Взаимодействие водорастворимых полимеров с липидными мембранами тема диссертации и автореферата по ВАК РФ 02.00.06, доктор химических наук Мелик-Нубаров, Николай Сергеевич

  • Мелик-Нубаров, Николай Сергеевич
  • доктор химических наукдоктор химических наук
  • 2007, Москва
  • Специальность ВАК РФ02.00.06
  • Количество страниц 350
Мелик-Нубаров, Николай Сергеевич. Взаимодействие водорастворимых полимеров с липидными мембранами: дис. доктор химических наук: 02.00.06 - Высокомолекулярные соединения. Москва. 2007. 350 с.

Оглавление диссертации доктор химических наук Мелик-Нубаров, Николай Сергеевич

1. ВВЕДЕНИЕ.

2. ОБЗОР ЛИТЕРАТУРЫ.

2.1. Структура и основные физические характеристики липидных мембран.

2.1.1. Развитие представлений и современные взгляды на структуру и функции биологических мембран.

2.1.2. Структура липидных молекул и фазовые равновесия в мембранах.

2.1.3. Модели биологических мембран.

2.1.4. Кривизна бислоя и свободная энергия его деформации.

2.1.5. Дефекты в биологических мембранах.

2.1.5.1. Классификация дефектов.

2.1.5.2. Свободный объем мембраны как количественная мера степени дефектности.

2.1.5.3. Дефекты в мембранах как области повышенной чувствительности к действию инородных компонентов.

2.1.6. Домены в липидных мембранах.

2.1.7. Подвижность липидных молекул в мембранах.

2.1.7.1. Латеральная диффузия.

2.1.7.2. Трансбислойная миграция (флип-флоп).

2.1.7.3. Изменение скорости флип-флопа липидов под действием природных и синтетических эффекторов.

2.1.8. Микровязкость мембранных структур.

2.1.8.1. Использование флуоресцентных зондов для исследования физического состояния биологических мембран.

2.1.8.2. Изменение микровязкости мембран под действием экзогенных эффекторов.

2.1.9. Электрические свойства липидных мембран.

2.1.10. Проницаемость мембран.

2.1.10.1. Проницаемость мембран для незаряженных соединений.

2.1.10.2. Ионная проницаемость мембран.

2.2. Взаимодействие водорастворимых полимеров с биологическими мембранами„.

2.2.1. Нейтральные гидрофильные полимеры.

2.2.1.1. Полиэтиленоксид: конформация в растворе и взаимодействие с мембранами.

2.2.1.2. Гидрофильные поливиниламиды и полиакриламид.

2.2.1.3. Полимеры, содержащие гидроксильные группы (поливиниловый спирт, декстраны и фруктаны): взаимодействие с липидными мембранами и клетками.

2.2.2. Амфифильные гомо- и сополимеры.

2.2.2.1. Амфифильные производные гидрофильных полимеров, содержащие статистически или равномерно распределенные короткие гидрофобные радикалы.

2.2.2.2. Биогенные амфифильные интерполимерные комплексы поли-Я-З-окси-бутирата и полифосфата: биологическая функция, структура и влияние на проницаемость мембран.

2.2.2.3. Поверхностно-активные вещества, состоящие из гидрофильных полимеров и углеводородов.

2.2.2.4. Амфифильные полиалкиленоксиды.

2.2.2.4.1.Синтез, номенклатура и физико-химические свойства полиалкиленоксидов.

2.2.2.4.2.Взаимодействие плюроников с белками.

2.2.2.4.3. Взаимодействие плюроников с липидными структурами.

2.2.2.4.3.1. Связывание плюроников с бислойными мембранами и их локализация в бислое

2.2.2.4.3.2. Влияние плюроников на проницаемость липидных мембран.

2.2.2.4.4. Медицинское применение плюроников.

2.2.2.4.4.1. Использование плюроников в медицине в качестве эмульгаторов.

2.2.2.4.4.1. Использование плюроников в медицине в качестве эмульгаторов.

2.2.2.4.4.2. Использование антиадгезивных свойств плюроников для гидрофилизации полимерных поверхностей.

2.2.2.4.4.3. Влияние плюроников на распределение латексных частиц и низкомолекулярных соединений между различными органами.

2.2.2.4.4.4. Взаимодействие плюроников с компонентами иммунной системы.

2.2.2.4.4.5. Влияние плюроников на функции биологических систем.

2.2.2.4.4.6. Использование надмолекулярных ассоциатов плюроников для доставки лекарственных препаратов к очагу поражения.

2.2.2.4.4.7. Множественная лекарственная устойчивость опухолей и ее преодоление с помощью плюроников.

2.2.3. Полиэлектролиты.

2.2.3.1. Закономерности адсорбции полиэлектролитов на мембранах.

2.2.3.1.1. Адсорбция полиэлектролитов на твердых поверхностях и липидных везикулах, находящихся в гель-фазе.

2.2.3.1.2. Взаимодействие полиэлектролитов с липидными мембранами, находящимися в жидко-кристаллической фазе.

2.2.3.1.2.1. Взаимодействие полиэлектролитов с мультиламеллярными липосомами.

2.2.3.1.2.2. Взаимодействие полиэлектролитов с мембранами преформированных малых и больших везикул.

2.2.3.1.2.3. Взаимодействие полиэлектролитов с гигантскими липосомами.

2.2.3.1.2.4. Взаимодействие полиэлектролитов с мембранами, содержащими белок.

2.2.3.2. Влияние полиэлектролитов на динамические процессы в мембранах.

2.2.3.3. Биологические эффекты полиэлектролитов и их использование в био-медицинских исследованиях.

2.2.3.3.1. Взаимодействие поликатионов с биологическими мембранами.

2.2.3.3.2. Биологические эффекты, вызываемые полианионами.

2.2.3.3.3. Использование полиэлектролитов как носителей для доставки лекарств.

3. ПОСТАНОВКА ЗАДАЧИ.

4. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ.

4.1. Взаимодействие нейтральных амфифильных полимеров с биологическими и липидными мембранами.

4.1.1. Связывание полимеров с биологическими и липидными мембранами.

4.1.1.1. Получение полимеров, меченых тритием.

4.1.1.2. Связывание полимеров с клетками.

4.1.1.2.1. Выделение клеток.

4.1.1.2.2. Кинетика связывания.

4.1.1.2.3. Оценка количественных параметров связывания полимеров с клетками.

4.1.1.3. Связывание полимеров с микросомамальными мембранами.

4.1.1.3.1. Выделение микросомальных мембран печени мыши.

4.1.1.3.2. Определение количественных параметров связывания плюроника Р85 с микросомальными мембранами.

4.1.1.4. Связывание полимеров с липидными везикулами (липосомами).

4.1.1.5. Изучение локализация полиалкиленоксидов в бислойных мембранах методом малоуглового рассеяния нейтронов.

4.1.2. Влияние полимеров на свойства липидных мембран.

4.1.2.1. Влияние полимеров на микровязкость клеточных и модельных мембран.

4.1.2.2. Влияние плюроника L61 на скорость флип-флопа в модельных липидных мембранах.

4.1.2.3. Взаимосвязь между структурой амфифильных сополимеров и их способностью ускорять флип-флоп в липидных мембранах.

4.1.2.2.4. Влияние плюроников на транспорт ионов через липидные мембраны.

4.1.2.2.5. Влияние амфифильных сополимеров на проницаемость липидных мембран по отношению к противоопухолевому антибиотику доксорубицину.

4.1.2.2.5.1. Определение количественных параметров взаимодействия доксорубицина с

ДНК и липидными мембранами.

4.1.2.2.5.2. Кинетика транспорта доксорубицина через мембраны моноламеллярных липосом.

4.1.2.2.5.3. Влияние плюроника L61 на транспорт доксорубицина через мембраны липосом

4.1.2.2.5.4. Взаимосвязь между структурой амфифильных полимеров и их воздействием на транспорт доксорубицина через модельные мембраны.

4.1.2.2.6. Влияние плюроника на транспорт различающихся по своей структуре соединений.

4.1.2.2.7. Влияние состава липидного бислоя на его чувствительность к возмущающему действию плюроника.

4.1.2.3. Физико-химические предпосылки возмущающего действия амфифильных полимеров на свойства мембран.

4.2. Поликатионы.

4.2.1. Влияние поли-(1Ч-этил-4-винилпиридина) на проницаемость липосомальных мембран по отношению к доксорубицину.

4.2.2. Влияние молекулярной массы и химической структуры поликатиона на его способность ускорять транспорт доксорубицина через отрицательно заряженные липидные мембраны.

4.2.3. Зависимость вызываемого поликатионами увеличения проницаемости мембран, от содержания в них анионных липидов.

4.2.4. Влияние низкомолекулярного электролита на оказываемое поликатионом ускорение мембранного транспорта доксорубицина.

4.2.5. Влияние природы анионных компонентов мембраны на ее взаимодействие с поликатионами.

4.2.5.1. Взаимодействие поли(Ы-этил-4-вининилпиридиний бромида) с липидными везикулами, содержащими ганглиозид GM1.

4.2.5.2. Взаимодействие поли(Ы-этил-4-вининилпиридиний бромида) с липидными везикулами, содержащими искусственно гидрофобизованный а-химотрипсин.

4.2.6. Причины воздействия поликатионов на проницаемость липидных мембран.

4.3. Полианионы.

4.3.1. Влияние полиакриловой кислоты на транспорт доксорубицина через липидную мембрану.

4.3.2. Связывание полиакриловой кислоты с доксорубицином.

4.3.2.1. Изменение свойств доксорубицина при взаимодействии с полиакриловой кислотой.

4.3.2.2. Состав комплексов доксоорубицина с полиакриловой кислотой.

4.3.2.3. Стабильность комплексов.

4.3.2.4. Стабилизация комплексов за счет гидрофобной модификации поликислоты.

4.3.3. Взаимодействие комплексов доксорубицина и полиакриловой кислоты с липосомами.

4.3.3.1. Взаимодействие комплексов с безградиентными липосомами.

4.3.3.2. Механизм взаимодействия комплексов с рН-градиентными везикулами.

4.3.4. Влияние комплексов полиакриловой кислоты и доксорубицина на ионную проницаемость липидных мембран.

Рекомендованный список диссертаций по специальности «Высокомолекулярные соединения», 02.00.06 шифр ВАК

Введение диссертации (часть автореферата) на тему «Взаимодействие водорастворимых полимеров с липидными мембранами»

Липидные мембраны играют ключевую роль в регуляции биохимических процессов, происходящих в живых организмах [1]. Поэтому исследование структурной организации липидных мембран и факторов, влияющих на их свойства, вызывают неослабевающий интерес. Известно, что при взаимодействии некоторых водорастворимых белков с биологическими мембранами происходит пермеабилизация мембран, латеральная сегрегация их компонентов, а иногда и слияние мембран [2]. Для выяснения физико-химической основы этих процессов большое значение имеют модельные работы, суть которых состоит в изучении взаимодействий в более простых системах с контролируемым составом [3]. В качестве одной из таких моделей часто исследуется взаимодействие бислойных мембран, построенных из синтетических или очищенных природных липидов, и синтетических полимеров, обладающих известным строением.

Взаимодействие водорастворимых полимеров с биологическими мембранами представляет и самостоятельный интерес. Во-первых, за последние два десятка лет предложен целый ряд подходов, открывающих перспективы использования водорастворимых полимеров в медицине и биотехнологии. Так, свойство некоторых полиэлектролитов усиливать иммунный ответ нашло применение при создании искусственных вакцин [4, 5]. Способность поликатионов образовывать прочные комплексы с нуклеиновыми кислотами и облегчать их проникновение в клетку нашло применение при конструировании реагентов для трансфекции [6-8]. Наконец, способность некоторых амфифильных сополимеров ингибировать мембранные переносчики и облегчать проникновение лекарств в живые клетки, нашла применение для создания новых лекарственных форм хемотерапевтических препаратов, эффективных против опухолей, проявляющих множественную лекарственную устойчивость [9, 10]. Наконец, «инертные» водорастворимые полимеры предлагается использовать в качестве носителей для создания «умных» конструкций для контролиуемого введения лекарственных препаратов [10-12].

Вторая область, обусловливающая большой интерес к исследованию взаимодействия полимеров с липидными мембранами находится в сфере наук о материалах. Развитие нанотехнологий, имеющих своей целью конструирование электротехнических устройств молекулярных размеров, стимулировало исследование липидных мезофаз и монослоев как природной высоко ориентированной среды, которую можно использовать для организации молекулярных ансамблей, выполняющих специфические функции. Адсорбция водорастворимых полимеров на таких липидных плёнках позволяет создавать структуры, которые рассматриваются как прообразы «нанопроводов» [13-14] и других устройств молекулярных размеров.

Еще одна практическая область, требующая всестороннего изучения закономерностей взаимодействия водорастворимых полимеров с липидными мембранами, лежит в области анализа. Оказалось, что ориентированные липидные моно- или бислои, сформированные на твердых подложках, могут быть удобной основой для создания датчиков, способных определять концентрацию веществ в омывающей их среде. Так же, как и в предыдущем случае, данные по взаимодействию полимеров с липидными мембранами могут позволить конструировать молекулярные ансамбли на поверхности электрохимических сенсоров [15].

К настоящему времени накоплен значительный материал, касающийся взаимодействия полимеров с липидными бислоями. Так, подробно исследованы закономерности образования комплексов полиэлектролитов с противоположно заряженными липидными мембранами. Исследованы структурные перестройки в мембранах, сопровождающие адсорбцию на их поверхности полиэлектролитов, и изменения в конформации полимеров, происходящие при образовании таких комплексов [16-19]. Исследовано взаимодействие некоторых полимеров с клеточными мембранами и изучены некоторые биохимические феномены, сопровождающие адсорбцию полимера [6, 9-10]. Обсуждаются различные пути взаимодействия биополимеров с мембранами и механизмы их воздействия на проникновение нуклеиновых кислот в клетки [7, 8]. Методы молекулярной динамики, бурно развивающиеся в последнее время, вслед за повышающимся уровнем вычислительных средств, позволяют по-новому взглянуть на процессы взаимодействия полимеров с мембранами [20]. В то же время остается ряд существенных вопросов, не получивших развития в литературе.

Несмотря на то, что закономерности, управляющие адсорбцией поликатионов на биологических мембранах, исследованы достаточно подробно, остается неизвестным по отношению к каким из компонентов биологических мембран, анионным липидам или белкам, поликатионы проявляют большее сродство.

Известно, что адсорбция поликатионов на противоположно заряженных липидных мембранах приводит к значительным структурным перестройкам в бислое, однако существенного воздействия на ионную проницаемость мембран эти перестройки не оказывают [18,19]. В то же время остается неисследованным вопрос, влияют ли изменения в латеральной организации мембран на их проницаемость по отношению к незаряженным соединениям, способным проникать через бислой по механизму растворения-диффузии.

Воздействие амфифильных блок-сополимеров этиленоксида и пропиленоксида (плюроииков) с биологическими мембранах приводит к увеличению накопления лекарства в клетках. Показано, что этот эффект достигается за счет ингибирования белковых переносчиков, осуществляющих выброс лекарства из клеток. В то же время вопрос о взаимодействии полимера с липидной частью биологической мембраны остается неисследованным. В частности, отсутствуют количественные данные о связывании этих полимеров с липидными мембранами, и неизвестно, приводит ли адсорбция полимера к структурным изменениям в липидной части биологической мембраны.

Известно, что многие амфифильные сополимеры Снеионные ПАВ) сильно различаются по своему воздействию на липидные мембраны. В то же время причины различий в действии различных амфифилов и взаимосвязь между их структурой и степенью воздействия на барьерные свойства мембран остаются до сих пор не ясными.

Неизвестной остаётся также и взаимосвязь между составом липидной мембраны и сродством полимеров к такой мембране.

Полиэлектролитные комплексы полианионов с биологически активными соединениями активно исследуются в медицине и фармакологии как лекарственные формы для пролонгирования действия медицинских препаратов. Неисследованными остаются вопросы, могут ли такие комплексы взаимодействовать с липидными мембранами, и может ли лекарство, включенное в состав таких конструкций, проникать через мембрану.

Для ответа на эти вопросы в настоящей работе будет рассмотрено взаимодействие водорастворимых полимеров с бислойными липидными мембранами. Такое взаимодействие возможно за счет зарядовых, гидрофобных, водородных или дипольных взаимодействий. Бислойная мембрана, построенная из фосфолипидов и стеролов, представляет собой жидкокристаллическую структуру с пространственно разделенными гидрофобной областью (областью остатков жирных кислот - рис. 1 (3)), областью, содержащей протоноакцепторные группы (область глицериновых остатков - рис. 1 (2)) и областью, содержащей заряженные группы (область полярных головок - рис. 1 (1)).

Кардиолипин рис. ]. формулы фосфолипидов р®

Фосфатидилхолин и схематическое изображение липидного бислоя. Стрелками показаны три области липидного бислоя: 1 - область остатков жирных кислот; 2 - область глицериновых остатков; 3 область полярных головок.

