

Оглавление диссертации кандидат наук Мандур Мохамед Махсуб Махсуб Махсуб

Table of contents

Introduction

Chapter 1. Literature Review

1.1 A brief overview of photoplasma studies

1.2 Photovoltaic effect in photoplasma

1.3 Photoplasma creation mechanism

1.3.1 Photo-processes

1.3.2 Ionization with the participation of excited atoms

1.3.3 The collision of electrons with excited atoms

1.4 Alkali metals and inert gases

1.5 Conclusions to Chapter

Chapter 2. Numerical Model

2.1 Governing equations

2.2 Simulation Model

2.2.1 Model geometry

2.2.2 Mesh refinement

2.3 Photoplasma chemistry

2.3.3 A simple model approximation

2.3.4 Detailed photoplasma chemistry for sodium

2.4 Assumptions justifications

2.5 Conclusions to Chapter

Chapter 3. Single- and two-chambers configurations

3.1 Method and input data

3.2 Single-chamber configuration

3.3 Two-chamber configuration

3.3.1 Second chamber dimensions optimization

3.3.2 Comparison of single- and two-chamber configurations

3.3.3 Effect of second chamber geometry variation

3.3.4 Effect of photoexcitation rate variation

3.3.5 Dielectric size

3.3.6 Non-homogeneous photoexcitation profile

3.4 Conclusions to Chapter

Chapter 4. Photoplasma of different Na - X mixtures

4.1 Different Na-X gas mixtures

4.1.1 Model input

4.1.2 Basic photoplasma parameters results at different noble gas pressure

4.1.3 2D results of Na-Ne and Na-Xe mixtures

4.2 Na-Ar mixture parametric sweep at different photoexcitation rate

4.3 Parametric sweep for Na-Ar mixture with a load resistance

4.4 Conclusions to Chapter

Chapter 5. Electron vortex in 2D photoplasma

5.1 Model

5.2 Analysis of results with Na-Ar mixture

5.2.1 Details of flux components

5.2.2 Effect of argon gas pressure variation

5.2.3 Variations of photoexcitation rate at a certain buffer gas pressure

5.2.4 Variation of second chamber dimensions

5.3 Different Na-X mixtures

5.4 Conclusions to Chapter

Conclusion

List of Tables

List of Figures

Acknowledgments

References

Appendix

Рекомендованный список диссертаций по специальности «Физика плазмы», 01.04.08 шифр ВАК

Введение диссертации (часть автореферата) на тему «Исследование фотоплазмы в смесях паров натрия с инертными газами на основе 2D моделирования»

Introduction

This work is devoted to studying photoplasma created in sodium vapor - noble gas mixtures in a two-chamber cell using 2D simulation with COMSOL Multiphysics Plasma Module. Detailed plasma chemistry included photoexcitation of alkali atoms, radiation trapping in addition to energy pooling of resonance atoms, penning and associative ionization, electron-atom (both elastic and inelastic) impact reactions, stepwise ionization, dissociative and collision-radiative recombination. The basic photoplasma parameters (charged and excited particle densities, electron temperature, and electric potential) have been obtained, and the study of transport processes has been introduced.

The relevance of the topic

Photoplasma is a specific plasma class with particular characteristics that vary significantly from that of the thermal plasma and discharge plasma that is conventionally formed. Photoplasma is produced by involving the action of optical resonance radiation on a gas. A high electron density characterizes this kind of plasma with a relatively low electron temperature (fraction of eV). It is practically difficult to accomplish these parameters by other types of plasma. The photoplasma is applied in many fields, such as laser-based isotope separation, metal alloy purification, the laser ion source, ionimplantation, and ultra-cold neutral plasma research. Photoplasma studies are relevant not only scientific but also applied. For instance, the realization and implementation of the optogalvanic effect, whose essence lies in altering plasma electrical parameters subject to resonance radiation action. In literature, the kinetics of ionization processes were discussed, and the systematization of different forms of photoplasma was addressed. There were comprehensive discussions of crucial ionization pathways in photoplasma. Various studies were developed on the nature and processes of photoplasma formation for almost a century.

Generally, the absorption of light radiation creates photoplasma, whether the light source is laser or non-laser. However, most previous studies have focused on the laser-induced photoplasma, and a little fragmented research was conducted on the non-laser one. Specifically, a model that considers the major processes of stationary photoplasma in a gas mixture of alkali metal vapor and noble gas at low pressure and moderate irradiation flux density values is not present in the literature. Therefore, a self-consistent, systematic, and correct description of the solar/lamp photoplasma, taking into account detailed plasma chemistry, remains a relevant problem

The aim of this work

The goal of the present work is to:

1. establish a self-consistent stationary photoplasma model in sodium vapor -noble gas mixtures involving explicit plasma chemistry and transport and radiative transfer processes produced by moderate non-laser irradiation power radiation (concentrated solar or lamp irradiation);

2. investigate the total effect of significant processes on the development of a stationary photoplasma (resonance excitation, radiation trapping, chemi-ionization, and the first and second type of electron-atom collisions);

3. present a comparative analysis of single- and two-chamber cells and show the effectiveness of the two-chamber cell configuration in obtaining an electromotive force (EMF) in photoplasma created by a non-laser steady irradiation source;

4. show the ability to have an electromotive force (EMF) from a two-chamber cell configuration of gas mixtures for concentrated light irradiation where it is desirable to obtain an EMF from the direct conversion of the sunlight into electricity (using focused sunlight using lenses);

5. study the effect of the second chamber dimensions and the pressure of buffer gas on the resulting EMF. Moreover, optimize the design parameters, including the gas type and the photoexcitation rate;

6. immerse the kernel of the transport processes that could give us a more detailed understanding of the processes affecting the created photoplasma parameters.

Scientific novelty and practical application of research findings:

1. The phenomenology of creating steady photoplasma using non-laser radiation absorption of sodium vapor with different noble gas mixtures is described, which is practically either absent or fragmented in the literature to date;

2. It is shown that the two-chamber configuration is more eligible for creating electromotive force (EMF) in photoplasma cells over the single-chamber one at different values of buffer gas pressures regardless of the second chamber geometry;

3. Detailed plasma chemistry is included, with the most significant operations in creating steady photoplasma, which is absent in the literature. An explicit consideration as plasma chemistry and so the charge and radiation transfer processes are presented, which allow the developing and optimizing of photoelectric converters containing alkali metal vapors;

4. It is shown that the sodium vapor-argon gas mixture introduces relatively good results over using other noble gases from plasma parameters and commercial aspects. Also, it should be noted the ecological compatibility of this composition;

5. The study of the new phenomenon - the presence of electron vortexes in steadily generated two-dimensional photoplasma is presented. Vortex electron currents effect on transport processes in 2-D photoplasma of sodium - noble gas mixtures is shown;

6. The model developed and the numerical results obtained are important in studying stationary photoplasma in various mixtures containing an alkali metal and different gas cell geometries. It may be used to design a photoelectric converter based on solar irradiation or on various gas lamps being irradiated.

