Взаимодействие лазерного излучения с гибридными высокоиерархичными структурами тема диссертации и автореферата по ВАК РФ 00.00.00, доктор наук Миличко Валентин Андреевич

  • Миличко Валентин Андреевич
  • доктор наукдоктор наук
  • 2023, ФГАОУ ВО «Национальный исследовательский университет ИТМО»
  • Специальность ВАК РФ00.00.00
  • Количество страниц 201
Миличко Валентин Андреевич. Взаимодействие лазерного излучения с гибридными высокоиерархичными структурами: дис. доктор наук: 00.00.00 - Другие cпециальности. ФГАОУ ВО «Национальный исследовательский университет ИТМО». 2023. 201 с.

Оглавление диссертации доктор наук Миличко Валентин Андреевич

2 ОСНОВНОЕ СОДЕРЖАНИЕ ДОКЛАДА

2.1 Свет как инструмент повышения структурной иерархии оптических наноразмерных материалов

2.2 Универсальная конфокальная оптическая спектроскопия нано и микроразмерных материалов

2.3 Управление оптическими свойствами нано и микроразмерных материалов через повышение их структурной иерархии

2.4 Оптическое управление оптическими свойствами нано и микроразмерных материалов с фиксированной структурной иерархией

3 ЗАКЛЮЧЕНИЕ

4 СПИСОК ЛИТЕРАТУРЫ

5 INTRODUCTION

6 GENERAL THESIS SUMMARY

6.1 Light as a tool for increasing the structural hierarchy of optical nanosized materials

6.2 Universal confocal optical spectroscopy of nano and microsized materials

6.3 Controlling the optical properties of nano and microsized materials by increasing their structural hierarchy

6.4 Laser control of the optical properties of nano- and microsized materials with a fixed structural hierarchy

7 CONCLUSIONS

8 REFERENCES

9 СПИСОК ПУБЛИКАЦИЙ ПО ТЕМЕ ДИССЕРТАЦИИ

Приложение

Рекомендованный список диссертаций по специальности «Другие cпециальности», 00.00.00 шифр ВАК

Введение диссертации (часть автореферата) на тему «Взаимодействие лазерного излучения с гибридными высокоиерархичными структурами»

1. ВВЕДЕНИЕ

Актуальность темы. Развитие современной оптики, в частности нанофотоники и лазерных технологий, в большей степени определяется сегодня развитием библиотеки новых материалов для данных направлений. Дизайн и создание новых оптических материалов с улучшенными рабочими характеристиками [1], облегчающими жизнь человека и снижающими его материальные и временные затраты, обладающих фундаментально новыми оптическими свойствами [2] или же расширяющих границы фундаментального знания, не просто поддерживает интерес индустрии и академии к современной оптике, а даже открывает новые научные направления, меняет высокотехнологическую индустрию, общественное сознание и социально-экономические связи в обществе.

Одним из ключевых направлений в области современных оптических материалов стоит выделить так называемое создание высоко иерархичных структур. Являясь концептом, заимствованным ранее из архитектуры и строительства [3], повышение структурной иерархии для оптических материалов выражается геометрически и отражается на уникальной синергии физических (оптических) свойств отдельных строительных блоков (составных компонент результирующего материала), обеспечивающих вышеуказанные улучшенные характеристиками, сниженные материальные и временные затраты, и фундаментально новые оптические свойства. Ярким проявлением данного концепта, например в нанофотонике, является переход от плазмонных наночастиц с фиксированными оптическими свойствами [4] к наноструктурам с усложненной геометрией, обеспечивающей уже возможность управления оптическим откликом [5], затем к плазмонным метаматериалам и метаповерхностям [6], демонстрирующим уже новый набор оптических свойств за счет геометрии и особенностей упаковки отдельных плазмонных блоков, и далее к гибридным наноструктурам через комбинацию плазмонных наноструктур с оптически

активными компонентами в виде жидких кристаллов, красителей или же диэлектрических наночастиц [7].

Успехи реализации концепта повышения степени структурной иерархии оптических материалов для развития оптических технологий сегодня невозможно оставить незамеченным. Однако, существующие сложности при создании и/или повышении структурной иерархии оптических материалов быстрыми, коммерчески доступными, и экономически выгодными методами [8], неудобства в недостаточной универсальности современных оптических методов исследований функциональных оптических свойств таких материалов от нано до микромасштаба [4,9], а также отсутствующее обобщение накопившихся знаний о влиянии изменении степени структурной иерархии нано и микроразмерных материалов на их оптические свойства остаются, пожалуй, ключевыми факторами, тормозящими развитие современной нанофотоники и оптики в целом. Таким образом, аккумулирование экспериментальных и теоретических знаний в области оптических функциональных материалов с варьируемой структурной иерархией является в крайне степени актуальной и несет важную фундаментальную и прикладную значимость как для развития междисциплинарности современной нанофотоники, так и для трансфера знаний в образовательную и коммерческую деятельность.

Целью настоящего исследования является систематическое исследование и обобщение оптических свойств нано и микро размерных материалов с изменяемой структурной иерархией, установление закономерностей влияния такой иерархии на оптические свойства материалов, а также развитие концепта дизайна и оптического подхода к синтезу оптических высоко иерархичных материалов будущего.

Для достижения данной цели в рамках диссертации были поставлены и решены следующие задачи:

Задача 1 - Развить оптический подход к созданию широкой библиотеки оптических материалов от нано до микромасштаба с повышенной степенью структурной иерархии.

Задача 2 - Развить универсальный конфокальный метод комбинированной оптической спектроскопии для исследования оптических свойств нано и микроразмерных материалов.

Задача 3 - Развить подход к управлению оптическими свойствами нано и микроразмерных материалов посредством изменения их структурной иерархии.

Задача 4 - Развить подход к оптическому управлению оптическими свойствами нано и микроразмерных материалов с фиксированной структурной иерархией.

Научная новизна: Уникальность настоящей работы заключается в комбинировании целой серии теоретических и экспериментальных междисциплинарных работ как в области оптического создания, так и характеризации новых функциональных материалов с изменяемой структурной иерархией, а также обобщение результатов через систематический анализ и выявление закономерностей в форме зависимости оптического отклика и оптических приложений от структурной иерархии материала. Это объясняет научную значимость данной работы для большого круга специалистов в области прикладной оптики, нанофотоники и лазерной физики, а также подчеркивает ее актуальность для дальнейшего развития современной нанофотоники и смежных с ней научных областей, таких как материаловедение, неорганическая химия и кристаллография. В частности:

1.Предложены методы изготовления оптических материалов посредством холодной и горячей лазерной абляцией, обеспечивающей трансформацию неорганических и металл-органических материалов со структурной иерархией п=0 и п=1 в нано и микроразмерные материалы со структурной иерархией п=1, п=2 и п=3.

2.Предложен универсальный метод in situ оптического анализа комплекса оптических свойств нано и микроразмерных материалов посредством конфокальной оптической спектроскопии с тремя независимыми оптическими каналами, обеспечивающими одновременный и независимый анализ спектров упругого/неупругого рассеяния, пропускания/отражения, фотоэмисии и нелинейно-оптического отклика.

3.Продемонстрирован эффект повышения структурной иерархии от n=1 до n=3 для неорганических нано и микроразмерных материалов на изменение их оптических свойств и расширение спектра их оптических применений.

4.Продемонстрирован эффект оптического управления оптическими свойствами неорганических и металл-органических нано и микроразмерных материалов в зависимости от степени их структурной иерархии.

Объектом исследования выступали пленки неорганических материалов таких как Si, Ge, Au, полученные физическим осаждением из газовой фазы; сплавы SiAu, CuAg, GeSbTe, полученные как физическим осаждением из газовой фазы, так и методом плазменного/лазерного спекания; наночастицы и наноструктуры с повышенной структурной иерархией такие как Si, SiO2, TiO2, Ge, Ga, Au, SiAu, CuAg, Carbon, GeSbTe, наноразмерные метал-органические каркасы и их производные, полученные как методами холодной и горячей лазерной абляции, химическим травлением, так и от коммерческих производителей (Sigma Aldrich); метал-органические каркасы HKUST-1; MIL 101 (Fe); ZIF 8; [Zn(ur)(abdc)] DMF H2O; [Cd(sdc)(L4)] DMF; [Cd(dmf)(sdc)(L6)]DMF;

[{Zn2(TBAPyXH2OM-3.5DEF]n; [{Fe3(ACTBA)2}X6DEF]n; [Cu(bImB)2Cl2] и M-BTC (M: Fe3+, Co3+, Co2+, Ni2+, Cu2+), полученные сольвотермальным и микроволновым методами синтеза лично и/или в сотрудничестве с учеными из университета ИТМО, института неорганической химии им. А.В. Николаева СО РАН, университета Лотарингии (Франция) и университета Лейпцига (Германия).

[Zn(sdc)(L6)] -DMF; [Cu(bipy)2(DMF)(NO3)] [NO3] -3DMF;

[Cu(C12H10N2)(NO3)2] DMFi-PrOH;

[Cu(bImB)Cl2];

Практическая и теоретическая значимость результатов диссертационной' работы состоит в сформулированных закономерностях изменения оптических свойств нано и микроразмерных материалов в зависимости от степени их структурной иерархии и обобщенных принципах дизайна функциональных оптических материалов, которые могут быть использованы при направленной разработке, изготовлении и применении новых эффективных оптических материалов с ярко выраженными линейными и нелинейными оптическими свойствами. В частности, показана эффективная и коммерчески доступная технология лазерной абляции неорганических (Si, SiO2, TiO2, Ge, Au, SiAu, CuAg) и металлорганических (метал-органические каркасы) материалов с варьируемой степенью структурной иерархии для создания более сложных структур с усиленным оптическим откликом для использования последних в качестве наноразмерных источников когерентного и некогерентного излучения видимого диапазона. Используя результаты обобщенного анализа влияния высоких степеней структурной иерархии на оптическое применение материалов, показана возможность использования сложных, с точки зрения структуры, нано и микроразмерных материалов в качестве универсальных оптических детекторов температуры, химического окружения, а также источников и концентраторов оптического излучения для проблем солнечной энергетики, визуализации и управления излучением. Также, серия нано и микроразмерных материалов с произвольной структурной иерархией (n>1) показала высокий потенциал для использования в качестве активных материалов в устройствах обработки, записи и передачи оптической информации без использования электронных схем. Наконец, предложенная оптическая схема универсального оптического анализа комплекса оптических свойств нано и микроразмерных материалов легла в основу длительной успешной работы физического факультета, обеспечивая как плодотворное научное сотрудничество в области нанофотоники с ведущими отечественными и иностранными университетами (Australian National University, Agency for Science, Technology and Research of Singapore, Max Planck Institute), так

и позволила переориентировать часть научных работ на прикладные в статусе центра коллективного пользования. Результаты работы имеют большое значение как для развития отечественной оптической промышленности ввиду универсальности и простоты разработанных оптических методов создания новых оптических материалов и изменения их структурной иерархии, так и для решения острых фундаментальных вопросов нанофотоники и современной физики в целом.

Методология и методы исследования. Для решения четырех поставленных задач, адресованных качественному структурному, морфологическому и оптическому анализу получаемых нано и микроразмерных материалов, использовались современные методы сканирующей и просвечивающей электронной микроскопии высокого разрешения (MET, JEOL ACCEL ARM 200F, ускоряющее напряжение 200 kV, плотность тока от 50 до 120 pA/cm2; FEI Quantum Inspect S) с приставкой элементного анализа EDX (в режиме STEM, JEOL Centurio детектор 1sr), спектроскопии характеристических потерь энергии электронов EELS (GATAN GIF Quantum спектрометр), монокристальной и порошковой дифрактометрии (Bruker Kappa Apex II дифрактометр, MoKal ImS (l = 0.71073 Â); Bruker D8 Advance дифрактометр с Bragg-Brentano геометрией, CuKal и CoKa) с возможностью регулирования условий съемки (изменение температуры, облучение), атомно силовой микроскопии (SmartSPM 1000 AIST-NT microscope), а также оптической спектроскопии с временным разрешением, конфокальной оптической спектроскопии пропускания, отражения, рассеяния (включая комбинационное), генерации оптических гармоник и люминесценции и ближнепольной оптической спектроскопии с использованием коммерческой системы Horiba LabRam HR (CCD детектор Andor DU 420A-OE 325, дифракционная решетка от 150 до 1800 шт/мм), современных источников когерентного излучения видимого и ближнего инфракрасного диапазонов (Yb3+, TeMa, Avesta Project, 1050 нм центральная длина волны, 150 фс, частота следования импульсов 1 Гц - 80 МГц; Avesta TiF100, частота следования импульсов 80 ЖГц, 715-980 нм перестраиваемая длина волны, 100 фс; Fianium

SC400-6, перестраиваемая длина волны 400-850 нм, частота следования импульсов 60 МГц, 6 пс; 632.8 нм гелий-неоновый источник непрерывного когерентного излучения), системы трехкоординатного микро позиционирования образца (Thorlabs MBT616D) и набора оптических объективов Mitutoyo (М Plan APO HR 100x0.9NA, М Plan APO 100x0.7NA, HR NIR 50x0.65NA, HR NIR 10x0.28NA). В работе также были использованы современные методы оценки и описания оптических и электронных свойств нано и микроразмерных материалов (теория функционала плотности DFT и COMSOL).

Научные положения, выносимые на защиту:

1. Фемтосекундная лазерная абляция метал-органических каркасов и тонких пленок кремния, германия, золота и их сплавов повышает структурную иерархию получаемых нано и микроразмерных оптических материалов за счет формирования структуры ядро-оболочка, доменной структуры и объёмных дефектов.

2. Универсальная конфокальная линейная и нелинейная оптическая спектроскопия с тремя независимыми оптическими каналами обеспечивает одновременный анализ оптического пропускания, отражения, упругого и неупругого светорассеяния, когерентной и некогерентной фотоэмиссии металл-органических каркасов и единичных полупроводниковых наночастиц и их изменение в поле лазерного излучения.

3. Повышение структурной иерархии наночастиц оксидов металлов до тонких пленок на их основе, а также наночастиц кремния и германия до наночастиц с доменной структурой и наночастиц на подложке с покрытием обеспечивает появление нелинейно-оптического отклика в дополнение к линейному оптическому при идентичных параметрах лазерной накачки.

4. Повышение структурной иерархии металл-органических каркасов от микроразмерных кристаллов до наночастиц, двумерных слоев, наночастиц со структурой ядро-оболочка и наночастиц в полимере обеспечивает

контролируемую лазерным излучением фотоэмиссию и показатели преломления и поглощения в дополнение к имеющемуся нелинейно-оптическому отклику.

5. Наночастицы кремния и галлия с высокой структурной иерархией, приобретенной за счет наличия термочувствительных структурных компонент, демонстрируют светорассеяние, спектр которого управляется лазерным излучением.

6. Металл-органические каркасы с высокой структурной иерархией, приобретенной за счет слоистой структуры и/или наличия гибких структурных компонент, демонстрируют нелинейное оптическое пропускания, светорассеяние и фотоэмиссию, спектры, интенсивности и направленности которых управляются лазерным излучением.

Степень достоверности и апробация результатов работы: Достоверность полученных результатов подтверждается использованием современных методов и подходов в планировании и реализации экспериментов, использованием комплекса современных аналитических методов для описания структурных и оптических свойств материалов. Кроме того, результаты, полученные при выполнении исследований, находятся в рамках современных представлений о взаимодействии излучения с твердым телом сложной структурной иерархии и не противоречат фундаментальным воззрениям на природу взаимодействия света с веществом.

Результаты работы представлены в качестве устных и приглашенных докладах на следующих международных конференциях: ANM 2022, Advanced Nanomaterials Conference (Aveiro, Portugal, 2022); 6th International Conference on Metamaterials and Nanophotonics, METANANO 2021 (Tbilisi, Georgia, 2021); 4th EuroMOF European Conference on Metal Organic Frameworks and Porous Polymers (Jagiellonian University, Krakow, Poland, 2021); 5th International Conference on Metamaterials and Nanophotonics, METANANO 2020 (St. Petersburg, Russia, 2020); 4th International Conference on Metamaterials and Nanophotonics, METANANO 2019 (St. Petersburg, Russia, 2019); 3rd International Conference on Metamaterials and

Nanophotonics, METANANO 2018 (Sochi, Russia, 2018); SNAIA 2018, Smart Nanomaterials: advances, innovation and applications (École Nationale Supérieure de Chimie, Paris, France, 2018); International Conference on Metamaterials and Nanophotonics, METANANO 2017 (Vladivostok, Russia, 2017); Progress In Electromagnetics Research Symposium - Spring, PIERS 2017 (St. Petersburg, Russia, 2017); 4th International School and Conference "Saint Petersburg OPEN 2017" on Optoelectronics, Photonics, Engineering and Nanostructures (Saint-Petersburg, Russia, 2017); 11th International Congress on Engineered Material Platforms for Novel Wave Phenomena, Metamaterials 2017 (Marseille, France, 2017); IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems, COMCAS 2017 (Tel-Aviv, Israel, 2017); International Conference PhysicA.SPb 2016 (Saint-Petersburg, Russia, 2016); 5th International Conference on State-of-the-Art Trends of Scientific Research of Artificial and Natural Nanoobjects, STRANN 2016 (Saint Petersburg, Russia, 2016); International Conference Days on Diffraction, DD 2016 (St. Petersburg, Russia, 2016); 3rd International School and Conference on Optoelectronics, Photonics, Engineering and Nanostructures, Saint Petersburg OPEN 2016 (St. Petersburg, Russia, 2016); 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, METAMATERIALS 2016 (Chania, Crete, 2016); 17th Russian Youth Conference on Physics of Semiconductors and Nanostructures, Opto- and Nanoelectronics, RYCPS 2015 (St. Petersburg, Russia, 2015).

