Высокоэнергоемкие катодные материалы для литий-ионных аккумуляторов на основе модифицированных Ni-обогащенных слоистых оксидов переходных металлов (High-energy-density cathode materials for Li-ion batteries based on modified Ni-rich layered transition metal oxides) тема диссертации и автореферата по ВАК РФ 00.00.00, кандидат наук Орлова Елена Дмитриевна
- Специальность ВАК РФ00.00.00
- Количество страниц 151
Оглавление диссертации кандидат наук Орлова Елена Дмитриевна
Table of contents
Introduction
Chapter 1. Literature review
1.1. Lithium-ion batteries and their market overview
1.2. High-energy-density cathode materials
1.3. Ni-rich layered transition metal oxides
1.3.1. Crystal and electronic structure of Ni-rich NMCs and their evolution
1.3.2. Reasons of Ni-rich NMC cathodes' electrochemical properties degradation
1.4. Approaches for Ni-rich NMCs modification
1.4.1. Cation doping
1.4.2. Surface coating
1.4.3. Core-shell and gradient structures
1.4.4. Grain boundaries modification
1.4.5. Microstructure engineering
1.5. Synthesis approaches
1.6. Literature review conclusions
Chapter 2. Methodology and techniques
2.1. Synthesis methods
2.2. Characterization methods
Chapter 3. Studying the co-precipitation synthesis conditions influence on Li+/Ni2+ cation disordering
in Ni-rich NMC at different spatial scales
Chapter 4. Composite cathode material based on NMC811 and Li2SO4 at the grain boundaries
Chapter 5. Composite cathode material based on NMC811 modified by boron
Chapter 6. Development of microwave-assisted hydrothermal synthesis
Chapter 7. Conclusions
List of symbols, abbreviations
Bibliography
Appendix A. Supplementary figures and tables
Acknowledgements
Рекомендованный список диссертаций по специальности «Другие cпециальности», 00.00.00 шифр ВАК
Направленная модификация катодных материалов со структурой трифилина / Three-dimensional modification of triphylite-type cathode materials2024 год, кандидат наук Назаров Евгений Евгеньевич
Катодные материалы для двухионных аккумуляторов на основе полимерных аминов2022 год, кандидат наук Обрезков Филипп Александрович
Local atomic and electronic structure of new cathode materials: computational design, operando diagnostics and rational synthesis (Локальная атомная и электронная структура новых катодных материалов: моделирование, operando диагностика и рациональный синтез)2021 год, кандидат наук Мохамед Абделазиз Мохамед Абделазиз
Li-проводящий керамический электролит со структурой NASICON для твердотельных аккумуляторов2024 год, кандидат наук Сюй Сеюй
Моделирование влияния модификации структуры низкоразмерных материалов ZnO, β-C3N4, InSe и однослойного бора на их физические свойства2021 год, кандидат наук Лэй Сюе
Введение диссертации (часть автореферата) на тему «Высокоэнергоемкие катодные материалы для литий-ионных аккумуляторов на основе модифицированных Ni-обогащенных слоистых оксидов переходных металлов (High-energy-density cathode materials for Li-ion batteries based on modified Ni-rich layered transition metal oxides)»
Introduction
The modern strategy for the development of megalopolises involves improving transport infrastructure and the environmental situation through the transition to ecologically friendly electric transport, as well as the rational use of energy resources through "smart" power grids, including large-scale energy storage systems. In that light, the development of high-energy, safe, and affordable batteries for a new generation is a challenging but essential task. Emerging demand for battery-electric (EVs) and hybrid-electric vehicles (HEVs) is currently covered by lithium-ion batteries (LIBs). As the electric cars industry constantly calls for faster charging and longer driving ranges, the elaboration of high energy-density cathodes is highly demanded because they are known to be a limiting factor in both the performance and cost of the battery.
