Выявление перспективных нефтегазоносных объектов на основе моделирования углеводородных систем в центрально-восточной части Суэцкого залива (Египет) тема диссертации и автореферата по ВАК РФ 25.00.10, кандидат наук Таршан Ахмед Рамадан Мохамед

  • Таршан Ахмед Рамадан Мохамед
  • кандидат науккандидат наук
  • 2020, ФГБОУ ВО «Санкт-Петербургский государственный университет»
  • Специальность ВАК РФ25.00.10
  • Количество страниц 312
Таршан Ахмед Рамадан Мохамед. Выявление перспективных нефтегазоносных объектов на основе моделирования углеводородных систем в центрально-восточной части Суэцкого залива (Египет): дис. кандидат наук: 25.00.10 - Геофизика, геофизические методы поисков полезных ископаемых. ФГБОУ ВО «Санкт-Петербургский государственный университет». 2020. 312 с.

Оглавление диссертации кандидат наук Таршан Ахмед Рамадан Мохамед

Table of Contents

Introduction

Chapter I Tectonic setting and geological history

1.1. Plate tectonic setting

1.2. Timing of rifting

1.3. Structural setting of the GOS and the eastern margin

1.4. Stratigraphy of the GOS and the eastern margin

1.4.1. Pre-rift lithostratigraphic units

1.4.2. Syn-rift lithostratigraphic units

1.4.3. Post-rift lithostratigraphic units

1.5. Tectono-stratigraphic evolution of the GOS and the eastern margin

1.5.1. Pre-rift history

1.5.2. Rift development

1.5.2.1. Stage 1- Late Oligocene-Earliest Miocene

1.5.2.2. Stage 2 - Earliest Miocene

1.5.2.3. Stage 3 - Mid-Miocene-Late Miocene

1.5.2.4. Stage 4 - Pliocene-Recent

1.6. Petroleum system

1.6.1. Source rocks

1.6.2. Reservoir rocks

1.6.3. Seals

1.6.4. Traps

Summary of Chapter I

Chapter II Airborne magnetic data analysis (Construction of the basement layer of the 3D model)

2.1. Data acquisition

2.1.1. Airborne magnetometer

2.1.2. Base station magnetometer

2.1.3. Base station GPS

2.2. Data calibration

2.2.1. Figure of Merit (FOM) test

2.2.2. Heading test

2.2.3. Parallax / Lag test

2.2.4. Altimeter calibration

2.3. Data processing

2.3.1. Diurnal correction

2.3.2. Heading correction

2.3.3. Parallax / Lag correction

2.3.4. International Geomagnetic Reference Field (IGRF)

2.4. Data presentation

2.4.1. Gridding of airborne magnetic data

2.4.2. Conversion of airborne geophysical data to image format

2.5. Data interpretation

2.5.1. Qualitative interpretation

2.5.1.1. Reduction to the pole

2.5.1.2. The energy (power) spectrum

2.5.2. Quantitative interpretation of airborne magnetic data

2.5.2.1. Magnetic depth estimation

A. Analytical signal (AS) technique

B. Source parameter imaging (SPI) technique

C. 3D Euler deconvolution

2.6. Forward and inverse modelling

2.6.1. Concept

2.6.2. Magnetic forward modelling

2.6.3. Magnetic inversion modelling

2.6.4. Main problems of inversion

2.6.4.1. Existence of solution

2.6.4.2. Existence of unique solution

2.6.4.3. Existence of stable solution

2.6.5. Inversion methods

2.6.5.1. Least square inversion

2.6.5.2. Minimum norm inversion

2.6.5.3. Marquardt-Levenberg inversion

2.7. Interactive 2D-magnetic modelling

2.8. 3D magnetic modelling interpretation

2.8.1. Analysis for inversion process

Summary of Chapter II

Chapter III 3D petroleum system model

3.1. General

3.2. Creating depth-based structural model

3.2.1. Data gathering

3.2.2. Data digitising

3.2.3. Well data

3.2.4. Depth-structure maps

3.2.5. Pillar Gridding

3.2.6. Defining Horizons and Layering

3.3. Lithology, depositional environment and age determination

3.4. Determination of petroleum system element

3.5. Total organic carbon (TOC) and hydrogen index (HI)

3.6. Boundary Condition

3.6.1. Heat flow map

3.6.2. Sediment Water Interface Temperature (SWIT)

3.7. Forward modelling

Summary of Chapter III

Chapter IV Identification of oil and gas bearings objects based on the results of the 3D petroleum system model (Model results)

4.1. Source rock analysis

4.2. Forecast of oil and gas accumulations within reservoir rocks

4.2.1. Prerift reservoirs

4.2.1.1. Nubia sandstone reservoirs

4.2.2. Synrift Reservoirs

4.2.2.1. Nukhul Formation

4.2.2.2. Rudeis Formation

4.2.2.3. Belayim Formation

Summary of Chapter IV

Conclusions and main results

References

List of abbreviations

Table of Figures

Table of Tables

Рекомендованный список диссертаций по специальности «Геофизика, геофизические методы поисков полезных ископаемых», 25.00.10 шифр ВАК

Введение диссертации (часть автореферата) на тему «Выявление перспективных нефтегазоносных объектов на основе моделирования углеводородных систем в центрально-восточной части Суэцкого залива (Египет)»

Introduction

Relevance of the research topic

The tectono-stratigraphic history of the Gulf of Suez (GOS) has created multiple reservoirs that lead to the hydrocarbon potentiality of the GOS basin, in addition to existence of sufficient source rocks which are spatially distributed in the area (McClay, 1998).

The GOS basin is considered as one of the best examples of a continental rift in which large-scale and along-axis segmentation into sub-basins by accommodation zones was clearly identified. It was also one of the premier models for Miocene carbonate platform development, and was identified as a great example of the interaction between sedimentation and extensional fault development.

Despite the significant amount of data about the structural and lithological components of individual parts of the GOS, a comprehensive analysis of the entire basin has not yet been performed. This research work presents the results of the integration of detailed structural and stratigraphic studies of the eastern part of the rift system of the GOS.

There are many oil fields have been discovered in the eastern of the GOS. However, there is no comprehensive work has been carried out to reassess this oil and gas region in order to detect new zones of hydrocarbon accumulation, as well as to assess the the accumulations that have already been discovered using geophysical methods and modern software.

This study aims to create a detailed study of the structure of the basin and the history of the study area through constructing a three-dimensional (3D) depth structural model of the study area and creating a petroleum system model to identify hydrocarbon accumulation zones.

The main objective of the study is to predict hydrocarbon accumulation zones in the study area using several geophysical data through constructing a petroleum system model, as well as comparing the proven and undiscovered hydrocarbon accumulations.

The objectives of the study include:

1- Acquisition, processing and interpretation of airborne magnetic data, and constructing 3D depth model of the basement layer of the study area.

2- Creating depth-based structural model of the study area using seismic data and well data.

3- Constructing 3D petroleum system model of the study area.

4- Identification of oil and gas bearing objects based on the results of the petroleum system model. The scientific novelty of the research results

The rationale for the research comes from the realization that the GOS has excellent hydrocarbon potentiality, with a prospective sedimentary basin area measuring more than 19,000 km2, it is considered as the most productive oil province rift basin in Africa and the Middle East. However, the

central eastern part contains productive oil and gas fields; there is probability of existence new hydrocarbon accumulations that haven't been discovered in the central eastern part of the GOS. In the framework of this study, a 3D petroleum system model of the study area was created for the first time, the model was calibrated according to the discovered oil and gas fields and recommendations were presented for further geological studies. The practical value of the research

The results obtained in the thesis can be used by the Egyptian Ministry of Petroleum to re-evaluate this area and can be also provided to the companies that have the right to explore for oil and gas in the study area. The results indicate that there are new accumulations of hydrocarbon that have not yet been discovered. Therefore, by carrying out further detailed studies on these locations, the possibility of the presence of oil and gas will be significant, therefore the research has great economic importance.