Результаты работ были представлены на семинарах в институте неорганической химии им. А.В. Николаева СО РАН, институте физической химии и электрохимии им. А.Н. Фрумкина, университетах Лотарингии, Гренобля и экс Марселя (Франция), Каролинском медицинском институте (Швеция) и технологическом институте Нью Джерси (США).

Личный вклад автора. Диссертация содержит результаты экспериментальных и теоретических исследований, выполненных лично автором или при его непосредственном участии. Автор сформулировал цели и задачи

междисциплинарного исследования, выполнил планирование и проведение теоретических и экспериментальных исследований, анализ полученных данных, их обработка и обобщение, подготовка и непосредственное написание научный статей и апробация материалов работы на международных конференциях. Автором был сформирован научный коллектив «российско-французская лаборатория Университета ИТМО» для выполнения поставленных задач, в рамках которых подготовлены и защищены 2 диссертации на соискание степени кандидата физико-математических наук (специальность 1.3.6 оптика) и 8 магистерских диссертаций. Отдельные части работ выполнены автором в качестве руководителя проектов следующих фондов РНФ (22-72-10027; 19-79-10241), РФФИ (20-33-90318; 18-32-20089; 16-37-60073), ФЦП (14.587.21.0050, уникальный номер RFMEFI58718X0050), гранта Президента РФ (МК-2952.2017.2) и других отечественных и международных негосударственных фондов.

Публикации. В период с 2012 по 2022 года результаты экспериментальных и теоретических исследований и их обобщения опубликованы в 60 статьях (53 оригинальных работ и 7 обзоров) в журналах, индексируемых Scopus, Web of Science (51 статья в журналах Q1, 9 статей в журналах Q2) со средневзвешенным импакт-фактором журналов 10.4 (согласно Clarivate analytics 2021).

2. ОСНОВНОЕ СОДЕРЖАНИЕ ДОКЛАДА

2.1 Свет как инструмент повышения структурной иерархии оптических наноразмерных материалов

Созданию оптических материалов сегодня отведено отдельное междисциплинарное направление, охватывающее специальные разделы органической и неорганической химии, инженерии и механики. Существующие классические, коммерчески ориентированные, подходы синтеза/роста таких материалов базируются на процессе роста через химические или физико-химические взаимодействия между отдельными компонентами (молекулами, ионами) результирующего материала. С одной стороны, это упрощает коммерциализацию процесса создания функционального оптического материала; с другой - ограничивает возможности расширения библиотеки материалов с улучшенными рабочими характеристиками. Ранее показанные подходы к формированию уникальных оптических материалов через «разрушение» или деформацию предшественника посредством плазменного разряда в жидкости [2022] или сфокусированным электронным пучком [47,59] доказали состоятельность иного подхода к дизайну и синтезу новых оптических материалов - взаимодействие предшественника с физическим воздействием. В качестве такого воздействия наиболее успешно и продуктивно можно использовать свет. Взаимодействие (когерентного) излучения с веществом, с позиции дизайна материала, сегодня стало отдельным самостоятельным междисциплинарным направлением, позволяющим получать искусственные материалы не только с улучшенными оптическими свойствами, но и с приобретёнными новыми полезными нанофотонными эффектами за счет изменения их структурной иерархии.

Таблица 1 - Перечень нано и микроразмерных структур с различной структурной иерархией: п=0 соответствует объемное тело; п=1 соответствуют тонкие пленки, наночастицы и кристаллы металл-органического каркаса; п=2 соответствуют наночастицы с внутренним разделением материалов, наночастицы со сложной формой, наночастицы металл-органических каркасов, наночастицы с молекулами на поверхности и комбинация наночастиц, тонкие пленки из наночастиц, молекулярные тонкие пленки, тонкие пленки металл-органических каркасов и наноструктурированные пленки; п=3 соответствуют наночастицы металл-органического каркаса с включениями, наночастицы на подложке с молекулярным покрытием, тонкие пленки металл-органических каркасов с включениями внутри и на их поверхности, а также пленки с наночастицами металл-

органических каркасов внутри.

п=0 п= =2 п=3

□ О НЧ [3,6,8, 20,26] 1=1 ТП-мол [32,33] ® МОК НЧ [49]

1 ГхтЛ1 ■ ТП НЧ ТП пп МОК ТП

[34,35,37, 39-41] [36,38,42] [47,59]

п=1 О НЧ [12,13,23, 31,51] 1=1 МОК ТП [44,53,54, 57,58] =3 МОК ТП [52]

1=1 2Б (5 НЧ [24,25, 27,30] О МОК НЧ [43] ЕШ ТП [48]

о НЧ [1,2,4,5, 7,10,14, 16,21,22, 28,29] оо НЧ [9,11,15] Й НЧ [17-19]

§ МОК [45,46,50, 55,56,60]

Принципиально важным моментом концепта получения новых оптических материалов в процессе взаимодействия когерентного излучения с веществом является уникальная возможность управлять иерархией (п) желаемого оптического материала. Именно структурная иерархия и обеспечивает затем практическую пользу материала. В Таблице 1 приведено описание получаемых нано и микроразмерных материалов и их структурной иерархии: от объемным твердых тел с низшей структурной иерархией п=0 можно перейти к тонким пленкам (ТП), двумерным (2D) тонким материалам, однородным по составу наночастицам (НЧ) и объемным металл-органическим каркасам (МОК, кристаллам на основе двух составных элементов - органические молекулы и металлические кластеры) со степенью структурной иерархии п=1, за которыми иерархично (п=2) следуют двухкомпонентные наночастицы, наночастицы с молекулярным покрытием (НЧ-мол) или же со сложной формой (полостями), наночастицы металл-органического каркаса (МОК НЧ), тонкие пленки на основе наночастиц (ТП НЧ), тонкие пленки металл-органического каркаса (МОК ТП), молекулярные пленки (ТП-мол) и наноструктурированные тонкие пленки. Завершает эту иерархию наиболее структурно сложные материалы, такие как тонкие пленки металл-органических материалов с молекулами или неорганическими наночастицами внутри, тонкие пленки с включениями металл-органических частиц, наночастицы металл-органических каркасов с включениями неорганических наночастиц и неорганические наночастиц на подложке с молекулярным покрытием.

В работе было предложено получать данные структуры посредством взаимодействия когерентного оптического излучения с предшественниками -исходными материалами. Для этого была собрана универсальная система (Рисунок 1), обеспечивающая прецизионное создание новых форм оптических материалов с желаемой структурной иерархией на произвольных подложках в режиме реального времени. В частности, система оснащена взаимозаменяемимы источниками когерентного излучения (Yb3+, TeMa, Avesta Project с центральной длиной волны 1050 нм с возможностью генерации второй, 525 нм, и третьей, 350 нм, оптической гармоники, длительностью импульса 150 фс и частотой следования импульсов 1 Гц - 80 МГц; Avesta TiF100, частота следования импульсов 80 МГц, 715- 980 нм перестраиваемая длина волны, 100 фс), интерференционным фильтром, обеспечивающим плавную регуляцию энергии импульсов, набора диэлектрических зеркал с эффективным (98-99%) отражением ближнего ультрафиолетового, видимого и ближнего инфракрасного диапазонов, трехкоординатными подвижками (Thorlabs MBT616D), обеспечивающими как плавную и точную юстировку объектива, так и позиционирование образца, а также дополнительной видеокамерой (Canon 400D) для наблюдения и контроля процесса в режиме реального времени.

Рисунок 1 - Схема лазерной абляции материалов-предшественников для получения нано и микроразмерных материалов с повышенной структурной

иерархией

В работе процесс взаимодействия когерентного излучения с предшественниками выражался в необратимом процессе

деформации/трансформации последних в новые формы материала (лазерная абляция). Важной особенностью такого процесса в нашем случае (Рисунок 1) является возможность изменения режима лазерной абляции от «холодного» к «горячему» посредством увеличения частоты следования лазерных импульсов от единиц Гц до 80 МГц. Это уникальным образом позволяет оптически управлять процессом создания нового материала с заданными оптическими свойствами.

Рисунок 2 - Электронные и оптические изображения наночастиц Si (а,Ь) и Ge (с^), полученные методом лазерной абляции на подложке кварца. (еД) Соответствующие спектры комбинационного рассеяния в сравнении со спектрами для исходных подложек. Масштаб 500 нм (а,с), 2 мкм (Ь^)

В частности, на первых этапах работы были созданы сферические, однородные по составу, высококристаллические наночастицы из неорганических материалов Ge, Аи) с разбросом размеров от 50 до 500 нм (Рисунок 2), причем создание данных наночастиц возможно как из объёмных материалов (п=0), так и из тонких аморфных пленок (п=1) на произвольных поверхностях (подложках -акцепторах, Рисунок 1) в воздушной или же инертной атмосфере (для этого трехкоординатная подвижка с предшественником и подложкой-акцептором размещалась в камере с N2). Возможность переключения между «горячим» и «холодным» режимами лазерной абляции позволяла достигать как процесса равновесного (теплового) плавления материала и его последующей кристаллизации (что позволило получать кристаллические наночастицы из аморфного предшественника) со структурной иерархией п=1, так и режима неравновесного («электронного») плавления, избегая физического перехода состояния вещества через температуру плавления. Последнее позволило получать уникальные высокоиерархичные наночастицы (из п=1 в п=2 или п=3) с сохранением химического состава, но сложной упаковкой отдельных строительных блоков (Таблица 2).

Похожие диссертационные работы по специальности «Другие cпециальности», 00.00.00 шифр ВАК

Список литературы диссертационного исследования доктор наук Миличко Валентин Андреевич, 2023 год

4. СПИСОК ЛИТЕРАТУРЫ

1. Marder S. R. Design and synthesis of chromophores and polymers for electro-optic and photorefractive applications / Marder S. R., Kippelen B., Jen A. K. Y., Peyghambarian N. // Nature. - 1997. - Vol. 388. - P. 845-851.

2. Andrei E. Y. Graphene bilayers with a twist / Andrei E. Y., MacDonald A. H. // Nature Materials. - 2020. - Vol. 19. - P. 1265-1275.

3. Lakes R. Materials with structural hierarchy / Lakes R. // Nature. - 1993. - Vol. 361. - P. 511-515.

4. Olson J. Optical characterization of single plasmonic nanoparticles / Olson J., Dominguez-Medina S., Hoggard A., Wang L. Y., Chang W. S., Link S. // Chemical Society Reviews. - 2015. - Vol. 44. - P. 40-57.

5. Ding S. Y. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials / Ding S. Y., Yi J., Li J. F., Ren B., Wu D. Y., Panneerselvam R., Tian Z. Q. // Nature Reviews Materials. - 2016. - Vol. 1. - P. 16021.

6. Meinzer N. Plasmonic meta-atoms and metasurfaces / Meinzer N., Barnes W. L., Hooper I. R. // Nature Photonics. - 2014. - Vol. 8. - P. 889-898.

7. Mehta S. Hybrid nanostructures: Versatile systems for biomedical applications / Mehta S., Suresh A., Nayak Y., Narayan R., Nayak U. Y. // Coordination Chemistry Review. -2022. - Vol. 460. - P. 214482.

8. Xia X. Responsive materials architected in space and time / Xia X., Spadaccini C. M., Greer J. R. // Nature Reviews Materials. - 2022. - Vol. 7. - P. 683-701.

9. Novotny L. Principles of Nano-Optics / Novotny L., Hecht B. // Cambridge University Press. - 2012.

5. INTRODUCTION

Background and motivation. The development of modern optics, in particular nanophotonics and laser technologies, is largely determined today by the development of a library of new materials for these areas. The design and creation of new optical materials with improved performance characteristics [1], which make life easier for a person and reduce his material and time costs, possess fundamentally new optical properties [2], or expand the boundaries of fundamental knowledge, not only support the interest of industry and academia in modern optics , and even opens up new scientific directions, changes the high-tech industry, public consciousness and socio-economic ties in society. One of the key areas in the field of modern optical materials is the so-called creation of highly hierarchical structures. As a concept borrowed earlier from architecture and construction [3], the increase in the structural hierarchy for optical materials is expressed geometrically and is reflected in the unique synergy of the physical (optical) properties of individual building blocks (constituent components of the resulting material), providing the above improved characteristics, reduced material and time costs, and fundamentally new optical properties. A striking manifestation of this concept, for example, in nanophotonics, is the transition from plasmonic nanoparticles with fixed optical properties [4] to nanostructures with a complicated geometry, which already provides the possibility of controlling the optical response [5], then to plasmonic metamaterials and metasurfaces [6], demonstrating a new a set of optical properties due to the geometry and packing features of individual plasmonic blocks, and further to hybrid nanostructures through a combination of plasmonic nanostructures with optically active components in the form of liquid crystals, dyes, or dielectric nanoparticles [7].

Successes in the implementation of the concept of increasing the degree of structural hierarchy of optical materials for the development of optical technologies today cannot be left unnoticed. However, the existing difficulties in creating and/or increasing the structural hierarchy of optical materials by fast, commercially available, and cost-effective methods [8], inconvenience in the lack of universality of modern optical methods for studying the functional optical properties of such materials from nano to microscale [4,9], as well as the lack of generalization of the accumulated knowledge about the effect of changes in the degree of structural hierarchy of nano and microsized materials on their optical properties remain, perhaps, the key factors hindering the development of modern nanophotonics and optics in general. Thus, the accumulation of experimental and theoretical knowledge in the field of optical functional materials with a variable structural hierarchy is extremely relevant and has an important fundamental and applied significance both for the development of the interdisciplinarity of modern nanophotonics and for the transfer of knowledge into educational and commercial activities.

The aim of this study is to systematically study and generalize the optical properties of nano- and micro-sized materials with a variable structural hierarchy, to establish the patterns of the influence of such a hierarchy on the optical properties of materials, as well as to develop the design concept and optical approach to the synthesis of optical highly hierarchical materials of the future.

To achieve this goal, the following tasks were set and solved within the framework of the dissertation:

Task 1 - To develop an optical approach to the creation of a wide library of optical materials from nano to micro scale with a high degree of structural hierarchy.

Task 2 - To develop a universal confocal method of combined optical spectroscopy for studying the optical properties of nano and micro-sized materials.

Task 3 - To develop an approach to controlling the optical properties of nano and micro-sized materials by changing their structural hierarchy.

Task 4 - To develop an approach to the optical control of the optical properties of nano and micro-sized materials with a fixed structural hierarchy.

Scientific novelty: The uniqueness of this work lies in the combination of a whole series of theoretical and experimental interdisciplinary works both in the field of optical creation and characterization of new functional materials with a variable structural hierarchy, as well as generalization of the results through a systematic analysis and identification of patterns in the form of dependence of the optical response and optical applications from the structural hierarchy of the material. This explains the scientific significance of this work for a wide range of specialists in the field of applied optics, nanophotonics, and laser physics, and also emphasizes its relevance for the further development of modern nanophotonics and related scientific fields, such as materials science, inorganic chemistry, and crystallography. In particular:

1. Methods are proposed for the manufacture of optical materials by means of cold and hot laser ablation, which ensures the transformation of inorganic and metal-organic materials with a structural hierarchy of n=0 and n=1 into nano- and microsized materials with a structural hierarchy of n=1, n=2 and n= 3.

2. A universal method is proposed for in situ optical analysis of the complex of optical properties of nano- and microsized materials by means of confocal optical spectroscopy with three independent optical channels that provide simultaneous and independent analysis of elastic/inelastic scattering, transmission/reflection, photoemission, and nonlinear optical response spectra.

3. The effect of increasing the structural hierarchy from n=1 to n=3 for inorganic nano- and microsized materials on changing their optical properties and expanding the range of their optical applications has been demonstrated.

4. The effect of optical control of the optical properties of inorganic and metal-organic nano and microsized materials was demonstrated depending on the degree of their structural hierarchy.

The object of the study were films of inorganic materials such as Si, Ge, Au, obtained by physical deposition from the gas phase; SiAu, CuAg, GeSbTe alloys obtained both by physical vapor deposition and by plasma/laser sintering; nanoparticles and nanostructures with an increased structural hierarchy such as Si, SiO2, TiO2, Ge, Ga, Au, SiAu, CuAg, Carbon, GeSbTe, nanosized metal-organic frameworks and their derivatives obtained both by cold and hot laser ablation methods, chemical etching, and from commercial manufacturers (Sigma Aldrich); metal-organic scaffolds HKUST-1; MIL 101 (Fe); ZIF 8; [Zn(ur)(abdc)] DMF H2O; [Cd(sdc)(L4)] DMF; [Cd(dmf)(sdc)(L6)] DMF; [Zn(sdc)(L6)]-DMF; [Cu(C12H10N2)(NO3)2] DMF i-PrOH; [Cu(bipy)2(DMF)(NO3)][NO3] 3DMF; [Cu(bImB)Cl2];

[{Zn2(TBAPy)(H2O)2}-3.5DEF]n; [{Fe3(ACTBA)2}X 6DEF]n; [Cu(bImB)2Cl2] and M-BTC (M: Fe3+, Co3+, Co2+, Ni2+, Cu2+) obtained by solvothermal and microwave methods of synthesis personally and/or in collaboration with scientists from ITMO University, Institute of Inorganic Chemistry A.V. Nikolaev SB RAS, the University of Lorraine (France) and the University of Leipzig (Germany).