Layered transition metal oxides of nickel, manganese, and cobalt with high nickel content, so-called Ni-rich NMC, are considered to be promising candidates for high-energy cathode materials, delivering a high practical capacity of ~200-210 mAh/g and energy density of more than 800 Wh/kg. However, electrodes with high Ni concentration have several drawbacks, such as fast capacity fade over the battery life and heat/gas release during electrochemical cycling, that obstacle the application of Ni-rich NMCs in commercial LIBs. Generally, limitations of Ni-rich NMC practical application are associated with oxygen evolution from Ni-rich NMC cathode materials, both during heating and electrochemical cycling, and irreversible structural changes, which represent a crucial and urgent scientific problem. Despite numerous chemical and engineering approaches aimed at the enhancement of Ni-rich NMCs electrochemical properties, the problem of finding the optimal way towards the modification of high-energy-density cathode materials is only partially solved, since the majority of proposed in literature methods provide only trade-off solutions, where enhancement of one electrochemical characteristic leads to deterioration of others. Besides, the modification route should be implemented in a sustainable and efficient way to enable large-scale production of such high-energy-density cathodes. Therefore, the present dissertation's aim is the development of a proper modification route for Ni-rich NMCs in order to controllably improve electrochemical properties such as capacity, stability, and rate capability.
The relevance of the dissertation lies in the fact that it addresses the existing Ni-rich NMCs' challenges to ensure their improvement through the robust and cost-effective synthetic routes, supplying the rapidly developing LIBs market with high-performance and cost-effective cathode materials for EVs and other electrochemical energy storage devices and systems.
To achieve the aim of the present dissertation, the following objectives of the present dissertation work were established:
1. Modified composite high-energy-density active cathode materials based on Ni-rich NMCs, synthesized by co-precipitation and microwave-assisted hydrothermal synthesis followed by high-temperature lithiation in different atmospheres;
2. Methodology of Li+/Ni2+ cation disordering assessment in Ni-rich NMCs at different spatial scales;
3. Correlations among synthesis conditions, micro- and macro-structure, and electrochemical properties for Ni-rich NMC cathode materials.
To achieve the goals, the methodology of the present research was identified, which corresponds to the main dissertation chapters:
1. Synthesis of Ni-rich NMC with composition LiNi0.8Mn0.1Co0.1O2 (NMC811) through hydroxide and carbonate co-precipitation from transition metal sulfates and acetates and annealing with lithium source in air or oxygen atmosphere;
2. Study the influence of co-precipitation synthesis conditions on Ni2+/Li+ cation disordering in Ni-rich NMC at different spatial scales;
3. Study of physicochemical and electrochemical properties of composite material based on NMC811 and Li2SO4 at the grain boundaries as a cathode material for Li-ion batteries;
4. Synthesis and study of physicochemical and electrochemical properties of composite material based on NMC811 modified by boron as a cathode material for Li-ion batteries;
5. Development of microwave-assisted hydrothermal synthesis for NMC811;
6. Synthesis and study of physicochemical and electrochemical properties of material based on mixed fractions of NMC811, prepared by co-precipitation and microwave-assisted hydrothermal synthesis, as a cathode material for Li-ion batteries.
The work used a combination of modern physicochemical methods of analysis: powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (selected area electron diffraction (SAED), electron diffraction tomography (EDT), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), electron energy loss spectroscopy (EELS), energy-dispersive X-ray spectroscopy (EDS)), X-ray photoelectron spectroscopy (XPS), thermogravimetry and differential thermal analysis (TG-DTA), mass-spectrometry with inductively coupled plasma (ICP-MS), galvanostatic cycling, electrochemical impedance spectroscopy (EIS). The obtained results are confirmed by theoretical calculations with density functional theory (DFT).
The following statements disclose the scientific novelty of the present dissertation work.
1. The Li+/Ni2+ cation disordering in Ni-rich NMC at unit cell scale was for the first time quantitatively assessed using atomic-resolution images treatment with model-based parameter estimation, the regions with different defects content were firstly computationally distinguished.