Введете

Можно ожидать, что полимеры, обладающие гидрофобными группами, будут заглубляться в область остатков жирных кислот, а катионные полимеры будут взаимодействовать с полярными головками анионных липидов. Наконец, анионные полимеры, не взаимодействующие с отрицательно заряженным бислоем в нейтральной среде, могут образовывать комплексы с лекарствами, влияя тем самым на их проникновение. Исходя из этого, в настоящей работе мы остановимся на рассмотрении трех основных групп водорастворимых полимеров. При этом будут рассмотрены закономерности, управляющие адсорбцией этих полимеров на липидных мембранах, и вызываемые этими полимерами структурные перестройки в бислое. Помимо этого, будет рассмотрено влияние этих полимеров на проницаемость липидных мембран по отношению к малым ионам и незаряженным соединениям.

2. ОБЗОР ЛИТЕРАТУРЫ

Похожие диссертационные работы по специальности «Высокомолекулярные соединения», 02.00.06 шифр ВАК

Заключение диссертации по теме «Высокомолекулярные соединения», Мелик-Нубаров, Николай Сергеевич

выводы заряженными группами на полимере, с увеличением степени полимеризации поликатиона и увеличением содержания анионных компонентов в мембране.

7. Впервые установлено, что полимер-коллоидные комплексы, образуемые полианионами и катионными лекарствами, способны взаимодействовать с липидными мембранами, претерпевая при этом ряд структурных перестроек, которые приводят к уменьшению размеров коллоидных частиц. В случае использования рН-градиентных липидных везикул, обеспечивающих большой трансмембранный градиент химического потенциала, контакт комплекса с мембраной приводит к его диссоциации, причем лекарство проходит через мембрану, а полимер мигрирует во внешний раствор.

Заключение коформационной подвижности полипропиленоксидного блока, встроенного в липидный бислой, приводит к компенсаторному повышению энтропии мембраны, что выражается в понижении ее микровязкости, увеличении скорости трансбислойной миграции липидов (флип-флопа) и повышению проницаемости по отношению к слабым кислотам и основаниям. В том числе, показано, что полимеры увеличивают проницаемость мембран по отношению к противоопухолевым антибиотикам. При этом даже небольших количеств встроенного в мембрану полимера оказывается достаточно, чтобы вызвать многократное увеличение подвижности мембранных компонентов. Оказалось, что сродство полимера к мембране и его способность нарушать мембранную структуру зависит от состава бислоя и, в первую очередь, его микровязкости. Корреляционный анализ взаимосвязи между структурой полимера и его способностью ускорять флип-флоп показал, что активность полимера определяется его общей гидрофобностью, определяющей сродство липида к мембране, и объемом гидрофобного блока, который является мерой способности полимера нарушать упаковку липидных молекул. Полученные результаты не только показывают, что механизм действия амфифильных полимеров связан с компактизацией полимерного клубка при его встраивании в мембрану, но также позволили сформулировать требования к структуре полимера, существенные для его способности разупорядочивать липидную упаковку мембраны.

Исследование влияния поликатионов на проницаемость отрицательно заряженных липидных мембран по отношению к противоопухолевому антибиотику доксорубицину показало, что и эти полимеры ускоряют его транспорт. При этом степень воздействия поликатиона сильно возрастала с увеличением содержания анионного компонента в мембране и сильно зависела от молекулярной массы и химической структуры поликатиона. Зависимость влияния поликатиона от его степени полимеризации была подробно исследована на примере полилизина, и имела сложный характер: полимеры с низкой степенью полимеризации вообще не влияли на транспорт антибиотика, а дальнейшее увеличение степени полимеризации от 15 до 100 приводило к плавному росту эффективности действия полимера. Сравнение катионных полимеров различной химической природы позволило установить, что их воздействие на транспорт доксорубицина через отрицательно заряженные мембраны сильно возрастает с уменьшением расстояния между заряженными группами в полимере. Данный результат позволяет предполагать, что способность поликатионов облегчать транспорт нуклеиновых кислот в клетки должна увеличиваться с повышением плотности катионных групп в макромолекуле.

Исследуя воздействие полианионов на мембранный транспорт доксорубицина, мы обнаружили, что катионные лекарства образуют комплексы с полианионами, которые способны адсорбироваться на липосомальных мембранах. В результате такого взаимодействия размер коллоидных частиц комплекса уменьшается, а докосрубицин встраивается в липидную мембрану. В том случае, если внутрь липосом помещается кислый буферный раствор, что способствует накоплению катионного антибиотика внутри везикул, взаимодействие комплекса с такими везикулами приводит к его частичной диссоциации. Свободный полианион при этом высвобождается во внешний раствор, а антибиотик попадает внутрь везикул. Таким образом, использование модельной системы, основанной на рН-градиентных липосомах, позволило выявить существенные аспекты взаимодействия полимер-коллоидных комплексов с липидными мембранами. Полученные результаты открывают перспективы для направленного синтеза анионных носителей для лекарственных соединений и получения стимул-чувствительных полимерных конструкций.

Таким образом, результаты, полученные в настоящей работе, показывают, что синтетические полимеры являются удобным инструментом, позволяющим целенаправленно влиять на свойства липидных мембран, изменяя их проницаемость, микровязкость, латеральную и трансмембранную организацию. При этом сформулированные в работе требования к структуре макромолекул открывают перспективы для целенаправленного синтеза полимеров, способных модулировать активность лекарственных соединений.

Список литературы диссертационного исследования доктор химических наук Мелик-Нубаров, Николай Сергеевич, 2007 год

1. Sackmann E.IBiological Membranes Architecture and Function. //In.: Handbook of Biological Physics, Ed. by R. Lipowsky and E. Sackmann, V. 1, Elsevier S.cience, 1995. P. 1-64.

2. Leabu M. / Membrane fusion in cells: molecular machinery and mechanisms ILL Cell Mol. Med. 2006. V.10. P.423-427.

3. Lentz B.R., Lee J.K. / Polyethylene glycol) (PEG)-mediated fusion between pure lipid bilayers: a mechanism in common with viral fusion and secretory vesicle release?// Mol. Membr. Biol. 1999. V.16. P.279-296.

4. Kabanov V.A. / Synthetic membrane active polyelectrolytes in design of artificial immunogenes and vaccines. //Makromol. Chem. Macromol. Symp. 1986. V.l. P. 101-124.

5. Kabanov A.V., Kabanov V.A JDNA complexes with polycations for the delivery of genetic material into cells.// Bioconjug. Chem. 1995. V. 6. P. 7-20.

6. Behr J.P., Demenix В., Loeffer J.-P., Perez-Mutul J. / Efficient gene transfer into mammalian primary endocrine cells with lipopolyamine-coated DNA. //Proc. Natl. Acad. Sci. USA. 1989. V. 86. P. 6982-6986.

7. Kabanov A.V., Batrakova E.V., Alakhov V.Yu JPluronic block copolymers for overcoming drug resistance in cancer.// Adv. Drug. Deliv. Rev. 2002. V. 54. P. 759-779.

8. Kabanov A.V., Batrakova E.V./ New technologies for drug delivery across the blood brain barrier.// Curr. Pharm. Des. 2004. V. 10. P. 1355-1363.

9. Galaev I.Y., Mattiasson B. / 'Smart' polymers and what they could do in biotechnology and medicine. // Trends Biotechnol. 1999. V.l7. P. 335-340.

10. Alexander CJTemperature- and pH-responsive smart polymers for gene delivery.!7 Expert Opin. Drug Deliv. 2006. V. 3. P.573-581.

11. Hannah К. C., Armitage B. AJDNA-Templated Assembly of Helical Cyanine Dye Aggregates: A Supramolecular Chain Polymerization.!7Acc. Chem. Res. 2004. V. 37. P. 845853.

12. Banerjee S., Dan A., Chakravorty D./ Synthesis of conducting nanowires. //J. Mat. Sci. 2002. 37. 4261 -4271.

13. Macdonald P.M., Crowell K.J., Franzin C.M., Mitrakos P., Semchyschyn D.J./ Polyelectrolyte-induced domains in lipid bilayer membranes: the deuterium NMR perspective.!I Biochem. Cell Biol. 1998. V. 76. P. 452-464.

14. Knoll W., Schmidt G., Rotzer H., Henkel Т., Pfeiffer W., Sackmann E., Mittler-Neher S„ Spinke J.I Lateral order in binary lipid alloys and its coupling to membrane functions.!! Chem. Phys. Lipids. 1991. V. 57. P. 363-374.

15. Yaroslavov A.A., Efimova A.A., Lobyshev V.I., Kabanov V .A./Reversibility of structural rearrangements in the negative vesicular membrane upon electrostatic adsorption/Resorption of the polycation. II Biochim. Biophys. Acta. 2002. V. 1560. P. 14-24.

16. Yaroslavov A.A., Efimova A.A., Lobyshev V.I., Ermakov Y.A., Kabanov V.A./Reversibility of structural rearrangements in lipid membranes induced by adsorption-desorption of a polycation. //Membr. Cell Biol. 1997. V. 10. 683-688.

17. Divet F., Danker G., Misbah C. /Fluctuations and instability of a biological membrane induced by interaction with macromolecules.il Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2005. V. 72 (4 Pt 1). P. 041901.

18. Геннис P. /Биомембраны. Молекулярная структура и функции. // Москва. Мир. 1997. -627с.

19. Overton Е./ Ueber die allgemeinen osmotischen Eigenschaften der Zelle, ihre vermutlichen Ursachen und ihre Bedeutungfur die Physiologie.lFVjschr. Naturforsch. Ges. Zurich. 1899. B. 44. S. :88-98.

20. Osterhaut W.J.V.// Some Fundamental Properties of Cellular Physiology., Yale University Press. New Haven. 1927.

21. Langmuir I. / The constitution andfundamental properties of solids and liquids. II. Liquids.// J. Am. Chem. Soc. 1917. V. 39. P. 1848-1906.

22. Gorter Е., Grendel F. I On Biomolecular Layers of Lipid on the Chromacytes of the Bloodll J. Exp. Med. 1925. V. 41. P.439-434.

23. Danielli J. F., Davson, H J A contribution to the theory ofpermeability of thin films.lli. Cell Сотр. Physiol. 1935. V. 5. P. 495-508.

24. Singer S.J., Nicholson G.L./ The fluid mosaic model of cell membranes.!! Science. 1972. V. 175. P. 720-731.

25. Spector A.A., Yorek M.A. /Membrane lipid composition and cellular function. Hi. Lipid Res. 1985. V. 26. P.1015-1035.

26. Subczynski W.K., Wisniewska A./ Physical properties of lipid bilayer membranes: relevance to membrane biological functions.// Acta Biochim. Pol. 2000. V. 47. P. 613-625.

27. Murase K, Fujiwara T, Umemura Y, Suzuki K, lino R, Yamashita H, Saito M, Murakoshi H, Ritchie K, Kusumi hJUltrafine membrane compartments for molecular diffusion as revealed by single molecule techniques./1В\офу>. J. 2004. V. 86. P. 4075-4093.

28. Tocanne J.-F., Teissie J. /Ionization of phospholipids and phospholipids-supported interfacial lateral diffusion of protons in membrane model systems!ГО>\ос\\\т. Biophys. Acta. 1990. V. 1031. P. 111-142.

29. Baldassare J.J., Rhinehart K.B., Silbert D.F./Modification of membrane lipid: physical properties in relation to fatty acid structure.!fBiochem\stry. 1976. V. 15. P. 2986-2994.

30. Petrache H.I., Tristram-Nagle S., Nagle J.F./Fluid phase structure of EPC and DMPC bilayers.ll Chem. Phys. Lipids 1998. V. 95. P. 83-94.

31. Gawrisch K., Parsegian V.A. /Energetics of a Hexagonal-Lamellar-Hexagonal-Phase Transition Sequence in Dioleoylphosphatidylethanolamine Membranes? // Biochemistry. 1992. V.31. P. 2856-2864.

32. Larsson K. /Cubic Llpid-Water Phases: Structures and Biomembrane Aspects.H J. Phys. Chem. 1989. V. 93. P. 7304-7314.

33. Miller R., Yavin E. /The effect of interactions in the head groups on monolayer structure and permeability II Bioelectrochem. Bioenerg. 1988. V.19. P. 557-567.

34. Olofsson L.G.M., Edvardsson M.E.M., Delsing P., Kasemo В./ Vesicle and bi-layer kinetics at surfaces measured by electrical transmission. // Sensors and Actuators B: Chemical. 2004. V. 97. P. 313-318.

35. Shapovalov V., Tronin A. / Interaction of hydrophobic ions with a Langmuir monolayer of dioctadecyldimethylammonium bromide.ll. Langmuir. 1998. V.13. P.:4870-4875.

36. Shapovalov V.L., Kotova E.A., Rokitskaya T.I., Antonenko Y.N. I Effect of gramicidin A on the dipole potential of phospholipid membranes.il Biophys. J. 1999. V. 77. P. 299-305.

37. Vermette P., Gauvreau V., Pezolet' M. Laroche G. I Albumin andfibrinogen adsorption onto phosphatidylcholine monolayers investigated by Fourier transform infrared spectroscopy// Coll. Surf. B: Biointerfaces 2003. V. 29. P. 285-295.

38. Kriiger P., Baatz J.E., Dluhy R.A., Losche M./ Effect of hydrophobic surfactant protein SP-C on binary phospholipid monolayers. Molecular machinery at the air/water interfacell Biophys Chem. 2002. V. 99. P. 209-228.

39. Brezesinski G, Mohwald Н. /Langmuir monolayers to study interactions at model membrane surfaces.// Adv Colloid Interface Sci. 2003. V. 100-102. P. 563-584.

40. Chizmadzhev Y.AJThe mechanisms of lipid-protein rearrangements during viral infection.// Bioelectrochemistry. 2004. V. 63. P. 129-136.

41. Tien H.Ti , Ottova A.LJ The lipid bilayer concept and its experimental realization: from soap bubbles, kitchen sink, to bilayer lipid membranes //J. Membr. Sci. 2001. V.189. P. 83117.

42. Dynarowicz-Latka P, Dhanabalan A, Oliveira ON Jr. /Modern physicochemical research on Langmuir monolayers.// Adv Colloid Interface Sci. 2001. V. 91. P. 221-293.

43. Hianikn T. / Electrostriction and dynamics of solid supported lipid films. // Reviews in Molecular Biotechnology. 2000, V. 74, P. 189-205.

44. Deme В., Zemb Т. /Measurement of sugar depletion from uncharged lamellar phases by SANS contrast variation. //. Appl. Cryst. 2000. V. 33. P. 569-573.

45. Andreoli Т.Е. /Planar lipid bilayer membranes.//Methods, Enzymol. 1974. V. 32 (Part B). P.513-539.

46. Coronado R. /Recent advances in planar phospholipid bilayer techniques for monitoring ion channels //Annu. Rev. Biophys. Biophys. Chem. 1986. V. 15. P. 259-277.

47. Mirzabekov, T.A., Silberstein A.Y., Kagan B.L. / Use ofplanar lipid bilayer membranes for rapid screening of membrane active compoundsJ/Methods Enzymol. 1999. V. 294. P. 661674.

48. New R.R.C./ Liposomes: a practical approach. IRL Press, Oxford-New York-Tokyo, 1990, p. 95.

49. Banerjee R.K., Datta A.G./ Proteoliposome as the model for the study of membrane-bound enzymes and transport proteins.//Mol. Cell Biochem. 1983. V. 50. P. 3-15.

50. Perkins W.R., Minchey S.R., Ahl P.L., Janoff A.S. /The determination of liposome captured volume.//Chem. Phys. Lipids. 1993. V. 64. P. 197-217.

51. Helfrich W. /Elastic properties of lipid bilayers: theory and possible experiments.//Z. Naturforsch. С. 1973. V. 28. P. 693-703.

52. Petrov A.G. /Liquid Crystal Physics and the Physics of Living Matter //Mol.Cryst.Liq.Cryst. 1999. V. 332. P. 577-584.

53. Farsad K., De Camilli P. /Mechanisms of membrane deformation//Current Opinion in Cell Biology. 2003. V. 15. P. 372-381.

54. Leikin S., Kozlov M.M., Fuller N.L., Rand R.P. / Measured effects of diacylglycerol on structural and elastic properties of phospholipid membranes. //Biophys J. 1996. V. 71. P. 2623-2632.

55. Szule A., Fuller N.L., Rand R.P. / The Effects of Acyl Chain Length and Saturation of Diacylglycerols and Phosphatidylcholines on Membrane Monolayer Curvature// Biophys. J. 2002. V. 83. P. 977-984.

56. Fuller N., Benatti C.R., Rand R.P. / Curvature and bending constants for phosphatidylserine-containing membranes. //Biophys. J. 2003. V. 85. P.1667-1674.

57. Chen Z., Rand R.P. /Comparative study of the effects of several n-alkanes on phospholipid hexagonal phases.// Biophys. J. V. 74. P. 944-952. 1998.

58. Chen Z., Rand R.P. /The influence of cholesterol on phospholipid membrane curvature and bending elasticity.//Biophys. J. 1997. V. 73. P. 267-276.

59. Fuller N., Rand R.P. /The Influence of Lysolipids on the Spontaneous Curvature and Bending Elasticity of Phospholipid Membranes// Biophys. J. 2001. V. 81. P. 243-254.