The reliability of the results

The validity of the findings is based on a careful analysis and choice of available data from the literature. A qualitative estimate of different photoplasma parameters with a good analogy of the few experimental works available in the literature is presented.

The personal contribution of the author

The author entirely conducted 2D simulations and presented these results for scientific analysis; together with the scientific supervisor and scientific consultant, they created a database for this research, analyzing the working model, analyzing the results, preparing and publishing articles.

Approbation

The materials presented in this thesis were presented at Russian and International conferences:

1. 11th International Conference on Plasma Assisted Technologies (ICPAT-11), Abu-Dabi, UAE, January 22-24, 2018, http://www.plasmacombustion.org/imgs/ICPAT-11%20Book.pdf#page=50; "Development of a Solar Photoelectric Converter Based on a Two-Chamber Photoplasma"

2. 12th International Conference on Plasma Assisted Technologies (ICPAT-12), Yalta, Russia, September 2-4, 2019, http://www.plasmacombustion.com/publications/ICPAT-12%20Agenda.docx; "2D Simulation of Two-Chamber Photoplasma for Conversion of Light Radiation to Electrical Energy"

3. IX International Conference Photonics and Information Optics, Moscow, Russia, January 29-31, 2020, http://fioconf.mephi.ru/files/2019/12/FI02020-Sbornik.pdf; A photoelectric converter based on a two-chamber photoplasma cell: 2d simulation

4. Наука СПбГУ - 2020, Saint-Petersburg, Russia, December 24, 2020, https://events.spbu.ru/eventsContent/events/2020/program 2412.pdf; " Effect of vortex electron currents on photo-EMF in photoplasma with Na-Ar mixture"

5. X International Conference Photonics and Information Optics, Moscow, Russia, January 27-29, 2021, http://fioconf.mephi.ru/files/2021/01/FI02021-Sbornik.pdf; "Generation of photo-emf in a photoplasma cell containing different sodium-noble gas mixtures."

6. X International Conference Photonics and Information Optics, Moscow, Russia, January 27-29, 2021, http://fioconf.mephi.ru/files/2021/01/FIO2021-Sbornik.pdf; "Photo-emf in a single- and two-chamber photoplasma cells in a Na-Ar mixture."

Author's publications on the dissertation topic

The main results on the thesis topic are presented in 5 articles in peer-reviewed journals, indexed by the Web of Science and Scopus T1—5] :

1. Mandour M.M., Astashkevich S.A., Kudryavtsev A.A. 2-D Simulation of Two-Chamber Photoplasma for Conversion of Light Radiation to Electrical Energy // IEEE Trans. Plasma Sci. 2020. Vol. 48, № 2. P. 394—401. DOI: 10.1109/TPS.2019.2955067

2. Mandour M.M., Astashkevich S.A., Kudryavtsev A.A. Optimization of Photoelectric Converter Based on a Two-Chamber Na—Ar Gas Photoplasma // IEEE Trans. Plasma Sci. 2020. Vol. 48, № 2. P. 402—409. DOI: 10.1109/TPS.2019.2951997

3. Mandour M.M., Astashkevich S.A., Kudryavtsev A.A. 2D simulation of solar/lamp two-chamber photoelectric converter with different sodium—noble gas mixtures // Plasma Sources Sci. Technol. 2020. Vol. 29, № 11. P. 115005. DOI: 10.1088/1361-6595/abbae6

4. Mandour M.M., Astashkevich S.A., Kudryavtsev A.A. On the validity of two-chamber configuration for the generation of electromotive force in photoplasma // IEEE Trans. Plasma Sci. 2021. DOI: 10.1109/TPS.2020.3039830

5. Mandour M.M., Astashkevich S.A., Kudryavtsev A.A. Influence of vortex electron currents on transport processes in 2-D photoplasma of sodium — noble gases mixtures // IEEE Trans. Plasma Sci. 2021. DOI: 10.1109/TPS.2020.3041183

Under Revision in Journal;

6. Mandour M.M., Astashkevich S.A., Kudryavtsev A.A. Electron vortexes in 2D steady photoplasma // submitted.

The scope and structure of the thesis

The thesis consists of an introduction, five chapters, a conclusion, a list of figures, and tables, references, and an appendix. The full volume of the thesis is 139 pages with 55 figures and 6 tables. The list of references contains 171 items.

Похожие диссертационные работы по специальности «Физика плазмы», 01.04.08 шифр ВАК

Заключение диссертации по теме «Физика плазмы», Мандур Мохамед Махсуб Махсуб Махсуб

Заключение

В заключение основные результаты, полученные в данной работе, можно сформулировать следующим образом:

1. Проведен анализ доступной литературы, посвященной исследованию различных механизмов и типов фотоплазмы, а также описан фотовольтаический эффект, наблюдаемый в различных видах фотоплазмы. Установлено, что существуют разрозненные данные об установившейся нелазерной генерации фотоплазмы.

2. Впервые подробная численная модель фотоплазмы была представлена в модуле 2Э-осесимметричной плазмы в СОМБОЬ с использованием интерфейса дрейф-диффузия. На этом интерфейсе хорошо известная модель плазменной жидкости описывает плазму с помощью следующих уравнений: (а) Уравнение неразрывности используется для расчета плотности частиц различных видов (электронных, атомных и молекулярных ионов натрия, резонансных атомов и возбужденный). (б) В то время как уравнение баланса импульса используется для получения потока частиц для различных частиц. (в) Кроме того, уравнение Пуассона для электростатического поля. (г) Наконец, уравнение баланса энергии электронов.

3. Было введено простое модельное приближение для обоснования выбора паров натрия среди паров других щелочных металлов. Были представлены обоснования базовых допущений модели, использованных в данном исследовании.

4. Впервые была представлена подробная химия фотоплазмы, включая основные, резонансные, уровни с высоким возбуждением, атомные и молекулярные ионы атома щелочного металла, с учетом резонансного поглощения излучения, улавливания излучения, объединения энергии, пеннинга и ассоциативности. ионизация и (упругие и неупругие) электрон-атомные столкновения.

5. Имитационная модель позволяет нам провести исследование оптимизации с множеством перспектив для такого сложного механизма фотоплазменных ячеек, включая следующие:

(а) Оптимизация конфигурации фотоплазменных ячеек с использованием одно- или двухкамерных ячеек. На основании полученных результатов можно сделать вывод, что двухкамерная конфигурация больше подходит для создания ЭДС в фотоплазменных ячейках, чем однокамерная, независимо от геометрии второй камеры.

(б) Оптимизация размеров и геометрии второй камеры с использованием цилиндрической, конической или сферической геометрии. Исходя из полученных результатов, ключевым моментом в получении более высокого значения ЭДС является не сама геометрия, а диффузионная длина второй камеры.

(в) Оптимизация размера диэлектрика для получения оптимального значения этого размера для целей моделирования, другими словами, для сокращения времени моделирования.