The scientific and practical importance of the results of the dissertation work lies in the formulated patterns of changes in the optical properties of nano and microsized materials depending on the degree of their structural hierarchy and generalized principles for the design of functional optical materials that can be used in the directed development, manufacture and application of new effective optical materials with bright pronounced linear and nonlinear optical properties. In particular, an efficient and commercially available technology for laser ablation of inorganic (Si, SiO2, TiO2, Ge, Au, SiAu, CuAg) and organometallic (metal-organic frameworks) materials with a variable degree of structural hierarchy is shown to create more complex structures with enhanced optical response for using the latter as nanoscale sources of coherent and incoherent radiation in the visible range. Using the results of a generalized analysis of the influence of high degrees of structural hierarchy on the optical application of materials, the possibility of using structurally complex, nano- and microsized materials as universal optical detectors of temperature, chemical environment, as well as sources and concentrators of optical radiation for solar energy problems, visualization and radiation control is shown. Also, a series of nano- and microsized materials with an arbitrary structural hierarchy (n>1) showed a high potential for use as active materials in devices for processing, recording and transmitting optical information without the use of electronic circuits. Finally, the proposed optical scheme for the universal optical analysis of the complex of optical properties of nano and microsized materials formed the basis for the long-term successful work of the Faculty of Physics, providing both fruitful scientific cooperation in the field of nanophotonics with leading domestic and foreign universities (Australian National University, Agency for Science, Technology and Research of Singapore, Max Planck Institute), and made it possible to reorient part of scientific work to applied ones in the status of a center for collective use. The results of the work are of great importance both for the development of the domestic optical industry due to the universality and simplicity of the developed optical methods for creating new optical materials and changing their structural hierarchy, and for solving acute fundamental issues of nanophotonics and modern physics in general.

Research methods. To solve the four tasks addressed to the qualitative structural, morphological and optical analysis of the obtained nano and microsized materials, modern methods of high-resolution scanning and transmission electron microscopy (MET, JEOL ACCEL ARM 200F, accelerating voltage 200 kV, current density from 50 to 120 pA/cm2) were used; FEI Quantum Inspect S) with EDX elemental analysis attachment (in STEM mode, JEOL Centurio detector 1sr), characteristic electron energy loss spectroscopy EELS (GATAN GIF Quantum spectrometer), single crystal and powder diffraction (Bruker Kappa Apex II diffractometer, MoKal ImS (l = 0.71073 A); Bruker D8 Advance diffractometer with Bragg-Brentano geometry, CuKa1 and CoKa) with the ability to control the shooting conditions (temperature change, irradiation), atomic force microscopy (SmartSPM 1000 AIST-NT microscope), as well as optical spectroscopy with time resolution, confocal optical transmission spectroscopy, reflection, scattering (including Raman), generation of optical harmonics and luminescence and near-field optical spectroscopy using a commercial Horiba LabRam HR system (CCD detector Andor DU 420A-OE 325, diffraction grating from 150 to 1800 g/mm), modern sources of coherent visible radiation and near infrared (Yb3+, TeMa, Avesta Project, 1050 nm central wavelength, 150 fs, pulse repetition rate 1 Hz - 80 MHz; Avesta TiF100, 80 MHz pulse repetition rate, 715-980 nm tunable wavelength, 100 fs; Fianium SC400-6, tunable wavelength 400-850 nm, pulse repetition rate 60 MHz, 6 ps; 632.8 nm heliumneon source of continuous coherent radiation), a three-coordinate micro positioning system for the sample (Thorlabs MBT616D) and a set of Mitutoyo optical objectives (M Plan APO HR 100x0.9NA, M Plan APO 100x0.7NA, HR NIR 50x0.65NA, HR NIR 10x0.28NA). The work also used modern methods for estimating and describing the optical and electronic properties of nano and microsized materials (density functional theory DFT and COMSOL).

The scientific statements presented for the defense:

1. Femtosecond laser ablation of metal-organic frameworks and thin films of silicon, germanium, gold and their alloys increases the structural hierarchy of the obtained nano- and micro-sized optical materials due to the formation of a core-shell structure, a domain structure, and bulk defects.

2. Universal confocal linear and nonlinear optical spectroscopy with three independent optical channels provides simultaneous analysis of optical transmission, reflection, elastic and inelastic light scattering, coherent and incoherent photoemission of metal-organic frameworks and single semiconductor nanoparticles and their change in the laser radiation field.

3. An increase in the structural hierarchy of metal oxide nanoparticles to thin films based on them, as well as silicon and germanium nanoparticles to nanoparticles with a domain structure and nanoparticles on substrate with coatings, ensures the appearance of a nonlinear optical response in addition to a linear optical response at identical laser pumping parameters.

4. An increase in the structural hierarchy of metal-organic frameworks from microsized crystals to nanoparticles, two-dimensional layers, nanoparticles with a core-shell structure, and nanoparticles in a polymer provides laser-controlled photoemission, refraction and absorption in addition to the existing nonlinear optical response.

5. Silicon and gallium nanoparticles with a high structural hierarchy acquired due to the presence of thermally sensitive structural components demonstrate light scattering, the spectrum of which is controlled by laser radiation.

6. Metal-organic frameworks with a high structural hierarchy, acquired due to the layered structure and/or the presence of flexible structural components, exhibit nonlinear optical transmission, light scattering and photoemission, the spectra, intensities and directions of which are controlled by laser radiation.

Reliability and approbation of the results of the work: The reliability of the obtained results is confirmed by the use of modern methods and approaches in the planning and implementation of experiments, the use of a complex of modern analytical methods for describing the structural and optical properties of materials. In addition, the results obtained during the research are within the framework of modern ideas about the interaction of radiation with a solid body of a complex structural hierarchy and do not contradict the fundamental views on the nature of the interaction of light with matter. The results of the work are presented as oral and invited presentations at the following international conferences: ANM 2022, Advanced Nanomaterials Conference (Aveiro, Portugal, 2022); 6th International Conference on Metamaterials and Nanophotonics, METANANO 2021 (Tbilisi, Georgia, 2021); 4th EuroMOF European Conference on Metal Organic Frameworks and Porous Polymers (Jagiellonian University, Krakow, Poland, 2021); 5th International Conference on Metamaterials and Nanophotonics, METANANO 2020 (St. Petersburg, Russia, 2020); 4th International Conference on Metamaterials and Nanophotonics, METANANO 2019 (St. Petersburg, Russia, 2019); 3rd International Conference on Metamaterials and Nanophotonics, METANANO 2018 (Sochi, Russia, 2018); SNAIA 2018, Smart Nanomaterials: advances, innovation and applications (École Nationale Supérieure de Chimie, Paris, France, 2018); International Conference on Metamaterials and Nanophotonics, METANANO 2017 (Vladivostok, Russia, 2017); Progress In Electromagnetics Research Symposium - Spring, PIERS 2017 (St. Petersburg, Russia, 2017); 4th International School and Conference "Saint Petersburg OPEN 2017" on Optoelectronics, Photonics, Engineering and Nanostructures (Saint-Petersburg, Russia, 2017); 11th International Congress on Engineered Material Platforms for Novel Wave Phenomena, Metamaterials 2017 (Marseille, France, 2017); IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems, COMCAS 2017 (Tel-Aviv, Israel, 2017); International Conference PhysicA.SPb 2016 (Saint-Petersburg, Russia, 2016); 5th International Conference on State-of-the-Art Trends of Scientific Research of Artificial and Natural Nanoobjects, STRANN 2016 (Saint Petersburg, Russia, 2016); International Conference Days on Diffraction, DD 2016 (St. Petersburg, Russia, 2016); 3rd International School and

Conference on Optoelectronics, Photonics, Engineering and Nanostructures, Saint Petersburg OPEN 2016 (St. Petersburg, Russia, 2016); 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, METAMATERIALS 2016 (Chania, Crete, 2016); 17th Russian Youth Conference on Physics of Semiconductors and Nanostructures, Opto- and Nanoelectronics, RYCPS 2015 (St. Petersburg, Russia, 2015).

The results of the work were presented at seminars at the Institute of Inorganic Chemistry A.V. Nikolaev SB RAS, Institute of Physical Chemistry and Electrochemistry A.N. Frumkin, the universities of Lorraine, Grenoble and Aix Marseilles (France), the Karolinska Medical Institute (Sweden) and the New Jersey Institute of Technology (USA).

Personal contribution of the author. The dissertation contains the results of experimental and theoretical research carried out personally by the author or with his direct participation. The author formulated the goals and objectives of the interdisciplinary research, carried out the planning and implementation of theoretical and experimental research, analysis of the data obtained, their processing and generalization, preparation and direct writing of scientific articles and approbation of the work materials at international conferences. The author formed a research team "Russian-French Laboratory of ITMO University" to fulfill the tasks set, within which 2 PhD defense (specialty 1.3.6 optics) and 8 master's theses were prepared and defended. Separate parts of the work were carried out by the author as the project manager of the following funds of the Russian Science Foundation (22-72-10027; 19-79-10241), RFBR (20-33-90318; 18-32-20089; 16-37-60073), FTP (14.587 .21.0050, unique number RFMEFI58718X0050), grant of the President of the Russian Federation (MK-2952.2017.2) and other domestic and international non-state funds.

Publications. In the period from 2012 to 2022, the results of experimental and theoretical studies and their generalizations were published in 60 articles (53 original papers and 7 reviews) in journals indexed by Scopus, Web of Science (51 articles in Q1 journals, 9 articles in Q2 journals) with weighted average journal impact factor of 10.4 (according to Clarivate analytics 2021).

6. GENERAL THESIS SUMMARY

6.1 Light as a tool for increasing the structural hierarchy of optical nanosized materials

The creation of optical materials today is assigned to a separate interdisciplinary direction, covering special sections of organic and inorganic chemistry, engineering and mechanics. The existing classical, commercially oriented approaches to the synthesis/growth of such materials are based on the growth process through chemical or physicochemical interactions between individual components (molecules, ions) of the resulting material. On the one hand, this simplifies the commercialization of the process of creating a functional optical material; on the other hand, it limits the possibilities of expanding the library of materials with improved performance. Previously shown approaches to the formation of unique optical materials through the "destruction" or deformation of the precursor by means of a plasma discharge in a liquid [20-22] or a focused electron beam [47, 59] proved the viability of a different approach to the design and synthesis of new optical materials - the interaction of the precursor with the physical impact. As such an impact, light can be most successfully and productively used. The interaction of (coherent) radiation with matter, from the standpoint of material design, today has become a separate independent interdisciplinary direction, which makes it possible to obtain artificial materials not only with improved optical properties, but also with acquired new useful nanophotonic effects due to a change in their structural hierarchy.

Table 1 - List of nano and microsized structures with different structural hierarchy: n=0 corresponds to a bulk body; n=1 correspond to thin films, nanoparticles and crystals of the metal-organic framework; n=2 correspond to nanoparticles with internal separation of materials, nanoparticles with a complex shape, nanoparticles of metal-organic frameworks, nanoparticles with molecules on the surface and a combination of nanoparticles, thin films of nanoparticles, molecular thin films, thin films of metal-organic frameworks and nanostructured films; n=3 correspond to metal-organic framework nanoparticles with inclusions, nanoparticles on a substrate with a molecular coating, thin films of metal-organic frameworks with inclusions inside and on their

surface, as well as films with metal-organic framework nanoparticles inside.

n=0 n= =2 n=3

□ O NP [3,6,8, 20,26] 1=1 TF-mol [32,33] © MOF NP [49]

I ■ TF NP LU TF nn MOF TF

[34,35,37, 39-41] [36,38,42] [47,59]

n=1 O NP [12,13,23, 31,51] 1=1 MOF TF [44,53,54, 57,58] MPF TF [52]

1=1 2D <3 NP-mol [24,25, 27,30] o MPF NP [43] nn TF [48]

o NP [1,2,4,5, 7,10,14, 16,21,22, 28,29] CO NP [9,11,15] â NP [17-19]

s MOF [45,46,50, 55,56,60]

The fundamentally important point of the concept of obtaining new optical materials in the process of interaction of coherent radiation with matter is the unique opportunity to control the hierarchy (n) of the desired optical material. It is the structural hierarchy that then ensures the practical use of the material. Table 1 provides a description of the resulting nano and micro-sized materials and their structural hierarchy: from bulk solids with the lowest structural hierarchy n=0, one can go to thin films (TF), two-dimensional (2D) thin materials, nanoparticles (NPs) of uniform composition, and bulk metal-organic frameworks (MOFs, crystals based on two constituent elements - organic molecules and metal clusters) with a degree of structural hierarchy n=1, followed hierarchically (n=2) by two-component nanoparticles, nanoparticles with a molecular coating (NP-mol) or with a complex shape (cavities), metal-organic framework nanoparticles (MOF NP), thin films based on nanoparticles (TF NP), thin films of metal-organic framework (MOF TF), molecular films (TF-mol) and nanostructured thin films. This hierarchy is completed by the most structurally complex materials, such as thin films of metal-organic materials with molecules or inorganic nanoparticles inside, thin films with inclusions of metal-organic particles, nanoparticles of metal-organic frameworks with inclusions of inorganic nanoparticles, and inorganic nanoparticles on a substrate with a molecular coating.

In the work, it was proposed to obtain these structures through the interaction of coherent optical radiation with precursors - starting materials. For this, a universal system was assembled (Figure 1), which ensures the precision creation of new forms of optical materials with the desired structural hierarchy on arbitrary substrates in real time. In particular, the system is equipped with interchangeable sources of coherent radiation (Yb3+, TeMa, Avesta Project with a central wavelength of 1050 nm with the ability to generate the second, 525 nm, and third, 350 nm, optical harmonics, pulse duration 150 fs and pulse repetition rate 1 Hz - 80 MHz; Avesta TiF100, pulse repetition rate 80 MHz, 715-980 nm tunable wavelength, 100 fs), an interference filter that provides smooth regulation of the pulse energy, a set of dielectric mirrors with effective (98-99%) reflection of the near ultraviolet, visible and near-infrared ranges, three-coordinate shifts (Thorlabs MBT616D), which provide both smooth and precise lens adjustment and sample positioning, as well as an additional video camera (Canon 400D) for real-time monitoring and control of the process.

Figure 1 - Scheme of laser ablation of precursor materials for obtaining nano and micro-sized materials with an increased structural hierarchy

In the work, the process of interaction of coherent radiation with precursors was expressed in the irreversible process of deformation/transformation of the latter into new forms of material (laser ablation). An important feature of such a process in our case (Figure 1) is the possibility of changing the laser ablation mode from "cold" to "hot" by increasing the repetition rate of laser pulses from a few Hz to 80 MHz. This uniquely allows you to optically control the process of creating a new material with desired optical properties.

Figure 2 - Electronic and optical images of Si (a,b) and Ge (c,d) nanoparticles obtained by laser ablation on a quartz substrate. (e,f,) The corresponding Raman spectra compared to the spectra for the original substrates. Scale 500 nm (a, c), 2 ^m (b, d)

In particular, at the first stages of work, spherical, homogeneous in composition, highly crystalline nanoparticles were created from inorganic materials (Si, Ge, Au) with a size spread from 50 to 500 nm (Figure 2), and the creation of these nanoparticles is possible both from bulk materials (n=0), and from thin amorphous films (n=1) on arbitrary surfaces (acceptor substrates, Figure 1) in an air or inert atmosphere (for this, a three-coordinate shift with a precursor and an acceptor substrate was placed in a chamber with N2) . The possibility of switching between "hot" and "cold" modes of laser ablation made it possible to achieve both the process of equilibrium (thermal) melting of the material and its subsequent crystallization (which made it possible to obtain crystalline nanoparticles from an amorphous precursor) with a structural hierarchy n = 1, and a non-equilibrium mode ("electronic") melting, avoiding the physical transition of the state of matter through the melting point. The latter made it possible to obtain unique highly hierarchical nanoparticles (from n=1 to n=2 or n=3) with the preservation of the chemical composition, but with complex packing of individual building blocks (Table 2).