60. Kooijman E.E., Chupin V., Fuller N.L., Kozlov M.M., de Kruijff В., Burger K.N.J., Rand P.R./ Spontaneous Curvature of Phosphatide Acid and Lysophosphatidic Acid // Biochemistry. 2005. V. 44. P. 2097-2102.

61. Kang S.Y., Seong B.S., Han Y.S., Jung H.T. / Self-organization of amphiphilic polymer in vesicle bilayers composed of surfactant mixtures. // Biomacromolecules. 2003. V. 4. P. 360365.

62. Gebhardt C., Gruler H., Sackmann E. / On domain structure and local curvature in lipid bilayer and biological membranes. // Z. Naturforsch. 1911 N. 32C, P. 581-596.

63. Mouritsen O.G., Jorgensen К ./A new look at lipid-membrane structure in relation to drug research.// Pharm. Res. 1998. V. 15. P. 1507-1519.

64. Risbo J., Jorgensen K., Sperotto M.M., Mouritsen O.G. / Phase behavior and permeability properties of phospholipid bilayers containing a short-chain phospholipid permeability enhancer.// Biochim. Biophys. Acta. 1997. V. 1329. P. 85-96.

65. You Han X., Gietzen K., Galla H.-J., Sackmann EJ A simple assay to study protein mediated lipid exchange by fluorescence polarization // Biochem. J. 1983. V. 209. P. 257-260.

66. Angelova M.I., Hristova N., Tsoneva I. /DNA-induced endocytosis upon local microinjection to giant unilamellar cationic vesicles. // Eur. Biophys. J. 1999. V. 28. P. 142-150.

67. Holopainen J.M., Angelova M.I., Kinnunen P.K.J. /Vectorial Budding of Vesicles by Asymmetrical Enzymatic Formation of Ceramide in Giant Liposomes. // Biophys. J. 2000. V. 78. P. 830-838.

68. Bemporad D., Luttmann C., Essex J. W ./Computer simulation of small molecule permeation across a lipid bilayer: dependence on bilayer properties and solute volume, size, and cross-sectional area// Biophys. J. 2004. V. 87. P. 1-13.

69. Волошин В.П., Алинченко М.Г., Медведев Н.Н., Жедловский П., Рабинович A.JI. / Исследование структуры межмолекулярных полостей в липидном бислое// Структура и динамика молекулярных систем. Т. 10. Часть 2. Стр. 150-155. Яльчик, 2003.

70. Almeida P.F.F., Vaz W.L.C./ Lateral Diffusion in Membranes Chapter 6. //In.: Handbook of Biological Physics, Ed. by R. Lipowsky and E. Sackmann, V. 1. Elsevier Science. 1995. P. 305-357.

71. McMullen, T.P.W., McElhaney R.N. / Physical studies of cholesterol-phospholipid interactions. II Curr. Opin. Colloid Interface Sci. 1996. V. 1. P. 83-90.

72. Tu K., Klein M.L., Tobias D.J. / Constant-Pressure Molecular Dynamics Investigation of Cholesterol Effects in a dipalmitoylphosphatidylcholine Bilayer. I I Biophys. J. 1998. V. 75. P. 2147-2156.

73. Grainger, D.W., Reichert A., Ringsdorf H., Salesse C. / Chiral solidification of a phospholipid monolayer// FEBS Lett. 1989. V. 252. P. 73-82.

74. Nuscher В., Kamp F., Mehnert Т., Odoy S., Haass C., Kahle P.J., Beyer K. / a-synuclein has a high affinity for packing defects in a bilayer membrane: a thermodynamics study.// J. Biol. Chem. 2004. V. 279. P. 21966-21975.

75. Ring A. / Gramicidin channel-induced lipid membrane deformation energy: influence of chain length and boundary conditions.!I Biochim. Biophys. Acta. 1996. V. 1278. V.l47-159.

76. Longo M.L., Waring A.J., Hammer D.A. / Interaction of the influenza hemagglutinin fusion peptide with lipid bilayers: area expansion and permeation. II Biophys. J. 1997. V. 73. P.1430-1439.

77. Epand R.M. / Fusion peptides and the mechanism of viral fusion.// Biochim. Biophys. Acta. 2003. V. 1614. P. 116-121.

78. Xiang Т., Anderson B.D. / Influence of a transmembrane protein on the permeability of small molecules across lipid membranes.// J. Membr. Biol. 2000. V. 173. P.l 87-201.

79. Soderlund Т., Lehtonen J. Y., Kinnunen P. K. /Interactions of cyclosporin A with phospholipid membranes: effect of cholesterol.// Mol. Pharmacol. 1999. V. 55, P. 32-38.

80. Гринштейн С. В., Кост О. А. / Структурно-функциональные особенности мембранных белков И Успехи биологической химии. 2001. Т. 41. С. 77-104.

81. Tocanne, J.F., Cezanne,. L., Lopez, A., Piknova, В., Schram, V., Tournier, J.F., Welby, M./ Lipid domains and lipid/protein interactions in biological membranes.// Chem. Phys. Lipids. 1994.V. 73. P.139-158.

82. Clerc S.G. / Thompson ТЕ. Permeability of dimyristoyl phosphatidylcholine/dipalmitoyl phosphatidylcholine bilayer membranes with coexisting gel and liquid-crystalline phases. Biophys. J. 1995. V. 68. P. 2333-2341.

83. Webb, M.S., Hui S.W., Steponkus, P.L. /Dehydration-induced lamellar-to-hexagonal-11 phase transitions in DOPE/DOPC mixtures. II Biochim. Biophys. Acta. 1993.V. 1145. P. 93104.

84. Mason J.T. / Mixing behavior of symmetric chain length and mixed chain length phosphatidylcholines in two-component multilamellar bilayers: evidence for gel and liquid-crystalline phase immiscibilityll Biochemistry. 1988. V. 27. P.4421-4429.

85. Ruiz-Argiiello M. В., Basanez G., Goni F.M., Alonso A. / Different effects of enzyme-generated ceramides and diacylglycerols in phospholipid membrane fusion and leakage. И J. Biol. Chem. 1996. V. 271. P. 26616-26621.

86. Schaffer E, Thiele U. / Dynamic domain formation in membranes: Thickness-modulation-induced phase separation II. Eur Phys J E Soft Matter. 2004. V. 14, P. 169-175.

87. Batenjany M.M., O'Leary T.J., Levin I.W., Mason J.T. / Packing characteristics of two-component bilayers composed of ester- and ether-linked phospholipids.// Biophys. J. 1997. V. 72. P. 1695-1700.

88. Crane J.M., Tamm L.K. / Role of Cholesterol in the Formation and Nature of Lipid Rafts in Planar and Spherical Model membranes. II Biophys. J. 2004. V. 86. P. 2965-2979.

89. Horejsi V. / The roles of membrane microdomains (rafts) in T cell activation.il Immunol. Rev. 2003. V. 191. P. 148-164.

90. Prior I.A., Muncke C., Parton R.G., Hancock J.F. / Direct visualization of Ras proteins in spatially distinct cell surface microdomains. II J. Cell Biol. 2003. V. 160. P. 165-170.

91. Garrigues A., Escargueil A.E., Orlowski S. / The multidrug transporter, P-glycoprotein, actively mediates cholesterol redistribution in the cell membrane. I! Proc. Natl. Acad. Sci. USA. 2002, V. 99. P. 10347-10352.

92. Leckband D.E., Helm, С. A., Israelachvili J. / Role of calcium in the adhesion and fusion of bilayers. // Biochemistry. 1993. V. 32. P. 1127-1140.

93. Wilschut J., Diizgunes N., Papahadjopoulos D. / Calcium/magnesium specificity in membrane fusion: kinetics of aggregation and fusion of phosphatidylserine vesicles and the role of bilayer curvature Л Biochemistry. 1981. V. 20. P. 3126-3133.

94. Ortiz A., Killian J. A., Verkleij A.J., Wilschut J. / Membrane Fusion and the Lamellar-to-Inverted-Hexagonal Phase Transition in Cardiolipin Vesicle Systems Induced by Divalent Cations И Biophys. J. 1999. V. 77. P. 2003-2014.

95. Меликян Г.Б., Черномордик Jl.M., Абидор И.Г., Чайлахян Л.М., Чизмаджев Ю.А.// Вызываемое слияние бислойных липидных мембран, не содержащих растворителя II ДАН СССР. 1983. Т. 269. С. 1221-1225,

96. Meyer H.W. / Lipid domain structures in biological membranes. // Exp. Pathol. 1983. V. 23, P. 3-26.

97. Haverstick D.M., Glaser M. / Visualization of Ca2+-inducedphospholipid domains. II Proc Natl. Acad. Sci. USA. 1987. V. 84, P. 4475-4479.

98. Ermakov Yu.A., Averbakh A.Z., Sukharev S.I. / Lipid and cell membranes in the presence of gadolinium and other ions with high affinity to lipids. 1. Dipole and diffuse components of the boundary potential. II Membr. Cell Biol. 1997.V. 11. P. 539-554.

99. Smith B.A., McConnell H.M. / Determination of molecular motion in membranes using periodic pattern photobleaching. //Proc. Nat. Acad. Sci. USA. 1978. V. 75. P. 2759-2763.

100. Vaz W.L.C., Derzko I., Jacobson K.A. I Photobleaching measurements of the lateral diffusion of lipids and proteins in artificial phospholipid bilayer membranes.il Cell Surface Reviews. 1982. V. 8. P. 84-128,

101. Devaux P., McConnell H.M. I Lateral diffusion in spin-labeled phosphatidilcholine multilayers.// J. Amer. Chem. Soc. 1972. V. 94. 4475-4481.

102. McCown J.T., Evans E., Diehl S., Wiles H.C. /Degree of hydration and lateral diffusion in phospholipid multibilayers// Biochemistry. 1981. V. 20, P. 3134-3138.

103. Cullis P.R. (1976) / Lateral diffusion rates of phosphatidiylcholine in vesicle membranes: Effects of cholesterol and hydrocarbon phase rtansition.// FEBS Lett. 1976. V. 70, P. 223228.

104. Kuo A.-L., Wade C.GJ Lipid lateral diffusion be pulsed nuclear magnetic resonance.II Biochemistry. 1979. V. 17. P. 2300-2308.

105. Hemminga M.A. / An ERS study of the mobility of the cholestane spin label in oriented lecithin-cholesterol multibilayers.// Chem. Phys. Lipids. 1975. V. 14. P. 141-173.

106. Filippov A, Oradd G, Lindblom G. / The effect of cholesterol on the lateral diffusion of phospholipids in oriented bilayers. И Biophys J. 2003. V. 84. P. 3079-3086.

107. O'Leary T. / Lateral diffusion of lipids in complex biological membranes II Proc. Natl. Acad. Sci. USA. 1987. V. 84. P. 429-433.

108. Kornberg R.D., McConnell H.M. / Inside-outside transition of phospholipids in vesicle membranes.//Biochemistry. 1971. V. 10. P. 1111-1120.

109. Bhamidipati S.P., Hamilton J.A. / Interactions of lyso-l-palmitoylphosphatidilcholine with phospholipids: a ,3CandnPNMR study// Biochemistry. V. 34. P. 5666-5677. 1995.

110. Buton X., Morrot G., Fellman P., Seigneuret M. Ultrafast glicerophospholipid-selective transbilayer motion mediated by a protein in the endoplasmic reticulum membrane.// J. Biol. Chem. 1996. M.271. P. 6651-6657.

111. Cabral D.J., Small D.M., Lilly H.S., Hamilton J.A. / Transbilayer movement of bile asids in model membranes. //Biochemistry. 1987. 26. 1801-1804.

112. Barsukov L.I., Kulikov V.I., Bergelson L.D. / Cytochrome P-450 facilitate phosphatidylcholine flip-flop in proteoliposomes. И FEBS Lett. 1982, V. 144, P. 337-340.

113. Jain M.K., Jahagirdar D.V., Linde M.V., Roelofsen В., Eibl H. / Solute-induced acceleration of transbilayer movement and its implications on models of blood-brain barrier.ll Biochim. Biophys. Acta. 1985. V. 818. P. 356-364.

114. Lentz B.R., Talbot W., Lee J.K., Zheng L-X. / Transbilayer lipid redistribution accompanies polyfethylene glycol) treatment of model membranes but is not induced by fusion. // Biochemistry. 1997, V. 36. P. 2076-2083.

115. Serra M.V., Kamp D., Haest C.W. Pathways for flip-flop of mono- and di-anionic phospholipids in the erythrocyte membrane.ll Biochim. Biophys. Acta. 1996, 1282, 263-273.

116. Mclntyre J.C. Sleight R.G. /Fluorescence assay for phospholipid membrane asymmetry.// Biochemistry. 1991. V. 30. P. 11819-11827.

117. Greenhut S.F., Roseman M.A. / Cytochrome b5 induced flip-flop of phospholipids in sonicated vesicles.// Biochemistry, V. 24, P.1252-1260,1985.

118. Matsuzaki K., Murase O., Fujii N., Miyajima K./ An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. //Biochemistry. 1996. V. 35. P.l 1361-11368.

119. Matsuzaki К., Yoneyama S., Murase О., Miyajima К./ Transbilayer transport of ions and lipids coupled with mastoparan X translocation.// Biochemistry. 1996. V. 35. P. 8450-8456.

120. Bai J. Pagano R.E. / Measurement of spontaneous transfer and transbilayer movement of BODIPY-labeled lipids in lipid vesicles.// Biochemistjy. 1997. V. 36. P. 8840-8848.

121. Haest C.W.M, Oslender A., Kamp D./ Nonmediated flip-flop of anionic phospholipids and long-chain amphiphiles in the erythrocyte membrane depends on membrane potential.// Biochemistry. 1997. V. 36. P. 10885-10891.

122. Shaw J.M., Thompson Т.Е. / Effect of phospholipid oxidation products on transbilayer movement of phospholipids in single lamellar vesicles.// Biochemistiy. 1982. V. 21. P. 920927.

123. Buton X., Morrot G., Fellmann P., Seigneuret M. / Ultrafast glycerophospholipid-selective transbilayer motion mediated by a protein in the endoplasmic reticulum membrane. // J. Biol. Chem. 1996. V. 271. P. 6651-6657.

124. Gallet P.F., Zachowski A., Julien R., Fellman P., Devaux P., Maftah A. / Transbilayer movement and distribution of spin-labelled phospholipids in the inner mitichondrial membrane Л Biochim. Biophys. Acta. 1999. V. 1418. P. 61-70.

125. Rohtman J.E., Kennedy Е.Р. / Rapid transmembrane movement of newlysynthesized Phospholipids during membrane assembly. II Proc. Nat. Acad. Sci. USA. 1977. V. 74. P. 1821-1825.

126. Hrafnsdottir S., Nichols J.W., Menon А.К./ Transbilayer movement of fluorescent phospholipids in Bacillus megaterium membrane vesicles. II Biochemistry. 1997. V. 36. P. 4969-4978.

127. Middelkoop E., Lubin B.H., Op den Kamp J.A., Roelofsen B. / Flip-flop rates of individual molecular species of phosphatidylcholine in the human red cell membrane.il Biochim. Biophys. Acta. 1986. V. 855. P. 421-424.

128. Bishop J.M., Bell R.M. iAssembly of the endoplasmic reticulum phospholipid bilayer: The phosphatidylcholine transporterII Cell. 1985. V. 42. P. 51-60. v

129. Basse F., Sainte-Marie J., Maurin L., Bienvenue A. / Effect of benzyl alcohol on phospholipid transverse mobility in human erythrocyte membrane.il Eur. J. Biochem. 1992. V. 205. P. 155-162.

130. Devaux P. /Protein involvement in transmembrane lipid assimetry.// knm. Rev. Biophys. Boimol. Struct. 1992, V. 21. P. 417-439.

131. Stier A., Finch S.A.E., Bosterling B. / Non-lamellar structure in rabbit liver microsomal membranes: a31P-NMRstudy. //FEBS Lett. 1978. V. 91. P. 109-112.

132. Барсуков Л.И., Куликов В.И., Бахманова Г.И., Арчаков А.И., Бергельсон Л.Д. . Быстрая трансбислойная миграция фосфатидилхолина под действием цитохрома Р450. // Биохимия. 1982, Т. 47. С. 2055-2065.

133. Henseleit U., Plasa G., Haest C.W. / Effect of divalent cations on lipidflip-flop in the human erythrocyte membrane. //Biochim. Biophys. Acta. 1990. V. 1029. P. 127-135.

134. Bevers Е.М., Comfurius P., Dekkers D.W., Zwaal R.F. / Lipid translocation across the plasma membrane of mammalian cells //.Biochim Biophys Acta. 1999. V. 1439. P. 317-330.

135. Schwichtenhovel C., Deuticke В., Haest C.W. / Alcohols produce reversible and irreversible acceleration of phospholipid flip-flop in the human erythrocyte membrane. И Biochim. Biophys. Acta. 1992. V. 1111. P. 35-44.

136. Basse F., Sainte-Marie J., Maurin L., Bienvenue A. / Effect of benzyl alcohol on phospholipid transverse mobility in human erythrocyte membrane. // Eur. J. Biochem. 1992. V. 205. P. 155-162.

137. Ландау Л.Д., Лифшиц E.M. Гидродинамика. M.: Наука, 1986.