(г) Оптимизация рабочего давления буферного газа, а также типа буферного газа для получения лучшего значения ЭДС. Полученные результаты показывают существенные вариации параметров плазмы (плотности и температуры электронов, электрического потенциала и плотности резонансных уровней) для различных смесей №-Х. Эти различия связаны с различной термализацией электронов за счет упругих столкновений с атомами инертных газов в зависимости от их атомной массы и особенностями поперечного сечения этих упругих столкновений, включая хорошо известный эффект Рамзауэра - Таунсенда. Кроме того, смесь №-Аг показывает довольно хорошие результаты по сравнению с другими благородными газами с точки зрения параметров плазмы и коммерческого применения.

6. Настоящее исследование представляет собой качественные оценки различных параметров плазмы, создаваемой в фотоплазме, с хорошей аналогией с немногочисленными экспериментальными работами, доступными в литературе.

7. Полученные результаты могут быть использованы для проектирования и создания фотоэлектрического преобразователя на основе двухкамерного устройства со смесью натриевых и благородных веществ, работающего на концентрированном солнечном или газовом ламповом излучении.

8. Показано, что наряду с потоками классической амбиполярной диффузии образуются также вихревые токи электронов. Так как в плазме сложной геометрии присутствие потоков заряженных частиц может значительно отличаться от типичного представления об амбиполярной диффузии. Обнаружен отдельный режим разряда от амбиполярной диффузионной системы. Поскольку условие амбиполярности для немагниченной плазмы Г; = Ге было нарушено из-за двумерного моделирования, которое представляет случай VTe xVn^ 0, что приводит к появлению вихревой плотности полного тока. Изменение температуры и электронной плотности, вызванное этими вихрями, может повлиять на разность потенциалов между двумя камерами. Показана зависимость текущих вихрей и, соответственно, генерируемой ЭДС от давления буферного газа.

9. В отличие от предыдущих исследований фотоплазмы, основанных на изучении временного и пространственного распределения параметров плазмы, в этом исследовании процессы переноса также исследовались явно. Различные компоненты потока по всей ячейке и соответствующие изменения градиента температуры электронов влияют на величину потоков и, следовательно, на электродвижущую силу (ЭДС). Вообще говоря, результаты этой модели способствуют тому, что для оптимизации фотоплазменных клеток необходимо сфокусировать изучение транспортных процессов.

Список литературы диссертационного исследования кандидат наук Мандур Мохамед Махсуб Махсуб Махсуб, 2021 год

Список литературы

1. Mandour M.M., Astashkevich S.A., Kudryavtsev A.A. 2-D Simulation of Two-Chamber Photoplasma for Conversion of Light Radiation to Electrical Energy // IEEE Trans. Plasma Sci. 2020. Vol. 48, № 2. P. 394-401. DOI: 10.1109/TPS.2019.2955067

2. Mandour M.M., Astashkevich S.A., Kudryavtsev A.A. Optimization of Photoelectric Converter Based on a Two-Chamber Na-Ar Gas Photoplasma // IEEE Trans. Plasma Sci. 2020. Vol. 48, № 2. P. 402-409. DOI: 10.1109/TPS.2019.2951997

3. Mandour M.M., Astashkevich S.A., Kudryavtsev A.A. 2D simulation of solar/lamp two-chamber photoelectric converter with different sodium-noble gas mixtures // Plasma Sources Sci. Technol. 2020. Vol. 29, № 11. P. 115005. DOI: 10.1088/1361-6595/abbae6

4. Mandour M.M., Astashkevich S.A., Kudryavtsev A.A. On the Validity of Two-Chamber Configuration for the Generation of Electromotive Force in Photoplasma // IEEE Trans. Plasma Sci. 2020. P. 1-7. DOI: 10.1109/TPS.2020.3039830

5. Mandour M.M., Astashkevich S.A., Kudryavtsev A.A. Influence of Vortex Electron Currents on Transport Processes in 2-D Photoplasma of Sodium-Noble Gas Mixtures // IEEE Trans. Plasma Sci. 2020. P. 1-8. DOI: 10.1109/TPS.2020.3041183

6. Bogaerts A. et al. Gas discharge plasmas and their applications // Spectrochim. Acta Part B At. Spectrosc. 2002. Vol. 57, № 4. P. 609-658. DOI: 10.1016/S0584-8547(01)00406-2

7. Lucatorto T.B., McIlrath T.J. Laser excitation and ionization of dense atomic vapors // Appl. Opt. 1980. Vol. 19, № 23. P. 3948. DOI: 10.1364/AQ.19.003948

8. Beterov I.M., Eletskii A. V, Smirnov B.M. Resonance radiation plasma (photoresonance plasma) // Sov. Phys. Uspekhi. 1988. Vol. 31, № 6. P. 535-554. DOI: 10.1070/PU1988v031 n06ABEH003563

9. Stwalley W.C., Bahns J.T. Atomic, molecular, and photonic processes in laser-

induced plasmas in alkali metal vapors // Laser Part. Beams. 1993. Vol. 11, N° 1. P. 185-204. DOI: 10.1017/S0263034600007047

10. Bezuglov N.N., Klyucharev A.N., Stacewicz T. Photoplasma of optically excited metal vapors // Opt. Spectrosc. 1994. Vol. 77, № 3. P. 304-326.

11. Mohler F.L., Boeckner C. Photo-ionization of caesium by line absorption // Bur. Stand. J. Res. 1930. Vol. 5, № 1. P. 51. DOI: 10.6028/jres.005.004

12. Morgulis N.D.., Korchevoi Y.P.., Przhonskii A.M. Formation of a Cesium Plasma by Resonance Radiation. Physical Properties // Sov. Phys. JETP. 1968. Vol. 26, № 2. P. 279.

13. Klucharev A.N., Bezuglov N.N. Processes of excitation and ionization of atoms under absorption of radiation. Leningrad: Leningrad's University, 1983. 272 p.

14. Morgulis N.D., Przhonskii A.M. Nature of ionization in a photoresonant cesium plasma // JETP. 1970. Vol. 31. P. 1005.

15. Morgulis N.D.., Przonskii A.M. Some physical properties of photoresonant cesium plasma // J. Tech. Phys. (in Russ.) 1971. Vol. 41. P. 992.