Table 2 - List of nano- and microsized materials with a structural hierarchy from n=1 to n=3, obtained by laser ablation from precursors with a reduced structural hierarchy.

n=0^n=1 (Si) [1,7,10,14]

(Au) [2]

(Ge) [17]

n=1^n=2 (GeSbTe) [3]

(NP) [51]

(SiAu, CuAg) [6,8,20]

n=1^n=3 (MOF NP) [49]

Figure 3 - Raman spectra of GeSbTe nanoparticles in comparison with scattering from the original substrate and depending on the energy of laser pulses

Figure 4 - CuAg alloy nanoparticles separated during laser heating (a-c) with the corresponding white light scattering spectrum (d, red curve - alloy, blue curve -separation). (e) SiAu nanoparticles with structural hierarchy n=2. Scale 200 nm (a,b), 50

nm (c)

Controlling the duration of laser exposure also made it possible to obtain alloy nanoparticles (Figure 3). On the one hand, high-energy laser pulses ensured the creation of spherical and homogeneous GeSbTe nanoparticles, on the other hand, a decrease in energy and a decrease in the duration of laser pulses led to a change in the hierarchy of nanoparticles (from homogeneous n=1 to domain n=2), which was confirmed by analysis of the confocal Raman spectroscopy. The use of thin films of Cu and Ag metals as precursors also made it possible to obtain nanoparticles of metal alloys with sizes from 10 to 100 nm (Figure 4), which could then be turned into a nanosized material with an increased structural hierarchy (from n=1 to n=2): laser exposure led to the separation of the Cu and Ag phases through the process of rapid heating at the absorption wavelength of the alloy, which was reflected optically through a change in the optical scattering spectra. The replacement of inorganic (Si, Ge, Au, GeSbTe, CuAg) precursors with more structurally complex metal-organic frameworks (MOF, metal-organic framework) has turned the laser ablation tool into an even finer and more precise process. In particular, the paper shows that the use of layered and chain crystals of metal-organic frameworks (Figure 5) with a structural hierarchy n=1 through the "hot" laser ablation mode made it possible to obtain highly crystalline hollow spheres and hemispheres of graphite (n=2), which previously it was impossible to achieve by other methods of graphite synthesis. The complication of the structure of the metal-organic precursor and the transition to the "cold" mode of laser ablation (Figure 6) showed the possibility of obtaining highly hierarchical nanoparticles with a structural hierarchy of n=3, consisting of the initial components of the precursor, but packed into a dendritic structure (Figure 7). Preservation and reorientation of the initial components in the nanoparticle provided the latter with an optical nonlinear response enhanced due to its size and shape (increased generation of higher optical harmonics).

In detail [49], by increasing the power of infrared laser radiation from 0.2 to 15 mJ/cm2 and measuring the response of MOF single crystals by analyzing Raman scattering, changing signals of three-photon luminescence and the second optical harmonic, four modes of interaction of laser radiation with matter were distinguished (Figure 6b ):

I) Undisturbed mode (up to 7.5 mJ/cm2), which is characterized by a time-stable second optical harmonic signal and three-photon luminescence with a quadratic and cubic slope of the pump power, respectively. Raman scattering from irradiated MOF single crystals also confirms the absence of structural perturbation (up to 7.5 mJ/cm2).

II) The transition mode (from 7.5 to 9.5 mJ/cm2) is characterized by a change in the intensity of generation of the second optical harmonic and three-photon luminescence with a deviation from the quadratic and cubic dependences, respectively. A subsequent decrease in the laser radiation power leads to a transition to mode I, but with lower intensities of nonlinear optical signals and slight changes in the color of the crystals (darkening). The latter can be caused by the formation of crystalline defects, which actually makes the transition of I into II irreversible from the point of view of the structure.

III) Melting mode (threshold process from 9.5 mJ/cm2), characterized by stepwise melting of MOF crystals and the possibility of obtaining particles that effectively scatter light and, therefore, have different colors (Figure 6e). This specific behavior during laser ablation is similar to the transition from thermal to nonthermal melting of crystalline semiconductors under the action of femtosecond laser pulses.

IV) For the latter mode, combustion and carbonization can be observed with the formation of a small amount of nanometer-sized particles at a higher energy flux density (from 11.5 mJ/cm2). Following the concept of ultrafast nonthermal melting of semiconductors, accompanied by an optically excited transition of electrons from the valence band to the conduction band, it is possible to estimate the fraction of excited electrons as follows: knowing the absorption coefficients, density and concentration of charge carriers, ultrafast melting of MOF crystals by laser radiation leads to excitation of 2.2 - 6% valence electrons. An increase in the number of excited electrons from 2.2% to 3% correlates well with a gradual increase in the density of MO crystals. In this case, the calculated value of -3% for all MOFs, regardless of their structure, is in good agreement with the values of 3-5% obtained for inorganic crystals. Crystalline semiconductors with a higher melting point (from 940 ° C) require more than 6% of excited valence electrons, and in the case of MOFs, due to the presence of relatively weak bonds that are involved in the formation of the crystal structure, there is a decrease in the number of excited electrons needed to weaken these bonds and softening of the lattice of the metal-organic framework.

Since ultrafast nonthermal melting of MOFs by laser irradiation was performed on three model structures [49] (Figure 6), a statistical study of the interaction of 40 monocrystals of MOFs with a different structure with fs pulses of different power densities was carried out. Compound 1 was found to be more resistant to an increase in the energy flux density than compound 3, while compound 2 occupies an intermediate position in terms of structural stability to laser radiation. It is assumed that an increase in the crystal density from -1.2 to 1.5 g/cm3 and a decrease in the geometric length of weakly interacting flexible chain ligands in the series from 3 to 1 limit the degree of structural freedom of compounds to respond to laser irradiation and their ability to change their conformation. Therefore, a more rigid compound exhibits a higher energy flux density threshold for melting under the action of femtosecond laser pulses. Since mode III was shown to be the most suitable for obtaining particles with a structural hierarchy of n > 1, an energy flux density of 10, 8, and 7 mJ/cm2 was used to obtain nanoparticles from MOC compounds 1, 2, and 3, respectively (Figure 6e). For both electron microscopy and optical characterization, the nanoparticles were printed on a carbon grid and a gold substrate. Scanning electron microscopy (SEM, FEI Quanta 200) showed two morphologically different types of particles for MOC 1: amorphous droplets with an organometallic composition and a homogeneous redistribution of chemical elements, and spherical drops, the internal structure of which can be described as a core-shell (Figure 7a). The shell is an amorphous organic phase, which is confirmed by elemental analysis, Raman scattering, and redshift three-photon luminescence spectra. On the contrary, the core has a more complex morphology in the form of a dendrite-like metal oxide, which is confirmed by the analysis of transmission electron microscopy (Figure 7a). In the case of MOFs 2 and 3, only irregularly shaped amorphous nanoparticles with an organometallic composition were obtained.

To establish the reason for the fundamental difference in the morphology of nanoparticles obtained by ultrafast laser melting, an analysis of the electronic structure of MOFs was performed using the density functional theory (DFT). The results show significant differences in the electronic structure of MOF 1 compared to the structure of 2 and 3: the valence band for compound 1 is mainly represented by C-C bonding n-orbitals and O 2p-orbital; the Cd orbitals in the valence band near the Fermi level also make a significant contribution. The corresponding electron densities exhibit pronounced delocalization. The conduction band is mainly represented by n*-systems of ligands with some contribution of O atoms from carboxylate fragments. Both the valence and conduction bands are delocalized along the structure-forming Cd-carboxylate chains and cover the entire crystal. However, for compounds 2 and 3, band delocalization is limited to certain ligand units. The corresponding electron densities are mainly contributed by aromatic systems of n and n* ligands, with a minor contribution from the orbitals at the O positions. In other words, these differences in electronic structures suggest that upon optical excitation, MOF 1 will undergo controlled dissociation in directions determined by the antibonding nature of the delocalized conduction band. . In the case of compounds 2 and 3, one cannot expect a definite direction of crystal melting upon laser excitation.

The transition from ultrafast non-thermal laser melting to a thermal process was shown for metal-organic frameworks in Figure 5 [51]. Irradiation of the scaffolds with low power (<100 mW) led to the cutting of the MOF, while higher power (from 100 to 120 mW) allowed the complete conversion of the MOF into nanoparticles (Figure 5 HL). Increasing the power to hundreds of milliwatts led to the transformation of the MOF into a melt of organic-inorganic compounds without any nanosized structures.

The nanoparticles obtained by this laser melting with an increased hierarchy n > 1 were transferred onto a fused silica substrate, a gold film, or a carbon grid for detailed characterization using electron and optical microscopy. Transmission electron microscopy (JEOL ARM 200F Cold FEG TEM/STEM, 200 kV) showed that nanoparticles have different shapes from hollow spheres to hemispheres, depending on the initial MOF structure.

An analysis of the Fourier transform of the crystal shell of nanoparticles (Figure 5 M - O) shows two-fold symmetry with a characteristic interplanar spacing dhkl of 3.3 ± 0.1 A, which is in good agreement with previous results for hollow carbon spheres. This measurement is also confirmed by a direct intensity histogram that shows a period of 3.39 ± 0.10 A. Energy dispersive X-ray analysis also demonstrates the carbon nature of the nanoparticles. It can be concluded that the obtained nanoparticles actually consist of graphite, which is a structure of layers of pure carbon with theoretical interplanar distances of 3.35 A for the (002) plane. It should be noted that during laser treatment, copper ions should also undergo transformation into oxides, carbides, etc.: a small amount of amorphous organometallic nanoparticles with nanometer-sized inclusions was observed, which were characterized by high electron density due to the presence of copper.

Importantly, the observed dependence of the shape of the resulting nanoparticles (sphere or hemisphere) directly correlates with the topology of the initial MOFs (chain or layered) [51]. The rapid transformation of dimeric MOF filaments into crystalline carbon spheres may be due to the high mobility of van der Waals layers and the significant elasticity of their hybrid covalent-ionic structural domains, which allows them to form an energetically favorable spherical shape. At the same time, a layered framework with a more rigid BPY tetradentate ligand, which has a layered van der Waals structure, produced clearly defined crystalline hemispheres under the same laser irradiation.

Figure 5 - (a,b) Structure and optical image of the [Cu(C12H10N2)(NO3)2] DMF i-PrOH metal-organic framework subjected to the laser ablation process (c-e), which results in graphite hollow spheres and hemispheres (f-o), on which polarization-dependent light scattering (p, q) is observed. Scale 10 ^m (b), 2 ^m (e), 100 nm (i-l), 10

nm (m-o)

Figure 6 - (a) Scheme of the process of laser ablation of metal-organic frameworks with intergrown structures 1 ([Cd(sdc)(L4)] DMF), 2 ([Cd(dmf)(sdc)(L6)] DMF), 3 ([Zn(sdc)(L6)] DMF) (c,d), described by the evolution of optical properties during ablation (b) to obtain nanoparticles (e). Scale 10 цт (d,e)

Wavelength (nm) Wavelength (nm)

Figure 7 - Electron microscopy (a-d) of nanoparticles of metal-organic frameworks ([Cd(sdc)(L4)]DMF) with a structural hierarchy n=3 and corresponding nonlinear optical properties. Scale 300 nm (a, c)

The totality of the results of expanding the library of new hierarchical nano- and microsized materials from inorganic and metal-organic precursors by laser ablation is presented in Table 2.

6.2 Universal confocal optical spectroscopy of nano and microsized materials

Particular attention in optics and nanophotonics of new materials is given to optical methods for the qualitative analysis of their optical properties, regardless of the chemical composition, size, and shape of the material. Considering that part of the work is devoted to the optical creation of nano and microsized materials, the system used for their optical analysis should, firstly, allow spatial and spectral discrimination of individual nanoparticles, and secondly, provide a wide range of optical analysis (optical transmission, reflection, elastic and inelastic scattering, generation of coherent and incoherent radiation), and thirdly, allow simultaneous analysis of several optical quantities with temporal and spatial resolution.

This system was created in the framework of this work. Figure 8 shows a confocal system for universal optical spectroscopy of elastic and inelastic (Raman) scattering, consisting of a Horiba LabRam HR spectrometer (CCD detector Andor DU 420A-OE 325, diffraction grating from 150 to 1800 pieces/mm), a source of coherent continuous radiation He-Ne (632.8 nm, 35 mW, for Raman scattering) and white light (Ocean optics, 300-2000 nm, for elastic scattering), a set of two objectives (M Plan APO HR 100x0.9NA, HR NIR 50x0.65NA) with a common focus at a point located above a three-coordinate sample holder (Thorlabs MBT616D), a skid filter that cuts off the He-Ne laser wavelength in front of the spectrometer and video camera (Canon 400D) for real-time adjustment.

This system, due to its confocality (providing efficient collection of an optical signal from a 3x3x3 ^m region without artifacts and interference from scatterers in the environment) and two combined lenses, ensured the collection of an elastically scattered optical signal from single nanoparticles with simultaneous analysis of their Raman scattering spectrum, which makes it possible to recognize chemically (by characteristic inelastic scattering modes) nanoparticle material (Figure 8b,c).

Figure 8 - (a) Scheme of universal optical (elastic scattering and Raman scattering) analysis of nano and microsized materials. (b,c) Spectra of elastic and inelastic (Raman) scattering of optical radiation by a single Si nanoparticle, taken simultaneously in the confocal mode. Scale 200 nm (b)

Figure 9 - Spectra of inelastic (Raman) scattering of optical radiation on micro-sized materials (metal-organic frameworks). (a) HKUST-1 with the corresponding optical transmission spectrum captured simultaneously; (c,d) [Cd(sdc)(L4)] DMF and

Ni-BTC, respectively

The use of more complex (chemically and structurally) materials as analytes also makes it possible to study their scattering spectra in real time with the possibility of universal "chemical" material detection (Figure 9). Thus, the Raman spectra obtained from metal-organic crystals in the range from 50 to 3000 cm-1 make it possible to spatially accurately enough (in single microsized crystals, spatial separation of various forms and chemical parts of the material is possible) to study individual vibrational modes from weak coordination interactions to stronger covalent ones. At the same time, to obtain information about the state of the frameworks optically through visual contact and transmission spectroscopy, which is a fundamentally important point in the study of materials with variable optical properties.

In particular, to illustrate the multifunctionality of the optical system, the processes of thermally induced conformation of the globular BSA protein were studied [17, 18]. To do this, a 5-nm BSA layer was placed in the gap between a 190-nm Si nanoparticle with a 5-nm oxide shell and a 60-nm Au film. A 2 mW He-Ne laser at a wavelength of 632.8 nm was used to excite LF optical phonons and various BSA vibrational modes. An objective (100x/0.9NA) is used to irradiate the nanostructure and collect the scattering signal in backscattering geometry for further analysis on a confocal spectrometer. Local optical heating was achieved by increasing the laser intensity for a resonant NP 190 nm in diameter. The Raman spectrum of BSA molecules in the solid state on a 60 nm thick Au film reflects only their native state with 20 peaks at room temperature. It is known that protein conformation changes specific modes of Raman scattering of light; 3 of them were chosen to observe this process with increasing temperature. The first mode at 1665 cm-1 corresponds to the secondary structure of the protein and arises due to the stretching of the C = O and NH fragments of the amide groups of I. The intensity of this mode should sharply decrease with increasing temperature, which indicates the destruction of the secondary structure. Two other pronounced modes at 1000 cm-1 and 1447 cm-1 reflect the respiratory mode of phenylalanine and C-H vibrations, respectively. Although the latter modes do not directly respond to the violation of the specific structure of the BSA and should remain constant with increasing temperature, their slight suppression may indicate a negative effect of heating. In this case, the gradual heating of a nanoparticle with a protein by increasing the laser intensity leads to a shift in the Raman scattering peak for Si and suppression of BSA. The latter directly indicates thermal unfolding: conformational changes begin at 325 K; at a temperature of 340 K, the intensity of the amide I band slightly increases with an accuracy of 10% due to the transition from an a-helix to a P-sheet structure; then, a decrease in the intensity of amide I is observed, and at temperatures of 390 K and above, only about 20% remains, which indicates the residual structure of the P-layer of the unfolded BSA. Finally, at high temperature (up to 810 K), BSA in the solid state is considered to be completely denatured, as reflected in the residual 20% and 30-90% intensities of amide I and phenylalanine (C-H), respectively. The last modes demonstrate sufficient intensity, because such a thermal energy (~3 kT) is not

enough to break C-H and other bonds. Interestingly, the suppression of amide I is closely related to the dependence of protein unfolding on temperature and provides the appropriate values for the BSA denaturation temperature in the solid state (390 ± 5 K).

A similar structural change in BSA was also analyzed on a universal confocal system using Ge nanoparticles, which made it possible to spectrally separate the vibrational modes of nanoparticles and molecules: disulfide, SS, phenylalanine, Phe, CH, and amide I. The vibrational modes of SS and amide I are strongly affected by heating with a decrease in their intensity, reflecting the destruction of the tertiary and secondary structures of BSA. On the contrary, the CH and Phe modes should remain constant with increasing temperature, and the change in their intensity during extreme heating reflects a sharp denaturation of the protein. Direct evaluation of local temperature and thermally induced changes in the conformation of molecules on the surface of Si and Ge NPs using universal confocal Raman spectroscopy revealed the following:

1. Within the error, no significant shift or noticeable change in the half-width of the vibrational modes of molecules was observed upon heating to 640 K, which corresponds to experimental data on thermally induced unfolding of the same protein in the solid state or in solution. At the same time, Si and Ge NPs showed significant temperature-dependent shifts and an increase in the half-width of their peaks, which provided information about the local temperature.