138. Владимиров Ю.А., Добрецов Г.Е. Флуоесцентные зонды в исследовании биологических мембран. Москва: Наука, 1980.

139. Lentz B.R. / Use of fluorescent probes to monitor molecular order and motions within liposome bilayers. II Chem. Phys. Lipids. 1993. V. 64. P. 99-116.

140. Marsh D., Kurad D., Livshits V.A. / High-field electron spin resonance of spin labels in membranes.il Chem. Phys. Lipids. 2002. V. 116. P. 93-114.

141. Cribier S., Morrot G., Zachowski A. / Dynamics of the membrane lipid phase.// Prostaglandins Leukot. Essent. Fatty Acids. 1993. V. 48. P. 27-32.

142. Sherbet G.V. /Membrane fluidity and cancer metastasis. //Exp. Cell Biol. 1989. V. 57. P. 198-205.

143. Флайгер У. IIСтроение и динамика молекул, т. 1. М. Мир, 1982. с. 22.

144. Лакович Дж. //Принципы флуоресцентной спектроскопии, М., Мир, 1986, с. 145

145. Lentz B.R., Barenholtz Y., Thompson Т.Е. / Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. 1. Single component phosphatidylcholine liposomes. //Biochemistry. 1976. T. 15. C. 4521-4528.

146. Lentz B.R., Barenholtz Y., Thompson Т.Е. / Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. 2. Two-component phosphatidylcholine liposomes. //Biochemistry. 1976. V. 15. P. 4529-4537.

147. Kinosita K.Jr., Kataoka R., Kimura Y., Gotoh O., Ikegami A. / Dynamic structure of biological membranes as probed by l,6-diphenyl-l,3,5-hexatriene: a nanosecond fluorescence depolarization study.// Biochemistry. 1981. V. 20. P. 4270-4277.

148. Shinitzky М., Inbar М. / Microviscosity parameters and protein mobility in biological membranes. II Biochim. Biophys. Acta. 1976. V. 433. P. 133-149.

149. Roosemond R.C., Urli D.C. / Lipid composition and microviscosity of subcellular fractions from rabbit thymocytes. Differences in the microviscosity of plasma membranes from subclasses of thymocytes. H Biochim. Biophys. Acta. 1979. V. 556. P. 17-37.

150. Shinitzky МУ Membrane fluidity and cellular functions, physiology of membrane fluidity. // CRC Press, Boca Raton. 1984. P. 1-51.

151. Neibylski G.D., Petty H.R. Cyclosporine A induses an early transient rigification of lymphocyte membranes. // J. Leukoc. Biol. 1991. V. 49. P. 407-415.

152. Kleinfild A.M., Dragsten P., Klansner R.D., Pjura W.J., Matayoshi E.D. / The lack of relationship between fluorescence polarisation and lateral diffusion in biological membranes. //Biochim. Biophys. Acta. 1981, V. 649. P. 471-480.

153. Portoles M.T., Pagani R., Diaz-Laviada I., Muchicio A.M. / Effect of Escherichia coli lipopolysaccharide on the microviscosity of liver plasma membranes and hepatocyte suspensions and monolayers. //Cell Biochem. Funct. 1981. V. 5. P. 55-61.

154. Viti V., Cicero R., Callari D., Guidoni L., Billitteri A., Sichel G. / Effect of lipophilic31vitamins on the erythrocyte membrane. P-NMR and fluorescence studies. // FEBS Lett. 1983. V. 158, P. 36-40.

155. Frangopol P.T. /Interactions of some local anesthetics and alcohols with membranes., Colloid and Surfaces £://Biointerfaces. 2001. V. 22, P. 3-22.

156. Nie S.Q., Majarais I., Kwan C.J., Epand R.M. I Pyrazine derivatives affect membrane fluidity of vascular smooht muscle microsomes in relation to their biological activity.// Eur. J. Pharmacol. 1993. V. 224. P. 15-19.

157. Nie S.Q., Majarais I., Kwan C.J., Epand R.M. / Analogues of tetramethylpyrasine affect membrane fluidity of liposomes: relationship to their biological activities. / Eur. J. Pharmacol. 1994. V. 266. P. 11-18.

158. Andelman D. / Electrostatic Properties of membranes: the Poisson-Boltzmann theory // V. 1, Chapter 12 in Handbook of Biological Physics (R. Lipowsky and E. Sackmann Eds.), Elsevier, Amsterdam. 603-641.1995.

159. McLaughlin S. Experimental tests of the assumptions inherent in Gouy-Chapmen theory of the aqueous diffuse double layer! In: Physical Chemistry of transmembrane ion motions (G. Spach, Ed.) Elsevier, Amsterdam, P. 69-76, 1983.

160. Winiski, A.P., McLaughlin, A.C., McDaniel, R.V., Eisenberg, M., McLaughlin, S./ An experimental test of the discreteness-of-charge effect in positive and negative lipid bilayers, //Biochemistry. 1986. V. 25. P. 8206-8214.

161. Hartsel S.C., Cafiso, D.S./ A test of discreteness-of-charge effects in phospholipids vesicles: measurements using paramagnetic amphiphiles II Biochemistry. V. 25, P. 8214-8219. 1986.

162. McLaughlin S., / Electrostatic potentials at membrane-solution interfaces, II Current Topics in Membrane Transport, V. 9. P. 71-144. 1977.

163. Brockman H. / Dipole potential of lipid membranes //Chem. Phys. Lipids. 1994. V. 73. P. 57-79.

164. Clarke R. J. / The dipole potential of phospholipids membranes and methods for its detection!I Adv. Colloid Interface Sci. 2001. V. 89-90. P. 263-281.

165. Либерман Ю.А., Топалы В.П. / Проницаемость бимолекулярных фосфолипидных мембран для жирорастворимых ионов. II Биофизика. 1969. Т. 14. С. 452-461.

166. Haydon D.A., Myers V.B. / Surface charge, surface dipoles and membrane conductance.11 Biochim. Biophys. Acta. 1973. V. 307. P. 429-443.

167. Muderhwa J.M., Brockman H.L. / Lateral lipid distribution is a major regulator of lipase activity. Implication for lipid-mediated signal transduction. II J. Biol. Chem. 1992. V. 267. P. 24184-24192.

168. Smaby J.M., Brockman H.L. / Surface dipole moments of lipids at the argon-water interface. Similarities amongglycerol-ester-based lipids. II Biophys. J. 1990. V. 58. P. 195-204.

169. Lamarche F., Techy F., Aghion J., Leblank R.M./ Surface pressure, surface potential and ellipsometric study of Cytochrome с binding to dioleoylphosphatidylcholine monolayer at the air-water interface. II Colloids Surf. 1988. V. 30. P. 209-222.

170. Henckl W.M., Thompson M., Mohwald H. / Fluorescence and electron microscopic study lectinpolysaccharide and immunochemical aggregation at phospholipids Langmuir-Blodgett monolayers II Langmuir. 1989. V. 5. P. 390-394.

171. Трубецкая M.B., Антоненко Ю.Н., Тропша A.E., Ягужинский Л.С.// Иод-содержащие гормоны как дипольные модификаторы липидных мембран, // Биофизика. 1984. Т. 29. С.801-805.

172. Antonenko Y.N., Rokitskaya T.I., Kotova E.A. / Effect of dipole modifiers on the kinetics of sensitized photoinactivation of gramicidin channels in bilayer lipid membranes. // Membr. Cell Biol. 1999. V. 13. P. 111-120.

173. Peterson U., Mannock,D.A., Lewis R.N., Pohl P., McElhaney R.N., Pohl E.E. / Origin of membrane dipole potential: contribution of the phospholipid fatty acid chains./! Chem. Phys. Lipids. 2002. V. 17. P. 19-27.

174. Pohl E.E., Peterson U., Sun J., Pohl P. / Changes of intrinsic membrane potentials induced by flip-flop of long-chain fatty acids. II Biochemistry. 2000. V. 39. P. 1834-1839.

175. Gross E., Bedlack R.S. Jr, Loew L.M. / Dual-wavelength ratiometric fluorescence measurement of the membrane dipole potential. И Biophys J. 1994. V. 67. P. 208-216.

176. Котык А., Яначек К. Мембранный транспорт. М.:Мир. 1980. с.188-197

177. Walter A., Gutknecht J. / Permeability of small nonelectrolytes through lipid bilayer membranes. Hi. Membr. Biol. 1986. V.90. P. 207-217.

178. Simonyan R.A., Skulachev V.P. / Thermoregulatory uncoupling in heart muscle mitochondria: involvement of the ATP/ADP antiporter and uncoupling protein. IIFEBS Lett. V. 436. P. 81-84. 1998.

179. Skulachev V.P. / Anion carriers in fatty acid-mediated physiological uncoupling. II J. Bioenerg. Biomembr. 1999. V. 31. P. 431-445.

180. Tarasiuk J., Garnier-Suillerot A. / Kinetic parameters for the uptake of anthracycline by drug-resistant and drug-sensitive K562 cells. II Eur J Biochem. 1992. V. 204. P. 693-698.

181. Xiang T.X., Anderson B.D. / Influence of chain ordering on the selectivity of dipalmitoylphosphatidylcholine bilayer membranes for permeant size and shape.ll Biophys. J. 1998. V. 75. P. 2658-2671.

182. Bemporad D., Luttmann C., Essex J. W. / Computer Simulation of Small Molecule Permeation across a Lipid Bilayer: Dependence on Bilayer Properties and Solute Volume, Size, and Cross-Sectional Area. II Biophys. J. 2004. V. 87. P. 1-13.

183. Parsegian A. / Energy of an ion crossing a low dielectric membrane: solutions to four relevant electrostatic problems. //Nature. 1969. V. 221. P.844-846.

184. Bordi F., Cametti С., Motta A. I Ion Permeation Across Model Lipid Membranes: A Kinetic Approach, Hi. Phys. Chem. B. 2000. V. 104. P. 5318-5323.

185. Paula S, Volkov A.G., Van Hoek A.N., Haines Т.Н., Deamer D.WJ Permeation of protons, potassium ions, and small polar molecules through phospholipid bilayers as a function of membrane thickness. II Biophys. J. 1996. V. 70. P. 339-348.

186. Paula S., Volkov A.G., Deamer D.W. / Permeation ofhalide anions through phospholipid bilayers occurs by the solubility-diffusion mechanism J/Biophys. J. V. 74. P. 319-327,1998.

187. Sandre O., Moreaux L., Brochard-Wyart F. / Dynamics of transient pores in stretched vesicles И Proc. Natl. Acad. Sci. USA. 1999. V. 96. P. 10591-10596.

188. Wilson M.A., Pohorille A. / Mechanism of unassisted ion transport across membrane bilayers Hi. Am. Chem. Soc. 1996. V. 118. P. 6580-6587.

189. Pohorille A., Wilson M. A. / Unassisted and assisted ion transport across membranes: insights from computer stimulations II Cell. Biol. Mol. Lett. 2001. V. 6. P. 369-373.

190. Syganov, A., von Kitzing, E. / (Invalidity of the Constant Field and Constant Currents Assumptions in Theories of Ion Transport I I Biophys. J. 1999. V. 76. P. 768-781.

191. Чизмаджев Ю.А., / Как сливаются биологические мембраны //Сор. Общеобразов. Ж. 2001. Т. 7. С. 4-9.

192. Chernomordik L.V., Melikyan G.B., Chizmadzhev Y.A. / Biomembrane fusion: a new concept derived from model studies using two interacting planar lipid bilayers. II Biochim. Biophys. Acta, 1987. V. 906. P. 309-352.

193. Smith K.C., Neu J.C., Krassowska W. / Model of creation and evolution of stable electroporesfor DNA delivery. I I Biophys. J. 2004. V. 86. P. 2813-2826.

194. Melikov K.C., Frolov V.A., Shcherbakov A., Samsonov A.V., Chizmadzhev Y.A., Chernomordik L.V. / Voltage-induced nonconductive pre-pores and metastable single pores in unmodified planar lipid bilayer. H Biophys. J. 2001. V. 80. P. 1829-1836.

195. Marrink S.J., Jahnig F., Berendsen H.J. / Proton transport across transient single-file water pores in a lipid membrane studied by molecular dynamics simulations. 11 Biophys. J. 1996. V.71.P. 632-647.

196. Jansen M., Blume A. IA comparative study of diffusive and osmotic water permeation across bilayers composed of phospholipids with different head groups and fatty acyl chains.// Biophys. J. 1995. V. 68. P. 997-1008.

197. Lipowsky R. / Bending of Membranes by Anchored Polymers. II Europhys. Lett. 1995. V. 30. P. 197-202.

198. Briscoe В., Luckham P., Zhu S. / On the effects of water solvency towards non-ionic polymers. II Proc. Royal Soc. (London) A. 1999. V. 455. P. 737-756.

199. Aray Y., Marquez M., Rodryguez J., Vega D., Simon-Manso Y., Coll S., Gonzalez C., Weitz D.A. / Electrostatics for exploring the nature of the hydrogen bonding in polyethylene oxide hydration//. Phys. Chem. B. 2004. V. 108. P. 2418-2424.

200. Corrigan O.I., Healy A.M. / Surfactants in pharmaceutical products and Systems, II In: Encyclopedia of Pharmaceutical Technology, Marcel Dekker, 2002.

201. Tirosh O., Barenholz Y., Katzhendler J., Priev A. / Hydration of Polyethylene Glycol-Grafted Liposomes // Biophys. J. 1998. V.74. P. 1371-1379.

202. Garbuzenko O., Zalipsky S., Qazen M., Barenholz Y. / Electrostatics of PEGylated micelles and liposomes containing charged and neutral lipopolymers. И Langmuir. 2005. V. 21, P. 2560-2568.

203. Brackman J.C., van Os N.M., Engberts J.B.F.N. / Polymer-nonionic micelle complexation. Formation of poly(propylene oxide)-complexed n-octyl thioglucoside micelles II Langmuir. 1988. V. 4. P. 1266-1269.

204. Johnsson B, Lindman B, Kronberg B, Holmberg K./ Surfactants and Polymers in Aqueous Solution. Wiley, New York, 1998.

205. Nemethy G., Scheraga H.A. / Structure of water and hydrophobic bonding in proteins. 1. A model for the thermodynamic properties of liquid water. II J. Chem. Phys. 1962. V. 36. P. 3382-3400.

206. Tanford C. / The hydrophobic effect and the organization of living matter.!I Science. 1978. V. 200. P. 1012-1018.

207. Arakawa Т., Timasheff S. N. / Mechanism of polyethylene glycol interaction with proteins. Biochemistry. 1985. V. 24. P. 6756-6762.

208. Gabizon A.A. / Stealth liposomes and tumor targeting: one step further in the quest for the Magic Bullet П Clin. Cancer Res. 2001. V. P. 223-225.

209. Moghimi S.M., Szebeni J. / Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties.!! Prog. Lipid Res. 2003. V. 42. P. 463-478.

210. Xu Z, Marchant RE. / Adsorption of plasma proteins on polyethylene oxide-modified lipid bilayers studied by total internal reflection fluorescence. // Biomaterials. 2000. V.l. P. 10751083.

211. Efremova N.V., Bondurant В., O'Brien D.F., Leckband D.E. / Measurements of Interbilayer Forces and Protein Adsorption on Uncharged Lipid Bilayers Displaying Poly(ethylene glycol) Chains II Biochemistry. 2000. V. 39. P. 3441-3451.

212. Torchilin V.P., Trubetskoy V.S., Whiteman K.R., Caliceti P., Ferruti P., Veronese F.M. / New synthetic amphiphilic polymers for steric protection of liposomes in vivo. U J. Pharm. Sci. 1995. V. 84. 1049-1053.

213. Kuleshova L.L., Shaw J.M., Trounson A.O. / Studies on replacing most of the penetrating cryoprotectant by polymers for embryo cryopreservation. 11 Cryobiology. 2001. V. 43. P. 2131.

214. Koster K.L., Lei Y.P., Anderson M., Martin S., Bryant G. / Effects of vitrified and nonvitrified sugars on phosphatidylcholine fluid-to-gel phase transitions. H Biophys. J. 2000. V. 78. P. 1932-1946.

215. Fleischer W., Reimer K. / Povidone-iodine in antisepsis-state of the art. I/ Dermatology. 1997. V. 195. Suppl. 2. P. 3-9.

216. Кирш Ю.Э. / Поли-Ы-виншпирролидон и другие поли-Ы-виниламиды. Синтез и физико-химические свойства. II, Москва, Наука, 1998. 252 стр.

217. Kirsh Yu.E.,. Yanul N.A Kalninsh К./ Structural transformations and water associate interactions in poly-N-vinylcaprolactam-water system. / Eur.Polymer J. 1999. V. 35, P. 305316.

218. Anrather D., Smetazko M., Saba M., Alguel Y., Schalkhammer T. / Supported membrane nanodevices. II J. Nanosci. Nanotechnol. 2004, V. 4, P. 1-22.

219. Grohmann F.L., Szogyi М., Csempesz F. / Interaction of lipid membranes and neutral polymers by differential scanning calorimetry (DSC)// Acta Pharm. Hung. 1997. V. 67. P. 267-272.

220. Jin Т., Pennefather P., Lee P.I. / Lipobeads: a hydrogel anchored lipid vesicle system. // FEBS Lett. 1996. V. 397. P. 70-74.