16. Measures R.M., Drewell N., Cardinal P. Electron- and ion-beam transportation channel formation by laser ionization based on resonance saturation—LIBORS // J. Appl. Phys. 1979. Vol. 50, № 4. P. 2662-2669. DOI: 10.1063/1.326223

17. Measures R.M., Cardinal P.G. Laser ionization based on resonance saturation—a simple model description // Phys. Rev. A. 1981. Vol. 23, № 2. P. 804-815. DOI: 10.1103/PhysRevA.23.804

18. Lucatorto T.B., McIlrath T.J. Efficient Laser Production of a Na+ Ground-State Plasma Column: Absorption Spectroscopy and Photoionization Measurement of Na+ // Phys. Rev. Lett. 1976. Vol. 37, № 7. P. 428-431. DOI: 10.1103/PhysRevLett.37.428

19. McIlrath T.J., Lucatorto T.B. Laser Excitation and Ionization in a Dense Li Vapor: Observation of the Even-Parity, Core-Excited Autoionizing States // Phys. Rev. Lett. 1977. Vol. 38, № 24. P. 1390-1393. DOI: 10.1103/PhysRevLett.38.1390

20. Stacewicz T., Krasinski J. Investigations of ionization of sodium vapour by resonant laser light // Opt. Commun. 1981. Vol. 39, № 1-2. P. 35-40. DOI: 10.1016/0030-

4018(81)90450-8

21. Landen O.L. et al. Production of dense, cool plasmas by resonance pumping of sodium vapor // Phys. Rev. A. 1985. Vol. 32, № 5. P. 2963-2971. DOI: 10.1103/PhysRevA.32.2963

22. Landen O.L., Winfield R.J. Production of dense, cool plasmas by multiphoton ionization of sodium vapor // Phys. Rev. A. 1985. Vol. 32, №№ 5. P. 2972-2976. DOI: 10.1103/PhysRevA.32.2972

23. Leonov A.G., Chekhov D.I., Starostin A.N. Mechanisms of resonant laser ionization // J. Exp. Theor. Phys. 1997. Vol. 84, № 4. P. 703-715. DOI: 10.1134/1.558204

24. Measures R.M. Electron density and temperature elevation of a potassium seeded plasma by laser resonance pumping // J. Quant. Spectrosc. Radiat. Transf. 1970. Vol. 10, № 2. P. 107-125. DOI: 10.1016/0022-4073(70)90068-3

25. Measures R.M., Cardinal P.G., Schinn G.W. A theoretical model of laser ionization of alkali vapors based on resonance saturation // J. Appl. Phys. 1981. Vol. 52, № 3. P. 1269-1277. DOI: 10.1063/1.329750

26. Eletskii A. V, Zaitsev I.N., Fomichev S. V. Formation kinetics and the parameters of a photoresonant plasma // Zhurnal Eksp. i Teor. Fiz. 1988. Vol. 94. P. 98-106.

27. Mahmoud M.A., Gamal Y.E.E. Kinetics of plasma formation in sodium vapor excited by nanosecond resonant laser pulses // Indian J. Phys. 2012. Vol. 86, № 7. P. 659-666. DOI: 10.1007/s12648-012-0093-3

28. Klucharev A.N. Chemi-ionization processes // Physics-Uspekhi. 1993. Vol. 36, № 6. P. 486-512. DOI: 10.1070/PU1993v036n06ABEH002162

29. Skinner C.H. Efficient ionisation of calcium, strontium and barium by resonant laser pumping // J. Phys. B At. Mol. Phys. 1980. Vol. 13, № 1. P. 55-68. DOI: 10.1088/0022-3700/13/1/014

30. Le Gouët J.L. et al. Direct Observation of Hot-Electron Spectra from Laser-Excited Sodium Vapor // Phys. Rev. Lett. 1982. Vol. 48, № 9. P. 600-603. DOI: 10.1103/PhysRevLett.48.600

31. Bezuglov N.N. et al. Radiation trapping in an alkali-vapor-noble-gas mixture

excited by a strong laser pulse // Opt. Commun. 1995. Vol. 120, № 5-6. P. 249256. DOI: 10.1016/0030-4018(95)00442-B

32. Kosarev N.I., Shaparev N.Y. Resonance laser-induced ionisation of sodium vapour taking radiative transfer into account // Quantum Electron. 2006. Vol. 36, № 4. P. 369-375. DOI: 10.1070/QE2006v036n04ABEH013153

33. Koch M.E., Collins C.B. Space-charge ion detection of multiphoton absorption phenomena in lithium vapor // Phys. Rev. A. 1979. Vol. 19, № 3. P. 1098-1105. DOI: 10.1103/PhysRevA.19.1098

34. Tam A.C. Quasiresonant laser-produced plasma: An efficient mechanism for localized breakdown // J. Appl. Phys. 1980. Vol. 51, № 9. P. 4682-4687. DOI: 10.1063/1.328341

35. Huennekens J., Wu Z., Walker T.G. Ionization, excitation of high-lying atomic states, and molecular fluorescence in Cs vapor excited at X =455.7 and 459.4 nm // Phys. Rev. A. 1985. Vol. 31, № 1. P. 196-209. DOI: 10.1103/PhysRevA.31.196

36. McIlrath T.J. et al. Laser-driven ionization of Cs and absorption spectrum of resultant Cs+ vapor // J. Opt. Soc. Am. B. 1986. Vol. 3, № 3. P. 398. DOI: 10.1364/JQSAB.3.000398

37. Veza D., Sansonetti C.J. Ionization of lithium vapor by CW quasiresonant laser light // Zeitschrift fur Phys. D Atoms, Mol. Clust. 1992. Vol. 22, № 2. P. 463-470. DOI: 10.1007/BF01426088

38. Jahreiss L., Huber M.C.E. Time-resolved excitation and ionization of a laser-pumped Ba vapor // Phys. Rev. A. 1983. Vol. 28, № 6. P. 3382-3401. DOI: 10.1103/PhysRevA.28.3382

39. Lucatorto T.B. et al. Radical Redistribution of the 4d Oscillator Strength Observed in the Photoabsorption of the Ba, Ba+, and Ba++ Sequence // Phys. Rev. Lett. 1981. Vol. 47, № 16. P. 1124-1128. DOI: 10.1103/PhysRevLett.47.1124

40. Hill W.T. Quenching of resonant laser-driven ionisation at high buffer gas pressures // J. Phys. B At. Mol. Phys. 1986. Vol. 19, № 3. P. 359-368. DOI: 10.1088/00223700/19/3/019

41. Yamada K., Tetsuka T., Deguchi Y. Ion extraction characteristics by an electric field on laser-produced barium plasma // J. Appl. Phys. 1990. Vol. 67, № 11. P.