Methodology and research methods

The method for determining the hydrocarbon accumulations in this research depends on using various types of data and modern programs to achieve this goal. The Airborne magnetic data were initially pre-processed in the field after each flight. The data were gathered and prepared to perform the full processing sequence. The processing sequence was applied accurately using Geosoft (Oasis montaj). Three advanced techniques were used to estimate the depth to the basement layer. These methods are analytical signal (AS), source parameter imaging (SPI) and 3D Euler deconvolution. Two-dimensional (2D) inverted susceptibility layered-earth model was applied along four profiles within the study area using GM-SYS-2D. Using GM-SYS-3D inversion code, the inverted basement relief images, corresponding to the used susceptibility contrasts, were consistently inspected and the basement relief magnetic map was created. The produced basement relief magnetic map was used in building the 3D depth-based structural model of the study area using Petrel software. Seismic sections and well data were used to create the 3D depth-based structural model. A model consisting of 29 layers, including the topography and basement layers, was created using Petrel software. The lithology and age of each layer were accurately determined to be used in building the petroleum system model. Data about temperature gradient and thermal conductivity were obtained for different wells. In addition to that, heat flow values of the study area have been computed and the heat flow map is created to be used in predicting the oil and gas accumulations in the study area. Information about hydrocarbon masses and volumes generated and expelled from the source rocks as well as the amount that has migrated and accumulated in reservoirs was calculated through running forward simulation using PetroMod software. Based on the results of PetroMod 3D modelling, accumulations of oil and gas are modelled in the different reservoir layers in the study area.

This work uses the following research methods and steps:

1- Acquisition, processing and interpretation of the airborne magnetic data.

2- Conversion of airborne geophysical data to image format.

3- Depth estimation of the basement layer of the study area using different advanced techniques.

4- 2D inverted susceptibility layered-earth model along four profiles using GM-SYS-2D.

5- 3D magnetic modelling interpretation Using GM-SYS-3D inversion code.

6- Digitising the horizons of the seismic section using Petrel software.

7- Constructing depth-based structure model using Petrel software.

8- Creating heat flow map of the study area.

9- Creating petroleum system model of the study area using PetroMod software.

10- Identification of the new accumulations of hydrocarbon within the study area.

The calibration and processing of the airborne magnetic data were carried out at the processing center of the Geophysics Department of the Nuclear Materials Authority in Egypt. The main bulk of the research was conducted in the Department of Geophysics of Saint Petersburg State University. Airborne magnetic data interpretation, 2D and 3D modelling were applied using Geosoft (Oasis montaj). The construction of the 3D depth-based structure model, the petroleum system model, and determination of the hydrocarbon accumulations were carried out using the Petrel and PetroMod programs.

Main provisions of the thesis for defense

1. Based on the processing and interpretation of airborne magnetic data, performed by the author, the map of the basement layer was constructed, which formed as the base of the 3D structural model of the sedimentary basin of the study area.

2. Based on the author's collection, generalization of geological and geophysical data, and interpretation of seismic data in conjunction with well data, a 3D petroleum system model was constructed.

3. The analysis of the results of 3D petroleum system modelling was conducted. The reliability of the model is confirmed by comparing the discovered hydrocarbon accumulation zones. The prediction of promising oil and gas accumulation zones based on model accumulation zones was given. Approbation and publication of research results

The main materials, results and provisions of the dissertation have been presented and discussed in the Russian and international conferences:

1- XXVI International Scientific Conference of Students, Graduate Students and Young Scientists «Lomonosov-2019», Moscow State University, Moscow, Russia, 2019.

2- III All-Russian scientific conference with international participation «Geodynamic processes and natural disasters», Institute of Marine Geology and Geophysics, Yuzhno-Sakhalinsk, 2019.

3- XYIII International Scientific and Practical Conference of Students, Postgraduates and Young Scientists «A step into the future: theoretical and applied research of modern science», Scientific and Publishing Center Discovery, St. Petersburg, 2019.

4- International Scientific and Practical Conference «Technical and Natural Sciences», Humanitarian National Research Institute, St. Petersburg, 2019.

5- 13th International Scientific Conference «Science and Society», part time participation, SCIEURO, London, 2019.

6- V International Conference «Information Technologies in Earth Sciences and Applications for Geology, Mining and Economy ITES&MP», Russian Academy of Sciences, State Geological Museum named after V.I.Vernadsky RAS, Moscow, 2019. of RAS, Moscow, 2019.

On the topic of the dissertation, 11 works were published, including 5 articles. All articles have been published in scientific journals, recommended by the Higher Attestation Commission for publishing materials of candidate and doctoral theses, and indexed in the Web of Science and Scopus databases. The author also has published an article on another topic in a journal indexed in the Scopus database.

Personal contribution

The author has formulated the research problem and scopes. The analysis, processing and interpretation of the data were carried out by the author under the supervision of his scientific advisor. The results were discussed with the scientific adviser.

The volume and structure of the thesis work

The work contains 149 pages, 13 tables and 66 figures. The thesis structure includes introduction, four chapters, conclusion, list of references (consisting of 175 titles), list of abbreviations, list of figures and list of tables. The introduction indicates the relevance of the work, in which the goals and objectives of the study are formulated. The first chapter provides information about the tectonic setting and geological history of the GOS and the eastern margin. In the second chapter, acquisition and processing of the airborne magnetic data were applied, the data are quantitatively and qualitatively interpreted, and the airborne magnetic maps are generated. The inverse process of the airborne magnetic data is performed, including 2D and 3D inverse modelling. The third chapter is devoted to constructing the 3D depth-based structure model of the study area using Petrel software and the 3D petroleum system model. In chapter four, the results of the operation of the forward modelling of the 3D petroleum system model using PetroMod software are discussed to identify the hydrocarbon

accumulations in the study area. In conclusion, the main scientific results of the work and the practical

recommendations are given.

Acknowledgement

The work was carried out under the supervision of Shimanskiy Sergey Vladimirovich, Associate Professor of Geophysics, Candidate of Geological and Mineralogical Sciences, Saint Petersburg State University, Russia, to whom I would like to express my profound gratitude for the suggestions with regard to the choice of the topic, for tactful and patient guidance, his attention and valuable comments.

I consider it a pleasant duty to express appreciation to Titov Konstantin Vladimirovich, Professor of Geophysics, Doctor of Geological and Mineralogical Sciences, Saint Petersburg State University, Russia, and other employees of the Department of Geophysics at Saint Petersburg State University for their participation in the work and discussion of the results.

I would like to thank the Department of the Airborne Geophysics of the Nuclear Materials Authority for releasing the airborne magnetic data and for providing the necessary information and facilities to accomplish this work. Also, I would like to thank the Department of Geophysics at Saint Petersburg State University for allowing the use of the necessary software to accomplish this work.

I would like to express my deepest thanks to my family, who gave me all the potential support to carry out this study, and my lovely kids Nour and Hala for their patience and encouragement during this work.