221. Takeuchi H., Yamamoto H., Niwa Т., Hino Т., Kawashima Y. / Mucoadhesion of polymer-coated liposomes to rat intestine in vitro. // Chem. Pharm. Bull. (Tokyo). 1994. V. 42. P. 1954-1956.

222. Takeuchi H., Yamamoto H., Niwa Т., Hino Т., Kawashima Y. / Enteral absorption of insulin in rats from mucoadhesive chitosan-coated liposomes. // Pharm. Res. 1996. V. 13. P. 896901.

223. Cansell M., Parisel C., Jozefonvicz J., Letourneur D. / Liposomes coated with chemically modified dextran interact with human endothelial cells. // J. Biomed. Mater. Res. 1999. V. 44. P. 140-148.

224. Vereyken I.J., Chupin V., Islamov A., Kuklin A., Hincha D.K., de KruijffB. / The Effect of Fructan on the Phospholipid Organization in the Dry State // Biophys. J. 2003. V. 85. P. 3058-3065.

225. Vereyken, I. J., Chupin V., Demel, R. A. Smeekens S. C., de Kruijff. B. / Fructans insert between the headgroups of phospholipids. Biochim. Biophys. Acta. 2001. V. 1510, P. 307320.

226. Liu, X.M, Wang L.S., Wang L,., Huang, J., He, C. / The effect of salt and pH on the phase transition behaviors of temperature-sensitive copolymers based on N-isopropylacrylamide.H Biomaterials. 2004. V. 25. P. 5659-5666.

227. Uchiyama, S., Matsumura Y., de Silva, A.P., Iwai, КJ Fluorescent molecular thermometers based on polymers showing temperature-induced phase transitions and labeled with polarity-responsive benzofurazans. // Anal. Chem. 2003. V. 75. P. 5926-5935.

228. Hayashi H, Kono K, Takagishi T. / Temperature-controlled release property of phospholipid vesicles bearing a thermo-sensitive polymer. // Biochim. Biophys. Acta. 1996. V. 1280. P. 127-134.

229. Meyer O., Papahadjopoulos D., Leroux J.C. // Copolymers of N-isopropylacrylamide can trigger pH sensitivity to stable liposomes. // FEBS Lett. 1998. V. 421. P. 61 -64.

230. Kim J.C., Bae S.K., Kim J.D. / Temperature-sensitivity of liposomal lipid bilayers mixed with poly(N-isopropylacrylamide-co-acrylic acid) JI J. Biochem. (Tokyo). 1997. V. 121. P. 15-19.

231. Thomas J., Devlin B.P., Tirrell D.A. / Kinetics of membrane micellization by the hydrophobic polyelectrolyte poly-(2-ethylacrylic acid) H Biochim. Biophys. Acta. 1996. V. 1278. P. 73-78.

232. Thomas J.L., Tirrell D.A. / Polymer-induced leakage of cations from dioleoylphosphatidylcholine andphosphatidylglycerol liposome. II J. Control. Release. 2000. V.67. P. 203-209.

233. Chung J.C., Gross D.J., Thomas J.L., Tirrell D.A., Opsahl-Ong L.R. / pH-Sensitive, Cation-Selective Channels Formed by a Simple Synthetic Polyelectrolyte in Artificial Bilayer Membranes. П Macromolecules. 1996. V. 29. P. 4636-4641.

234. Poirier Y. / Polyhydroxyalknoate synthesis in plants as a tool for biotechnology and basic studies of lipid metabolism. //Prog. Lipid Res. 2002. V. 41. P. 131-155.

235. Ройш P.H. / Трансмембранный транспорт ионов комплексами полифосфата и поли-(К)-3-гидроксибутирата. II Биохимия. 2000. Т. 65. С. 280-295.

236. Corkill J.M., Goodman J.F., Harrold S.P. / Thermodynamics of micellization of non-ionic detergents II Trans. Faraday Soc. 1964. V. 60. P. 202-207.

237. Shinoda K., Yamanaka Т., Kinoshita K. / Surface Chemical Properties in Aqueous Solutions of Non-ionic Surfactants Octyl Glycol Ether, a-Octyl Glyceryl Ether and Octyl Glucoside IIJ. Phys. Chem. 1959. V. 63. P. 648-650.

238. Rosen M.J. / Surfactants andInterfacial Phenomena, Wiley, New York, 1987.

239. K. Meguro, Y. Takasawa, N. Kawahashi, Y. Tabata, M.Ueno / J. Colloid Interface Sci. 1981. V. 83. P. 50-59.

240. Lange H. / Kolloide und naturliche Makromolekttle Untersuchungen iiber adsorbierte und gespreitete monomolekulare Schichten // Kolloid Z. 1965. V. 201. P. 131-136.

241. Li М., Rharbi Y., Winnik M.A., Hahn K.G. Jr. / Aggregation behavior of nonionic surfactants Synperonic A7 and A50 in aqueous solution II J. Colloid Interface Sci. 2001. V. 240. P. 284-293.

242. Elworthy P.H., MacFarlane C.B. / The physical chemistry of some non-ionic detergents II J. Pharm. Pharmacol. 1962. V. 17. P. 65-82.

243. Досон P., Эллиот Д., Эллиот У., Джонс К.// Справочник биохимика, М., Мир, 1991. С. 478.

244. Ghosh S.K., Khatua Р.К., Bhattacharya S.Ch. / Characterization of micelles of polyoxyethylene nonylphenol (Igepal) and its complexation with 3,7-diamino-2,8-imethyl-5-phenylphenazinium chloride II J. Colloid Interface Sci. 2004. V. 275. P. 623-631.

245. Aoudia M., Zana R. / Aggregation Behavior of Sugar Surfactants in Aqueous Solutions: Effects of Temperature and the Addition of Nonionic Polymers II J. Colloid Interphase Sci. 1998. V. 206. P. 158-167.

246. Brenner-Hennaf C., Valdor J.-F., Plusquellec D., Wroblewski H., / Synthesis and characterization of N-octanoyl-beta-D-glucosylamine, a new surfactant for membrane studies II Anal. Biochem. 1993. V. 212. P. 112-127.

247. Burczyk В., Wilk K.A., Sokolowski A. Sypery L. / Synthesis and Surface Properties ofN-Alkyl- N-methylgluconamides and N-Alkyl- N-methyllactobionamides II J. Colloid Interface Sci. 2001, V. 240. P. 552-558.

248. Drummond C.J., Wells D. / Nonionic lactose and lactitol based surfactants: comparison of some physico-chemical properties II Colloids Surf., A. 1998. V. 141. P. 131-142.

249. Haque M.E., Das A.R., Moulik S.P. / Mixed Micelles of Sodium Deoxycholate and Polyoxyethylene Sorbitan Monooleate (Tween 80) //J. Colloid Interface Sci. 1999. V. 217. P. 1-7.

250. Chaudier Y., Barthe Ph., Pucci B. / Synthesis and preliminary assessments of hybridhydrocarbon-fluorocarbon anionic and non-ionic surfactants II Tetrahedron Lett. 2001. V. 42. P. 3583-358.

251. Chlebicki J., Majtyka P. / Effect of Oxypropylene Chain Length on the Surface Properties of Dialkyl Glycerol Ether Nonionic Surfactants. II J. Colloid Interface Sci. 1999. V. 220. P. 5762.

252. Chlebicki J. / Effect of Polyoxybutylene Chain Length on the Surface Activity of Butylene Oxide-Ethylene Oxide Block Copolymers II J. Colloid Interface Sci. 1998. V. 206. P. 77-82.

253. Istratov V., Kautz H., Kim Y.-K., Schubert R., Frey H. / Linear-dendritic nonionic poly(propylene oxide)-polyglycerol surfactants, Tetrahedron. 2003. V. 59. P. 4017-4024.

254. Folmer B. / Sterol surfactants: from synthesis to applications. II Adv.Colloid Interface Sci. 2003. V. 103. P. 99-119.

255. Wang, Z., Li, G., Zhang, X., Wang, R., Lou A. I A Quantitative structure-property relationship study for the prediction of critical micelle concentration of non-ionic surfactants. II Colloids and Surfaces A. 2002. V. 197. P. 37-45.

256. Saunders R.A., Platts J.A. / Correlation and prediction of critical micelle concentration using polar surface area and LFER methods. II J. Phys. Org. Chem. 2004. V. 17. P. 431 -438.

257. Aveldano M.I. / Phospholipid Solubilization during Detergent Extraction of Rhodopsin from Photoreceptor Disk Membranes II Arch. Biochem. Biophys. 1995. V. 324. P. 331-343.

258. Kim J.G., Kim J.D. / Vesicle to micelle transitions of egg phosphatidylcholine liposomes induced by nonionic surfactants, poly(oxyethylene) cetyl ethers. II J. Biochem. (Tokyo) 1991. V. 110. P. 436-442.

259. Pantaler E., Kamp D., Haest C.W. / Acceleration ofphospholipid flip-flop in the erythrocyte membrane by detergents differing in polar head group and alkyl chain length.ll Biochim. Biophys. Acta, 2000. V. 1509. P. 397-408.

260. Heerklotz H., Seelig J. / Correlation of membrane/water partition coefficients of detergents with the critical micelle concentration. II Biophys. J. 2000. V. 78. P. 2435-2440.

261. Heerklotz H, Seelig J. / Titration calorimetry of surfactant-membrane partitioning and membrane solubilization. II Biochim Biophys Acta. 2000. V. 1508. P. 69-85.

262. Wenk M.R, Alt Т., Seelig A., Seelig J. / Octyl-beta-D-glucopyranoside partitioning into lipid bilayers: thermodynamics of binding and structural changes of the bilayer II Biophys J. 1997. V. 72. P. 1719-1731.

263. Lasch J. / Interaction of detergents with lipid vesicles И Biochim.Biophys. Acta, 1995, V. 1241. P. 269-292.

264. Kragh-Hansen U., le Maire M., Muller J.V. / The mechanism of detergent solubilization of liposomes and protein-containing membranes. // Biophys. J. 1998. V. 75. P. 2932-2946.

265. Simon S. A., Stone W. L., Busto-Latorre P. / A thermodynamic study of the partition of n-hexane into phosphatidylcholine and phosphatidylcholine/cholesterol bilayers // Biochim. Biophys. Acta. 1977. V. 468. P. 378-388.

266. De Young L.R., Dill K.A. / Solute Partitioning into Lipid Bilayer Membranes. II Biochemistry. 1988. V. 27. P. 5281-5289.

267. Kim Y.W., Sung W. / Membrane curvature induced by polymer adsorption. II Phys. Rev. E. 2001. V. 63. P. 041910-1-041910-5.

268. Balgavy P, Devinsky F. / Cut-off effects in biological activities of surfactants. II Adv. Colloid Interface Sci. 1996. V. 66. P. 23-63.

269. M. Kadi, P. Hansson, M. Almgren / Determination of Isotherms for Binding of Surfactants to Vesicles Using a Surfactant-Selective Electrode. II J. Phys. Chem. B. 2004. V. 108. N 22, P. 7344-7351.

270. Ara M., Partearroyo N., Alonso A., Lix F., Goni M., Tribout I.M., Paredes S. / Solubilization of Phospholipid Bilayers by Surfactants Belonging to the Triton X Series: Effect of Polar Group Size II J. Colloid. Interface Sci. 1996. V. 178. P. 156-159.

271. Przestalski S., Sarapuk J., Kleszczynska H., Gabrielska J., Hadyszowski J., Trela Z., Kuczera J. / Influence of amphiphilic compounds on membranes. // Acta Biochim. Polonica. 2000. V. 47. P. 627-638.

272. Bandyopadhyay S., Shelley J.C., Klein M.L. / Molecular Dynamics Study of the Effect of Surfactant on a Biomembrane. II J. Phys. Chem. B. 2001. V. 105. P. 5979-5986.

273. Schmolka I.R J A review of block polymer surfactants. //J. American Oil Society. 1977. P. 110-116.

274. Bohdana М. Discher,. В.М., Won Y.-Y.,. Ege D.S., Lee J.C.-M., Bates F.S., Discher, D.S. Hammer D.A. / Polymersomes: Tough Vesicles Made from Diblock Copolymers // Science. 1999.V. 284. P. 1143-1146.

275. Fraaije J.G.E.M., van Sluis C.A., Kros A., Zvelindovsky A.V. Sevink G.J.A. / Design of chimaericpolymersomes. II Faraday Discuss. 2005. V. 128. P. 355-361.

276. Soni, S.S., Sastry, N.V. George, J., Bohidar, H.B. / Surface Active and Association Behavior of Oxybutylene-Oxyethylene and Oxyethylene-Oxybutylene-Oxyethylene Copolymers in Aqueous Solutions//Langmuir. 2003. V. 19. P. 4597-4603.

277. Yang Y.-W., Ali-Adib, Z., McKeown, N. В., Ryan, A. J., Attwood, D., Booth, C. / Effect of Block Architecture on the Gelation of Aqueous Solutions of Oxyethylene/Oxybutylene Block Copolymers /I Langmuir. 1997. V. 13. P. 1860-1861.

278. Yu, K., Eisenberg, A. / Multiple Morphologies in Aqueous Solutions of Aggregates of Polystyrene-block-poly(ethylene oxide) Diblock Copolymers И Macromolecules. 1996. V. 29. P. 6359-6361.

279. Castro E., Taboada P., Mosquera V. / Behavior of a Styrene Oxide-Ethylene Oxide Diblock Copolymer/Surfactant System: A Thermodynamic and Spectroscopy Study II J. Phys. Chem. B. 2005. V. 109. P. 5592-5599.

280. Park, S. Y., Han, D. K., Kim, S. C. / Synthesis and Characterization of Star-Shaped PLLA-PEO Block Copolymers with Temperature-Sensitive Sol-Gel Transition Behavior II Macromolecules. 2001. V. 34. P. 8821-8824,.

281. Li S. M., Rashkov I., Espartero J.L., Manolova N., Vert M. / Synthesis, Characterization, and Hydrolytic Degradation of PLA/PEO/PLA Triblock Copolymers with Long Poly(L-lactic acid) Blocks II Macromolecules. 1996. V. 29. P. 57-62.

282. Stoenescua R, Meierab W. / Vesicles with asymmetric membranes from amphiphilic ABC triblock copolymers. //Chem. Commun. 2002. P. 3016-3017.

283. Andersen J.H., Rasmussen P., Fredenslund A. / Phase Equilibria of Polymer Solutions by Group Contribution. 1. Vapor-Liquid Equilibria // Ind. Eng. Chem. Res. 1987. V. 26. P. 1382-1390.

284. Saeki S., Kuwahara N., Nakata M., Kaneko M. / Upper and lower critical solution temperatures inpolyfethylene glycol) solutions. II Polymer. 1976. V. 17. P. 685-689.

285. Tani Н., Kamidate Т., Watanabe Н. / Aqueous micellar Two-phase systems for rotein separation.//Analytical Sciences. 1998. V. 14. P. 875-888.

286. Wanka G., Hoffman H., Ulbricht W. / Phase Diagrams and Aggregation Behavior of Poly(oxyethylene)-Poly(oxypropylene)-Poly(oxyethylene) Triblock Copolymers in Aqueous Solutions //Macromolecules. 1994. V. 27. P. 4145-4159.

287. Bryskhe K., Schillen K., Lofroth J.-E., Olsson U. / Lipid-block copolymer immiscibility // Phys. Chem. Chem. Phys. 2001. V. 3. P. 1303-1309.

288. Bahadur P. / Block copolymers their microdomain formation (in solid state) and surfactant behaviour (in solution). II Cur. Sci. 2001. V. 80. P. 1002-1006.

289. Mortensen K., Brown W. / Polyethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide) Triblock Copolymers in Aqueous Solution. The Influence of Relative Block Size // Macromolecules. 1993. V. 26. P. 4128-4135.

290. Marcos J.I., Oriandi E., Zerbi G. / Poly(ethylene oxide)-poly(methyl methacrylate) interactions in polymer blends: an infra-red study. II Polymer. 1990. V. 31. P. 1899-1909.

291. Guo C., Liu H., Wang J., Chen J. / Conformational structure of triblock copolymers by FT-Raman andFTIR spectroscopy II J. Colloid Interface Sci. 1999. V. 209. P. 368-373.

292. Hvidt S., Trandum C., Batsberg W. / Effects of Poloxamer Polydispersity on Micellization in Water II J. Colloid Interface Sci. 2002. V. 250. P. 243-250.

293. Linse P. / Micellization of Poly(ethylene oxide)-Poly(propylene oxide) BlockCopolymer in Aqueous Solution: Effect of Polymer Impurities //Macromolecules. 1994. V. 27. P. 26852693.

294. Alexandridis P., Athanassiou V., Fukuda S., Hatton T.A. / Surface Activity of Poly(ethylene oxide)-block-Poly(propylene oxide)-block-Poly(ethylene oxide) Copolymers. II Langmuir. 1994. V. 10. P. 2604-2612.

295. Batrakova E.V., Lee S., Li S., Venne A., Alakhov V.Y., Kabanov A.V. / Fundamental relationships between the compositionof Pluronic block copolymers and their hypersensitisation effect in MDR cancer cells. II Pharm. Res. 1999. V. 16. P. 1373-1379.