2. The dependence of the intensity of S-S vibrational modes and amide I on local temperature is similar to that for a protein unfolding in a heated solution. However, in our case, the slope was less steep, and residual bonds (>20%) appeared at higher temperatures from 400 K. We assume that this is due to the steric hindrance of BSA adsorbed on the NP surface in air as a result of strong electrostatic and hydrophobic interactions. Also, the temperature-dependent intensities (f) of the S-S modes and amide I were approximated using the equation f = F/(F + U), which takes into account the thermal unfolding of a simple globular protein, where F and U denote the concentrations of native and denatured molecules. The relationship between F and U can be determined by the formula F/U = exp{-AG/RT}, where AG is the change in the Gibbs free energy at a given temperature T and R is the gas constant.

3. The intensity of the amide I mode decreased more slowly for the protein adsorbed on Ge NPs. This leads us to assume that BSA on the surface of NPs is more resistant to temperature changes in conformation than when adsorbed on Si. For example, at 350 K, about 50% BSA usually remains in the native state; while the corresponding temperatures were ~370 and >400 K for Si and Ge NPs, respectively. In addition, a protein in a solution or solid state completely denatures at temperatures from 350 to 390 K; upon adsorption on Si and Ge NPs, the corresponding temperatures are ~390 and ~450 K.

4. The intensities of the C-H and Phe modes did not actually depend on the local temperature up to 640 K, which indicates the preservation of the primary structure of the protein. The attenuation of the intensity of the C-H bond signal in the case of Si NPs may reflect the negative effect of the gold film on Raman scattering.

Figure 10 - (a) Scheme of the universal confocal analysis of incoherent photoemission of nano and micro-sized materials. (b,c) Luminescence spectra of microsized materials (metal-organic framework [{Zn2(TBAPy)(H2O)2}-3.5DEF]n)

versus excitation photon energy

Supplementation of the optical system with a source of coherent pulsed radiation

(Yb, TeMa, Avesta Project, with 1050 nm central wavelength with the possibility of generating the second, 525 nm, and third, 350 nm, optical harmonics, pulse duration 150 fs and pulse repetition rate 1 Hz to 80 MHz or quasi-coherent radiation from Fianium SC400-6, with a tunable wavelength of 400-850 nm, a pulse repetition rate of 60 MHz, 6 ps) makes it possible to analyze the spectra of incoherent photoemission of materials from nano to microscales confocally and with the same spatial selectivity (Figure 10). Thus, due to the tunable pump energy and the highly sensitive semiconductor matrix of the spectrometer, the dependences of the photoluminescence spectra for a series of metal-organic frameworks and inorganic nanoparticles were obtained with the possibility of mapping the optical signal over the volume of the material.

Figure 11 - (a) Scheme of the universal confocal analysis of coherent emission of nano and micro-sized materials. (b) Spectra of second optical harmonic generation by a single Si nanoparticle. (c-e) Optical images and second harmonic generation spectra of microsized materials (metal-organic framework [Cd(sdc)(L4)]DMF). Scale 2 ^m (s)

The use of all the same sources of coherent radiation and integration into the optical system of strip filters at 1050 or 525 nm made it possible to turn the system into a confocal analyzer for generating already coherent radiation through nonlinear optical processes of converting the incident wave into the second and third optical harmonics (Figure 11). It is shown that the system allows precision, with high spatial and spectral resolution, to analyze these nonlinear optical processes both from single nanoparticles, regardless of their centrosymmetry, and larger microsized metal-organic frameworks, while observing nonlinear processes of centrosymmetry breaking.

430 460 490 520 550 580 610 0 10 20 30 40 » CO 70 W 90 "V--» ^ «« m „

Wavelength, nm Time, ms cy*,

Figure 12 - (a) Scheme of the universal confocal analysis of optical transmission of nano and micro-sized materials with time resolution. (b,c) HKUST-1; (d-f)

[Cu(bImB)Cl2]. Scale 5 ^m (c)

Figure 13 - (a) Scheme of the universal confocal analysis of optical transmission, reflection, scattering by nano and micro-sized materials. (b) [(Zn2(TBAPy)(H2O)2}-3.5DEF]n)

Of particular note is the possibility of studying the time dependence of optical parameters with high spatial and spectral resolution shown in the work (Figure 12). This possibility was achieved by using a MHz radiation converter (chopper) integrated with the oscilloscope. As a result, the optical transmission coefficients of materials with a time resolution down to fractions of a microsecond were obtained, which provide an analysis of the evolution of optical spectra for photo and thermally sensitive materials. Also, the ability to analyze the cycles of changes in the optical spectra (Figure 12f), implemented in this system, provided an analysis of the stability and potential promise of new materials for direct optical applications. In particular, time-resolved variable optical properties of Ga nanoparticles were studied [23]. To do this, nanoparticles were deposited on conductive ITO glass (indium tin oxide) and selected individually using electron microscopy. Selected single nanoparticles were treated with femtosecond laser radiation (1047 nm, pulse duration 150 fs, repetition rate 80 MHz) with various power densities up to 10 mJ/cm2. White light scattering spectra were analyzed before, during and after irradiation, and electron microscopy micrographs were taken to evaluate the deformation of hollow and dense nanoparticles: Each nanoparticle was irradiated with a white light source (AvaLight-HAL-S-Mini compact halogen light source) and Yb3+ femtosecond TEMA laser (150 fs, 1047 nm, 80 MHz) through a Mitutoyo M Plan APO NIR 10x/0.26 NA lens to measure the optical scattering spectrum and evaluate the parameters of optical switching in time when the laser is turned on/off. Optical switching of the transmission and scattering spectra with laser on/off is implemented in the spectral range from 450 to 650 nm with a time resolution of 0.1 s. In addition, some of the nanoparticles were illuminated in the dark field geometry (Figure 8a) with a white light source through a Mitutoyo M Plan APO 10x/0.28NA lens at an angle of 650 with respect to the normal to the substrate. In both experiments, the spectra were collected using a Mitutoyo M Plan APO NIR 50x/0.42NA objective and analyzed using a Horiba LabRam HR commercial confocal spectrometer with a cooled CCD camera (Andor DU 420A - OE 325) and a diffraction grating 150 gr/mm. The results of the influence of laser radiation on optical spectra are reflected in two modes of operation: reversible and irreversible adjustment of color and brightness. Indeed, at a laser radiation flux density above 3 mJ/cm2, an

irreversible change in the scattering spectra is observed due to a strong perturbation of their surface and shape. On the contrary, at a laser flux density of less than 0.3 mJ/cm2, reversible color and brightness adjustment is achieved at similar speeds.

The combination in the optical system of already three lenses with a common focus at a point (Figure 13) made it more versatile, since this combination made it possible to capture a number of optical signals (for example, a pair of optical reflection and scattering, optical transmission and scattering, optical transmission and radiation generation, optical scattering and generation of radiation) confocally from selected spatial regions of the material with the ability to spatially change the positions of optical pumping and collection, which is universally suitable for laser systems and optical waveguide nanostructures. Using this universal optical system, we studied in detail the photoemission, absorption, and reflection spectra of metal-organic frameworks that have pronounced exciton properties at room temperature. Moreover, the studies were performed in the same way depending on the geometry of the samples: the spatial separation of the region of optical pumping and collection made it possible to map the photoemission and establish a number of important features (for example, the presence of defects in the structure and anisotropic waveguide activity).

Figure 14 - Spectra of elastic and inelastic (Raman) light scattering by Si@h-BN-Au (a,b) and Si-protein-Au (c,d) nanoparticles obtained simultaneously on a universal

system (Figure 13 a)

This versatile system was also suitable for the analysis of nanosized inorganic materials (Figure 14). Namely, the simultaneous analysis of the spectra of elastic and inelastic (Raman) scattering of radiation by single Si@h-BN nanoparticles made it possible to establish the effect of the pump radiation power on the elastic scattering spectra due to amorphization and chemical contamination of Si nanoparticles during optical exposure. A similar approach was used for the simultaneous optical analysis of the temperature (due to the shift of the Raman scattering modes) and the chemical (structural) state of molecules in direct contact with Si and Ge semiconductor nanoparticles.

The totality of the results of a universal optical study of new hierarchical nano and microsized materials is presented in Table 3.

Table 3 - List of universal confocal optical measurements performed for nano and micro-sized materials.

Elastic light scattering (Si) [1,5,14,19,25]

(Au) [2,4,12,13]

(SiAu) [9,11,15]

(nano diamond) [16]

(Ga2O3 NP, NP) [23,51]

Raman scattering (Si) [7,10,17,18,19]

(GeSbTe) [3]

(MOF) [46,52,59]

Incoherent optical emission (SiAu) [6]

(Perovskite) [36,38]

(MOF NP) [49,54]

Coherent optical emission (Si) [8,42]

(MOF NP) [49]

Complex of optical measurements (GeSbTe) [3]

(Si) [10-13,18,19,25]

(MOF) [46,54,58]

6.3 Controlling the optical properties of nano and microsized materials by increasing their structural hierarchy

To date, there is a fairly stable idea (one component + another component = enhanced property of one of the components) about the effect of a particular structural hierarchy on the optical response of nano and microsized materials. This concept stems from a fairly common interdisciplinary idea of integrating optically active components using the example of photosensitive polymers or luminescent dyes with often passive carriers, nanoparticles, which provides a complex optical response and a whole range of new optical properties and applications [27]. This concept is successfully applied, since the interaction of optical radiation with such a photosensitive nanoparticle-molecule complex is well described analytically, predictable in terms of the expected optical effects, and easy to implement in practice and in the laboratory. At the same time, the synergism of the properties of the obtained structures was either not observed, or it was described as an insignificant addition. The situation is different with the direct synthesis of the desired high-hierarchical crystal (metal-organic framework) with pre-planned optical properties [55, 60]. Here, the synergism of the organic and inorganic parts leads to the production of highly stable and highly nonlinear crystals that provide enhanced absorption / generation of coherent and incoherent radiation and its direct transfer along the waveguide part of the crystal. Nevertheless, the identification and substantiation of the direct relationship between the structural hierarchy and the optical response and the synergistic effect with an increase in the degree of the structural hierarchy of the material was required for the further development of nanophotonics.

From a library of new optical nano- and microsized materials with different structural hierarchies (Table 1), some of which were obtained in the process of interaction of coherent optical radiation with precursors with a lower structural hierarchy (Section 1), and their optical properties were established on a universal optical system ( section 2), it is possible to single out the unique sequences discovered and generalized in this work. An increase in the structural hierarchy of single, chemically homogeneous, spherical nanoparticles (for example, Si) with n=1 and characteristic linear optical properties such as polarization-dependent elastic scattering, thermo-dependent inelastic (Raman) scattering and a nonlinear optical change in the optical parameters of nanoparticles up to the structural hierarchy n=2 possibly due to the formation of a domain structure inside the nanoparticle and/or physical contact with thin films or molecules (Figure 15). Moreover, surprisingly, the spectrum of optical effects observed already for such a system with an increased degree of structural hierarchy expands to achieve the regime of coherent and incoherent broadband photoemission (due to the increased hierarchy) and reversible/irreversible optical changes in the optical parameters of the resulting systems. A further increase in the degree of structural hierarchy for a nanoparticle to n=3 is possible by integrating it with additional structural elements (thin films and molecules), which provides the resulting system with sensory properties and coloring properties on the nanoscale.

Figure 15 - Controlling the optical properties of the Si nanoparticle (a, n=1) by increasing its structural hierarchy (b, formation of a domain structure, n=2), (c-d, deposition of additional layers of h-BN, n=3)

Figure 16 - Controlling the optical properties of metal oxide nanoparticles (a,b, SiO2, n=1) by increasing their structural hierarchy (c,d, TiO2 thin films, n=2), (e-g, ZrO2

thin films, n=2)

Such an evolution of the optical properties and an expansion of their spectrum due to an increase in the structural hierarchy is observed not only for semiconductor Si and Ge nanoparticles, but also for dielectric nanoparticles (SiO2, TiO2, ZrO2, etc.). Indeed (Figure 16), the transition from single nanoparticles and their arrays (a solution of non-interacting nanoparticles) with n=1 to thin films based on nanoparticles with n=2 ensures the transformation of their optical properties (for example, nonlinear refraction and absorption of optical radiation) to the possibility of holographic image transmission, interference recording of information, and even optical sensing of biological objects. A generalization of the results of the influence of changes in the structural hierarchy of nano and microsized materials on their optical properties is presented in Table 4.

In detail, for silicon dioxide nanoparticles with a structural hierarchy of n=1, a change in optical parameters was shown using a standard z-scan technique with open and closed apertures [29]. Since the optical nonlinearity of an array of dielectric nanoparticles was observed in optical fields of low intensity (up to 1 kW/cm2), we used cw semiconductor lasers with wavelengths of 532 nm and 442 nm. A lens with a focal length of 50 mm provided a waist diameter of 46 ^m for green radiation and 90 ^m for violet radiation. Experimental results of z-scanning with open and closed apertures at variable intensities (1; 1000) W/cm2 revealed a nonlinear behavior of the integral transmitted intensity and normalized transmittance for both green and violet radiation. This observation confirms the notion that SiO2 nanoparticles cause nonlinear refraction and absorption of low-intensity laser radiation. This nonlinearity has a nonthermal and photoinduced nature. It turned out that the refraction and absorption of continuous low-intensity visible laser radiation depend nonlinearly on the intensity in the range (1; 500) W/cm2, and this nonlinearity tends to zero when the radiation intensity exceeds 500 W/cm2.

However, such an optical nonlinearity in a nanocomposite medium can arise if this medium has nonlinear spectral characteristics that are directly related to the energy structures of nanoparticle charge carriers. When studying a nanoparticle, we expect that the energy spectrum of its charge carriers will depend on the shape and size of the nanoparticle. In this case, the energy spectrum will depend on the matrix material and, to a greater extent, on its permittivity e. Therefore, we studied the absorption spectra of SiO2 nanoparticles (static permittivity e = 4.5) dispersed in isopropanol (e = 24) and distilled water (e = 80). As follows from the experimental results, the energy structure of nanoparticle electrons strongly depends on the ratio of permittivities e1 and e2 of the matrix of nanoparticles. The absorption spectrum of an array of SiO2 nanoparticles contains a wide asymmetric absorption band for visible and near UV light, provided that e1 < e2. This band is formed by electronic transitions from surface defect states to a broad exciton band. Therefore, the propagation of visible radiation (2.1 eV < photon energy < 3.1 eV) inside a nanocomposite based on SiO2 nanoparticles leads to electron-phototransitions from defective to exciton states. These transitions are responsible for the formation of the electric dipole moment of the nanoparticle, as well as the nonthermal population difference between the states. As the radiation intensity increases, the dipole moment becomes higher, and the population difference tends to zero. These competing processes, in turn, are responsible for the formation of the observed nonlinear dependence of the optical parameters of an array of nanoparticles on the radiation intensity. In this case, the low intensity values are due to the giant dipole moment of the nanoparticles.

The transition from nanoparticles to their agglomerates in the form of thin films with an increased structural hierarchy (n=2) opens up possibilities for observing more specific optical properties. For example, color printed films [40] were obtained, which have such properties as the absence of color change over time, which is promising for long-term storage of color images. For this, the technology of inkjet printing of sol-gel materials with a high refractive index was applied using polymer substrates without prior modification and deposition of bonding layers commonly used in inkjet printing. Given the ability of many inorganic colloids to mix, this printing technology is universal and can be reused when re-applying an image to a polymer substrate using highly refractive and highly transparent ZrO2, TiO2, ZnO oxides. Using TiO2 as an example, it is shown that: (1) the production of crystalline sol-gel inks by soft chemistry is well documented; (2) the refractive index of TiO2 is 2.61 in the visible spectrum; 3) completely transparent in the visible area; (4) easily crystallizes during thermal dehydration, since it always has a crystalline core; 5) high isoelectric point, which makes it possible to obtain highly stable colloids. In detail, the work uses TiO2-based nanocrystalline ink, which can be applied to a wide variety of surfaces without the need for high-temperature curing. The original titanium dioxide dispersion was further modified for inkjet printing, and thin coatings of titanium dioxide were deposited on fused silica and polyethylene substrates by inkjet printing, and their characteristics (thickness, roughness) were carefully examined. It has been shown that the layers make it possible to form color contrast optical images due to the interference effect and a reduced absorption coefficient due to low light scattering on film defects from nanoparticles [40].

Table 4 - Controlling the optical properties of nanomaterials by increasing their

structural hierarchy.

Si n=1 ^ n=2 ^ n=3

[1,7,10,14] [6,8,9,11,25, 36] [18,19]

Elastic/inelastic light scattering Coherent/incoherent light emission, optical parameters change Sensing

Metal oxides NP n=1 ^ n=2

[28,29] [30,31,34,35,37,39-41]

Optical parameters change Sensing, imaging

MOF n=1 ^ n=2 ^ n=3

[46,55,56] [43,51,54,57,58] [47-49,59]

Optical anisotropy, coherent light emission Controllable light scattering, optical transmittance and light emission Stable light emission

6.4 Laser control of the optical properties of nano- and microsized materials with a fixed structural hierarchy

Optical control of the optical properties of materials (with or without a reversible change in their structure) underlies the operation of optical switches, logic elements, and a series of optical converters. The main mechanisms of operation of such control include a light-induced change in the refractive index, absorption, and / or scattering, both due to the reorientation of electron clouds without the movement of heavier atoms, and due to second-order phase transitions, the formation of defects, a change in the shape of the material or its components ( in the case of a highly hierarchical system). Despite the apparent disadvantages of the latter approach (low reaction rates, limited number of transformation cycles), changing the geometry of a highly hierarchical material [24,44,45,50] entails more significant and optical changes for an optical material of any shape and scale [32,33]. Thus, the fixation of the structural hierarchy can still ensure the operation of the optical element under light exposure due to the use of already adaptive structural elements [24,44,45].