Похожие диссертационные работы по специальности «Геофизика, геофизические методы поисков полезных ископаемых», 25.00.10 шифр ВАК

Заключение диссертации по теме «Геофизика, геофизические методы поисков полезных ископаемых», Таршан Ахмед Рамадан Мохамед

Заключение и основные результаты

В данной диссертации представлены результаты сбора, обработки и интерпретации аэромагнитных данных, а также результаты построения трехмерной (3D) модели нефтегазоносной системы для выявления перспективных нефтегазоносных объектов в центрально-восточной части Суэцкого залива.

В этой работе были поставлены четыре основные задачи. Во-первых, анализ аэромагнитных данных и построение трехмерной глубинной модели поверхности фундамента изучаемой области. Во-вторых, построение трехмерной глубинной структурной модели исследуемого района с использованием сейсмических данных и данных по скважинам. В-третьих, построение 3D модели нефтегазоносной системы исследуемого района. Наконец, проведена идентификация нефтегазоносных объектов на основе результатов 3D моделирования нефтегазоносной системы.

Департамент аэрогеофизики Управления по ядерным материалам (NMA) Египта провел аэромагнитную съемку высокого разрешения на площади 2745 км2. Данные были получены по основным линиям, расположенным на расстоянии 1000 м, и по контрольным линиям, расположенным на расстоянии 10000 м. Съемка проводилась по азимуту 125о - 305о для основных линий и 35о - 215о для контрольных линий.

Данные специально обрабатывались так, чтобы изолировать компонент магнитного поля земной коры от других компонентов, которые не имеют геологического значения. Данные обрабатывались поэтапно в следующем порядке: вводились поправка на суточные вариации магнитного поля, поправка на выдерживание курса, поправка на запаздывание, Международное геомагнитное аналитическое поле (IGRF), уравнивание и микроуравнивание.

Карты RTP (Рис. 2.2) была получены из карты общей напряженности магнитного поля (Рис. 2.3) для обеспечения прямой корреляции между магнитными аномалиями и их источниками. Магнитная карта RTP была разделена на два магнитных компонента -региональный и остаточный. Карта региональных магнитных компонентов (Рис. 2.5) напоминает в значительной степени аэромагнитную карту RTP. Карта остаточных магнитных компонентов (Рис. 2.6) показывает такие же общие характеристики, как аэромагнитные карты RTP и карта региональных магнитных компонентов. Тем не менее, он демонстрирует больше информации о типах магнитных пород, их контактах и взаимосвязи, включая разломы, складки и т. д., особенно расположенные близко к поверхности.

Три современных метода были применены для анализа магнитных данных, выполнения структурной интерпретации и изображения рельефа фундамента. Это методы аналитического

сигнала "AS" (Salem, 2002), метод визуализации параметров источника "SPI" (Thurston, Smith, 1997) и 3D метод деконволюции Эйлера (Reid et al, 1990). Эти методы являются эффективными инструментами картографирования магнитных структур.

Анализ методами AS и SPI показал похожие результаты (Рис. 2.8 и 2.9) в частности, в восточной части на обеих картах глубины до фундамента меньше и составляют местами менее 500 м. С другой стороны, в западной части района фундамента залегает глубже, на глубине местами более 5000 м. Центральная южная часть района на обеих картах показывает малые глубины залегания фундамента, в этом районе он местами выходит на поверхность. С другой стороны, глубина залегания становится больше по мере движения на восток, что может свидетельствовать о существовании бассейна. Для определения местоположения и глубины разломов в исследуемой области применялся метод 3D деконволюции Эйлера. Структурный индекс SI = 0 дает лучшие решения, чем структурные индексы 1, 2 и 3 (Рис. 2.10).

2D моделирование было выполнено методом GM-SYS-2D по четырем выбранным профилям, полученным из карты RTP (Рис. 2.12). Данные по скважинам были использованы для контроля глубины до фундамента на этих профилях. Хорошее соответствие между наблюдаемыми и расчетными магнитными кривыми наблюдалось при среднеквадратической ошибке (RMS) менее 4%. Структурно профили показывают, что фундамент наклонен рядом нормальных разломов.

При использовании кода инверсии GM-SYS-3D, предполагаемый контраст магнитной восприимчивости Дк осадочного разреза - фундамента для нескольких инверсионных испытаний постепенно установился между 0,035 и 0,087 SI. Было установлено, что эффективный контраст восприимчивости близок к 0,0628 SI. Глубина до поверхности фундамента по интерпретации магнитных данных через трехмерное моделирование колеблется от 500 м до более чем 4600 м (Рис. 2.18).

Трехмерная глубинная структурная модель создается с использованием сейсмических разрезов и данных по скважинам. Эти данные были собраны и использовались при создании карты глубинных структур для каждой формации в исследуемой области с помощью программного обеспечения Petrel. Данные были загружены для представления в трехмерном виде для построения 3D-глубинной структурной модели в Petrel (Рис. 3.14). Результаты 3D моделирования (Рис. 3.17 и 3.18) показывают, что в пределах исследуемой территории имеется пять участков, которые считаются бассейнами, где глубина до фундамента колеблется от 3000 до 4500 м, в дополнение к существованию мощного осадочного чехла, перекрывающего породы фундамента.

Для каждого слоя были определены литология, обстановка осадконакопления и возраст. Элемент нефтегазоносной системы определяется для каждого слоя как материнская порода,

резервуар и покрышка. Среднее значение TOC и HI для каждого пласта рассчитывается и используется при построении модели нефтегазоносной системы. При моделировании бассейна были определены два основных граничных условия: тепловой поток и температура поверхности раздела вода-осадок (SWIT). Затем, после определения возраста и свойств всех слоев, запускался процесс моделирования с начала осадконакопления самого древнего слоя до настоящего времени.

Полученные с помощью программного обеспечения PetroMod зоны аккумуляции углеводородов генерируются и моделируются в 3D-режиме. Результаты показывают, что Суэцкий залив является сложной многослойной системой. Зоны аккумуляции нефти и газа моделируются в семи коллекторах на исследуемой территории. Предрифтовые резервуары включают формации Нубия B, Нубия A-P1, Нубия A-P2 и Нубия A-P3.

Смоделированные зоны аккумуляции нефти и газа в этих пластах показывают, что общая масса нефти и общий объем газа равны, соответственно, 23,6 млн баррелей и 31815,9 Мм3 в резервуаре Нубия B; 49,85 млн баррелей и 23411,42 Мм3 в резервуаре Нубия A-P3; 235,13 млн баррелей и 27605,9 Мм3 в резервуаре Нубия А-Р2, а также 141,61 млн баррелей и 11175,14 Мм3 в резервуаре Нубия А-Р1.

Синрифтовые формации включают резервуары Нухул, Рудейс и Белаим. Смоделированные зоны аккумуляции нефти и газа в них показывают, что общая масса нефти и общий объем газа равны, соответственно, 1951,72 млн баррелей и 56945,7 Мм3 в резервуаре Нухул; 2449,77 млн баррелей и 315649,55 Мм3 в формации Рудейс и 454,98 млн баррелей и 2708,9 Мм3 в резервуаре Белаим.

На основании проведенного исследования можно предложить следующие основные результаты и рекомендации, полученные в рамках диссертационной работы:

1. Результаты исследования глубин до фундамента в исследуемой зоне на основе методов аналитического сигнала (AS) и визуализации параметров источника (SPI) показали, что глубина колеблется от примерно 600 до более чем 5000 м. По методу 3D деконволюции Эйлера структурный индекс SI = 0 дает лучшие решения, чем структурные индексы 1, 2 и 3.