296. Lopes J.R., Loh W. / Investigation of self-assembly and micelle polarity for a wide range of ethylene oxide-propylene oxide-ethylene oxide block copolymers in water. //Langmuir. 1998. V. 14. P.750-756.

297. Mortensen K., Pedersen J.S. / Structural Study on the Micelle Formation of Polyethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide) Triblock Copolymer in Aqueous Solution II Macromolecules. 1993. V. 26. P. 805-812.

298. Alexandridis P., Nivaggioli Т., Hatton T.A. / Temperature Effects on Structural Properties of Pluronic® P104 and F108 PEO-PPO-PEO Block Copolymer Solutions II Langmuir. 1995. V. 11. P. 1468-1476.

299. Nagarajan R. / Solubilization of Hydrocarbons and Resulting Aggregate Shape Transitions in Aqueous Solutions of Pluronic® (PEO-PPO-PEO) Block Copolymers. II Colloids and Surfaces B: Biointerfaces. 1999. V. 16. P. 55-72.

300. Hurter P.N., Scheutjens J.M.H.M., Hatton T.A. / Molecular Modeling of Micelle Formation and Solubilization in Block Copolymer Micelles. 1. A Self-Consistent Mean-Field Lattice Theory. //Macromolecules. 1993. V. 26. P. 5592-5601.

301. Hurter P.N., Scheutjens J.M.H.M., Hatton T.A. / Molecular Modeling of Micelle Formation and Solubilization in Block Copolymer Micelles. 2. Lattice Theory for Monomers with Internal Degrees of Freedom. //Macromolecules. 1993. V. 26. P. 5030-5040.

302. Su Y.-L., Wang J., Liu H.-Z. / Melt, hydration, and micellization of the PEO-PPO-PEO block copolymer studied by FTIR spectroscopy. II J. Colloid Interface Sci. 2002. V. 251. P. 417^123.

303. Liu Y., Chen S.-H., Huang J.S. / Light-Scattering Studies of Concentrated Copolymer Micellar Solutions. // Macromolecules. 1998. V. 31. P. 6226-6233.

304. Zipfel J., Lindner P., Tsianou M., Alexandridis P., Richtering W. / Shear-induced formation of multilamellar vesicles ("onions") in block copolymers. II Langmuir. 1999. V. 15. P. 25992602.

305. Mel'nikova Y.S. / Vesicles formed from a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer in dilute aqueous solution. I I Macromolecules. 1999. V. 32. P.6885-6888.

306. Bryskhe K., Jansson J., Topgaard D., Schillen K., Olsson U. / Spontaneous Vesicle Formation in a Block Copolymer System. Hi. Phys. Chem. B. 2004. V. 108. P. 9710-9719.

307. Altinok Н., Yu G.-E., Nixon S.K., Gorry P.A., Attwood D., Booth C. / Effect of Block Architecture on the Self Assembly of Copolymers of Ethylene Oxide and Propylene Oxide in Aqueous Solution. //Langmuir. 1997. V. 13. P. 5837-5848.

308. Alexandridis J.F., Holzwarth P. / Differential Scanning Calorimetry Investigation of the effect of salts on aqueous solution properties of an amphiphilic block copolymer (Poloxamer) //Langmuir. 1997. V. 13. P. 6074-6082.

309. Aswal V.K., Goyal P.S, Kohlbrecher J, Bahadur P. / SANS study of salt-induced micellization in PEO-PPO-PEO block copolymers. H Chem. Phys. Lett. 2001. V. 349. P. 458-462.

310. Liu K.-J. / Nuclear magnetic resonance studies of polymer solutions. V. Cooperative effects in the ion-dipole interaction between potassium iodide and polyfethylene oxide). // Macromolecules. 1968. V. 1. P. 308-311.

311. Annis В. K., Badyal Y. S., Simonson J. M. / Neutron-Scattering Determination of the Lf Environment in an Aqueous Poly(Ethylene Oxide) Solution II J. Phys. Chem. B. 2004. V. 108. P. 2554-2556.

312. Levins R.J., Ikeda R.M. / Direct Potentiometric Titration of Polyethylene Glycols and Their Derivatives with Sodium Tetraphenylboron. //Anal. Chem. 1965. V. 37. P. 671-675.

313. Liu Т., Xie Y„ Liang D., Zhou S., Jassal C., McNabb M., Hal С. 1, Chuang C.-L., Chu B. / Formation of a Salt-Polymer Complex in L64/Water/CdCh Systems. II Langmuir. 1998. V. 14. P. 7539-7542.

314. Liu L.-Z., Wan Q., Liu Т., Hsiao B.S., Chu B. / Salt-induced polymer gelation and formation of nanocrystals in a polymer-salt system /Langmuir. 2002. V. 18. P. 10402-10406.

315. Higuchi A., Sugiyama K., Yoon B.O., Sakurai M., Нага M., Sumita M., Sugawara S., Shirai T. / Serum protein adsorption and platelet adhesion on pluronic-adsorbed polysulfone membranes. II Biomaterials. 2003. V. 24. P. 3235-3245.

316. Bohner M., Ring T.A., Rapoport N., Caldwell K.D. / Fibrinogen adsorption by PS latex particles coated with various amounts of a PEO/PPO/PEO triblock copolymer. II J. Biomater. Sci. Polym. Ed. 2002. V. 13. P. 733-746.

317. Kidane A., McPherson Т., Shim H.S., Park K. / Surface modification of polyethylene terephthalate using PEO-polybutadiene-PEO triblock copolymers. // Colloids Surf В Biointerfaces. 2000. V. 18. P. 347-353.

318. Freij-Larsson С., Jannasch P., Wesslen В. / Polyurethane surfaces modified by amphiphilic polymers: effects on protein adsorption.!1 Biomaterials. 2000. V.21. P. 307-315.

319. Alaerts J.A., De Cupere V.M., Moser S., Van den Bosh de Aguilar P., Rouxhet P.G. / Surface characterization of polyfmethyl methacrylate) microgroovedfor contact guidance of mammalian cells. II Biomaterials. 2001. V. 22. P. 1635-1642.

320. Hoffman T.L., Canziani G., Jia L., Rucker J., Doms R.W. /А biosensor assay for studying ligand-membrane receptor interactions: binding of antibodies and HIV-1 Env to chemokine receptors. II Proc. Natl. Acad. Sci. USA. 2000. V. 97. P.l 1215-11220.

321. Li J.-T., Caldwell K.D. / Plasma protein interactions with Pluronic™-treated colloids. // Colloids and Surfaces B: Biointerfaces. 1996. V.7. P. 9-22.

322. Green, R.J., Davies, M.C., Roberts, C.J., Tendler, S.J.B. / A surface plasmon resonance study of albumin adsorption to PEO-PPO-PEO triblock copolymers. II J. Biomed. Mater. Res. 1998. V. 42. P. 165-171.

323. Топчиева И.Н., Ефремова H.B., Снитко Л.Э., Хворов Н.В. / Термоиндуцированное комплексообразование между а -химотрипсином и амфифтьным блок-сополимером. И ДАН СССР 1994. Т. 339. С. 498-502.

324. Топчиева И.Н., Сорокина Е.И., Курганов Б.И., Жулин В.М. / Комплексообразование между а-хшотрипсином и блок-сополимерами на основе окиси этилена и окиси пропилена, индуцируемое действием высоких давлений. //Биохимия. 1996. Т. 61. С. 1041-1045.

325. Lojewska Z., Loew L.M. / Insertion of amphiphilic molecules into membranes is catalyzed by a high molecular weight nonionic surfactant.11 Biochim. Biophys. Acta. 1987. V. 899. P. 104-112.

326. Топчиева И.Н., Осипова C.B., Банацкая М.И., Валькова Л.А. / Мембранотропные свойства блок-сополимеров окиси этилена и окиси пропилена. II ДАН СССР 1989. Т. 308. С. 910-913.

327. Firestone M.A., Seifert S. / Interaction of nonionic PEO-PPO diblock copolymers with lipidbilayers. // Biomacromolecules. 2005. V. 6. P. 2678-2687.

328. Jamshaid M., Farr S. J., Kearney P. Kellaway I.W. / Poloxamer sorption on liposomes: comparison with polystyrene latex and influence on solute efflux. // Int. J. Pharm. 1988. V. 48. P. 125-131.

329. Kostarelos К., Tadros Th.F., Lusckham P.F. / Physical conjugation of (tri-)block copolymers to liposomes toward the constration of sterically stabilized vesicle systems. II Langmuir. 1999. V. 15. P. 369-376.

330. Johnsson M., Silvander M., Karlsson G., Edwards K. / Effect of PEO-PPO-PEO triblock copolymers on structure and stability of phosphatidylcholine liposomes. II Langmuir. 1999. V. 15. P.6314-6325.

331. Krylova O.O, Pohl P. / Ionophoric activity of pluronic block copolymers II Biochemistry. 2004. V. 43. P. 3696-3703.

332. Wu G., Majewski J., Ege C., Kjaer K., Weygand M.J., Lee K.Y.C. / Lipid Corralling and Poloxamer Squeeze-Out in Membranes. II Phys. Rev. Lett. 2004. V. 93. P. 028101-1-0281014.

333. Chandaroy P., Sen A., Hui S.W. / Temperature-controlled content release from liposomes encapsulating Pluronic F127. //J. Control Release. 2001. V. 76(1-2). P. 27-37.

334. Bergstrand N., Edwards K. / Effects of poly(ethylene oxide)-poly(propylene oxide)-polyfethylene oxide) triblock copolymers on structure and stability of liposomal dioleoylphosphatidylethanolamine. II J. Colloid Interface Sci. 2004. V. 276. P. 400-407.

335. Moghimi S.M., Hunter A.C. / Poloxamers andpoloxamines in nanoparticle engineering and experimental medicine, II Trends Biotechnol. 2000. V. 18. P. 412-420.

336. Lowe K.C., Armstrong F.H. / Oxygen-transport fluid based on perfluorochemicals: effects on liver biochemistry. //Adv. Exp. Med. Biol. 1990. V. 277. P. 267-276.

337. Bentley P.K., Johnson O.L, Davis S.S., Lowe K.C., Washington C. / Purification of pluronic F68 for perfluorochemical emulsification. II J. Pharm. Pharmacol. 1989. V. 41. P. 661-663.

338. Иваницкий Г.Р., Белоярцев Ф.Ф. / Медико-биологические аспекты применения эмульсий перфториованныхуглеводородов. //Пущино, С.1-350, 1983.

339. Gever R.P. / Perfluorochemicals as oxygen transport vesicles. II Artif. Cells Artif. Organs. 1988. V. 16. P. 31-49.

340. Omyanagi H., Uchida Т., Saitoh Y., Watanabe M., Yamanouchi K., Yokoyama K., Mitsuno T. / Exended use of Fluosol emulsion on acute myocardial ishemia treatment. II Biomater., Artif. Cells & Immobiliz. Biotechnology. 1992. V. 20. P. 941-949.

341. Forman М.В., Ingram D.A., Murray J.J. / Role of perfluorochemical emulsions in the treatment of myocardial reperfusion injury. //American Heart J. 1992. V. 124. P. 1347-1357.

342. Babbitt D.G., Forman M.B., Jones R., Bajaj A.K., Hoover R.L. / Prevention of neutrophil-mediated injury to endothelial cells by perfluorochemical. II American J. Pathol. 1990. P. 136. V. 451-459.

343. Justicz A.G., Farnsworth W.V., Soberman M.S., Tuvlin M.V., Bonner G.D., Hunter R.L., Martino-Saltzman D. / Reduction of myocardial infarct size by poloxamer 188 and mannitol in a canine model. II American Heart J. 1991. V. 122. P. 671-680.

344. Carr M.E., Rowers R., Jones M.R. / Effects of poloxamer 188 on the assembly structure and dissolution of fibrin clots. II Thrombosis & Haemostasis. 1991. P. 565-568.

345. Segel L.D., Minten J.M., Schweighardt F.K. / Fluorochemical emulsion APE-LM substantially improves cardial preservation. II American J. Physiology. 1992. V. 263. P. 730739.

346. Detrait E., Lhoest J.B., Bertrand P., van den Bosch de Aguilar P. / Fibronectin-pluronic coadsorption on a polystyrene surface with increasing hydrophobicity: relationship to cell adhesion. Hi. Biomed. Mater. Research. 1999. V. 45. P. 404-413.

347. Ilium L., Davis S.S. / Effect of nonionic surfactant Poloxamer 338 on the fate and desposition polystyrene microspheres following intravenous administration. II J. Pharmaceutical Sci. 1983. V. 72. P. 1086-1089.

348. Ilium L., Davis S.S. / The organ uptake of intravenously administrated colloidal particles can be altered using nonionic surfactant (Poloxamer 338). FEBS Lett. 1984. V. 167. P. 7982.

349. Allison A.C., Byars N.E. / An adjuvant formulation that selectively elicits the formation of antibodies of protective isotypes and of cell-mediated immunity. // J. Immunol. Methods. 1986. V. 95. P. 157-168.

350. Hunter R., Strickland F., Kezdy F. / The adjuvant activity of nonionic block polymer surfactants. I. The role of hydrophile-lipophile balance. //J. Immunol. 1981. V. 127. P. 1244-1250.

351. Howerton D.A., Hunter R.L., Ziegler H.K., Check l.J. / Induction of macrophage I-a expression in vivo by a synthetic block copolymer L81. II J. Immunol. 1990. V. 144. P. 15781584.

352. Zhang Z., al-Rubeai M., Thomas C.R. / Effect of Pluronic F-68 on the mechanical properties of mammalian cells. //Enzyme Microb. Technol. 1992. V. 14. P. 980-983.

353. Togo Т., Alderton J.M., Bi G.Q., Steinhardt R.A. / The mechanism of facilitated cell membrane resealing. // J. Cell Sci. 1999. V. 112. P. 719-731.

354. Paustian P.W., McPherson J.C., Haase R.R., Runner R.R., Plaoman K.M., Ward D.F., Nguyen F.H. / Intravenous Pluronic F127 in early burn wound treatment in rats. // Burns 1993. V. 19. P. 187-191.

355. Schmolka I.R. / Artificial skin. I. Preparation and properties of pluronic F-127 gels for treatment of burns. //J. Biomed. Mater. Res. 1972. V. 6. P. 571-582.

356. Nalbandian R.M., Henry R.L., Balko K.W., Adams D.V., Neuman N.R. / Pluronic F-127 gel preparation as an artificial skin in the treatment of third-degree burns in pigs. II J. Biomed. Mater. Res. 1987. V. 21. P. 1135-1148.

357. Greenebaum В., Blossfield K., Hannig J., Carrillo C.S., Beckett M.A., Weichselbaum R.R., Lee R.C. / Poloxamer 188 prevents acute necrosis of adult skeletal muscle cells following high-dose irradiation. //Burns. 2004. V. 30. P. 539-547.

358. Hannig J., Zhang D., Canaday D.J., Beckett M.A., Astumian R.D., Weichselbaum R.R., Lee R.C. / Surfactant sealing of membranes permeabilized by ionizing radiation. // Radiat Res. 2000. V. 154. P. 171-177.

359. Lowe К.С, Anthony P., Davey M.R., Power J.B. / Beneficial effects of Pluronic F-68 and artificial oxygen carriers on the post-thaw recovery of cryopreserved plant cells. II Artif. Cells Blood Substit. Immobil. Biotechnol. 2001. V. 29. P. 297-316.

360. Anthony P., Lowe K.C., Davey M.R., Power J.B. / Enhanced post-thaw viability of cryopreserved cells by oxygenated perfluorocarbon or Pluronic F-68. // Artif. Cells Blood Substit. Immobil. Biotechnol. 1998. V. 26. P. 27-33.

361. Maruyama I., Hasegawa Т., Yamamoto Т., Momose K. / Effects of pluronic F-127 on loading of Fura 2/AM into single smooth muscle cells isolatedfrom guinea pig taenia coli. II J. Toxicol. Sci. 1989. V. 14. P. 153-163.

362. Owen C.S. / Quantitation of lymphocyte intracellular free calcium signals using indo-1. // Cell Calcium. 1988. V. 9. P. 141-147.

363. Amorino G.P., Fox M.H. / Intracellular Na+ measurements using sodium green tetraacetate with flow cytometry. 11 Cytometry. 1995. V. 21. P. 248-256.

364. Clarke M.S., McNeil P.L. / Syringe loading introduces macromolecules into living mammalian cell cytosol. II J. Cell Sci. 1992. V. 102. P. 533-541.

365. Waldman A.S., Waldman B.C. / Stable transfection of mammalian cells by syringe-mediated mechanical loading of DNA. //Anal. Biochem. 1998. V. 258. P. 216-222.

366. Comai K., Sullivan A.C. / Antiobesity activity of pluronic L-101. И Int. J. Obes. 1980. V. 4. P. 33-42.

367. Johnston T.P., Palmer W.K. / Effect of poloxamer 407 on the activity of microsomal 3-hydroxy-3-methylglutaryl CoA reductase in rats. II J. Cardiovasc. Pharmacol. 1997. V. 29. P. 580-585.