2.1 ---1---1-1-

0 5 10 15 20 25 30

Integral Power. mW

Figure 17 - Optical control of photoemission of the metal-organic framework HKUST-1 (n=1) depending on the pump wavelength

g. сл

о"

>-! О)

о о

сл

н-1 • >-!

N р

О)

& 3 3'

О) 5"

S

^

Ö О

>-!

CTQ а

§

о о

сл

В-

О Д

О

асГ

ОО О

е.

О) К)

о

о О

ч CTQ CTQ

Р з

о" о

Ч5

О) о О) о

>-! сл

сл

i—i

О)

О) £

В'

О)

о

о

<

О)

а

сл ся

о" р

о ^

о

о"

р.

N

s

я öd

s

w

д о

U) L/I

о

И

о

сл сл

О* Р

сл

О) О

>-! р

о Р

то"

s

О) 00

о

о" BL

о

о р

о

£ &

S-"

о" р

ся о

s

О)

>-!

3'

CTQ

сл

О) О

>-! р

о р

This is especially well demonstrated by metal-organic frameworks and inorganic materials based on fusible metals. As seen in fig. 17, the use of HKUST-1 metal-organic framework microcrystals with a structural hierarchy of n=1 allows full optical control of light by light passing (or generated) through the crystal. It has been established that exposure to infrared (continuous and pulsed) radiation with a wavelength from 633 to 1050 nm stimulates the process of water desorption, thereby changing the configuration of the metal cluster and, accordingly, its electron density and electron energy spectrum. This process is expressed as a shift in the transmission band of the crystal (Figure 12) by 0.4 eV in the visible region of the spectrum over a time of the order of several milliseconds. A change in the electron density and the electron energy spectrum leads not only to a reversible and significant change in the color of the crystal, but also to its photoemission: it has been found that a variation in the optical pump power density and its wavelength can change the photoemission reversibly and nonlinearly with power from 20 to 80%. Also, a change in the transmission spectrum (a decrease in the transmission coefficient by almost 100 times in the region of 530 nm) leads to the possibility of blocking the radiation passing through the crystal in 2 to 20 miles of seconds with the possibility of repeating the operation many times both in air and in the presence of solvents. This process was first demonstrated on highly hierarchical materials of the metal-organic framework type and formed the basis of a separate area of research on the structural and optical response of adaptive (or "smart") highly hierarchical materials to light for photonics (light control by light, sensing) and technological chemistry (smart filtration, controlled membranes). To date, highly hierarchical adaptive metal-organic frameworks represent a separate subclass of optical materials with more than 10,000 registered structures in the crystallographic database (CCDC).

In favor of the important property of scaffolds as their structural flexibility, additional studies have been carried out on this aspect. So [44], mechanical characterization of a series of two-dimensional MOFs was performed using a standard atomic force microscopy setup. The mechanical load applied to the surface of the MOC was considered in a good approximation as a point force, which creates a dent of depth h, where the Young's modulus E plays a central role. Following the method of Oliver and Farr, recently used for the mechanical analysis of 2D MOFs, the estimated value of the modulus was E = 3.14 ± 1.03 GPa, which correlates with the values for flexible 2D and 3D scaffolds, but is significantly less than the values for inorganic 2D materials. Then, the mechanical modification of the smooth MOC surface with reduced roughness after treatment with a hot solvent (up to 0.2 nm) using a probe with a radius of 8 nm provided mechanical deformations with a resolution of 25 nm and a depth of 0.4 nm (equivalent to 1/4 of the thickness of one layer). Moreover, taking into account the size of the MOF unit cell (1.04 x 1.86 x 2.68 nm), the modification region corresponds to a volume of about 40 unit cells, which is a consequence of the predicted mechanical modification of flexible MOFs.

Figure 19 - Optical control of the optical emission spectra of microsized metal-organic frameworks Ni-BTC (a) Co-BTC (b). (c) Corresponding electronic images of highly hierarchical material. Scale 100 nm (left), 10 nm (right)

Continuing the work with the metal-organic crystal HKUST-1, but already in the form of nanosized particles (n=2), and using the same effect of changing the electron density and the electron energy spectrum due to the reversible process of desorption of water molecules stimulated by laser radiation, we realized the concept of color control of single crystals (Figure 18 a-c), which was additionally modulated by the shape of the particle: rotation relative to the viewing angle and the angle of illumination made it possible to change the color of the particle in a wide spectral range, providing light control by light on a hierarchical structure with a fixed degree of structural hierarchy.

From the point of view of controlling the optical properties of metal-organic frameworks of a high structural hierarchy by laser radiation, it is important to note the effect of the stability of these properties with time in fields of highly intense laser radiation. For this, the ZIF-8-PMMA composite with 12 wt. % of MOF crystals [48]. The integrated laser powers were chosen to be 10 and 100 mW for pulse repetition rates of 1 kHz and 80 MHz, respectively. Under such extreme conditions, inorganic materials such as gold film and silicon are completely destroyed. The laser beam causes the gold surface to melt and causes the silicon to ablate due to the high absorption coefficients. This usually occurs at temperatures slightly below the melting point of the material. Such radiation conditions are also critical for a number of organic polymers. However, both the ZIF-8 powder and the ZIF-8-PMMA composite demonstrate structural stability by generating an optical second harmonic signal without visible signal changes. In addition, ZIF-8 was irradiated for 1 min with unfocused IR laser radiation with an integrated power of 500 mW (repetition frequency 80 MHz), which corresponds to the power required to damage glasses and optical lenses. Surprisingly, unaltered optical signals of the second optical harmonic from MOF microcrystals were found. It should be noted that a decrease in the integrated laser power (from 100 to 90 mW) reduces the brightness of the optical harmonic pattern by about 25%; however, provides significantly greater signal stability over time. Indeed, the operating times of the laser under extreme conditions were analyzed - in the modes of 100 mW, 80 MHz and 10 mW, 1 kHz.

It was found that the second-harmonic signal intensity for the ZIF-8-PMMA composite irradiated with a repetition frequency of 1 kHz remains constant (with an error of 10%) for 2 h. occurs for gold and silicon. On the contrary, when exposed to laser pulses with a repetition frequency of 80 MHz, the intensity of the second optical harmonic decreases with time both for the ZIF-8 powder and for the ZIF-8-PMMA composite. The intensity drops by 30% (for powder) and 85% (for composite) during 2 hours of continuous exposure to laser radiation. Further analysis of the optical second harmonic signal intensity over time shows that the output signal has reached a plateau. The behavior of ZIF-8 in this case can be explained by laser heating: inducing defects or thermodynamically possible rotation of linkers irreversibly create local centers of centrosymmetry. Compared to the powder, the ZIF-8-PMMA composite demonstrates a more significant reduction in the harmonic intensity. One possible explanation for this behavior is laser heating of the polymer matrix itself, followed by damage to the irradiated area of the composite. Considering that PMMA demonstrates lower thermal stability compared to ZIF-8, a stronger decrease in the SHG signal for the composite can be explained by additional local deformations of the polymer upon heating. This is also confirmed by the analysis of the thermal stability of the intensity of the second optical harmonic of the ZIF-8-PMMA composite during heating on a Peltier element: the decrease in the intensity of the harmonic excited by a power of 50 mW with a laser pulse repetition rate of 80 MHz begins at a temperature of 80-90°C. This temperature is more likely to affect the structure of the polymer with structural stability up to 150°C than the MOF itself with structural stability up to 300°C.

Figure 20 - Optical control of optical scattering spectra (a,b) with time resolution (c,d) on single hollow Ga nanoparticles. (e-g) Optical control of optical scattering spectra on single nanoparticles coated with a thermosensitive polymer

In detail [43], to demonstrate this effect, the parameters of the refractive index n and extinction k were previously estimated using optical transmission and reflection spectroscopy in the visible range. For this, hydrated HKUST-1 nanocrystals were placed on a glass substrate. Optical spectra were measured in air (Figure 13a). A halogen lamp with a range of 360-2500 nm (Avantes) was used as a radiation source, the light from which was focused on single crystals using an objective (Mitutoyo HR NIR 50x/0.65NA), and the transmitted/reflected signal was collected by an objective (Mitutoyo 50x/ 0.42NA) and analyzed on a HORIBA LabRAM confocal spectrometer with a diffraction grating of 150 gr/mm. Because HKUST-1 exhibits a change in its optical spectra upon laser irradiation, additional spectral analyzes were performed for pristine (without laser irradiation) and excited (during laser irradiation) MOFs. For this, a femtosecond laser source (Yb3+, TeMa, Avesta Project with a central wavelength of 1050 nm, a pulse duration of 150 fs, and a repetition rate of 80 MHz) was used. The laser radiation was focused onto the sample through an objective (Mitutoyo HR NIR 10x/0.28 NA), and a dichroic mirror (DMLP900, Thorlabs) was used to combine the radiation from the white lamp and the laser radiation.

In contrast to the ellipsometric approach to measuring n described for HKUST-1 thin films, the approach used provides a rough estimate of the optical parameters for single crystals oriented by an arbitrary plane with respect to the incident wave. Nevertheless, based on the measurement data of the reflection spectra of thin films HKUST-1 (even with the declared structural defects) in an environment with variable humidity, one can expect significant changes (qualitative and quantitative) of the optical parameters.

As can be seen (Figure 18 a-c), an increase in laser power leads to a blue shift in the scattering spectrum for a single nanocrystal. In this case, a further increase in power leads to parasitic heating and subsequent thermal destruction of the MOF. Thus, depending on the nanocrystal size, the threshold power of degradation was established [43]. When working with a laser power below the threshold, a reversibility of the change in the scattering spectra is observed (Figure 18b). Moreover, the actual size of MOF nanocrystals can also change the scattering spectra: spectral changes are mainly in the red region of the spectrum (700-900 nm), which is explained by a decrease in the values of n and k by 2 and 30%, respectively, and the region 400-600 nm is modulated due to a decrease in n by 10% and a significant increase in k by 16 times. In addition, apart from the changeable color of HKUST-1 single crystals, their original color may be due to structural defects. Indeed, the synthesized crystals have many structural defects, which, in turn, significantly change the pattern of electronic transitions of an ideal crystal and, consequently, its color. This can also become the basis for changing the palette of observed colors for HKUST-1 crystals with a controlled number of defects.

The use of more flexible (mechanically, due to the presence of flexible long structural elements and/or weak chemical interactions, for example, van der Waals structures that maintain the integrity of the structure) metal-organic frameworks in the form of thin films or two-dimensional layers (n=2) gives even more significant results. in the field of light control by light through highly hierarchical structures (Figure 18 d-i). Indeed, the use of layered frameworks consisting of highly luminescent ligand molecules bound in a plane by Zr ion clusters made it possible, firstly, by changing the energy and polarization of incident photons in the visible spectrum, to change the transmission coefficients at scanned wavelengths in an extremely fast and controlled manner (within 150 fs). (Picture 18d-e). Secondly, the increased exposure to ultraviolet radiation, leading to the removal of frame particles (weakly bound to the structure of the solvent molecule), stimulated photoemission quenching, thereby providing a non-volatile optical recording of information with a density controlled by the diffraction limit (D=1.22X/NA, where 405 nm, NA=0.9).

It was found in detail [54] that the interaction of polarized light with layered crystals makes it possible to independently excite two types of excitons and nonlinearly change their concentration over ultrashort time intervals by laser radiation with polarization rotation and a change in its frequency. For this, ultrafast laser pulses with a tunable frequency were used as the first tool for selective manipulation of exciton states: irradiation of single crystals with IR pulses of 100 fs duration with measurement of the transmitted intensity. IR pulses with photon energies of 1.6, 1.535, and 1.507 eV did not damage the single crystals, since the crystals did not absorb these photons during the single-photon process. However, the intensity of a single pulse (I > 1010 W/cm2) provided two-photon absorption of photons already with energies of 3.2 eV, 3.07 eV and 3.01 eV as shown in Figure 18 d,e. In addition, the low pulse repetition rate (1 kHz) ensured complete relaxation of heat and excitons from pulse to pulse due to nanosecond luminescence. Figure 18d shows that when the polarization vector of the laser pulse was perpendicular to the van der Waals layers of the MOFs, the transmission of the 1.507 eV pulses increased non-linearly up to 27% with increasing pulse intensity. This corresponded to the saturation of two-photon absorption due to the resonant generation of putative excitons. On the contrary, for the change in the transmission of pulses with an energy of 1.535 and 1.6 eV, insignificant changes were observed with an increase in their intensity. Alternatively (Figure 18f), by changing the polarization and frequency of the light, it became possible to effectively change the intensity of transmitted photons with energies as low as 1.6 eV by saturating two-photon absorption with a single 100 fs pulse at higher intensities, while photons with an energy of 1.507 eV showed no change in intensity, which clearly demonstrates the possibility of tuning the exciton density up to 30% by a single femtosecond pulse with a given photon energy [54]. For MOC data, despite the advantages of their ultrafast optical excitation by laser pulses, continuous incoherent radiation has also shown its advantages for exciton generation and control (Figure 18f). To demonstrate this, the interaction of MOF single crystals with unpolarized white light of various intensities up to 500 mW/cm2 was studied. Experiments have shown that increasing the intensity of white light above a certain threshold resulted in non-linear changes in absorption (Figure 18f). In addition [54], it was shown that a single MOF

crystal with a layered structure supports the switching on/off of exciton states (and their luminescence) in a region that depends on the intensity of UV radiation: excitons were turned off by UV light for several minutes, and then remained inactive more than 48 hours, which is confirmed by measurements of photoluminescence and absorption; then, the introduction of an organic compound (diethylformamide) into the single crystal partially turned on the exciton state with the restoration of certain properties, such as absorption and photoluminescence. It should be noted that such an effect of restoring the initial crystal structure after an external impact is a typical situation for MOF crystals with a high structural hierarchy and can be considered as a new concept of optical data storage, where information is written and read by turning exciton luminescence on and off. In particular, two-photon absorption can be applied to minimize the amount of modification, and the expected storage density can be higher than 1 Gb inch-2.

The use of a chain structure of a metal-organic framework based on flexible molecules and Cu ions (Figure 18g-i) with a structural hierarchy n=2 showed the possibility of controlling the transmission spectrum in a narrow spectral range with a spectrum modulation of the order of 30% and a modulation time of less than 1 ^s with the number more than 5000 modulation cycles. These changes were used for safe transmission of optical information over an optical fiber integrated with a metal-organic frame single crystal. Speaking about more complex optical materials with a fixed structural hierarchy (n=3) obtained from metal-organic precursors, the control of their optical properties in the field of laser radiation was achieved by preliminary amorphization of the framework and the formation of Ni or Co metal clusters in it (Figure 19 ). Then, the optical effect stimulated a long process of amorphization (up to 4 months) and, as a result, a change in the shape and intensity of photoemission of the resulting material.