6734-6741. DOI: 10.1063/1.345111

42. Gorbunov N.A., Stacewicz T. Observation of an Electromotive Force in a Decaying Photoresonance Plasma of Sodium Vapors // High Temp. 2001. Vol. 39, № 4. P. 623-625. DOI: 10.1023/A: 1017956827981

43. Ogura K., Kaburaki H., Shibata T. Two-Dimensional Numerical Simulation of Ion Collection from Pulsed Laser Induced Plasma // J. Nucl. Sci. Technol. 1993. Vol. 30, № 12. P. 1248-1255. DOI: 10.1080/18811248.1993.9734619

44. Watanabe J., Okano K. Particle simulation of the ion-extraction process from a plasma by a static electric field // Phys. Fluids B Plasma Phys. 1993. Vol. 5, № 8. P. 3092-3096. DOI: 10.1063/1.860641

45. Vitello P., Cerjan C., Braun D. Flow: A two-dimensional time-dependent hydrodynamical ion extraction model // Phys. Fluids B Plasma Phys. 1992. Vol. 4, № 6. P. 1447-1456. DOI: 10.1063/1.860055

46. Mahdieh M.H., Gavili A. Two-dimensional evaluation of an ion plasma produced by pulsed lasers extracted by non-parallel collectors // Plasma Sources Sci. Technol. 2003. Vol. 12, № 4. P. 513-522. DOI: 10.1088/0963-0252/12/4/303

47. Mahdieh M.H., Gavili A. Hydrodynamics of a non-uniform super-Gaussian ion plasma produced by pulsed lasers in an electrostatic field // J. Phys. D. Appl. Phys. 2006. Vol. 39, № 1. P. 135-147. DOI: 10.1088/0022-3727/39/1/021

48. Kurosawa H., Hasegawa S., Suzuki A. Ion extraction from a laser-ionized plasma produced between parallel plate cathodes and an anode above them // J. Appl. Phys. 2002. Vol. 91, № 8. P. 4818-4823. DOI: 10.1063/1.1454191

49. Majumder A. et al. Two-dimensional expansion of finite-size barium photoplasma in an electrostatic field // Phys. Plasmas. 2008. Vol. 15, № 12. P. 123508. DOI: 10.1063/1.3050059

50. Mehdian H., Kargarian A., Hajisharifi K. Kinetic (particle-in-cell) simulation of nonlinear laser absorption in a finite-size plasma with a background inhomogeneous magnetic field // Phys. Plasmas. 2015. Vol. 22, № 6. P. 063102. DOI: 10.1063/1.4921934

51. Tan K.L., Engel A. von. Measurement of the associative ionization cross section of mercury vapour // J. Phys. D. Appl. Phys. 1968. Vol. 1, № 2. P. 417. DOI:

10.1088/0022-3727/1/2/417

52. Dunning G.J., Palmer A.J. Towards a high-temperature solar electric converter // J. Appl. Phys. 1981. Vol. 52, № 12. P. 7086-7091. DOI: 10.1063/1.328417

53. Gorbunov N.A., Flamant G. Model of the Plasma Photovoltaic Conversion of Concentrated Solar Radiation: Short-Circuit Current and Open-Circuit Voltage // Plasma Chem. Plasma Process. 2015. Vol. 35, № 4. P. 799-817. DOI: 10.1007/s 11090-015-9624-y

54. Kusoglu Sarikaya C., Rafatov I., Kudryavtsev A.A. PIC/MCC analysis of a photoresonance plasma sustained in a sodium vapor // Phys. Plasmas. 2017. Vol. 24, № 8. P. 083505. DOI: 10.1063/1.4986024

55. Astashkevich S.A. et al. Using two-chamber photoplasma for creating photovoltaic converter // J. Phys. Conf. Ser. 2017. Vol. 927. P. 012004. DOI: 10.1088/17426596/927/1/012004

56. Astashkevich S.A., Kudryavtsev A.A. Creation of resonance photoplasma by concentrated solar/gas lamp irradiation. Self-consistent modeling // Phys. Plasmas. 2019. Vol. 26, № 10. P. 103509. DOI: 10.1063/1.5119365

57. Leonov A.G. et al. Dusty photoresonant plasma with coulomb collisions // J. Exp. Theor. Phys. 2004. Vol. 99, № 1. P. 61-72. DOI: 10.1134/1.1787079

58. Gorbunov N.A. et al. Conductivity of a photoplasma of sodium vapor-inert gas mixtures // IEEE Trans. Plasma Sci. 1999. Vol. 27, № 1. P. 182-192. DOI: 10.1109/27.763112

59. Gorbunov N.A., Mel'nikov A.S. Effect of molecular nitrogen on the electron mobility in a mixture of argon and optically excited sodium vapor // Tech. Phys. 1999. Vol. 44, № 4. P. 361-366. DOI: 10.1134/1.1259302

60. Kosarev N.I. Kinetics of ionization and recombination of atmospheric sodium // Atmos. Ocean. Opt. 2014. Vol. 27, № 1. P. 48-53.

61. Biberman L.M., Vorobev V.S., Iakubov I.T. Kinetics of nonequilibrium low-temperature plasma // MoIzN. 1982. DOI: 10.1134/S1024856014010060

62. Munafo A. et al. Modeling of non-equilibrium phenomena in expanding flows by means of a collisional-radiative model // Phys. Plasmas. 2013. Vol. 20, № 7. P.

073501. DOI: 10.1063/1.4810787

63. Annaloro J., Bultel A. Vibrational and electronic collisional-radiative model in air for Earth entry problems // Phys. Plasmas. 2014. Vol. 21, № 12. P. 123512. DOI: 10.1063/1.4904817

64. Lee W., Oh C.-H. Optical diagnostics of helium recombining plasmas with collisional radiative model // Phys. Plasmas. 2018. Vol. 25, № 11. P. 113504. DOI: 10.1063/1.5051569

65. Gorbunov N.A., Melnikov A.S., Smurov I. Negative electron mobility under condition of the resonant optical excitation in gas mixtures // Phys. Plasmas. 2003. Vol. 10, № 11. P. 4552-4558. DOI: 10.1063/1.1621627

66. Bingham R. et al. Collective plasma effects in scattering of radiation in astrophysical plasmas // Phys. Plasmas. 2003. Vol. 10, № 8. P. 3297-3308. DOI: 10.1063/1.1588640

67. Schlickeiser R. Cosmic ray transport in astrophysical plasmas // Phys. Plasmas. 2015. Vol. 22, № 9. P. 091502. DOI: 10.1063/1.4928940

68. Brandenberger J.R. Optovoltaic detection: A new probe for laser spectroscopy // Phys. Rev. A. 1987. Vol. 36, № 1. P. 76-80. DOI: 10.1103/PhysRevA.36.76

69. Gorbunov N.A., Stacewicz T. Photo EMF observed upon the laser resonance excitation of sodium vapors // Tech. Phys. Lett. 2000. Vol. 26, № 8. P. 654-655. DOI: 10.1134/1.1307803

70. Kannan N., Vakeesan D. Solar energy for future world: - A review // Renew. Sustain. Energy Rev. 2016. Vol. 62. P. 1092-1105. DOI: 10.1016/j.rser.2016.05.022

71. Green M.A. Thin-film solar cells: Review of materials, technologies and commercial status // J. Mater. Sci. Mater. Electron. 2007. Vol. 18, № SUPPL. 1. P. 15-19. DOI: 10.1007/s10854-007-9177-9

72. Sampaio P.G.V., González M.O.A. Photovoltaic solar energy: Conceptual framework // Renew. Sustain. Energy Rev. 2017. Vol. 74, № February. P. 590-601. DOI: 10.1016/j.rser.2017.02.081