368. Доборджгинидзе JI.M., Грацианский H.A. / Дислипидемии: липиды и липопротеины, метаболизм и участие в атерогепезе. // Русский медицинский журнал. 2000. Т. 8. С. 269-276.

369. Nutting D., Hall J., Barrowman J.A., Tso P. / Further studies on the mechanism of inhibition of intestinal chylomicron transport by Pluronic L-81. II Biochim. Biophys. Acta. 1989. V. 1004. P. 357-362.

370. Black D.D. / Effect of intestinal chylomicron secretory blockade on apolipoprotein synthesis in the newborn piglet. II Biochem. J. 1992. V. 283. P. 81-85.1. Список литературы

371. Hussain М.М., Kedees М.Н., Singh К., Athar H., Jamali N.Z. / Signposts in the assembly of chylomicrons. II Front. Biosci. 2001. V. 6. P. 320-331.

372. Abe Т., Sasaki M., Nakajima H., Ogita M., Naitou H., Nagase A., Taguchi K., Miyazaki S. / Evaluation of Pluronic F127 as a base for gradual release of anticancer drug. II Gan to Kagaku Ryoho 1990. V. 17. P. 1546-1550.

373. Morishita M., Barichello J.M., Takayama K., Chiba Y„ Tokiwa S., Nagai T. / Pluronic F-127 gels incorporating highly purified unsaturated fatty acids for buccal delivery of insulin. //Int. J. Pharmacol. 2001. V. 212. P. 289-293.

374. Bromberg L.E. / Interactions among proteins and hydrophobically modified polyelectrolytes. //J. Pharm. Pharmacol. 2001. V. 53. P. 541-547.

375. Morikawa K., Okada F., Hosokawa M., Kobayashi H. / Enhacement of therapeutic effects of recombinant interleukin 2 on a transplantable rat fibrosarcoma by the use of a sustained release vehicle, Pluronic gel. II Cancer Res. 1987. V. 47. P. 37-41.

376. Johnston T.P., Dunjabi M.A., Froelich C.J. / Sustained delivery of interleukin-2 from poloxamer 407 gel matrix following intraperitonal injection in mice. И Pharm. Res. 1992. V. 9. P. 425-434.

377. Batrakova E.V., Han H.Y., Miller D.W., Kabanov A.V. / Effects of pluronic P85 unimers and micelles on drug permeability in polarized BBMEC and Caco-2 cells. // Pharm. Res. 1998. V. 15. P. 1525-1532.

378. Munshi N., Rapoport N., Pitt W.G. / Ultrasonic activated drug delivery from Pluronic P-105 micelles. //Cancer Lett. 1997. V. 118. P. 13-19.

379. Husseini G.A., Myrup G.D., Pitt W.G., Christensen D.A., Rapoport N.Y. / Factors affecting acoustically triggered release of drugs from polymeric micelles. II J. Control. Release. 2000. V. 69. P. 43-52.

380. Marin A., Muniruzzaman M., Rapoport N.Y. / Mechanism of the ultrasonic activation of micellar drug delivery. //J. Control. Release. 2001. V. 75. P. 69-81.

381. Ставровская A.A. / Клеточные механизмы множественной лекарственной устойчивости опухолевых клеток. И Биохимия. 2000. Т. 65. С. 112-126.

382. Borst P., Elferink R.O. / Mammalian ABC transporters in health and disease. II Annu. Rev. Biochem. 2002. V. 71. P. 537-592.

383. Ambudkar S.V., Kim I.W., Sauna Z.E. / The power of the pump: mechanisms of action of P-glycoprotein (ABCB1). //Eur. J. Pharm Sci. 2006. V. 27. P. 392-400.

384. Lage H. / ABC-transporters: implications on drug resistance from microorganisms to human cancers. II Int. J. Antimicrob. Agents. 2003. V. 22. 188-199.

385. Akiama S. / Molecular basis for resistance to anticancer agents and reversal of the resistance. // Human Cell. 1993. V. 6. P. 1-6.

386. Damiani D., Michieli M., Michelutti A., Melli C., Cerno M., Baccarani M. (1993) / D-verapamil dounmodulates P-170 associated resistance to doxorubicin, daunorubicin and idarubicin. //Anti-cancer Drug. 1993. V. 4. P. 173-180.

387. Hinderburg A.A., Baker M.A., Gleyzer E., Stevart V.J., Case N„ Taub R.N. / Effects of verapamil and other agents on the distribution on antracyclines and of reversal of drug resistance. II Cancer Res. 1987. V. 47. P. 1421-1425.

388. Cornwell M.M., Pastan I., Gottesman M.M. / Certain calcium channel blockers bind specifically to multidrug resistant human KB carcinoma membrane vesicles and inhibit drug binding to P-glycoprotein. II J. Biol. Chem. 1987. V. 262. P. 2166-2170.

389. Sedlacek H.H. / Mechanisms of action offlavopiridol. II Crit. Rev. Oncol. Hematol. 2001. V. 38. P. 139-170.

390. Castro A.F., Horton J.K., Vanoye C.G., Altenberg G.A. / Mechanism of inhibition of P-glycoprotein-mediated drug transport by protein kinase С blockers. II Biochem. Pharmacol. 1999. V. 58. P. 1723-1733.

391. Venne A., Li S., Mandeville R., Kabanov A., Alakhov V. Hypersensitizing effect of pluronic L61 on cytotoxic activity, transport, and subcellular distribution of doxorubicin in multiple drug-resistant cells. //Cancer Res. 1996. V. 56. P. 3626-3629.

392. Batrakova E.V., Li S„ Li Y„ Alakhov V.Y., Kabanov A.V. / Effect of pluronic P85 on ATPase activity of drug efflux transporters. II Pharm. Res. 2004. V. 21. P. 2226-2233.

393. Miller D.W., Batrakova E.V., Kabanov A.V. / Inhibition of multidrug resistance-associated protein (MRP) functional activity with pluronic block copolymers. II Pharm. Res. 1999. V. 16. P. 396-401.

394. Coon J.S., Knudson W., Clodfelter К., Lu В., Weinstein R.S. / Solutol HS 15, nontoxic polyoxyethylene esters of 12-hydroxystearic acid, reverses multidrug resistance. Cancer Res. 1991, V. 51. P. 897-902.

395. Buckingham L.E., Balasubramanian M., Safa A.R., Shah H., Komarov P., Emanuele R.M., Coon J.S. / Reversal of multi-drug resistance in vitro by fatty acid-PEG-fatty acid diesters. II Int. J. Cancer. 1996. V. 65, P. 74-79.

396. Friche E., Jensen P.B., Sehested M., Demant E.R., Nissen N.N. / The solvents Cremohpor EL and Tween 80 modulate daunorubicin resistance in the multidrag resistant Ehrlich ascites tumor. //Cancer Commun. 1990. V. 2. P. 297-303.

397. Batrakova E.V., Miller D.W., Li S., Alakhov V.Y., Kabanov A.V., Elmquist W.F. / Pluronic P85 enhances the delivery of digoxin to the brain: in vitro and in vivo studies. II J. Pharmacol. Exp. Ther. 2001. V. 296. P. 551-557.

398. Hendrich A.B, Michalak K. / Lipids as a target for drugs modulating multidrug resistance of cancer cells. И Curr. Drug Targets. 2003. V. 4. P. 23-30.

399. G.S. Manning / Simple model for the binding of a polyelectrolyte to an oppositely charged curved Surface. II J. Phys. Chem. B. 2003. V. 107. P. 11485-11490.

400. Meier-Koll A.A., Fleck C.C., von Griinberg H.H.A.A. / The counterion-release interaction. //J. Phys.: Condens. Matter. 2004. V. 16. P. 6041-6052.

401. Akesson, Т., Woodward, C., Jonsson, B.J. / Electric double layer forces in the presence of polyelectrolytes. Hi. Chem Phys. 1989. V. 91. P. 2461-2469.

402. Linse P., / Adsorption of weakly charged polyelectrolytes at oppositely charged surfaces. // Macromolecules. 1996. V. 29. P. 326-336.

403. Brynda M., Chodanowski P., Stoll S. / Polyelectrolyte-particle complex formation. Polyelectrolyte linear charge density and ionic concentration effects. 11 Colloid and Polymer Sci. 2002. V. 280. P. 789-797.

404. Pfau A., Schrepp W., Horn D. / Detection of a single molecule adsorption structure of poly(ethylenimine) macromolecules byAFM. //Langmuir. 1996. V. 15. P. 3219-3225.

405. Сухишвили C.A., Полинский A.C., Ярославов A.A., Чечик О.С., Кабанов В.А. / Об обратимости адсорбции поликатиона на противоположно заряженных латексных частицах. Н ДАН СССР. 1989. Т. 302. С. 848-852.

406. Kabanov V.A., Yaroslavov A.A. / What happens to negatively charged lipid vesicles upon interacting with polycation species? II J. Control. Release. 2002. V. 78. P. 267-271.

407. Sennerfors Т./ Interfacial Behavior of Polymer-Nanoparticle Complexes: Fundamentals and Applications, II In: Encyclopedia of Surface and Colloid Science, Marcel Decker, 2002.

408. Afshar-Rad Т., Bailey A.I., Luckham P.F., Macnaughtan W., Chapman D. / Forces between poly-L-lysine of molecular range 4000-75000 adsorbed on mica surfaces. II Colloids Surf.1987. V. 25. P. 263-270.

409. Buchhammer H.-M., Petzold G., Lunkwitz K. / Nanoparticles based on polyelectrolyte complexes: effect of structure and net charge on the sorption capability for solved organic molecules. II Colloid Polymer Sci. 2000. V. 278. P. 841-847.

410. Carrier D., Dufourcq J., Faucon J.-F., Pezolet M. / A fluorescence investigation of the effects of polylysine on dipalmitoylphosphatidylglycerol bilayers. II Biochim. Biophys. Acta, 1983. V. 820.P. 131-139.

411. Franzin C.M., Macdonald P.M. / Polylysine-induced 2H NMR-observable domains in phosphatidylserine/phosphatidylcholine lipid bilayers. II Biophys. J. 2001, V. 81. P. 33463362.

412. Laroche G., Dufourc E.J., Pezolet M., Dufourcq J. / Coupled changes between lipid order and polypeptide conformation at the membrane surface. A 2H-NMR and Raman study of polylysine-phosphatidic acid systems. II Biochemistry. 1990. V. 29. P. 6460-6465.

413. Laroche G., Carrier D., Pezolet M. / Study of the effect ofpoly(L-lysine) on phosphatidic acid andphosphatidylcholine/phosphatidic acid bilayers by Raman spectroscopy. //Biochemistry.1988. V. 27. P. 6220-6228.

414. Mitrakos P., Macdonald P.M. / Domains in cationic lipid plus polyelectrolyte bilayer membranes: detection and characterization via 2H nuclear magnetic resonance. И Biochemistry. 1997. V. 36. P. 13646-13656.

415. Macdonald P.M., Crowell K.J., Franzin C.M., Mitrakos P., Semchyschyn D. / 2HNMR and polyelectrolyte-induced domains in lipid bilayers. II Solid State Nucl. Magn. Reson. 2000. V. 16. P. 21-36.

416. Mitrakos P., Macdonald P.M. / Nucleotide chain length and the morphology of complexes with cationic amphiphiles: (31)P-NMR observations. II Biochim. Biophys. Acta. 2000. V. 1463. P. 355-373.

417. Mitrakos P., Macdonald P.M. / DNA-induced lateral segregation of cationic amphiphiles in lipid bilayer membranes as detected via 2H NMR. II Biochemistry. 1996. V. 35. P. 1671416722.

418. Lafleur M., Samson I., Pezolet M. / Investigation of the interaction between melittin and dipalmitoylphosphatidylglycerol bilayers by vibrational spectroscopy // Chem. Phys. Lipids. 1991. V. 59. P. 233-244.

419. Nabet A., Boggs J.M., Pezolet M. / Study by infrared spectroscopy of the interaction of bovine myelin basic protein with phosphatidic acid. // Biochemistry. 1994. V. 33. P. 1479214799.

420. Yaroslavov A.A., Yaroslavova E.G., Rakhnyanskaya A.A., Menger F.M., Kabanov V.A. / Modulation of interaction of polycations with negative unilamellar lipid vesicles. II Colloids Surf. B. 1999. V. 16. P. 29-43.

421. Welti R., Glaser M. / Lipid domains in model and biological membranes. // Chem. Phys. Lipids. 1994. V. 73. P. 121-137.

422. Mitrakos P., Macdonald P.M. / Polyelectrolyte molecular weight and electrostatically-induced domains in lipid bilayer membranes. //Biomacromolecules. 2000. V.l. P. 365-376.

423. Hartmann W., Galla H.J. / Binding of polylysine to charged bilayer membranes: molecular organization of a lipid-peptide complex. II Biochim. Biophys. Acta. 1978. V. 509. P. 474490.

424. Roux M., Neumann J.M., Hodges R.S., Devaux P.F., Bloom M. / Conformational changes of phospholipid headgroups induced by a cationic integral membrane peptide as seen by deuterium magnetic resonance. //Biochemistry. 1989. V. 28. P. 2313-2321.

425. Engelking J., Wittemann M., Rehahn M., Menzel H., / UV/Vis spectroscopic monitoring of polyelectrolyte adsorption onto monolayers of azobenzene amphiphiles. // Langmuir. 2000. V. 16. P.3407-33413.

426. Кученкова O.E., Ярославов A.A., Кабанов B.A. / Размер отрицательно заряженных липосом решающим образом влияет на их взаимодействие с полилизином. П Доклады Акад. Наук. 1999. Т. 369. С. 778-780.

427. Kleinschmidt J.H., Marsh D. / Spin-label electron spin resonance studies on the interactions of lysine peptides with phospholipid membranes. II Biophys. J. 1993. V.73. P. 2546-2555.

428. Ikeda Т., Yamaguchi H., Tazuke S. / Phase separation in phospholipid bilayers induced by biologically active polycations. //Biochim. Biophys. Acta. 1990. V. 1026. P. 105-112.

429. Madeira C., Loura L.M., Aires-Barros M.R., Fedorov A., Prieto M. / Characterization of DNA/lipid complexes by fluorescence resonance energy transfer. И Biophys. J. 2003. V. 85. P. 3106-3119.

430. Pawagi А.В., Campbell I.M. / Vesicle surface charge and polylysine modification of ultraviolet absorption by the olefinic bonds in charged lipid. II Can J Biochem. 1981. V. 59. P. 404-411.

431. Carrier D, Pezolet M. / Raman spectroscopic study of the interaction of poly-L-lysine with dipalmitoylphosphatidylglycerol bilayers. II Biophys. J. 1984. V. 46. P. 497-506.

432. Krylov A.V., Antonenko Y.N., Kotova E.A., Rokitskaya T.I., Yaroslavov A.A. / Polylysine decelerates kinetics of negatively charged gramicidin channels as shown by sensitized photoinactivation. IIFEBS Lett. 1998. V. 440. P. 235-238.

433. Carrier D., Dufourcq J., Faucon J.-F., Pezolet M. IA fluorescence investigation of the effects of polylysine on dipalmitoylphosphatidylglycerol bilayers. H Biochim. Biophys. Acta. 1985. V. 820. P. 131-139.

434. Carrier D., Pezolet M. / Investigation of polylysine-dipalmitoylphosphatidylglycerol interactions in model membranes. И Biochemistry. 1986. V. 25. P. 4167-4174.

435. Hartmann W., Galla H.J. / Binding of polylysine to charged bilayer membranes: molecular organization of a lipid-peptide complex. II Biochim. Biophys. Acta. 1978. V. 509. P. 474490.

436. Haest C.W., Oslender A., Kamp D. / Nonmediated flip-flop of anionic phospholipids and long-chain amphiphiles in the erythrocyte membrane depends on membrane potential. // Biochemistry. 1997. V. 36. P. 10885-10891.

437. Walter A., Steer C.J., Blumenthal R. / Polylysine induces pH-dependent fusion of acidic phospholipid vesicles: a model for polycation-induced fusion. // Biochim. Biophys. Acta. 1986. V. 861. P. 319-330.

438. Bondeson J., Sundler R. / Promotion of acid-induced membrane fusion by basic peptides. Amino acid and phospholipid specificities. II Biochim. Biophys. Acta. V. 1026. P. 186-194.

439. Epand RM, Lim W. I Mechanism of liposome destabilization by polycationic amino acids. II Biosci. Rep. 1995. V. 15. P. 151-160.

440. Coakley W.T., Heweison L.A., Tilley D. / Interfacial instability and the agglutination of erythrocytes by polylysine. II Eur. Biophys. J. 1985. V. 13. P. 123-130.

441. Hewison L.A., Coakley W.T., Meyer H.W. / Spatially periodic discrete contact regions in polylysine-induced erythrocyte-yeast adhesion. II Cell Biophys. 1988. V. 13. P. 151-157.

442. Dwyer D.M. / Cell surface saccharides of Trypanosoma lewisi. I. Polycation-induced cell agglutination andfine-structure cytochemistry. Hi. Cell Sci. 1975. V. 19. P. 621-644.

443. Hancock R.E. / The bacterial outer membrane as a drug barrier. II Trends Microbiol. 1997, V. 5, P. 37-42.

444. Kabanov V.A., Petrov R.V., Khaitov R.M. / Artificial antigenes and vaccines based on non-natural polyelectrolytes. II Sov. Sci. Rev. D, Physicochemical Biology. 1984. V.5. P. 277322.