2. Результат инверсионного кода GM-SYS-3D показал, что глубина до фундамента колеблется от 500 до более чем 4600 м.

3. Результаты работы программного обеспечения PetroMod показали, что на исследуемой территории имеются неоткрытые зоны аккумуляции, смоделированные в пределах исследуемой территории. Эти участки нуждаются в сейсмической разведке 2D и 3D.

4. Смоделированные зоны аккумуляции нефти и газа в этих пластах показывают, что общая масса нефти и общий объем газа равны 23,6 млн баррелей и 31815,9 Мм3 в резервуаре

Нубия В; 49,85 млн баррелей и 23411,42 Мм3 в резервуаре Нубия А-Р3; 235,13 млн баррелей и 27605,9 Мм3 в резервуаре Нубия А-Р2, а также 141,61 млн баррелей и 11175,14 Мм3 в резервуаре Нубия А-Р1, 1951,72 млн баррелей и 56945,7 Мм3 в резервуаре Нухул; 2449,77 млн баррелей и 315649,55 Мм3 в формации Рудейс и 454,98 млн баррелей и 2708,9 Мм3 в резервуаре Белаим.

5. В юго-восточной части района работы не проводились, но по результатам моделирования РейоМ^ существует вероятность существования углеводородов в различных коллекторах.

6. Продолжая бурение скважин к востоку и западу от месторождения Белаим Ленд, можно ожидать более крупные скопления, чем известные в настоящее время.

7. Участки расположения неоткрытых зон аккумуляции углеводородов в каждом пласте требуют более детальной сейсморазведки 2D и 3D для подтверждения наличия углеводородов.

Список литературы диссертационного исследования кандидат наук Таршан Ахмед Рамадан Мохамед, 2020 год

Список литературы

1- Таршан А. Методика наблюдений и результаты аэромагнитной съемки по восточной части Суэцкого залива (Египет) // ВЕСТНИК ВГУ. СЕРИЯ: ГЕОЛОГИЯ. 2019. № 4. С. 85-89.

2- Abdallah A.M., Adindani A., Fahmy N. Stratigraphy of the Lower Mesozoic rocks, Western Side of the Gulf of Suez // Review Geological Survey and Mining Resources Department. 1963. Vol. 27. P. 23.

3- Abdel Gawad M. The Gulf of Suez; A brief review of stratigraphy and structure // Review Phil., Trans. Roy. Soc. Lond, Ser. A. 1970. Vol. 267. P. 41-48.

4- Abdel Khalek M.L., Abdel Wahed M., Senim A. Wrenching deformation and tectonic setting of the northwestern part of the Gulf of Aqaba. Geodynamics and sedimentation of the Red Sea-Gulf of Aden Rift system // Geological Survey of Egypt, Special Publication. 1993. Vol. 1. P. 409-445.

5- Abdel Zaher M., El Nuby M., Ghamry E., Mansour K., Saadi N.M., Atef H. Thermal studies in oilfield districts of Eastern Margin of the Gulf of Suez, Egypt // NRIAG Journal of Astronomy and Geophysics. 2014. Vol. 3. P. 62-69.

6- Abdel Zaher M., Saibi H., Ghamry E. A preliminary regional geothermal assessment of the Gulf of Suez, Egypt // Journal of African Earth Sciences. 2011. Vol. 60. №. 3. P. 117-132.

7- Abou Shagar S. Source rock evaluation of some intervals in the Gulf of Suez area, Egypt // Egyptian Journal of Aquatic Research. 2006. Vol. 32. P. 70-87.

8- Abu Al-Atta M.A. Hydrocarbon exploration and tectonic evolution of Belayim marine oil field, Gulf of Suez, Egypt // Unpublished MSc. Thesis, Mansoura University, Egypt. 2015. P. 254.

9- Afife M.M., Al-Atta M.A., Ahmed M.A., Issa G.I. Thermal maturity and hydrocarbon generation of the Dawi Formation, Belayim Marine Oil Field, Gulf Of Suez, Egypt: A 1D basin modeling case study // Arab. J.Geosci. 2016. Vol. 9. P. 1-31.

10- Al-Atta M.A., Issa G. I., Ahmed M.A., Afife MM. Source rock evaluation and organic geochemistry of Belayim Marine Oil Field, Gulf of Suez, Egypt // Egyptian Journal of Petroleum. 2014. Vol. 23. № 3. P. 285-302.

11- Al-Hajeri M., Al Saeed M., Tessen N. Basin and petroleum system modeling // Oilfield Review Summer. 2009. Vol. 21. № 2. P. 14-29.

12- Ali M.M. Acquisition, processing and interpretation of airborne magnetic and gamma-ray spectrometry survey data of Elkharga area, Central Western Desert Egypt // M.Sc. Thesis, Menoufiya University. 2009. P. 30-39.

13- Alsharhan A.S. Petroleum geology and potential hydrocarbon plays in the Gulf of Suez rift basin, Egypt // AAPG Bulletin. 2003. Vol. 87. P. 143-180.

14- Alsharhan A.S., Salah M.G. Geology and hydrocarbon habitat in rift setting: northern and central Gulf of Suez, Egypt // Bulletin of Canadian Petroleum Geology. 1995. Vol. 43. №. 2. P. 156- 176.

15- Araffa S.A.S., El-bohoty M., Abou Heleika M., Mekkawi M., Ismail E., Khalil A., Abd EL-Razek E. Implementation of magnetic and gravity methods to delineate the subsurface structural features of the basement complex in central Sinai area, Egypt // NRIAG. 2018. Vol. 7. P. 162-174.

16- Atia H.M. An integrative modeling of Ras Budran Field, Gulf of Suez, Egypt // Unpublished MSc. Thesis, Mansoura University, Egypt. 2014. P. 198.

17- Attia H.M., Ahmed M.A., Korrat I.M. Thermal maturation simulation and hydrocarbon generation of the Turonian Wata formation in Ras Budran oil field, Gulf of Suez, Egypt // Journal Environmental Sciences. 2015. Vol. 44. P. 57-92.

18- Azab A.A., El-khadragy A.A. 2.5-D gravity/magnetic model studies in Sahl El Qaa Area, Southwestern Sinai, Egypt // Pure Appl. Geophys. 2013. V. 170. P. 2207-2229.

19- Barbosa V.C.F., Silva J.B.C., Medeiros W.E. Stability analysis and improvement of structural index estimation in Euler deconvolution // Geophysics, 1999. Vol. 64. P. 48-60.

20- Beleity A.M., Ghoneim M., Hinnawy M., Fathi M., Gebali G., Kamel M. Paleozoic stratigraphy, paleogeography and paleotectonics in the Gulf of Suez // 9th Egyptian General Petroleum Corporation, Petroleum Exploration and Production Conference, Cairo. 1986. P. 21. Vol. 1. P. 96-117.

21- Ben-Menahem A., Nur A., Vered M. Tectonics, seismicity and structure of the Afro- Eurasian junction-the breaking of and incoherent plate // Physics of the Earth Planetary Interiors. 1976. Vol. 12. P. 1-50.

22- Bhattacharyya B.K. Magnetic anomalies due to prism-shaped bodies with arbitrary polarization // Geophysics. 1964. V. 29. P. 517-531.

23- Blakely R.J. Potential theory in gravity and magnetic applications // Cambridge Univ. Press. 1994. P. 417.