The cycle of works on the optical control of the optical properties of high-hierarchical materials with a fixed structural hierarchy is completed by the work on laser reversible control of the shape of hollow gallium nanoparticles with a shell of gallium oxide (Figure 20). The unique balance of the flexible Ga core, which melts at a temperature of 32 - 36 °C and changes the shape of the nanoparticle, and the rigid shell of Ga2O3 provides a reversible structural (and optical) reaction of the nanoparticle with a structural hierarchy of n=2. Heating caused by laser pulses leads to deformation of the shape of the nanoparticle, its scattering spectrum, and the relaxation of heat through reradiation and contact with the substrate leads to the restoration of its shape due to the reverse reaction of the rigid oxide shell. Thus, the highly hierarchical structure ensured the control of the scattered light spectrum under the action of laser pulses, which was also confirmed for homogeneous Si nanoparticles coated with a thermosensitive polymer (Figure 20 e-g). It is shown in detail [23] that under laser irradiation the shape of microparticles should change, which leads to the evolution of their scattering spectra (Figure 20A). Depending on the laser radiation flux density, the average intensity of light (400-900 nm) scattered by hollow Ga ( > 0.8 mJ/cm2), GaNi ( > 0.5 mJ/cm2), and GaCu ( > 0.4 mJ/cm2) particles begins to change significantly (changes more than 20%). Such a fluence threshold can be explained by the competition between the elevated melting point of the compounds and different particle volumes (~2, 1.4, and 0.2 ^m3 for Ga, GaNi, and GaCu, respectively). Moreover, Ga particles without a cavity with an average volume of 8.2 ^m3 demonstrate less pronounced color changes upon irradiation with a laser radiation flux density of up to 2 mJ/cm2. This is probably due to the lower melting temperature of both Ga itself (30°C) and GaCu microcapsules, the main phase of which is represented by the CuGa2 intermetallic compound. At the same time, hollow GaNi particles presumably have a mixed composition. The phase diagrams of Ga-Ni show that they decompose when heated to 950 and 564 °C, respectively. This makes GaNi more stable under laser heating. For the tunable particle itself, a statistical analysis of six hollow Ga particles and five hollow GaNi particles showed the following: a sharp drop in the scattering intensity for hollow Ga occurs at a laser radiation flux density of 1.3 ± 0.7 mJ/cm2, while for GaNi this occurs at a value of 1 ± 0.4 mJ/cm2. Taking into account the

larger volume of hollow Ga particles, we assume that the increased laser radiation flux density is associated with the need to transfer more thermal energy for melting. It is important that the behavior of color and brightness correlates with theoretical predictions: a decrease in brightness occurs with a blue shift of the spectra. The increase in the local temperature of hollow gallium particles under laser irradiation was also calculated: an increase in the laser radiation flux density from 0.1 to 10 mJ/cm2 ensures a linear increase in the local temperature from 32.2°C to 1200°C, which melting point 29.8°C and evaporation temperature 2200°C). Also, two operating modes of the laser radiation were determined for switching the optical properties of particles, allowing reversible/irreversible adjustment of color and brightness: at a laser radiation flux density > 3 mJ/cm2, an irreversible change in the scattering spectra of hollow Ga and GaNi particles is observed due to a strong perturbation of their surfaces and shapes. It is interesting that the change in the average intensity of scattered light by 2 and 3 times is determined experimentally in fractions of seconds for this mode (speed not less than 10 s-1). On the contrary, at a laser flux density of less than 0.3 mJ/cm2, a reversible adjustment of color and brightness is achieved with similar speeds. In this case, compared with irreversible switching for hollow Ga and GaNi particles, a deviation of the average scattered light intensity by 3% and 5% is observed. Taking into account the 0.7% and 0.6% measurement errors, the signal-to-noise ratio for hollow Ga and GaNi particles is 4 and 8, which is sufficient for an error-free determination of two physical states. It should be noted that the reversible adjustment of color and brightness for cavityless Ga particles and hollow GaCu was not achieved, which is explained by the large volume of particles, as well as the brittleness of GaCu with a relatively low melting point: the particles were subjected to additional mechanical action by ultrasound and, as it turned out, hollow GaCu particles are more prone to fracture than to flexible deformation, and hollow Ga and GaNi particles change their shape from almost spherical to highly deformed without fracture.

Thus, the highly hierarchical structure ensured the control of the scattered light spectrum under the action of laser pulses, which was also confirmed for homogeneous Si nanoparticles coated with a thermosensitive polymer (Figure 20 e-g). So [25], the experimental results of measuring light scattering in dark field geometry from single NPs coated with thermosensitive PDADMAC/Hep/PSS polymers before, during, and after light-induced (Supercontinuum Fianium SC400-6 with a tunable wavelength of 400-850 nm, repetition rate 60 MHz, pulse duration 6 ps and pulse width 10 nm) heating showed the following. First, depending on the NP diameter, the pump wavelength was tuned with an intensity from 1 to 5 mW/cm2 due to the light-induced heating mechanism based on the concept of converting light energy into thermal energy due to resonant interaction with silicon NPs having multiple Mie-type resonances. . The nonzero absorption coefficient of NPs in the visible range and the high refractive index provide heating of the irradiated NPs up to 1000 K, then this energy is transferred to the NP environment, i.e. on the polymer shell. Second, the results of the optical experiment demonstrate a significant redshift of the spectra (up to 60 nm). The driving force behind the shrinkage of the thermosensitive polymer is the reduction in the water/polyethylene interface. Third, the maximum shift of the Mie-type resonance, 60 nm, is achieved for Si NPs coated with Hep/PSS without PDADMAC, where an increase in the hydrophobic effect and charge repulsion are observed. Figure 20e-g shows that in NPs without PDADMAC, the polymer shell relaxes to its original thickness faster than in NPs with PDADMAC shell. Relaxation of the system to the initial state takes several tens of minutes, and complete relaxation should be achieved in hours. The effect of shifting optical resonances for Si NPs with Hep/PSS can be explained by hydrophobic and hydrophilic interactions, and with increasing temperature, the equilibrium shifts towards a change in the Hep/PSS conformation, forcing the hydrophobic and hydrophilic groups to change places.

Raising the hierarchy of Si nanoparticles to n=3 by coating with a layer of h-BN and A also made it possible to tune the optical response of hierarchical Si@h-BN NPs not only by tuning the geometric parameters through synthesis, but also in real time [19]. To do this, laser radiation was used (Laser Pharos PH1-SP-20W, 1030 nm, pulse duration 220 fs, repetition rate 258 1 MHz, connected to an Orpheus HP optical parametric amplifier for emitting laser pulses at the center wavelength), which makes it possible to change the shape of the optical spectrum of hybrid nanostructures. A 10x/0.26NA objective was used to focus the beam on single low frequencies through the lower optical channel. A half-wave plate in combination with a Glan prism was used to change the laser radiation flux density up to 6 J/cm2. Such an optical scheme also assumes that ~95% of the radiation will be reflected from the Au film; the fluence of laser radiation directly interacting with NPs was 0.3 J/cm2. An analysis of the optical scattering spectra of Si@h-BN NPs in a dark field before and after laser irradiation revealed two modes of overlap between the pump wavelength and NP resonances in the range of 700-790 nm: resonant and nonresonant modes. The resonant overlapping of the multipole resonance of a hierarchical NP with the pump wavelength provides a more efficient process of converting the photon energy into thermal energy and, accordingly, leads to more significant changes in the optical spectra. In this case, spectral shifts were found, while for some NPs a 50% change in brightness (scattered light intensity) can also be observed. Nevertheless, nonresonant excitation provides a similar evolution of the brightness of light scattered by NPs at a slightly increased flux density (~7%) due to the large diameter of Si NPs. In order to decipher the observed optical changes from the standpoint of morphological and structural modifications of hierarchical NPs, we analyzed the Raman spectra of hierarchical NPs before and after irradiation [19]. It is shown that an increase in the flux density to 35 ± 5 mJ/cm2 leads to broadening of the Raman scattering line from 5 to 7 cm-1 with a shift towards lower energies. This behavior is associated with a change in the NP microstructure, such as an increase in the concentration of domain boundaries, amorphization, and/or an increase in the concentration of point defects. The presence of highly thermally conductive layers (h-BN and Au) on both sides of Si NPs sharply increases the cooling rate of the latter during laser modification. However, it was not

enough to amorphize silicon: an increase in the cooling rate increases the rate of nucleation in liquid silicon; this also increases the rate of crystal growth, which leads to rapid solidification of liquid silicon and prevents the nucleation of new crystallites. At a cooling rate of up to 109 Ks-1, the grain size decreases only to 392 nm, which is much larger than the value required to explain the Raman broadening. The melting point of silicon (1687 K) is much higher than that of gold (1337 K for bulk gold); therefore, optical heating of silicon to the melting point will also melt the Au film. Therefore, it was assumed that silicon and gold form an alloy with a molar concentration of Au 5-10% when exposed to laser radiation. Interestingly, such a microstructural modification during irradiation can greatly reduce the intensity of NP resonances; i.e. brightness in an optical microscope. A further increase in the laser radiation power leads to strong heating, accompanied by melting or removal of Si NPs from the Au film. As a result, a scheme was proposed for laser tuning of the optical properties of hierarchical Si@h-BN NPs: at a laser radiation flux density of up to 30 mJ/cm2, no changes are observed in the Raman spectrum and SEM micrographs; in this case, the rearrangement of the optical spectra, which is expressed in a decrease in brightness to 50%, can be associated with the perturbation of a particular thin Au film due to heating (approximately T < 400 °C); at a higher flux density (from 30 mJ/cm2 to 0.2 J/cm2), a structural modification of the Si core and damage to the Au film due to heating are detected, which makes it possible to observe a sufficient evolution of the NP color through resonant spectral shifts and a change in brightness up to 100%. At an even higher flux density, h-BNs are destroyed, which suggests local melting of both the Si core and the h-BN layer. The extremely high laser radiation flux density ensures sample burn-through, which is expressed in the destruction of the Si core, drying of the Au film, and detachment of h-BN.

Generalization of the results of optical control of optical properties (scattering, optical transmission and photoemission) of nano- and microsized materials (Si, Ga nanoparticles and hierarchical metal-organic frameworks) with a fixed structural hierarchy is presented in Table 5.

Table 5 - Optical control of the optical properties of nano and micro-sized materials

with a fixed structural hierarchy.

MOF n=3 [48,59] Nonlinear light emission

n=2 [43,53,54,57,58] Nonlinear light emission, scattering and optical transmission

n=1 [46,56] Nonlinear light scattering

Hollow NP n=2 [23,51] Nonlinear light scattering

Metal oxides NP n=1 [29,30] Nonlinear optical transmission

NP n=1 [7,14] Nonlinear light scattering

n=2 [4,25]

n=3 [19]

7. CONCLUSION

This work accumulates a series of theoretical and experimental works performed in the period from 2012 to 2022 and devoted to the development of a new direction in nanophotonics - high-hierarchical optical materials and their interaction with coherent radiation to create complex structures and control their optical properties to expand the library of new optical materials and implementations on their basis of an all-optical key. Detail:

1. Methods have been developed for the manufacture of optical materials by means of cold and hot laser ablation, which ensures the transformation of inorganic and metal-organic materials with a structural hierarchy of n=0 and n=1 into nano- and microsized materials with a structural hierarchy of n=1, n=2 and n= 3, which significantly expanded the library of new optically active structures.

2. A universal method for optical analysis of the optical properties of nano- and microsized materials was tested using confocal optical spectroscopy with three independent optical channels that provide simultaneous analysis of elastic/inelastic scattering, transmission/reflection, photoemission, and nonlinear optical response spectra.

3. The effect of increasing the structural hierarchy from n=1 to n=3 of inorganic nano- and microsized materials on the change and synergism of their optical properties has been studied and generalized.

4. The effect of optical control of optical properties (scattering, optical transmission and photoemission) of inorganic and metal-organic nano and microsized materials with a fixed degree of their structural hierarchy has been proven and practically implemented.

8. REFERENCES

1. Marder S. R. Design and synthesis of chromophores and polymers for electro-optic and photorefractive applications / Marder S. R., Kippelen B., Jen A. K. Y., Peyghambarian N. // Nature. - 1997. - Vol. 388. - P. 845-851.

2. Andrei E. Y. Graphene bilayers with a twist / Andrei E. Y., MacDonald A. H. // Nature Materials. - 2020. - Vol. 19. - P. 1265-1275.

3. Lakes R. Materials with structural hierarchy / Lakes R. // Nature. - 1993. - Vol. 361. - P. 511-515.

4. Olson J. Optical characterization of single plasmonic nanoparticles / Olson J., Dominguez-Medina S., Hoggard A., Wang L. Y., Chang W. S., Link S. // Chemical Society Reviews. - 2015. - Vol. 44. - P. 40-57.

5. Ding S. Y. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials / Ding S. Y., Yi J., Li J. F., Ren B., Wu D. Y., Panneerselvam R., Tian Z. Q. // Nature Reviews Materials. - 2016. - Vol. 1. - P. 16021.

6. Meinzer N. Plasmonic meta-atoms and metasurfaces / Meinzer N., Barnes W. L., Hooper I. R. // Nature Photonics. - 2014. - Vol. 8. - P. 889-898.

7. Mehta S. Hybrid nanostructures: Versatile systems for biomedical applications / Mehta S., Suresh A., Nayak Y., Narayan R., Nayak U. Y. // Coordination Chemistry Review. -2022. - Vol. 460. - P. 214482.

8. Xia X. Responsive materials architected in space and time / Xia X., Spadaccini C. M., Greer J. R. // Nature Reviews Materials. - 2022. - Vol. 7. - P. 683-701.

9. Novotny L. Principles of Nano-Optics / Novotny L., Hecht B. // Cambridge University Press. - 2012.

9. СПИСОК ПУБЛИКАЦИИ ПО ТЕМЕ ДИССЕРТАЦИИ

1. Dmitriev P. A. Laser fabrication of crystalline silicon nanoresonators from an amorphous film for low-loss all-dielectric nanophotonics / Dmitriev P.A., Makarov S.V., Milichko V.A., Mukhin I.S., Gudovskikh A.S., Sitnikova A.A., Samusev A.K., Krasnok A.E., Belov P.A. // Nanoscale. - 2016. - Vol. 8. - P. 5043-5048. https://pubs.rsc.org/en/content/articlelanding/2016/nr/c5nr06742a

Квартиль: Q1

2. Makarov S. V. Controllable femtosecond laser-induced dewetting for plasmonic applications / Makarov S.V., Milichko V.A., Mukhin I.S., Shishkin I.I., Zuev D.A., Mozharov A.M., Krasnok A.E., Belov P.A. // Laser and Photonics Reviews. - 2016. -Vol. 10. - P. 91-99.

https://onlinelibrary.wiley.com/doi/full/10.1002/lpor.201500119 Квартиль: Q1

3. Rybin M. V. Optically Reconfigurable Spherical Ge-Sb-Te Nanoparticles with Reversible Switching / Rybin M. V., Sinelnik A. D., Tajik M., Milichko V. A., Ubyivovk E. V., Yakovlev S. A., Pevtsov A. B., Yavsin D. A., Zuev D. A., Makarov S. V. // Laser and Photonics Reviews. - 2021. - Vol. 16. - P. 2100253. https://onlinelibrary.wiley.com/doi/full/10.1002/lpor.202100253

Квартиль: Q1

4. Prokofiev V. Y. Exceptional Concentrations of Gold Nanoparticles in 1,7 Ga Fluid Inclusions From the Kola Superdeep Borehole, Northwest Russia / Prokofiev V. Y., Banks D. A., Lobanov K. V., Selektor S. L., Milichko V. A., Akinfiev N. N., Borovikov A. A., Lüders V., Chicherov M. V. // Scientific Reports. - 2020. - Vol. 10. - P. 1108. https://www.nature.com/articles/s41598-020-58020-8

Квартиль: Q1

5. Baryshnikova K. V. Revealing Low-Radiative Modes of Nanoresonators with Internal Raman Scattering / Baryshnikova K. V., Frizyuk K., Zograf G., Makarov S., Baranov M. A., Zuev D., Milichko V. A., Mukhin I., Petrov M., Evlyukhin A. B. // JETP Letters. -2019. - Vol. 110. - P. 25-30.

https://link.springer.com/article/10.1134/S0021364019130010 Квартиль: Q2

6. Makarov S. V. Nanoscale Generation of White Light for Ultrabroadband Nanospectroscopy / Makarov S. V., Sinev I. S., Milichko V. A., Komissarenko F. E., Zuev D. A., Ushakova E. V., Mukhin I. S., Yu Y. F., Kuznetsov A. I., Belov P. A., Iorsh I. V., Poddubny A. N., Samusev A. K., Kivshar Y. S. // Nano Letters. - 2018. - Vol. 18. - P. 535-539.

https://pubs.acs.org/doi/10.1021/acs.nanolett.7b04542 Квартиль: Q1

7. Zograf G. P. Resonant Nonplasmonic Nanoparticles for Efficient Temperature-Feedback Optical Heating / Zograf G. P., Petrov M. I., Zuev D. A., Dmitriev P. A., Milichko V. A., Makarov S. V., Belov P. A. // Nano Letters. - 2017. - Vol. 17. - P. 29452952.

https://pubs.acs.org/doi/10.1021/acs.nanolett.7b00183 Квартиль: Q1

8. Makarov S. V. Efficient Second-Harmonic Generation in Nanocrystalline Silicon Nanoparticles / Makarov S. V., Petrov M. I., Zywietz U., Milichko V., Zuev D., Lopanitsyna N., Kuksin A., Mukhin I., Zograf G., Ubyivovk E., Smirnova D. A., Starikov S., Chichkov B. N., Kivshar Y. S. // Nano Letters. - 2017. - Vol. 17. - P. 3047-3053. https://pubs.acs.org/doi/10.1021/acs.nanolett.7b00392

Квартиль: Q1

9. Lepeshov S. Fine-Tuning of the Magnetic Fano Resonance in Hybrid Oligomers via fs-Laser-Induced Reshaping / Lepeshov S., Krasnok A., Mukhin I., Zuev D., Gudovskikh A., Milichko V., Belov P., Miroshnichenko A. // ACS Photonics. - 2017. - Vol. 4. - P. 536-543.

https://pubs.acs.org/doi/10.1021/acsphotonics.6b00727 Квартиль: Q1

10. Dmitriev P. A. Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response / Dmitriev P. A., Baranov D. G., Milichko V. A., Makarov S. V., Mukhin I. S., Samusev A. K., Krasnok A. E., Belov P. A., Kivshar Y. S. // Nanoscale. -2016. - Vol. 8. - P. 9721-9726.

https://pubs.rsc.org/en/content/articlelanding/2016/nr/c5nr07965a Квартиль: Q1

11. Zuev D. A. Fabrication of Hybrid Nanostructures via Nanoscale Laser-Induced Reshaping for Advanced Light Manipulation / Zuev D. A., Makarov S. V., Mukhin, I. S., Milichko V. A., Starikov S. V., Morozov I. A., Shishkin I. I., Krasnok A. E., Belov P. A. // Advanced Materials. - 2016. -Vol. 28. - P. 3087-3093. https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201505346