2. The composite materials of (1-x) LiNi0.8Mn0.1Co0.1O2 - x Li2SO4, where the amorphous Li2SO4 binder located at the grain boundaries and intergranular contacts, were for the first time synthesized, characterized by physicochemical methods and studied as cathode materials with enhanced electrochemical properties for lithium-ion batteries.
3. The misconception of boron doping, validated by computational and experimental methods, as well as direct visualization of Li3BO3 coating formation at plate-like primary particles of NMC811 cathode materials and its positive influence on the reversibility of high-voltage phase transitions were for the first time demonstrated.
4. For the first time, microwave-assisted hydrothermal synthesis was applied to NMC811 material, shortening its precursor fabrication time to less than one hour. The samples, synthesized by microwave-assisted hydrothermal synthesis, were for the first time characterized by physicochemical methods and studied as cathode materials for lithium-ion batteries and used as a space filler for enhancement of volumetric energy density of NMC811 cathode material for lithium-ion batteries.
The practical value of obtained results consists in that the studied composite materials based on NMC811 represent a highly promising high-energy-density cathode materials for next-generation lithium-ion batteries as they deliver enhanced electrochemical characteristics such as capacity, stability, and rate capability. Besides, the composites' fabrication procedure was optimized and requires no additional operation steps, making those composite cathode materials appealing for large-scale production. Elaborated fast and facile microwave-assisted hydrothermal synthesis for highly ordered and electrochemically efficient NMC811 enables the sufficient reduction of hydroxide precursors' production time to dozens of minutes. Additionally, the results of this study provide important guidelines for Li+/Ni2+ cation disordering assessment at different spatial scales, highlighting the influence of synthesis conditions on the redistribution of the regions with different defect content. So, the developed Li+/Ni2+ cation disordering assessment methodology could be used for further development of high-energy-density cathode materials, susceptible to cation defects formation, in particular, Ni-rich NMC with higher nickel content and LiNiO2.
The statements to be defended in the dissertation can be summarized as follows:
1. The reliable assessment methodology of Li+/Ni2+ cation disordering at bulk, submicron crystal and unit cell scales was established through comprehensive comparative analysis of semi-quantitative parameters, such as I003/I104 integral intensity ratio, c/V6a ratio and unit cell volume, and quantitative approaches, based on Rietveld refinement of powder X-ray diffraction, electron diffraction tomography
and analysis of atomic-resolution scanning transmission electron microscopy images using model-based parameter estimation.
2. High-energy-density composite cathode materials (1-x) LiNi0.8Mn0.1Co0.1O2 - x Li2SO4 (x < 0.005) for lithium-ion batteries, where amorphous Li2SO4 solid electrolyte binder is located at the grain boundaries and intergranular contacts of the primary crystallites, demonstrating growth in discharge capacity and capacity retention due to improved mechanical integrity and increased interfacial fracture toughness of the secondary agglomerates upon prolonged cycling.
3. High-energy-density boron-modified composite material for lithium-ion batteries, based on LiNi0.8Mn0.1Co0.1O2, with plate-like primary particles, coated by Li3BO3 1-2 nm, delivering high rate capability and enhanced capacity retention due to nearly radial alignment of lithium layers within the cathodes' agglomerates and better reversibility of the H2^H3 phase transitions.
4. The microwave-assisted hydrothermal synthesis followed by high-temperature lithiation of well-crystalline and low-defect LiNi0.8Mn0.1Co0.1O2 cathode material for lithium-ion batteries.
5. LiNi0.8Mn0.1Co0.1O2 cathode material for lithium-ion batteries, consisting of different fractions of materials, prepared by co-precipitation and microwave-assisted hydrothermal synthesis, with elevated tap density of 2.9 g/cm3 and volumetric energy density of 2100 mWh/cm3.