24- Bott M.H.P. the use of rapid digital computing methods for direct gravity interpretation of sedimentary basins // Geophysical Journal of the Royal Astronomical Society. 1960. Vol. 3. P. 63-67.

25- Bott M.H.P. Two methods applicable to computers for evaluating magnetic anomalies due to finite three dimensional bodies // Geophysical Prospecting. 1963. Vol. 11.P. 292-299.

26- Broome H.J. Generation and interpretation of geophysical images with examples from the Rae Provinces, Northwestern Canada Shield // Geophysics. 1990. Vol. 55. P. 977-997.

27- Broome H.J., Simard R., Teskey D. Presentation of magnetic anomaly map data by stereo projection of magnetic shadowgrams // Canadian J. of Earth Sci. 1985. Vol. 22. P. 311-314.

28- Cady J.W. Calculation of gravity and magnetic anomalies of finite-length right polygonal prisms // Geophysics. 1980. V. 45. P. 1507-1512.

29- Clifford A.C. African oil: past, present and future // In Halbouty, M.T. (Ed.), Future petroleum provinces of the world, American Association of Petroleum Geologists, Tulsa, Oklahoma. 1986. V. 40. P. 339-372.

30- Coffield D.Q., Smale J.L. Structural geometry and synrift sedimentation in an accommodation zone, Gulf of Suez, Egypt // Oil & Gas Journal. 1987. Vol. 85. P. 56-59.

31- Coleman R.G. Geologic background of the Red Sea. In // Whitmarsh R.B, Weser O.E, Ross D.A et al (eds) Initial reports of the deep sea drilling project, Government Printing Office, Washington. 1974. Vol. 23. P. 813-819.

32- Cooles G.P., Mackenzie S.A., Quigley M.T. Calculation of petroleum masses generated and expelled from source rocks // Review Organic Geochemistry. 1986. Vol. 10. P. 235-245.

33- Corbato C.E. A least-squares procedure for gravity interpretation // Geophysics. 1965. Vol. 30. P. 228-233.

34- Cordell L., Knepper D.H. Aeromagnetic images-Fresh insight to the buried basement, Rolla Quadrangle, southeast Missouri, USA // Geophysics. 1987. Vol. 52. №. 2. P. 218-231.

35- Danes Z. F. On a Successive Approximation Method for Interpreting Gravity Anomalies // Geophysics. 1960. Vol. 25. №. 6. P. 1215-1228.

36- Dewey J. F., Sengor A.M.C. Aegean and surrounding regions: complex multiplate and continuum tectonics in a convergent zone // Geol.Soc. America Bull., pt I. 1979. Vol. 90. P. 84-92.

37- Dobrin M.B. Introduction to geophysical prospecting // McGraw-Hill Book Co., New York, USA. 1976. P. 630.

38- Dolson C.J., Shaan V.M., Matbouly S., Harwood C., Rashed, R., Hammouda H. The Petroleum Potential of Egypt // In: Downey, W.M., Threet, C. J., Morgan, A. W. (Ed.), Petroleum proviences of the twenty-first century, American Association of Petroleum Geologists, Tulsa, Oklahoma. 2001. Vol. 74. P. 453-482

39- Drury S.A., Walker, A.S.D. Display and enhancement of gridded aeromagnetic data of the solway basin // International Journal of Remote Sensing. 1987. Vol. 8. P. 1433-1444.

40- Duval J.S. Composite colour images of aerial gamma-ray spectrometric data // Geophysics. 1983. Vol. 48. P. 722-735.

41- Egyptian General Petroleum Corporation Stratigraphic Committee. Miocene rock stratigraphy of Egypt // Journal of Egyptian Geological Society. 1974. Vol. 18. p. 1-59.

42- El Atfy H., Brocke R., Uhl D., Bandar G., Stock A.T., Littke R. Source rock potential and paleoenvironment of the Miocene Rudeis and Kareem formations, Gulf of Suez, Egypt: An integrated palynofacies and organic geochemical approach // International Journal of Coal Geology. 2014. Vol. 131. P. 326-343.

43- El Ayouty M.K. Petroleum geology // In Said, R. (Ed.), Geology of Egypt, Balkema, Rotterdam. 1990. P. 567-599.

44- El Diasty W.S., Abo Ghonaim A.A., Mostafa A.R., El Beialy S.Y., Edwards K.J. Biomarker characteristics of the Turonian-Eocene succession, Belayim oil fields, central Gulf of Suez, Egypt // Journal of the Association of Arab Universities for Basic and Applied Sciences. 2016. Vol. 19. №.1. P. 91-100.

45- El Sharawy, M.S., Nabawy, B.S. Geological and Petrophysical Characterization of the Lower Senonian Matulla Formation in Southern and Central Gulf of Suez, Egypt // Arabian Journal for Sciences and Engineering. 2016. Vol. 41. P. 281-300.

46- Engel A.E.J., Dixon H.T., Stern J.R. Late Precambrian evolution of Afro-Arabian crust from ocean arc craton // Geological Society of American Association of Petroleum Geologists (AAPG) Bulletin. 1980. Vol. 91. P. 699-706.

47- Evans A.E. Miocene sandstone provenance relationships in the Gulf of Suez: Insights into synrift unroofing and uplift history // Review American Association of Petroleum Geologists Bulletin. 1990. Vol. 74. P. 1386-1400.

48- Evans A.L. Neogene stratigraphic and tectonic events in the Gulf of Suez area, Egypt // Review Tectonophysics. 1988. Vol. 153. P. 235-247.

49- Freund R. Plate tectonics of the Red Sea and Africa // Nature. 1970. V. P. 228-453.

50- Freund R., Garfunkeli Z., Zak I. The shear along the Dead Sea rift. Philos // Trans. R. Soc. Lond., Ser. A. 1970. Vol. 267. P. 107-130.

51- Gass I.G. Pan-African (Upper Proterozoic) plate tectonics of the Arabian Nubian Shield // In Korner, A. (Ed.), Precambrian plate tectonics, Elsevier Scientific publishing company, Amsterdam. 1981. P. 387-405.

52- Geosoft Inc. GRIDEPTH, Deconvolution of potential field data // Geosoft Inc., Toronto. 1995.

53- Geosoft Inc. Montaj Geophysics Levelling System, Processing and enhancement geophysicsl data expansion for oasis montaj // Geosoft Inc., Toronto. 2006. Vol. 3.

54- Geosoft Inc. Geosoft mapping and processing system // Geosoft Inc., Toronto, Canada. 2010.

55- Geosoft Program (Oasis Montaj). Geosoft mapping and application system // Inc, Suit 500, Richmond St. West Toronto, ON Canada N5SIV6. 2007.

56- Ghorab M.A. Abnormal stratigraphic features in Ras Gharib Oilfield // 3rd Arab Petroleum Conference. 1961. Vol. 2. P. 1-10.

57- Grant F.S., West G.F. Interpretation theory in Applied Geophysics // McGraw-Hill Book Co., New York. 1965. P. 583.

58- Hall E.L. Computer image processing and recognition // Academic Press. 1979. P. 600.

59- Hantschel T., Kauerauf A.I. Fundamentals of Basin and Petroleum Systems Modeling // Springer-Verlag Berlin Heidelberg, Germany. 2009. P. 476.

60- Hassan A. A new Carboniferous occurrences in Abu Durba, Sinai, Egypt // 6th Arab Petrol. Cong., Baghdad. 1967. Vol. 39. P. 11.