Квартиль: Q1

12. Kuchmizhak A. Laser printing of resonant plasmonic nanovoids / Kuchmizhak A., Vitrik O., Kulchin Y., Storozhenko D., Mayor A., Mirochnik A., Makarov S., Milichko V., Kudryashov S., Zhakhovsky V., Inogamov N. // Nanoscale. - 2016. - Vol. 8. - P. 12352-12361.

https://pubs.rsc.org/en/content/articlelanding/2016/nr/c6nr01317a Квартиль: Q1

13. Kuchmizhak A. Ion-beam assisted laser fabrication of sensing plasmonic nanostructures / Kuchmizhak A., Gurbatov S., Vitrik O., Kulchin Y., Milichko V., Makarov S., Kudryashov S. // Scientific Reports. - 2016. - Vol. 6. - P. 19410. https://www.nature.com/articles/srep 19410

Квартиль: Q1

14. Makarov S. Tuning of Magnetic Optical Response in a Dielectric Nanoparticle by Ultrafast Photoexcitation of Dense Electron-Hole Plasma / Makarov S., Kudryashov S., Mukhin I., Mozharov A., Milichko V., Krasnok A., Belov P. // Nano Letters. - 2015. -Vol. 15. - P. 6187-6192.

https://pubs.acs.org/doi/full/10.1021/acs.nanolett.5b02534 Квартиль: Q1

15. Sun Y. Reconfigurable Near-field Enhancement with Hybrid Metal-Dielectric Oligomers / Sun Y., Sinev I., Zalogina A., Ageev E., Shamkhi H., Komissarenko F., Morozov I., Lepeshov S., Milichko V., Makarov S., Mukhin I., Zuev D. // Laser and Photonics Reviews. - 2019. - Vol. 13. - P. 1800274. https://onlinelibrary.wiley.com/doi/full/10.1002/lpor.201800274

Квартиль: Q1

16. Zalogina A. S. Purcell effect in active diamond nanoantennas / Zalogina A. S., Savelev R. S., Ushakova E. V., Zograf G. P., Komissarenko F. E., Milichko V. A., Makarov S. V., Zuev D. A., Shadrivov I. V. // Nanoscale. - 2018. - Vol. 10. - P. 87218727.

https://pubs.rsc.org/en/content/articlelanding/2018/nr/c7nr07953b Квартиль: Q1

17. Krasilin A. A. The conformation of bovine serum albumin adsorbed to the surface of single all-dielectric nanoparticles following light-induced heating / Krasilin A. A., Volodina K., Sukhova A. A., Petrov M. I., Zuev D. A., Dyachuk V. A., Milichko V. A. // Journal of Biophotonics. - 2018. - Vol. 11. - P. e201700322. https://onlinelibrary.wiley.com/doi/10.1002/jbio.201700322

Квартиль: Q1

18. Milichko V. A. Metal-Dielectric Nanocavity for Real-Time Tracing Molecular Events with Temperature Feedback / Milichko V. A., Zuev D. A., Baranov D. G., Zograf G. P., Volodina K., Krasilin A. A., Mukhin I. S., Dmitriev P. A., Vinogradov V. V., Makarov S. V., Belov P. A. // Laser and Photonics Reviews. - 2018. - Vol. 12. - P. 1700227.

https://onlinelibrary.wiley.com/doi/full/10.1002/lpor.201700227 Квартиль: Q1

19. Bataille L. E. Hierarchical Hexagonal Boron Nitride Nanowall-Decorated Silicon Nanoparticles for Tunable Ink-Free Coloring / Bataille L. E., Merenkov I. S., Yaroshenko

V. V., Kustov P. N., Alekseevskiy P. V., Kulachenkov N. K., Kenzhebayeva Y., Krasilin A. A., Savelev R., Zuev D., Nominé A., Zollinger J., Voroshnina A. A., Kosinova M. L., Milichko V. A. // ACS Applied Nano Materials. - 2022. - Vol. 5. - P. 6106 - 6114. https://pubs.acs.org/doi/10.1021/acsanm.1c04308 Квартиль: Q1

20. Nominé A. V. Alloying nanoparticles by discharges in liquids: a quest for metastability / Nominé A. V., Tarasenka N., Nevar A., Nedelko M., Kabbara H., Nomine A., Bruyere S., Ghanbaja J., Noël C., Krasilin A. A., Zograf G., Milichko V., Kulachenkov N., Makarov S., Tarasenko N., Belmonte T. // Plasma Physics and Controlled Fusion. - 2022. - Vol. 64. - P. 014003. https://iopscience.iop.org/article/10.1088/1361-6587/ac35f0/pdf

Квартиль: Q1

21. Nominé A. Study by optical spectroscopy of bismuth emission in a nanosecond-pulsed discharge created in liquid nitrogen / Nominé A., Noel C., Gries T., Nominé A., Milichko V., Belmonte T. // Molecules. - 2021. - Vol. 26. - P. 7403. https://www.mdpi.com/1420-3049/26/23/7403

Квартиль: Q2

22. Nominé A. V. Synthesis of nanomaterials by electrode erosion using discharges in liquids / Nominé A. V., Gries T., Noel C., Nominé A., Milichko V., Belmonte T. // Journal of Applied Physics. - 2021. - Vol. 130. - P. 151101.

https://aip. scitation.org/doi/10.1063/5.0040587 Квартиль: Q1

23. Falchevskaya A. S. Single Particle Color Switching by Laser-Induced Deformation of Liquid Metal-derived Microcapsules / Falchevskaya A. S., Kulachenkov N. K., Bachinin S. V., Milichko V. A., Vinogradov V. V. // The Journal of Physical Chemistry Letters. - 2021. - Vol. 12. - P. 7738-7744. https://pubs.acs.org/doi/10.1021/acs.jpclett.1c01867

Квартиль: Q1

24. Talianov P. Adaptive Nanoparticle-Polymer Complexes as Optical Elements: Design and Application in Nanophotonics and Nanomedicine / Talianov P., Fatkhutdinova L. I., Timin A. S., Milichko V. A., Zyuzin M. V. // Laser and Photonics Reviews. - 2021. -Vol. 15. - P. 2000421.

https://onlinelibrary.wiley.com/doi/full/10.1002/lpor.202000421 Квартиль: Q1

25. Nikitina A. A. All-Dielectric Nanostructures with Thermoresponsible Dynamic Polymer Shell / Nikitina A. A., Milichko V. A., Novikov A. S., Larin A. O., Nandi P., Mirsaidov U., Andreeva D. V., Rybin M. V., Kivshar Y. S., Skorb E. V. // Angewandte Chemie International Editio. - 2021. - Vol. 60. - P. 12737 - 127411.

https://onlinelibrary.wiley.com/doi/full/10.1002/anie.202101188 Квартиль: Q1

26. Tarasenka N. Synergistic Effect of Plasma and Laser Processes in Liquid for Alloyed-Nanoparticle Synthesis / Tarasenka N., Nominé A., Nevar A., Nedelko M., Kabbara H., Bruyère S., Ghanbaja J., Noel C., Krasilin A., Zograf G., Milichko V., Kulachenkov N., Makarov S., Belmonte T., Tarasenko N. // Physical Review Applied. - 2020. - Vol. 13. - P. 014021.

https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.13.014021 Квартиль: Q1

27. Koryakina I. Optically responsive delivery platforms: From the design considerations to biomedical applications / Koryakina I., Kuznetsova D. S., Zuev D. A., Milichko V. A., Timin A. S., Zyuzin M. V. // Nanophotonics. - 2020. - Vol. 9. - P. 39-74. https://www.degruyter.com/document/doi/10.1515/nanoph-2019-0423/html Квартиль: Q1

28. Milichko V. A. Anomalous optical nonlinearity of dielectric nanodispersions / Milichko V. A., Dzyuba V. P., Kulchin Yu. N. // Quantum Electronics. - 2013. - Vol. 43. - P. 567-573.

https://iopscience.iop.org/article/10.1070/QE2013v043n06ABEH015171 Квартиль: Q2

29. Milichko V. A. Unusual nonlinear optical properties of SiO2 nanocomposite in weak optical fields / Milichko V. A., Dzyuba V. P., Kulchin Y. N. // Applied Physics A: Materials Science and Processing. - 2013. - Vol. 111. - P. 319-322. https://link.springer.com/article/10.1007/s00339-013-7609-3

Квартиль: Q2

30. Milichko V. A. Photo-induced electric polarizability of Fe3O4 nanoparticles in weak optical fields / Milichko V. A., Nechaev A. I., Valtsifer V. A., Strelnikov V. N., Kulchin Y. N., Dzyuba V.P. // Nanoscale Research Letters. - 2013. - Vol. 8. - P. 317. https://nanoscalereslett.springeropen.com/articles/10.1186/1556-276X-8-317 Квартиль: Q1

31. Dzyuba V. Effect of the shape of a nano-Object on quantum-Size states / Dzyuba V., Kulchin Y., Milichko V. // Journal of Nanoparticle Research. - 2012. - Vol. 14. - P. 1208.

https://link. springer.com/article/10.1007/s 11051-012-1208-7 Квартиль: Q2

32. Gunina E. The influence of substitutes on the room temperature photoluminescence of 2-amino-4-oxobut-2-enoic acid molecular crystals / Gunina E., Zhestkij N., Bachinin

S., Fisenko S. P., Shipilovskikh D. A., Milichko V. A., Shipilovskikh S. A. // Photonics and Nanostructures - Fundamentals and Applications. - 2022. - Vol. 48. - P. 100990. https://www.sciencedirect.com/science/article/pii/S 1569441021000973?via%3Dihub Квартиль: Q2

33. Eremeeva E. Printing of colorful cellulose nanocrystalline patterns visible in linearly polarized light / Eremeeva E., Sergeeva E., Neterebskaia V., Morozova S., Kolchanov D., Morozov M., Chernyshov I., Milichko V. A., Vinogradov A. // ACS Applied Materials and Interfaces. - 2020. - Vol. 12. - P. 45145-45154. https://pubs.acs.org/doi/10.1021/acsami.0c11846

Квартиль: Q1

34. Frosiniuk A. Optical interference-based sensors for the visual detection of nano-scale objects / Frosiniuk A., Kolchanov D.S., Milichko V. A., Vinogradov A. V., Vinogradov V. V.// Nanoscale. - 2019. - Vol. 11. - P. 6343-6351. https://pubs.rsc.org/en/content/articlelanding/2019/nr/c9nr00616h

Квартиль: Q1

35. Furasova A. D. Inkjet fabrication of highly efficient luminescent Eu-doped ZrO2 nanostructures / Furasova A. D., Ivanovski V., Yakovlev A. V., Milichko V. A., Vinogradov V. V., Vinogradov A. V. // Nanoscale. - 2017. - Vol. 9. - P. 13069-13078. https://pubs.rsc.org/en/content/articlelanding/2017/nr/c7nr03175k

Квартиль: Q1

36. Tiguntseva E. Resonant silicon nanoparticles for enhancement of light absorption and photoluminescence from hybrid perovskite films and metasurfaces / Tiguntseva E., Chebykin A., Ishteev A., Haroldson R., Balachandran B., Ushakova E., Komissarenko F., Wang H., Milichko V., Tsypkin A., Zuev D., Hu W., Makarov S., Zakhidov A. // Nanoscale. - 2017. - Vol. 9. -P. 12486-12493. https://pubs.rsc.org/en/content/articlelanding/2017/nr/c7nr01631i

Квартиль: Q1

37. Furasova A. D. Synthesis of a rare-earth doped hafnia hydrosol: Towards injectable luminescent nanocolloids / Furasova A. D., Fakhardo A. F., Milichko V. A., Tervoort E., Niederberger M., Vinogradov V. V. // Colloids and Surfaces B: Biointerfaces. - 2017. -Vol. 154. - P. 21-26.

https://www.sciencedirect.com/science/article/pii/S0927776517301017 Квартиль: Q1

38. Makarov S. V. Multifold Emission Enhancement in Nanoimprinted Hybrid Perovskite Metasurfaces / Makarov S. V., Milichko V., Ushakova E. V., Omelyanovich M., Cerdan Pasaran A., Haroldson R., Balachandran B., Wang H., Hu W., Kivshar Y. S., Zakhidov A. A. // ACS Photonics. - 2017. - Vol. 4. - P. 728-735. https://pubs.acs.org/doi/10.1021/acsphotonics.6b00940

Квартиль: Q1

39. Yakovlev A. V. Inkjet printing of ТЮ2/АЮОН heterostructures for the formation of interference color images with high optical visibility / Yakovlev A. V., Milichko V. A., Pidko E. A., Vinogradov V. V., Vinogradov A. V. // Scientific Reports. - 2016. - Vol. 6.

- P. 37090.

https://www.nature.com/articles/srep37090 Квартиль: Q1

40. Yakovlev A. V. Inkjet Color Printing by Interference Nanostructures / Yakovlev A. V., Milichko V. A., Vinogradov V. V., Vinogradov A. V. // ACS Nano. - 2016. - Vol. 10. - P. 3078-3086.

https: //pubs.acs. org/doi/full/10.1021 /acsnano .5b06074 Квартиль: Q1

41. Yakovlev A. V. Sol-gel assisted inkjet hologram patterning / Yakovlev A. V., Milichko V. A., Vinogradov V. V., Vinogradov A. V. // Advanced Functional Materials.

- 2015. - Vol. 25. - P. 7375-7380.

https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201503483 Квартиль: Q1

42. Makarov S. V. Self-adjusted all-dielectric metasurfaces for deep ultraviolet femtosecond pulse generation / Makarov S. V., Tsypkin A. N., Voytova T. A., Milichko V. A., Mukhin I. S., Yulin A. V., Putilin S. E., Baranov M. A., Krasnok A. E., Morozov I. A., Belov P. A. // Nanoscale. - 2016. - Vol. 8. - P. 17809-17814.

https: //pubs.rsc. org/en/content/articlelanding/2016/nr/c6nr04860a Квартиль: Q1

43. Kenzhebayeva Y. Light-Induced Color Switching of Single Metal-Organic Framework Nanocrystals / Kenzhebayeva Y., Bachinin S., Solomonov A. I., Gilemkhanova V., Shipilovskikh S. A., Kulachenkov N., Fisenko S. P., Rybin M. V., Milichko V. A. // The Journal of Physical Chemistry Letters. - 2022. - Vol. 13. - P. 777783.

https://pubs.acs.org/doi/10.1021/acs.jpclett.1c03630 Квартиль: Q1

44. Alekseevskiy P. V. Flexible Metal-Organic Framework for Mechanical sub TByte/inch2 Data Recording under Ambient Condition / Alekseevskiy P. V., Rzhevsliy S., Gilemkhanova V., Kulachenkov N. K., Sapianik A., Barsukova M., Fedin V. P., Milichko V. A. // Advanced Materials Interfaces. - 2021. - Vol. 8. - P. 2101196. https://onlinelibrary.wiley.com/doi/abs/10.1002/admi.202101196

Квартиль: Q1

45. Kulachenkov N. MOF-based Sustainable Memory Devices / Kulachenkov N., Haar Q., Shipilovskikh S., Yankin A., Pierson J. F., Nommé A., Milichko V. A. // Advanced Functional Materials. - 2022. - Vol. 32. - P. 2107949. https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202107949

Квартиль: Q1

46. Kulachenkov N. K. Photochromic Free MOF-Based Near-Infrared Optical Switch / Kulachenkov N. K., Sun D., Mezenov Y. A., Yankin A. N., Rzhevskiy S., Dyachuk V., Nominé A., Medjahdi G., Pidko E. A., Milichko V. A. // Angewandte Chemie International Edition. - 2020. - Vol. 132. - P. 15652-15656. https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.202004293

Квартиль: Q1

47. Mezenov Y. A. Probing the dynamics of Cu nanoparticle growth inside metal-organic frameworks upon electron beam irradiation / Mezenov Y. A., Bruyere S., Kulachenkov N. K., Yankin A. N., Rzhevskiy S. S., Alekseevskiy P. V., Gilemkhanova V. D., Bachinin S. V., Dyachuk V., Krasilin A. A., Zollinger J., Belmonte T., Nominé A., Milichko V. A. // Photonics and Nanostructures - Fundamentals and Applications. - 2020. - Vol. 41. -P. 100832.

https://www.sciencedirect.com/science/article/pii/S1569441020301607 Квартиль: Q2

48. Mezenov Y. A. Polymer matrix incorporated with ZIF-8 for application in nonlinear optics / Mezenov Y. A., Kulachenkov N. K., Yankin A. N., Rzhevskiy S. S., Alekseevskiy P. V., Gilemkhanova V. D., Bachinin S. V., Dyachuk V., Milichko V. A. // Nanomaterials. - 2020. - Vol. 10. - P. 1036. https://www.mdpi.com/2079-4991/10/6/1036

Квартиль: Q1

49. Kulachenkov N. K. Ultrafast Melting of Metal-Organic Frameworks for Advanced Nanophotonics / Kulachenkov N. K., Bruyere S., Sapchenko S. A., Mezenov Y. A., Sun D., Krasilin A. A., Nominé A., Ghanbaja J., Belmonte T., Fedin V. P., Pidko E. A., Milichko V. A. // Advanced Functional Materials. - 2020. - Vol. 30. - P. 1908292. https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201908292

Квартиль: Q1

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.