The author's personal contribution includes setting goals, planning experimental activities, and systematizing and analyzing literature data. The author has carried out synthesis, analysis of the crystal structure and composition of (1-x) LiNi0.8Mn0.1Co0.1O2 - x Li2SO4, boron-modified composite material, and LiNi0.8Mn0.1Co0.1O2, synthesized by microwave-assisted hydrothermal method, measurements of their electrochemical properties, processing, and interpretation of obtained scientific results. The author performed studies using modern methods of transmission electron microscopy, including atomic-resolution HAADF-STEM imaging, electron diffraction tomography, and electron energy loss spectroscopy. The author conducted a quantitative analysis of Li+/Ni2+ cation defects. The author participated in the preparation and presentation of oral and poster presentations at scientific conferences, writing articles for international peer-reviewed scientific journals.
The work was done at the Center for Energy Science and Technology of the Skolkovo Institute of Science and Technology. Assistance in the synthesis and characterization was provided by I. Skvortsova and Dr. A.A. Savina (Skolkovo Institute of Science and Technology, Moscow, Russia). Assistance in TEM measurements was provided by A.V. Morozov (Skolkovo Institute of Science and Technology, Moscow, Russia). The AFM study was done by Dr. S.Yu. Luchkin (Skolkovo Institute of Science and Technology, Moscow, Russia). TG-DTA-MS measurements were conducted by Dr. I.A. Trussov (Skolkovo Institute of Science and Technology, Moscow, Russia). Slice&View and EBSD images of boron-modified NMC811 were acquired by I.A. Moiseev (Skolkovo Institute of Science and Technology, Moscow, Russia). X-ray photoelectron spectra were measured by
E.M. Pazhetnov (Skolkovo Institute of Science and Technology, Moscow, Russia). The Li and B content via ICP-MS was studied by Dr. D.I. Petukhov (Lomonosov MSU, Moscow, Russia). Theoretical studies and DFT calculations were carried out by Dr. D.A. Aksyonov and Dr. A.O. Boev (Skolkovo Institute of Science and Technology, Moscow, Russia).
The validity and reliability of the results and conclusions are ensured using a wide range of complementary physicochemical and electrochemical methods of analysis as well as their consistency with literature data. The results reproducibility of electrode materials study in electrochemical cells was confirmed by conducting at least three experiment trials with high accuracy and precision. To validate electron microscopy studies, at least three crystals for each sample were investigated and at least three images for each crystal with different magnifications were acquired. The statements and conclusions formulated in the dissertation have received qualified approbation at international and national scientific conferences. The credibility is also confirmed by the publication of research results in peer-reviewed scientific journals. The dissertation materials were published in 14 works, including 5 articles in high-ranking international peer-reviewed scientific journals, 1 book chapter, 2 patents, and 6 abstracts at international and national scientific conferences.
List of conferences:
1. Orlova E.D., Savina A.A., Abakumov A.M. "High-energy cathode materials for lithium-ion batteries based on layered transition metal oxides with a low Li+/Ni2+ disorder". International scientific conference for undergraduate, graduate students and young scientists "Lomonosov-2021" (Lomonosov MSU, Moscow, Russia, April 12-23, 2021).
2. Orlova E.D. "Comprehensive study of Ni-rich NMCs synthesis conditions influence on Li+/Ni2+ antisite defects". International scientific student conference ISSC 2021 (NSU, Novosibirsk, Russia, April 12-23, 2021).
3. Orlova E.D., Savina A.A., Abakumov A.M. "Study of Li+/Ni2+ cation disordering by electron diffraction tomography". X National crystal chemistry conference (Kabardino-Balkarian republic, Russia, July 5-9, 2021).
4. Orlova E.D., Savina A.A., Abakumov A.M. "Composite cathode materials based on Ni-rich layered oxides for Li-ion batteries". IV Baikal materials science forum (Ulan-Ude, Lake Baikal, Russia, July 1-7, 2022).