61- Hassouba M., Sawari M., Saker S. Early synrift sedimentation in October field area, a stratigraphic model for hydrocarbon accumulation // 12th EGPC Exploration and Production Conference, Cairo. 1994. Vol. 1. P. 10.

62- Hempton M.R. Constraints on Arabian plate motion and extensional history of the Red Sea // Tectonics. 1987. Vol. 6. P. 687-705.

63- Higley D.K., Lewan M., Roberts L.N.R., Henry M.E. Petroleum System Modeling Capabilities for Use in Oil and Gas Resource Assessments // USGS Open-File Report. 2006. Vol. 1024. P. 1-22.

64- IHS E. Gulf of Suez Basin Monitor: Egypt // IHS Energy. 2006. Vol. Iris21, ID: 410900.

65- Issawi B. Geology of Durb El Araba in Western Desert // Review Ann. Geol. Surv // Egypt. 1971. P.53-92.

66- James N.P., Congilio M., Aissaoui D.M., Purser B.H. Facies and geologic history of an exposed Miocene rift margin carbonate platform, Gulf of Suez // AAPG Bulletin. 1988. Vol. 72. P. 86-109.

67- Jupp D.L.B., Vozoff K. Stable Iterative Methods for the Inversion of Geophysical Data // Geophysical Journal of the Royal Astronomical Society. 1975. Vol. 42. №.3. P. 957-976.

68- Kearey P., Michael B. An introduction to geophysical exploration // Blackwell Scientific Publication, Second Edition, London, Great Britain. 1994. P. 245.

69- Khalil B., Meshref W.M. Hydrocarbon occurrences and structural style of the southern Suez rift basin // Proceedings 9th, EGPC Exploration and Production Conference, Egyptian General Petroleum Corporation, Cairo, Egypt. 1988. Vol. 1. P. 86-109.

70- Knebel G.M., Rodriguez-Eraso G. Habitat of Some Oil // Bulletin of the AAPG. Vol. 40. №. 4. 1956. P. 547-561.

71- Kohn B.P., Eyal M. History of uplift of the crystalline basement of Sinai and its relation to opening of the Red Sea as revealed by fission track dating of apatites // Earth Planet Sci Lett. 1981. Vol. 52. P. 129-141

72- Kostandi A.B. Facies maps for the study of the Paleozoic and Mesozoic sedimentary basins of the Egyptian region // The First Arab Petrol. Cong., Cairo. 1959. Vol. 2. P. 54-62.

73- Kowalik W.S., Glenn W.E. Image processing of aeromagnetic data and Integration with Landsat images for improved structural interpretation // Geophysics. 1987. Vol. 52. №. 7. P. 875-884.

74- Kulke H. Miocene carbonate and anhydrite sequence in the Gulf of Suez as a complex oil reservoir // The 6th Exploration and Production Conference, Egyptian General Petroleum Corporation, Cairo. 1982. P. 269-275.

75- Lashin A., Al-Arifi N., Abu Ashour N. Evaluation of the ASL and Hawara formations using seismic- and log-derived properties, October Oil Field, Gulf of Suez, Egypt // Arabian Journal of Geosciences. 2011. Vol. 4. №. 3-4. P. 365-383.

76- Lelek J.J., Shepherd D.B., Stone D.M., Abdine A.S. October Field: the latest giant under development in Egypt's Gulf of Suez // In Halbouty, M.T. (Ed.), Giant oil and Gas Fields of the Decade 1978-1988, American Association of Petroleum Geologists, Tusla. 1992. Vol. 54. P. 231-249.

77- Levenberg K. A method for the solution of certain non-linear problems in least squares // Quarterly of Applied Mathematics. 1944. Vol. 2. P. 164-168.

78- Li Y., Oldenburg D.W. 3-D inversion of magnetic data // Geophysics. 1996. Vol. 61. P. 394408.

79- Li Y., Oldenburg D.W. Joint inversion of surface and three-component borehole magnetic data // Geophysics. 2000. Vol. 65. P. 540-552.

80- Li Y., Oldenburg D.W. Fast inversion of large-scale magnetic data using wavelet transforms and logarithmic barrier method // Geophysical Journal International. 2003. Vol. 152. P. 251265.

81- Lines L.R., Treitel S. Tutorial. A Review of Least-Squares Inversion and Its Application to Geophysical Problems // Geophysical Prospecting. 1984. Vol. 32. P. 159-186.

82- Macloed N.L., Jones K., Dai T.F. Analytic signal in interpretation of total magnetic field data at low magnetic latitudes, Exploration geophysics. 1993. V. 24. P. 679-688.

83- Marquardt D.W. An algorithm for least-squares estimation of non-linear parameters // SIAM J. 1963. Vol. 11.P. 431-441.

84- McClay K.R., Nichols G.J., Khalil S.M., Darwish M., Bosworth W. 1998. Extensional tectonics and sedimentation, eastern Gulf of Suez, Egypt // In Purser B.H., Bosence D.W.J.

(eds) Sedimentation and tectonics in Rift Basins Red Sea: Gulf of Aden. Springer, Dordrecht. P. 223-238.

85- McKenzie D.P., Davies D., Molnar P. Plate tectonics of the Red Sea and East Africa // Nature. 1970. Vol. 226. P. 243-248.

86- Meneisy M.Y. Mesozoic igneous activity in Egypt, Qatar Univ // Sci. Bull. 1986. Vol. 6. P. 317-328.

87- Menke W. Geophysical data analysis: discrete inverse theory // 3rd Edition Academic Press, San Diego. 1984. Vol. 45. P. 330.

88- Meshref W.M. Tectonic framework of Egypt // in R. Said, ed., Geology of Egypt: Rotterdam, Balkema. 1990. P. 113-156.

89- Meshref W.M., Abu El Karamat M.S., El Gindi M.K. Exploration concepts for oil in the Gulf of Suez // The 9th Exploration and Production Conference, Egyptian General Petroleum Corporation, Cairo. 1988. Vol. 1, P. 1-23.

90- Mohamed H.B., Radiogenic heat production and reservoir properties of Rudeis Formation in Belayim Marine oil field, Gulf of Suez, Egypt // Unpublished MSc. Thesis. Cairo: Ain Shams University. Egypt. 2014. P. 223.

91- Mohsen S., Zein El-Din Y.M., Taher M. In An outlook of the geology of the Zeit Basin and its oil prospects // Paper presented at the 9th Arab Petroleum Congress, Dubai. 1975. P. 13.

92- Mokhles A., Mostafa M., Desouky I., Pepe F. Impact of 3D seismic technique on production optimisation in Belayim Land Field, Central Gulf of Suez, Egypt // Offshore Mediterranean Conference and Exhibition, Ravenna, Italy. 2003. P. 131-140.

93- Moon F.W., Sadek H. Preliminary geological report on Gebel Khoshera area (West Sinai) // Review Petrol. Res. Bull. 1923. Vol. 9. P. 40.

94- Moretti I., Chenet PY. The evolution of the Suez rift: a combination of stretching and secondary convection // Tectonophysics. 1987. Vol. 133. P. 229-234.

95- Moretti I., Colletta B. Fault block tilting: the Gebel Zeit example, Gulf of Suez // J Struct Geol. 1988. Vol. 10. P. 9-19.

96- Naglaa M.S., Nabil S.A., Ahmed E.K.M. Hydrocarbon generating basins and migration pathways in the Gulf of Suez, Egypt // Life Science Journal. 2013. Vol. 10. P. 229-235.