73. Rawat R., Lamba R., Kaushik S.C. Thermodynamic study of solar photovoltaic

energy conversion: An overview // Renew. Sustain. Energy Rev. Elsevier Ltd, 2017. Vol. 71, № December 2016. P. 630-638. DOI: 10.1016/j.rser.2016.12.089

74. Khalid K.A.A., Leong T.J., Mohamed K. Review on Thermionic Energy Converters // IEEE Trans. Electron Devices. 2016. Vol. 63, № 6. P. 2231-2241. DOI: 10.1109/TED.2016.2556751

75. Milichko V.A. et al. Solar photovoltaics: current state and trends // Physics-Uspekhi. 2016. Vol. 59, № 8. P. 727-772. DOI: 10.3367/UFNe.2016.02.037703

76. Kabir E. et al. Solar energy: Potential and future prospects // Renew. Sustain. Energy Rev. 2018. Vol. 82. P. 894-900. DOI: 10.1016/j.rser.2017.09.094

77. Obeidat F. A comprehensive review of future photovoltaic systems // Sol. Energy. 2018. Vol. 163. P. 545-551. DOI: 10.1016/j.solener.2018.01.050

78. Hernández-Callejo L., Gallardo-Saavedra S., Alonso-Gómez V. A review of photovoltaic systems: Design, operation and maintenance // Sol. Energy. 2019. Vol. 188. P. 426-440. DOI: 10.1016/j.solener.2019.06.017

79. Siecker J., Kusakana K., Numbi B.P. A review of solar photovoltaic systems cooling technologies // Renew. Sustain. Energy Rev. 2017. Vol. 79. P. 192-203. DOI: 10.1016/j.rser.2017.05.053

80. Metz G.E. et al. Characterization of a hollow cathode styled plasma reactor for photovoltaic applications // Plasma Sources Sci. Technol. 2014. Vol. 24, № 1. P. 015008. DOI: 10.1088/0963-0252/24/1/015008

81. Nunomura S., Kondo M., Akatsuka H. Gas temperature and surface heating in plasma enhanced chemical-vapour-deposition // Plasma Sources Sci. Technol. 2006. Vol. 15, № 4. P. 783-789. DOI: 10.1088/0963-0252/15/4/023

82. HADDOCK C., MCKEE J.S.C. Solar Energy Collection, Concentration, and Thermal Conversion—A Review // Energy Sources. 1991. Vol. 13, № 4. P. 461482. DOI: 10.1080/00908319108909002

83. Andreev V.M., Grilikhes V.A., Rumiantsev V.D. Photovoltaic conversion of concentrated sunlight. John Wiley, 1997.

84. Ajith K. R. and Jinshah B. S. Magneto Hydrodynamic Power Generation // Int. J. Sci. Res. Publ. 2013. Vol. 3, № 6.

85. Marinchenko T.M., Zubtsov V.M. The Injection of Alkali Metal into a Turbulent Flow of Inert Gas for Developing the Working Medium of a Nonequilibrium MHD Generator // High Temp. 2002. Vol. 40, № 3. P. 469-476. DOI: 10.1023/A:1016084628874

86. Mori I., Sumitomo K. Direct energy conversion of plasma energy // IEEE Trans. Plasma Sci. 1988. Vol. 16, № 6. P. 623-630. DOI: 10.1109/27.16550

87. Kalanov D. et al. Advanced Approach for Radiation Transport Description in 3D Collisional-radiative Models // PLASMA Phys. Technol. 2017. Vol. 4, № 2. P. 112115. DOI: 10.14311/ppt.2017.2.112

88. Gorbunov N.A., Flamant G. Qualitative model of a plasma photoelectric converter // Tech. Phys. 2009. Vol. 54, № 1. P. 68-77. DOI: 10.1134/S1063784209010101

89. Kudryavtsev A.A., Serditov K.Y. Influence of heat and particle fluxes nonlocality on spatial distribution of plasma density in two-chamber inductively coupled plasma sources // Phys. Plasmas. 2012. Vol. 19, № 7. P. 073504. DOI: 10.1063/1.4731734

90. Bogdanov E.A. et al. Influence of an additional ballast volume on a pulsed ICP discharge // Plasma Sources Sci. Technol. 2007. Vol. 16, № 4. P. 697-702. DOI: 10.1088/0963-0252/16/4/002

91. Kramida A. et al. NIST Atomic Spectra Database (version 5.6.1) [Electronic resource]. 2018. URL: https://physics.nist. gov/asd

92. Rybicki G.B., Lightman A.P. Radiative Processes in Astrophysics. Wiley, 1991.

93. Nasa. Sun Fact Sheet [Electronic resource]. URL: https: //nssdc.gsfc. nasa.gov/planetary/factsheet/sunfact.html.

94. Smirnov B.M. Theory of Gas Discharge Plasma. Cham: Springer International Publishing, 2015. Vol. 84. 229-256 p.

95. Bouzouita H., Ghanmi C., Berriche H. Ab initio study of the alkali-dimer cation // J. Mol. Struct. THEOCHEM. 2006. Vol. 777, № 1-3. P. 75-80. DOI: 10.1016/j.theochem.2006.08.003

96. Bewicz A., Musial M., Kucharski S.A. Potential energy curves of the Na2+ molecular ion from all-electron ab initio relativistic calculations // Mol. Phys. 2017.

Vol. 115, № 21-22. P. 2649-2657. DOI: 10.1080/00268976.2017.1292010

97. Ilyabaev E., Kaldor U. Ground and excited states of K2 and K2+ by the open-shell coupled cluster method // J. Chem. Phys. 1993. Vol. 98, № 9. P. 7126-7131. DOI: 10.1063/1.465097

98. WAGNER G.S., ISENOR N.R. Formation and dissociation of K2+, Rb2+, and Cs2+ ions by ruby laser radiation // Can. J. Phys. National Research Council of Canada, Ottawa, 1985. Vol. 63, № 7. P. 976-982. DOI: 10.1139/p85-160

99. Oldenburg A.L., John P.C., Eden J.G. Vibrational wave packets in the Blnu and D1S„+ states of Cs2: Determination of improved Cs2+(X) and Cs2(B) spectroscopic constants // J. Chem. Phys. 2000. Vol. 113, № 24. P. 11009-11018. DOI: 10.1063/1.1326065

100. Dye J.L., Tepper F. Alkali metal [Electronic resource] // Encyclopedia Britannica. 2020. URL: https: //www.britannica. com/science/alkali-metal (accessed: 15.10.2020).

101. Cavendish H. XXIII. Experiments on air. // Philos. Trans. R. Soc. London. 1785. Vol. 75. P. 372-384. DOI: 10.1098/rstl.1785.0023

102. Schrobilgen G.J. Noble gas [Electronic resource] // Encyclopedia Britannica. 2019. URL: https://www.britannica.com/science/noble-gas (accessed: 15.10.2020).