5. Orlova E.D., Savina A.A., Abakumov A.M. "Quantitative local analysis of Li+/Ni2+ cation disordering in Ni-rich layered oxides". XXIX Russian Conference on Electron Microscopy (Moscow, Russia, August, 29-31, 2022).
6. Orlova E.D., Skvortsova I., Dolzhikova E.A., Sitnikova L.A. "Boron-modified cathode materials based on Ni-rich layered oxides for Li-ion batteries". International scientific student conference ISSC 2023 (NSU, Novosibirsk, Russia, April 17-26, 2023).
Похожие диссертационные работы по специальности «Другие cпециальности», 00.00.00 шифр ВАК
Влияние гетеровалентного допирования на структуру и фотостимулированные процессы в галогенидном перовските CsPbBr32022 год, кандидат наук Али Ибрагим Мохаммед Шарафелдин
Coordination compounds of some metals with hydroxy and hydrazine derivatives of benzoic acid as precursors of nanosized oxide catalysts (Координационные соединения некоторых металлов с гидрокси- и гидразинпроизводными бензойной кислоты в качестве предшественников наноразмерных оксидных катализаторов)2021 год, кандидат наук Алабада Русул Яхья Джасим
Получение новых видов плоских ультрафильтрационных мембран на основе поливинилхлорида и его модифицированных структур2024 год, кандидат наук Аль-Саммаррайи Иман Шакир Авад
Создание 2D-полупроводниковых структур методом прямого лазерного синтеза (Laser-writing of 2D semiconductors)2025 год, кандидат наук Аверченко Александр Владимирович
Магнитные свойства массивов железных нанонитей: влияние геометрических параметров2021 год, кандидат наук Елмекави Ахмед Хассан Абделрахман
Список литературы диссертационного исследования кандидат наук Орлова Елена Дмитриевна, 2024 год
Bibliography
1. Li-ion battery market report 2023 [Electronic resource]. URL: https://www.marketsandmarkets.com/Market-Reports/lithium-ion-battery-market-49714593.html (28.11.2023).
2. The rechargeable battery market and main trends 2020-2030, Avicenne Energy Analysis 2021. [Electronic resource]. URL: https://www.avicenne.com/pdf/The%20Rechargeable%20Batt ery%20Market%20and%20Main%20Trends%202020%20%E2%80%93%202030%20C%20Pill ot%20Presentation%20at%20BATTERIES%202021%20Lyon%20France%20September%2020 21.pdf (28.11.2023).
3. Bloomberg Electric Vehicle Outlook 2019 [Electronic resource]. URL: https://legacy-assets.eenews.net/open_files/assets/2019/05/15/document_ew_02.pdf (28.11.2023).
4. Bloomberg Electric Vehicle Outlook 2023 [Electronic resource]. URL: https://about.bnef.com/electric-vehicle-outlook/ (28.11.2023).
5. Andre D. et al. Future generations of cathode materials: an automotive industry perspective // J. Mater. Chem. A. 2015. Vol. 3, № 13. P. 6709-6732.
6. Doeff M. Batteries: overview of battery cathodes. Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA. 2012. P. 709-739.
7. Mizushima K. et al. LixCoO2 (0<x< 1): A new cathode material for batteries of high energy density // Solid State Ionics. 1981. Vol. 3-4. P. 171-174.
8. Quarterly cobalt market update 2021 Q3, Cobalt institute [Electronic resource]. URL: https://www.cobaltinstitute.org/wp-content/uploads/2021/11/Quarterly-Report-Q3-2021_public_final.pdf (28.11.2023).
9. Thackeray M.M. et al. Electrochemical extraction of lithium from LiMn2O4 // Mater. Res. Bull. 1984. Vol. 19, № 2. P. 179-187.