97- Nettleton L.L. Gravity and magnetic in oil prospecting // McGraw-Hill Book Co., New York, USA. 1976. P. 464.

98- Norton P. Rock stratigraphic nomenclature of the Western Desert // Internal report, GUPCO. 1967. P. 1 -19.

99- Oldenburg D.W. The inversion and interpretation of gravity anomalies // Geophysics. 1974. Vol. 39. P. 424-438.

100- Omar G.I., Steckler M.S. Fission track evidence on the initial rifting of the Red Sea: two pulses, no propagation // Science. 1995. Vol. 270. P. 1341-1344.

101- Parker R.L. Inverse theory with grossly inadequate data // Geophysical Journal of the Royal Astronomical Society. 1972. Vol. 29. P. 123-138.

102- Parker R.L. The rapid calculation of potential anomalies // Geophysical Journal of the Royal Astronomical Society. 1973. Vol. 31. P. 447-455.

103- Parker R.L., Huestis S.P. Inversion of magnetic anomalies in the presence of topography // Journal of Geophysical Research. 1974. Vol. 79. P. 1587-1593.

104-Patton T.L., Moustafa A.R., Nelson R.A., Abdine S.A. Tectonic evolution and structural setting of the Suez Rift // In: Landon SM (ed) Interior rift basins, American Association of Petroleum Geologists Memoir. 1994. Vol. 59. P. 7-55.

105- Pedersen L.B. Constrained inversion of potential field data // Geophysical Prospecting. 1979. Vol. 27. P. 726-748.

106- Peters K.E., Walters C.C., Moldowan J.M. The Biomarker Guide. Cambridge, England // Cambridge University Press. 2005. P. 490.

107- Pilkington M., Crossley D.J. Determination of crustal interface topography from potential fields: Geophysics. 1986. Vol. 51. P. 1277-1284.

108- Poelchau H.S., Baker D.R, Hantschel T., Horsfield B., Wygrala B. Basin Simulation and the Design of the Conceptual Basin Model // In Welte DH, Horsfield B and Baker DR (eds): Petroleum and Basin Evolution: Insights from Petroleum Geochemistry, Geology and Basin Modeling. Berlin: Springer-Verlag. 1997. P. 3-70.

109- Pomeyrol R. Nubian Sandstone // Review American Association of Petroleum Geologists Bulletin. 1968. Vol. 1. P. 335-365.

110- Purser B.H., Bosence D.W.J. 1998. Sedimentation and Tectonics of Rift Basins: Red Sea-Gulf of Aden // Chapman and Hall. London. 1998. P. 663.

111- Pustisek A.M. Noniterative three-dimensional inversion of magnetic data (short note) // Geophysics. 1990. V. 55. P. 782-785.

112- Quennell A.M. The structural and geomorphic evolution of the Dead Sea Rift // Quar J Geol Soc London. 1958. Vol. 114. P. 1-24.

113- Rabeh T., Khalil A. Characterization of fault structures in southern Sinai Peninsula and Gulf of Suez region using geophysical data // Environmental Earth Sciences. 2014. Vol. 73. P. 1925-1937.

114- Rabeh T., Miranda J. M., Carvalho J., Bocin A. Interpretation case study of the Sahl El Qaa area, southern Sinai Peninsula, Egypt // Geophysical Prospecting. 2009. Vol. 57. P. 447-459.

115- Rasmussen R. and Pedersen, L.B. End corrections in potential field modeling // Geophysical Prospecting. 1979. Vol. 27. P. 749-760.

116- Reford M.S., Sumner J. S. Review article // Geophysics. 1964. Vol. 29. №. 4. P. 482-516.

117- Reid A.B., Allsop J. M., Granser H., Millet A.J., Somerton I.W. Magnetic interpretation // Geophysics. 1990. Vol. 55. P. 80-91.

118- Robson D.A. The structure of the Gulf of Suez (Clysmic) rift, with special reference to the eastern side // Journal of the Geological Society. 1971. Vol. 127. P. 247-276.

119- Roest W.R., Verhoef J., Pilkington M. Magnetic interpretation using 3-D analytic signal // Geophysics. 1992. Vol. 57. №. 1. P. 116-125.

120- Russegger J.R. Kreide und sandsteini Einfluss von Granit auf Letzern // Review N. Jb. Mineral. 1837. P. 665-669.

121- Said R. Geology of Egypt // Elsevier Science Publishing Company Inc, Amsterdam. 1962. P. 377.

122- Said R. Geology of Egypt // Rotterdam, Balkema.1990. P. 743.

123- Said R., El Hiny I. Planktonic foraminifera from the Miocene rocks of the Gulf of Suez region, Egypt // Cushman Foundation Foraminifera Research. 1967. Vol. 18. P. 14-26.

124- Salah G.M., Alsharhan A.S. Structural influence on hydrocarbon entrapment in the northwestern Red Sea, Egypt // Review American Association of Petroleum Geologists Bulletin. 1996. Vol. 80. №.1. P. 101-118.

125- Salem A.S. Automatic interpretation techniques of magnetic data // Ph.D, Kyushu University, Japan. 2002. P.197.

126- Saltus R.W., Blakely R.J. HYPERMAG, an interactive, two-dimensional gravity and magnetic modeling program // U.S. Geological Survey Open File Report. 1983. P 83-241.

127- Schlumberger. Geology of Egypt // The Well Evaluation Conference, Schlumberger, Cairo // 1984. P 1-64.

128- Schurman H.M.E. The Pre Cambrian along the Gulf of Suez and the Northern part of the Red Sea // Brill, Leiden. 1966. P. 12.

129- Schurman H.M.E. Tectonics of Africa: Gulf of Suez and the Northern Red Sea area // Unesco. 1971. Vol. 12. P. 23.

130- Schutz K.I. Structure and stratigraphy of the Gulf of Suez, Egypt // In: Landon, S.M. (Ed.), Interior Rift Basin, American Association of Petroleum Geologists, Tulsa. 1994. P. 57-96.

131- Sengor A.M.C. Burke K. Relative timing of rifting on earth and its tectonic implications // Geophys Res Lett. 1978. Vol. 5. P. 419-421

132- Sestini G. Egypt // In Kulke, H. (Ed.), Regional petroleum geology of the world, part II: Africa, America, Australia and Antarctica, Gebruder Borntrager Verlagsbuchhandlung, Stuttgart. 1995. Vol. 22. P. 66-87.

133- Sharpton V. l., Grieve R.A.F., Thomas M.D., Halpenny J.F. Horizontal gravity gradient, an aid to the definition of crustal structure in North America // Geophysics Res. Lett. 1987. Vol. 8. P 808-811.

134- Shata A. Difficulties encountering the finding of oil in the Gulf of Suez Region, Egypt // Review Bull. 1951. Vol. 1. P. 81-105.

135- Shearer S., Li., Y. 3D Inversion of magnetic total gradient data in the presence of remanent magnetization // SEG Expanded Abstracts. 2004. Vol. 23. P. 774-777.

136- Shimanskiy S.V., Tarshan A. Basement configuration depth methods of airborne magnetic data in the eastern Gulf of Suez, Egypt // News of Ural state Mining University Journal. 2019. Vol. 53. P. 7-17.

137- Shuey R.T., Pasquale A.S. End corrections in magnetic profile interpretation // Geophysics, 1973. Vol. 38. P. 507-512.

138- Smale J.L., Thunell, R.C., Schamel, S. Sedimentologic evidence for early Miocene fault reactivation in the Gulf of Suez // Geology. 1988. Vol. 16. №. 2. 113-116.