103. Raizer Y.P. Gas Discharge Physics. XI. Springer-Verlag Berlin Heidelberg, 1991. 449 p.

104. Lieberman M.A., Lichtenberg A.J. Principles of Plasma Discharges and Materials Processing. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005.

105. Van Dijk J., Kroesen G.M.W., Bogaerts A. Plasma modelling and numerical simulation // J. Phys. D. Appl. Phys. 2009. Vol. 42, № 19. P. 190301. DOI: 10.1088/0022-3727/42/19/190301

106. Stewart R.A. et al. Plasma uniformity in high-density inductively coupled plasma tools // Plasma Sources Sci. Technol. 1995. Vol. 4, № 1. P. 36-46. DOI: 10.1088/0963-0252/4/1/005

107. Bose D. et al. Modelling of inductively coupled plasma processing reactors // J. Phys. D. Appl. Phys. 2001. Vol. 34, № 18. P. 2742-2747. DOI: 10.1088/0022-

3727/34/18/305

108. Auer P.L. Transient Analysis of the Townsend Discharge // Phys. Rev. 1958. Vol. 111, № 3. P. 671-682. DOI: 10.1103/PhysRev.111.671

109. Schmitt W., Kohler W.E., Ruder H. A one-dimensional model of dc glow discharges // J. Appl. Phys. 1992. Vol. 71, № 12. P. 5783-5791. DOI: 10.1063/1.350472

110. Bogdanov E.A., Chirtsov A.S., Kudryavtsev A.A. Fundamental Nonambipolarity of Electron Fluxes in 2D Plasmas // Phys. Rev. Lett. 2011. Vol. 106, № 19. P. 195001. DOI: 10.1103/PhysRevLett.106.195001

111. Rafatov I., Bogdanov E.A., Kudryavtsev A.A. On the accuracy and reliability of different fluid models of the direct current glow discharge // Phys. Plasmas. 2012. Vol. 19, № 3. P. 033502. DOI: 10.1063/1.3688875

112. Eylenceoglu E., Rafatov I., Kudryavtsev A.A. Two-dimensional hybrid Monte Carlo-fluid modelling of dc glow discharges: Comparison with fluid models, reliability, and accuracy // Phys. Plasmas. 2015. Vol. 22, № 1. P. 013509. DOI: 10.1063/1.4906361

113. Yuan C. et al. Vortex electron flux and EDF nonlocality of moderate and high-pressure gas discharge plasmas // Plasma Sources Sci. Technol. 2018. Vol. 27, № 4. P. 045007. DOI: 10.1088/1361-6595/aab75f

114. Urrabazo Jr D. Development of plasma fluid models in COMSOL and Matlab. The University of Texas at Dallas, 2012. 122 p.

115. Gorbunov N.A., Flamant G. Analytical model of a plasma photoconverter // Tech. Phys. 2004. Vol. 49, № 11. P. 1491-1495. DOI: 10.1134/1.1826196

116. Gorbunov N.A., Stepanov S.V., Flamant G. Modeling direct conversion of the concentrated light energy to electricity in a photoplasma // IEEE Trans. Plasma Sci. 2005. Vol. 33, № 4. P. 1346-1352. DOI: 10.1109/TPS.2005.853031

117. http://ansys.com/

118. http: //pumpkin-tool. org/

119. http://www.comsol.com

120. http: //zdplaskin.laplace.univ-tlse.fr/

121. http://esi-group.com/

122. Glow Discharge Plasmas in Analytical Spectroscopy / ed. Marcus R.K., Broekaert J.A.C. Chichester, UK: John Wiley & Sons, Ltd, 2002.

123. G. J. M. Hagelaar. Modeling of microdischarges for display technology. Technische Universiteit Eindhoven, 2000. 111 p.

124. Hagelaar G.J.M., Pitchford L.C. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models // Plasma Sources Sci. Technol. 2005. Vol. 14, № 4. P. 722-733. DOI: 10.1088/0963-0252/14/4/011

125. Arslanbekov R.R., Kudryavtsev A.A. Energy balance of the bulk, Maxwellian electrons in spatially inhomogeneous negative-glow plasmas // Phys. Rev. E. 1998. Vol. 58, № 5. P. 6539-6552. DOI: 10.1103/PhysRevE.58.6539

126. Kushner M.J. Pulsed plasma-pulsed injection sources for remote plasma activated chemical vapor deposition // J. Appl. Phys. 1993. Vol. 73, № 8. P. 4098-4100. DOI: 10.1063/1.352840

127. Bacal M. Volume production of hydrogen negative ions // Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 1989. Vol. 37-38. P. 28-32. DOI: 10.1016/0168-583X(89)90131-6

128. Phelps A.V. Phelps database (Ar, Na) [Electronic resource]. URL: www.lxcat.net/Phelps (accessed: 31.01.2019).

129. Sansonetti J.E. Wavelengths, Transition Probabilities, and Energy Levels for the Spectra of Sodium (NaI-NaXI) // J. Phys. Chem. Ref. Data. 2008. Vol. 37, № 4. P. 1659-1763. DOI: 10.1063/1.2943652

130. He C., Bernheim R.A. Energy transfer and energy pooling from 2 2P3/2,1/2 excited Li atoms in Li vapor // Chem. Phys. Lett. 1992. Vol. 190, № 5. P. 494-496. DOI: 10.1016/0009-2614(92)85179-E

131. Mahmoud M.A., Gamal Y.E.E. Effect of energy pooling collisions in formation of a cesium plasma by continuous wave resonance excitation // Opt. Appl. 2010. Vol. 40, № 1. P. 129-141.

132. Reference book of constants of elementary processes involving atoms, ions, electrons, photons. St. Petersburg University Publishing House (in Russian) "Справочник констант элементарных процессов с участием атомов, ионов, электронов, фотонов. Изд-во С.-Петербургского университета", 1994. 336 p.

133. Smirnov B.M. Plasma Processes and Plasma Kinetics / ed. Smirnov B.M. Weinheim, Germany: Wiley-VCH Verlag GmbH, 2007.

134. Demtröder W. Widths and Profiles of Spectral Lines // Laser Spectroscopy. Berlin, Heidelberg: Springer Berlin Heidelberg. P. 61-98.