10. Thackeray M.M., Amine K. LiMmO4 spinel and substituted cathodes // Nat. Energy. 2021. Vol. 6, № 5. P. 566-566.
11. Amin R. et al. Research advances on cobalt-free cathodes for Li-ion batteries - The high voltage LiMn1.5Ni0.5O4 as an example // J. Power Sources. 2020. Vol. 467. P. 228318.
12. Padhi A.K., Nanjundaswamy K.S., Goodenough J.B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries // J. Electrochem. Soc. 1997. Vol. 144, № 4. P. 1188-1194.
13. Whittingham M.S. Ultimate limits to intercalation reactions for lithium batteries // Chem. Rev. 2014. Vol. 114, № 23. P. 11414-11443.
14. Arroyo-de Dompablo M.E. et al. On-demand design of polyoxianionic cathode materials based on electronegativity correlations: An exploration of the Li2MSiO4 system (M=Fe, Mn, Co, Ni) // Electrochem. commun. 2006. Vol. 8, № 8. P. 1292-1298.
15. Annual battery Report 2022, Volta foundation [Electronic resource]. URL: https://www.volta.foundation/annual-battery-report (28.11.2023).
16. Kotal M. et al. Cathode materials for rechargeable lithium batteries: Recent progress and future prospects // J. Energy Storage. 2022. Vol. 47. P. 103534.
17. Wu F., Yushin G. Conversion cathodes for rechargeable lithium and lithium-ion batteries // Energy Environ. Sci. 2017. Vol. 10, № 2. P. 435-459.
18. Manthiram A. An outlook on lithium ion battery technology // ACS Cent. Sci. 2017. Vol. 3, № 10. P. 1063-1069.
19. Radin M.D. et al. Narrowing the gap between theoretical and practical capacities in Li-ion layered oxide cathode materials // Adv. Energy Mater. 2017. Vol. 7, № 20.
20. Manthiram A., Chemelewski K., Lee E.-S. A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries // Energy Environ. Sci. 2014. Vol. 7, № 4. P. 1339.
21. Kreder K.J., Manthiram A. Vanadium-substituted LiCoPO4 core with a monolithic LiFePO4 shell for high-voltage lithium-ion batteries // ACS Energy Lett. 2017. Vol. 2, № 1. P. 64- 69.
22. Nasir M.H., Janjua N.K., Santoki J. Electrochemical performance of carbon modified LiNiPO4 as Li-ion battery cathode: a combined experimental and theoretical study // J. Electrochem. Soc. 2020. Vol. 167, № 13. P. 130526.
23. Goodenough J.B., Kim Y. Challenges for rechargeable Li batteries // Chem. Mater. 2010. Vol. 22, № 3. P. 587-603.
24. Tomiyasu H. et al. An aqueous electrolyte of the widest potential window and its superior capability for capacitors // Sci. Rep. 2017. Vol. 7, № 1. P. 45048.
25. Xu K., Wang C. Batteries: Widening voltage windows // Nat. Energy. 2016. Vol. 1, № 10. P. 16161.
26. An S.J. et al. The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling // Carbon N. Y. 2016. Vol. 105. P. 52-76.
27. Bintang H.M. et al. Stabilization effect of solid-electrolyte interphase by electrolyte engineering for advanced Li-ion batteries // Chem. Eng. J. 2021. Vol. 424. P. 130524.
28. Grandview Summary Report: Lithium-ion Battery Market Size & Share Report, 2020-2027 [Electronic resource] URL: https://www.grandviewresearch.com/industry-
analysis/lithium-ion-battery-market (28.11.2023).
29. Delmas C., Fouassier C., Hagenmuller P. Structural classification and properties of the layered oxides // Phys. B+C. 1980. Vol. 99, № 1-4. P. 81-85.
30. Nazri G.-A., Pistoia G. Lithium Batteries. Boston, MA: Springer US, 2003. P. 708.
31. Wang L. et al. Reviving lithium cobalt oxide-based lithium secondary batteriestoward a higher energy density // Chem. Soc. Rev. 2018. Vol. 47, № 17. P. 6505-6602.