445. Петров P.B., Хаитов P.M. / Исскуственные антигены и вакцины II М., Медицина, 1988.

446. Kabanov V.A. / Synthetic membrane active polyelectrolytes in design of artificial immunogenes and vaccines. II Makromol. Chem., Macromol Symp. 1986. V.l. P. 101-124.

447. Кабанов B.A., Петров P.B., Хаитов P.M. / Новый принцип создания искусственных иммуногенов // Журн. Всесоюз. Хим. об-ва им. Д.И.Менделеева. 1982. Т. 27. С. 417424.

448. Santini М.Т., Cametti С., Indovina P.L., Morelli G., Donelli G. / Polylysine induces changes in membrane electrical properties of K562 cells. II J. Biomed. Mater. Res. 1997. V. 35. P. 165-174.

449. Schneeman R., Krogmann D.W. / Polycation interactions with spinach ferredoxin-nicotinamide adenine dinucleotide phosphate reductase. II J. Biol. Chem. 1975. V. 250. P. 4965-4971.

450. Sachs J.R. / Soluble polycations and cationic amphiphiles inhibit volume-sensitive K-Cl cotransport in human red cell ghosts. II Am. J. Physiol. 1994. V.266. P. C997-C1005.

451. McEwan G.T.A., Jepson M.A., Hirst B.H., Simmons N.L. / Poly cation-induced enhancement of epithelial paracellular permeability is independent of tight junctional characteristics. II Biochim. Biophys. Acta. 1993. V. 1148. P. 51-60.

452. Peterson M.W., Gruenhaupt D. / Protamine increases the permeability of cultured epithelial monolayers. II J. Appl. Physiol. 1990. V.68. P. 220-227.

453. Peterson M.W., Gruenhaupt D. / Protamine interaction with the epithelial cell surface. II J.Appl. Physiol. 1992. V.72. P.236-241.

454. Uchida D.A., Irvin C.G., Ballowe C., Larsen G., Cott G.R. / Cationic proteins increase the permeability of cultured rabbit tracheal epithelial cells: modification by heparin and extracellular calcium II Exp. Lung. Res. 1996. V.22. P.85-99.

455. Elferink J.G., Deierkauf M. / Permeabilization and calcium-dependent activation of rabbit polymorphonuclear leukocytes by poly-L-arginine. II Inflammation. 1989. V. 13. P. 285-294.

456. Katsu Т., Yoshimura S., Fujita Y. / Increases in permeability of Escherichia coli outer membrane induced by polycations. IIFEBS Lett. 1984. V. 166. P. 175-178.

457. Vaara М. / Agents that increase the permeability of the outer membrane. II Microbiol. Rev. 1992. V. 56. P. 395-411.

458. Hammes M., Singh A. / Effect of polycations on permeability of glomerular epithelial cell monolayers to albumin. II J. Lab. Clin. Med. 1994. V. 123. P. 437-446.

459. Vehaskari V.M., Root E.R., Germuth F.G. Jr., Robson A.M. / Glomerular charge and urinary protein excretion: effects of systemic and intrarenal polycation infusion in the rat. H Kidney Int. 1982. V. 22. P. 127-135.

460. Hunsicker L.G., Bertolatus J.A. / Charged compounds of the glomerular filter and their role in normal and disorderedpermselectivity. II Artif. Organs. 1987. V. 11. P. 468-477.

461. Hunsicker L.G., Shearer T.P., Shaffer S.J. I Acute reversible proteinuria induced by infusion of the polycation hexadimethrine И Kidney Int. 1981. V. 20. P. 7-17.

462. Andrews P.M., Bates S.B. / Dose-dependent movement of cationic molecules across the glomerular wall. //Anat. Rec. 1985, V.212. P. 223-231.

463. Bertolatus J.A., Abuyousef M., Hunsicker L.G. / Glomerular sieving of high molecular weight proteins in proteinuric rats. И Kidney Int. 1987. V. 31. P. 1257-1266.

464. Wang Z., Liu Z., Zhang X., Tan J. / Changes in glomerular polyanions and ultrastructure induced by protamine in rats. II Hua Hsi I Ко Та Hsueh Hsueh Pao. 1992. V. 23. P. 272-275.

465. Konig Т., Kocsis В., Meszaros L., Nahm K., Zoltam S., Horvath 1./ Interaction of a synthetic polyanion with rat liver mitochondria. II Biochim. Biophys. Acta. 1979. V. 462. P. 380-389.

466. Colombini M., Yeung C.L., Tung J., Konig T. / The mitochondrial outer membrane channel, VDAC, is regulated by a synthetic polyanion. II Biochim. Biophys. Acta. 1987. V. 905. P. 279-286.

467. Jones R.A., Cheung C.Y., Black F.E., Zia J.K., Stayton P.S., Hoffman A.S., Wilson M.R./ Poly(2-alkylacrylic acid) polymers deliver molecules to the cytosol by pH-sensitive disruption of endosomal vesicles. И Biochem. J. 2003. V. 372. P. 65-75.

468. Hunter A.C. / Molecular hurdles in polyfectin design and mechanistic background to polycation induced cytotoxicity. II Adv. Drug Deliv. Rev. 2006. V. 58. P. 1523-1531.

469. Cho Y.W., Kim J.D., Park K. / Polycation gene delivery systems: escape from endosomes to cytosol. И J. Pharm. Pharmacol. 2003. V. 55. P. 721-734.

470. Li H, Qian Z.M. / Transferrin/transferrin receptor-mediated drug delivery. // Med. Res. Rev. 2002. V. 22. P. 225-250.

471. Kircheis R., Wightman L., Wagner E. / Design and gene delivery activity of modified polyethylenimines. //Adv. Drug Deliv. Rev. 2001. V. 53. P. 341-358.

472. Kircheis R., Blessing Т., Brunner S., Wightman L., Wagner E. / Tumor targeting with surface-shielded ligand-polycation DNA complexes. II J. Control. Release 2001. V. 72. P. 165-170.

473. Lee C.C., MacKay J.A., Frechet J.M., Szoka F.C. / Designing dendrimers for biological applications. //.Nat. Biotechnol. 2005. V. 23. P. 1517-1526.

474. Dufes C., Uchegbu I.F., Schatzlein A.G. / Dendrimers in gene delivery. // Adv. Drug Deliv. Rev. 2005. V. 57. P. 2177-2202.

475. Yamamoto H., Miki Т., Oda Т., Hirano Т., Sera Y., Akagi M., Maeda H. / Reduced bone marrow toxicity of neocarzinostatin by conjugation with divinyl ether-maleic acid copolymer.// Eur. J. Cancer. 1990. V. 26. P. 253-260.

476. Zunino F., Pratesi G., Pezzoni G. / Increased therapeutic efficacy and reduced toxicity of doxorubicin linked to pyran copolymer via the side chain of the drug. // Cancer Treat. Rep. 1987. V. 71. P. 367-373.

477. Hirano Т., Ohashi S., Todoroki Т., Ihaba M., Tsukagoshi S. /Antitumor activity ofpolyanion and its application for drug delivery system of antitumor drugs. // Gan To Kagaki Ryoho 1990. V. 17. P. 542-547.

478. Konar N., Kim C.J. / Drug release from drug-polyanion complex tablets: poly (acrylamido-2-methyl-l-propanesulfonate sodium -co- methyl methacrylate). // J. Control. Release. 1999. V. 57. P. 141-150.

479. Zhu G., Oto E., Vaage J., Quinn Y., Newman M., Engbers C., Uster P. / The effect of vincristine-polyanion complexes in STEALTH liposomes on pharmacokinetics, toxicity and anti tumor activity. // Cancer Chemother. Pharmacol. 1996. V. 39. P. 138-142.

480. Gibaud S., Weingarten C., Andreux J.P., Couvreur P. / Targeting bone marrow with the help of polyalkylcyanoacrylate nanoparticles. // Ann. Pharm. Fr. 1999. V. 57. P. 324-331.

481. Bogush, Т., Smirnova, G., Shubina I., Syrkin, A., Robert, J. / Direct evaluation of intracellular accumulation of free and polymer-bound anthracyclines. // Cancer Chemother. Pharmacol. 1995. V.35. P. 501-505.

482. Oda Т., Sato F., Maeda H. / Facilitated internalization of neocarzinostatin and its lipophilic polymer conjugate, SMANCS, into cytosol in acidic рН. II J. Natl. Cancer Inst. 1987. V. 79. P. 1205-1211.

483. Gerweck L.E., Seetharaman K. / Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. // Cancer Res. 1996. V. 15. P. 1194-1198.

484. Yokoyama M., Kwon G.S., Okano Т., Sakurai Y., Seto Т., Kataoka K. / Preparation of micelle-forming polymer-drug conjugates. //Bioconjug. Chem. 1992. V. 3. P. 295-301.

485. Kwon G.S., Yokoyama M., Okano Т., Sakurai Y., Kataoka K. / Biodistribution of micelle-forming polymer-drug conjugates.// Pharm. Res. 1993. V. 10. P. 970-974.

486. Oh I., Lee K., Kwon H.Y., Lee Y.B., Shin S.C., Cho C.S., Kim C.K. / Release ofadriamycin from poly(gamma-benzyl-L-glutamate)/ poly(ethylene oxide) nanoparticles. // Int. J. Pharm. 1999. V. 181. P. 107-115.

487. Oh I.; Lee K.; Kwon H.Y.; Lee Y.B.; Shin S.C.; Cho C.S.; Kim C.K. / Release ofadriamycin from poly(gamma-benzyl-L-glutamate)fpoly(ethylene oxide) nanoparticles. // Int. J. Pharm. 1999. V. 181. P. 107-115.

488. Janes K.A., Fresneau M.P., Marazuela A., Fabra A., Alonso M.J. / Chitosan nanoparticles as delivery systems for doxorubicin. // J. Control. Release. 2001. V. 73. P. 255-267.

489. Nakanishi Т., Fukushima S., Okamoto K., Suzuki, M., Matsumura, Y., Yokoyama, M., Okano Т., Sakurai Y., Kataoka K. / Development of the polymer micelle carrier system for doxorubicin. //J. Control. Release. 2001. V. 74. P. 295-302.

490. Sims G.E.C., Snape T.J. / A method for the estimation of polyethylene glycol in plasma protein fractions. //Anal. Biochem. 1980. V. 107. C. 60-63.

491. Хейфец Л.Б., Абалкин B.A. / Разделение форменных элементов крови человека в градиенте плотности верографин-фиколл. // Лаб. дело. 1973. Т. 10. С. 579-581.

492. Lowry О.Н., Rosenbrought N.J., Farr A.L., Randall R.J./ Protein mesuarement with the Folin phenol reagent. //J. Biol. Chem. 1951. V. 193. P. 265-275.

493. Финдлей Дж., Эванз У. Биологические мембраны. Методы. II Москва: Мир, С. 13-56, 1990.

494. Дородных Т.Ю. / Мицеллы блок-сополимеров оксида этшена и оксида пропилена (плюроников) для доставки противораковых цитостатиков и лечения опухолей. II диссертация на соискание ученой степени кандидата химических наук, Москва, МГУ, 1996.

495. Batrakova E.V., Li S., Li Y., Alakhov V.Y., Elmquist W.F., Kabanov A.V. / Distribution kinetics of a micelle-forming block copolymer Pluronic P85. II J. Control. Release. 2004. V. 100. P. 389-397.

496. Зайцев C.B., Варигин К., Варфоломеев С.Д. / Нейропептидо-морфиновые рецепторы. II Московский Университет, Москва, 278 с. 1992.

497. Lin-Chau Chang L.-C., Lin C.-Y., Kuo M.-W., Gau C.-S. / Interactions of Pluronics with phospholipid monolayers at the air-water interface. //J. Colloid Interface Sci. 2005. V. 285. P. 640-652.

498. Свергун Д.И., Фейгин Л.А. / Рентгеновское и нейтронное малоугловое рассеяние. // Москва, Наука, 279 с. 1986

499. Plasek Y., Yarolim P. / Interaction of the fluorescent probe l,6-diphenyl-l,3,5~hexatriene with biomembranes. //Gen. Physiol. Biophys. 1987. V. 6. P. 425-437.

500. Boon J. M., Smith B. D. / Facilitated Phosphatidylcholine Flip-Flop Across Erythrocyte Membranes Using Low Molecular Weight Synthetic Translocases. И J. Am. Chem. Soc. 2001. V. 123. P. 6221-6226.

501. Sasaki Y., Shukla R., Smith B.D. / Facilitatedphosphatidylserine flip-flop across vesicle and cell membranes using urea-derived synthetic translocases. II Org. Biomol. Chem. 2004. V. 2. P. 214-219.

502. Lambert T.N., Boon J.M., Smith B.D., Perez-Payan M.N., Davis A.P. / Facilitated Phospholipid Flip-Flop Using Synthetic Steroid-Derived Translocases. // J. Am. Chem. Soc. 2002. V. 124. P. 5276-5277.

503. Boon J.M., Lambert, T.N., Sisson A.L., Davis, A.P., Smith B.D. / Facilitated Phosphatidylserine (PS) Flip-Flop and Thrombin Activation Using A Synthetic PS Scramblase IIS. Am. Chem. Soc. 2003. V. 125. P. 8195-8201.

504. DiVittorio K.M., Lambert T.N., Smith B.D. / Steroid-derived phospholipid scramblases induce exposure of phosphatidylserine on the surface of red blood cells. II Bioorg. Med. Chem. 2005. V. 13. P. 4485-4490.

505. Ben Ghoulam M., Moatadid N., Graciaa A., Lachaise J. / Effects of Oxyethylene Chain Length and Temperature on Partitioning of Homogeneous Poly oxyethylene Nonionic Surfactants between Water andIsooctane. II Langmuir. 2002. V. 18. P. 4367-4371.

506. Greenwald H. L., Kice E. В., Kenly M., Kelly J. / Determination of the Distribution of Nonionic Surface Active Agents between Water and Iso-octane. II Anal. Chem. 1961. V. 33. P.465-468.

507. Reiner R. I Antibiotics 11 Editions "Roche" Base, Switzerland, 1982.

508. Neidle S., Sanderson M.R. / The interaction of Daunomycin and Adriamycin with nucleic Acids II In: Molecular Aspects of Anti-cancer Drug Action, Ed. S. Neidle and M.J. Waring, The MacMillan Press Ltd. 1983. P. 35-313.

509. Heywang C., Chazalet M. S.-P., Masson M. C., Bolard J. / Orientation of anthracyclines in lipid monolayers and planar asymmetrical bilayers: a surface-enhanced resonance Raman scattering study. //Biophys. J. 1998. V. 75. P. 2368-2381.

510. Walter A., Gutknecht J. / Permeability of small nonelectrolytes through lipid bilayer membranes. //J. Membrane Biol. 1986, V. 90. P. 207-217.

511. Dalmark M. Storm H. H. / A Fickian diffusion transport process with features of transport catalysis. Doxorubicin transport in human red blood cells // J. Gen. Physiol. 1981. V. 78. P. 349-364.

512. Kamp F., Hamilton J.A. / pH gradients across phospholipid membranes caused by fast flip-flop of un-ionizedfatty acids. II Proc. Natl. Acad. Sci. USA. 1992. V. 89. P. 11367-11370.

513. Powell G.L., Hui S.W. / Tetraoleoylpyrophosphatidic acid: a four acyl-chain lipid which forms a hexagonal IIphase with high curvature. II Biophys. J. 1996. V. 70. P. 1402-1406.

514. Soderlund Т., Jutila A., Kinnunen P.K.J / Binding of adriamycin to liposomes as a probe for membrane lateral organisation. II Biophys. J. 1999. V. 76. P. 896-907.

515. Epand R.M., Epand R.F. / Calorimetric detection of curvature strain in phospholipid bilayers // Biophys. J. 1994. V. 66. P. 1450-1456.

516. Pei В., Chen J.-W. / More ordered, convex ganglioside-enriched membrane domains: the effects of GM1 on sphingomyelin bilayers containing a low level of cholesterol. II J. Biochem. 2003. V. 134. P. 575-581.

517. Yaroslavova E.G., Yaroslavov, A.A. Kabanov V.A., Menger F.M. / Negatively charged vesicles coated by poly(oxyethylene) layer: interaction with polycations. II Polymer Preprints. 1997. V. 38. P. 640-641.

518. Huang A., Tsao Y.-S., Kennel S.J., Huang L. / Characterization of antibody covalently coupled to liposomes. II Biochim. Biophys. Acta. 1982. V. 716. P. 140-150.

519. Fields R. / The measurement of amino groups in proteins and peptides. II Biochem. J. 1971. V. 124. P.581-590.

520. Birktoft J.J., Blow D.M. / Structure of crystallinea -chymotrypsin. V. The atomic structure of tosyl-chymotrypsin at 2 A resolution // J. Mol. Biol. 1972. V. 68. P. 187-240.

521. Menozzi M., Valentini L., Vannini E., Arcamone F. / Self-association of doxorubicin and related compounds in aqueous solution. // J. Pharm.Sci. 1984. V. 73. P. 766-770.1. Благодарности

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.