135. Bezuglov N.N. et al. Solution of the Holstein equation of radiation trapping in one-dimensional geometries by the geometric quantization technique // Phys. Rev. A. 1998. Vol. 57, № 4. P. 2612-2624. DOI: 10.1103/PhysRevA.57.2612

136. Bezuglov N.N. et al. Nonlinear radiation trapping in an atomic vapor excited by a strong laser pulse // Phys. Rev. E. 1997. Vol. 55, № 3. P. 3333-3350. DOI: 10.1103/PhysRevE.55.3333

137. Molisch A.F. et al. Radiation trapping in atomic vapours in finite-cylinder vapour cells excited by a laser beam // J. Phys. B At. Mol. Opt. Phys. 1997. Vol. 30, № 8. P. 1879-1891. DOI: 10.1088/0953-4075/30/8/007

138. Holstein T. Imprisonment of Resonance Radiation in Gases. II // Phys. Rev. 1951. Vol. 83, № 6. P. 1159-1168. DOI: 10.1103/PhysRev.83.1159

139. Kosarev N.I. Numerical investigation of the escape factor of lithium and sodium vapour at partial frequency redistribution // J. Phys. B At. Mol. Opt. Phys. 2008. Vol. 41, № 22. P. 225401. DOI: 10.1088/0953-4075/41/22/225401

140. Kosarev N.I., Shaparev N.Y. Imprisonment dynamics of resonance radiation in gases // J. Phys. B At. Mol. Opt. Phys. 2011. Vol. 44, № 10. P. 105402. DOI: 10.1088/0953-4075/44/10/105402

141. Kelleher D.E., Podobedova L.I. Atomic Transition Probabilities of Sodium and Magnesium. A Critical Compilation // J. Phys. Chem. Ref. Data. 2008. Vol. 37, № 1. P. 267-706. DOI: 10.1063/1.2735328

142. Igenbergs K. et al. Database for inelastic collisions of sodium atoms with electrons, protons, and multiply charged ions // At. Data Nucl. Data Tables. 2008. Vol. 94, № 6. P. 981-1014. DOI: 10.1016/j.adt.2008.06.001

143. Enemark E.A., Gallagher A. Electron Excitation of the Sodium D Lines // Phys. Rev. A. 1972. Vol. 6, № 1. P. 192-205. DOI: 10.1103/PhysRevA.6.192

144. Gryzinski M. Classical Theory of Atomic Collisions. I. Theory of Inelastic Collisions // Phys. Rev. 1965. Vol. 138, № 2A. P. A336-A358. DOI: 10.1103/PhysRev.138.A336

145. Huennekens J., Gallagher A. Cross sections for energy transfer in collisions between two excited sodium atoms // Phys. Rev. A. 1983. Vol. 27, № 2. P. 771784. DOI: 10.1103/PhysRevA.27.771

146. Carré B. et al. Resonant and Off-resonance ionization of laser-excited sodium vapor // Zeitschrift für Phys. D Atoms, Mol. Clust. 1986. Vol. 1, № 1. P. 79-90. DOI: 10.1007/BF013 84662

147. Bezuglov N.N., Klucharev A.N., Sheverev V.A. Associative ionisation rate constants measured in cell and beam experiments // J. Phys. B At. Mol. Phys. 1987. Vol. 20, № 11. P. 2497-2513. DOI: 10.1088/0022-3700/20/11/018

148. Klyucharev A.N. et al. Rate coefficients for the chemi-ionization processes in sodium- and other alkali-metal geocosmical plasmas // New Astron. Rev. 2007. Vol. 51, № 7. P. 547-562. DOI: 10.1016/j.newar.2007.05.001

149. https://nl.lxcat.net/

150. Blanc A. Recherches sur les mobilités des ions dans les gaz // J. Phys. Théorique Appliquée. 1908. Vol. 7, № 1. P. 825-839. DOI: 10.1051/jphystap:019080070082501

151. Ellis H.W. et al. Transport properties of gaseous ions over a wide energy range // At. Data Nucl. Data Tables. 1976. Vol. 17, № 3. P. 177-210. DOI: 10.1016/0092-640X(76)90001-2

152. Smirnov B.M. Reference Data on Atomic Physics and Atomic Processes. Springer, Berlin, Heidelberg, 2008.

153. Dalgarno A., McDowell M.R.C., Williams A. The Mobilities of Ions in Unlike Gases // Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 1958. Vol. 250, № 982. P. 411-425. DOI: 10.1098/rsta.1958.0002

154. Mitroy J., Safronova M.S., Clark C.W. Theory and applications of atomic and ionic

polarizabilities // J. Phys. B At. Mol. Opt. Phys. 2010. Vol. 43, № 20. P. 202001. DOI: 10.1088/0953-4075/43/20/202001

155. Bezuglov N.N. et al. Optical excitation in radiation diffusion conditions // Opt. Spectrosc. 1977. Vol. 43. P. 10-13.

156. Lee H.J. et al. Two-dimensional self-consistent radiation transport model for plasma display panels // Phys. Plasmas. 2002. Vol. 9, № 6. P. 2822-2830. DOI: 10.1063/1.1470498

157. Steck D.A. Sodium D Line Data [Electronic resource]. 2010. URL: http : //steck.us/alkalidata.

158. Charles C. A review of recent laboratory double layer experiments // Plasma Sources Sci. Technol. 2007. Vol. 16, № 4. P. R1-R25. DOI: 10.1088/0963-0252/16/4/R01

159. Gorbunov N.A., Flamant G. An analytical model of photovoltaic effect in plasma under conditions of nonuniform distribution of alkali vapors and buffer gas in a heat pipe // High Temp. 2006. Vol. 44, № 6. P. 950-953. DOI: 10.1007/s10740-006-0114-z

160. Gorbunov N.A., Melnikov A.S., Smurov I. Effect of negative electron mobility in a mixture of argon, molecular nitrogen and optically excited lithium vapours // Plasma Sources Sci. Technol. 1999. Vol. 8, № 4. P. 544-552. DOI: 10.1088/09630252/8/4/304

161. Hwang S.-C., Lein R.D., Morgan D.A. Noble Gases // Kirk-Othmer Encyclopedia of Chemical Technology. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005.

162. Kaushika N.D., Mishra A., Rai A.K. Solar Photovoltaics. Cham: Springer International Publishing, 2018.

163. Dhass A.D., Natarajan E., Ponnusamy L. Influence of shunt resistance on the performance of solar photovoltaic cell // 2012 International Conference on Emerging Trends in Electrical Engineering and Energy Management (ICETEEEM). IEEE, 2012. P. 382-386. DOI: 10.1109/ICETEEEM.2012.6494522

164. Von Engel A. Ionized Gases. Clarendon Press, 1955.

165. Golant V.E., Zhilinski A.P., Sakharov I.E. Fundamentals of plasma physics. John

Wiley & Sons, Inc., 1980.

166. Rozhansky V.A., Tsendin L.D. Transport Phenomena in Partially Ionized Plasma. London: Taylor and Francis, 2001. 488 p.

167. Vapor Pressure Calculator [Electronic resource]. URL: https: //www.iap.tuwien.ac. at/www/surface/vapor pre.

168. Gehm M.E. Preparation of an optically-trapped degenerate Fermi gas of 6Li: Finding the route to degeneracy. Duke University, 2003.

169. Tiecke T.G. Feshbach resonances in ultracold mixtures of the fermionic quantum gases 6Li and 40K. University of Amsterdam, 2009.

170. Steck D.A. Rubidium 85 D Line Data [Electronic resource]. 2013. URL: http: //steck.us/alkalidata.

171. Steck D.A. Cesium D Line Data [Electronic resource]. 2010. URL: http: //steck.us/alkalidata.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.