139- Smith R.B., Warnock J.E., Stanley W.D., Cole E.R. Computer graphics // Geophysics. 1972. Vol. 37, №. 5, P. 825-838.

140- Snieder R.K., Trampert, J. A simple processing approach for holographic rascan data, Inverse problems in geophysics // In Wavefield Inversion, edited by A. Wirgin Springer, New York. 1999. P. 119-190.

141- Soliman S.M., Faris M., Hassan M., Geologic setting of the Gulf of Suez province during the Eocene period // 5th Arab Petroleum Cong., Cairo. 1965. №. 30(B-3). P. 1-29.

142- Spector A. Application of aeromagnetic cover // The 45 th Annual international meeting of the society of exploration geophysics, Denver, Colovado, USA. 1975.

143- Spector A., Grant F.S. statistical models for interpreting aeromagnetic data // Geophysics. 1970. Vol. 35. P. 293-302.

144- Spector A., Parker W. Computer compilation and interpretation of geophysical data // Peter J. Hood, Editor, Geol. Sur. of Canada, Economic Geology Report №. 31. 1979. P. 527-544.

145- Stainforth R.M. Foraminifera in the Upper Tertiary of Egypt // Review J. Paleontology. 1949. Vol. 23. P. 419-422.

146- Steckler M.S. Uplift and extension at the Gulf of Suez: indications of induced mantle convection // Nature. 1985. Vol. 317. P. 135-139.

147- Steen, G. Radiometric age dating and tectonic significance of some Gulf of Suez igneous rocks //6th Petrol. Explor. Seminar, EGPC, Cairo. 1982.

148- Stern R.J., Manton I.W. Age of basement rocks, Sinai: implication for late Precambrian crustal evolution in the northern Arabian-Nubian shield // Review Journal of Geological Society of London. 1987. Vol. 144. P. 569-675.

149- Strang G. Linear algebra and its applications // San Diego: Harcourt Brace Jovanovich. 1988. P. 472.

150- Sweeney J.J., Burnham A.K. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics // AAPG Bull. 1990. Vol. 74. P. 1559- 1570.

151- Talwani M. Computation with the help of a digital computer of magnetic anomalies caused by bodies of arbitrary shape // Geophysics. 1965. Vol. 30. P. 797-817.

152- Talwani M., Heirtzler J.R. Computation of magnetic anomalies caused by two-dimensional structures of arbitrary shape // Stanford University Publications of the Geological Sciences, Computers in the Mineral Industries. 1964.

153- Tanner J.G. An automated method of gravity interpretation // Geophysical Journal of the Royal Astronomical Society. 1967. Vol. 13. P. 339-347.

154- Tarshan A., Shimansiy S., Abdeen M.M. Three-dimensional depth-based structural modelling of the central eastern part of the Gulf of Suez, Egypt // News of Ural state Mining University Journal. 2019. VOL 3. №. 55. P. 7-19.

155- Tarshan A., Shimanskiy S. Petroleum system modelling and identification of promising oil and gas bearing objects in the eastern part of the Gulf of Suez, Egypt // Russ. J. Earth Sci. 2019a. Vol. 19. P. 1-19.

156- Tarshan A., Shimanskiy S.V. Identification of oil and gas bearing objects using geophysical data in the eastern part of the Gulf of Suez, Egypt. // IOP Conf. Series: Earth and Environmental Science. 2019b. Vol. 324. P. 1-7.

157- Tewfik N., Ebeid Z. Stratigraphy of the Upper Cretaceous in the Gulf of Suez region, Egypt // The 5th African Coloq, Addis Ababa. 1972. P. 11

158- Tewfik N., Harwood C., Deighton I. The Miocene, Rudeis and Kareem formations of the Gulf of Suez: aspects of sedimentology and geohistory // 11th Egyptian General Petroleum Corporation, Petroleum Exploration and Production Conference. 1992. Vol. 1. P. 84-113.

159- Thurston J.B., Smith R.S. Automatic conversion of magnetic data to depth, dip, and susceptibility contrast using the SPI(TM) method // Geophysics. 1997. Vol. 62. P. 807-813.

160- Vacquier V., Steenland N.C., Henderson R.G., Zietz, I. Interpretation of aeromagnetic maps // Geological Society of America. 1951. Memoir 47.

161- Wang X., Hansen R.O., Inversion for magnetic anomalies of arbitrary three-dimensional bodies // Geophysics. 1990. Vol. 55. P. 1321-1326.

162- Webring M. SAKI-Fortran program for generalized linear inversion of gravity and magnetic profiles // U.S. Geological Survey Open-File Report 85-122. 1985. P. 29.

163- Weeks L.G. Factors of Sedimentary Basin Development That Control Oil Occurrence // Bulletin of the AAPG. Vol. 36. №. 11. 1952. P. 2071-2124.

164- Weissbrod T. Nubian Sandstone, discussion // Review American Association of Petroleum Geologists Bulletin. 1970. Vol. 54. P. 526-529.

165- Welte D.H. Petroleum Exploration and Organic Geochemistry // Journal of Geochemical Exploration. 1972. Vol. 1. №. 1. P. 117-136.

166- Won I.J., Bevis M. Computing the gravitational and magnetic anomalies due to a polygon: Algorithms and Fortran subroutines // Geophysics. 1987. Vol. 52. P. 232-238.

167- Younes A.I., McClay K.R. Development of accommodation zones in the Gulf of Suez-Red Sea rift, Egypt // Am Assoc Pet Geol Bull. 2002. Vol. 86. P. 1003-1026.

168- Yousef M.I. Upper Cretaceous rocks in Kosseir Area // Review Bull. Inst. Desert, Egypt. 1957. Vol. 7. P. 35-54.

169- Zahra H.S., Nakhla A.M. Deducing the subsurface geological conditions and structural framework of the NE Gulf of Suez area, using 2-D and 3-D seismic data // NRIAG Journal of Astronomy and Geophysics. 2015. Vol. 4. P. 64-85.

170- Zahra H.S., Nakhla A.M. Structural interpretation of seismic data of Abu Rudeis-Sidri area, Northern Central Gulf of Suez, Egypt // NRIAG Journal of Astronomy and Geophysics. 2016. Vol. 5. P. 435-450.

171- Zahran M.E. Geology of October field // The 8th Exploration International Conference, Egyptian General Petroleum Cooperation, Cairo. 1986. P. 25.

172- Zahran M.E., Meshref W.M. The northern Gulf of Suez: Basin evolution, stratigraphy and facies relationships // The 9th Exploration and Production Conference, Egyptian General Petroleum Corporation, Cairo. 1988. P. 110-125.

173- Zein El-Din M.Y., Abd El-Gawad A.E., Doniya, M.G. Evaluation of Source Rocks in the South Ghara Area, Gulf of Suez, Egypt // The 18th International Meeting on organic Geochemistry, Netherlands. 1997.

174- Zein El-Din M.Y., Klitsch E., Abd-Hady A.M., Abd El-Gawad A.E. Evaluation of Kareem/Rudeis Carbonate Reservoir in Zeit Bay Field, Gulf of Suez, Egypt // The 1st International Conference (Science and Development) Al-Azhar Univ., Fac. Sci., Cairo. 1995. P. 44-52.

175- Zein El-Din M.Y., Taher M. Contribution of Dipmeter Analysis to the history of West Gable El-Zeit basin, Gulf of Suez // The 11th Annual Meeting of the Geological Society of Egypt, Cairo. 1973.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.