32. Laubach S. et al. Changes in the crystal and electronic structure of LiCoO2 and LiNiO2 upon Li intercalation and de-intercalation // Phys. Chem. Chem. Phys. 2009. Vol. 11, № 17. P. 3278.
33. Sun H., Zhao K. Electronic structure and comparative properties of LiNixM%CozO2 cathode materials // J. Phys. Chem. C. 2017. Vol. 121, № 11. P. 6002-6010.
34. Dixit M. et al. Origin of structural degradation during cycling and low thermal stability of Ni-rich layered transition metal-based electrode materials // J. Phys. Chem. C. 2017. Vol. 121, № 41. P. 22628-22636.
35. de Biasi L. et al. Phase transformation behavior and stability of LiNiO2 cathode material for Li-ion batteries obtained from in-situ gas analysis and operando X-ray diffraction // ChemSusChem. 2019. Vol. 12, № 10. P. 2240-2250.
36. Li J. et al. Study of the failure mechanisms of LiNi0.8Mn0.1Co0.1O2 cathode material for lithium ion batteries // J. Electrochem. Soc. 2015. Vol. 162, № 7. P. A1401-A1408.
37. Ryu H.-H. et al. Capacity fading of Ni-rich Li[NixCoyMn1-x-y]O2 (0.6 < x < 0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation? // Chem. Mater. 2018. Vol. 30, № 3. P. 1155-1163.
38. Delmas C. et al. Lithium batteries: a new tool in solid state chemistry // Int. J. Inorg. Mater. 1999. Vol. 1, № 1. P. 11 -19.
39. Arai H. Characterization and cathode performance of Li1-xNh+xO2 prepared with the excess lithium method // Solid State Ionics. 1995. Vol. 80, № 3-4. P. 261-269.
40. Mock M. et al. Atomistic understanding of the LiNiO2-NiO2 phase diagram from experimentally guided lattice models // J. Mater. Chem. A. 2021. Vol. 9, № 26. P. 14928-14940.
41. Liu W. et al. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries // Angew. Chemie Int. Ed. 2015. Vol. 54, № 15. P. 4440-4457.
42. Jung R. et al. Oxygen release and its effect on the cycling stability of LiNixMnyCozO2 (NMC) cathode materials for Li-ion batteries // J. Electrochem. Soc. 2017. Vol. 164, № 7. P. A1361-A1377.
43. Marker K. et al. Evolution of structure and lithium dynamics in LiNi0.8Mn0.1Co0.1O2 (NMC811) cathodes during electrochemical cycling // Chem. Mater. 2019. Vol. 31, № 7.
P. 2545-2554.
44. Savina A.A. et al. Nickel as a key element in the future energy // Russ. Chem. Rev. 2023. Vol. 92, № 7.
45. Croguennec L. Structural characterisation of new metastable NiO2 phases // Solid State Ionics. 2000. Vol. 135, № 1-4. P. 259-266.
46. Wang C. et al. Atomic-scale observation of O1 faulted phase-induced deactivation of LiNiO2 at high voltage // Nano Lett. 2021. Vol. 21, № 8. P. 3657-3663.
47. Peres J. Lithium/vacancy ordering in the monoclinic LixNiO2 (0.50<x<0.75) solid solution // Solid State Ionics. 1999. Vol. 116, № 1-2. P. 19-27.
48. Croguennec L. et al. Structural characterisation of the highly deintercalated LixNi1.02O2 phases (with x < 0.30) // J. Mater. Chem. 2001. Vol. 11, № 1. P. 131-141.
49. Gabrisch H., Yazami R., Fultz B. The character of dislocations in LiCoO2 // Electrochem. Solid-State Lett. 2002. Vol. 5, № 6. P. A111.
50. Kondrakov A.O. et al. Charge-transfer-induced lattice collapse in Ni-rich NCM cathode materials during delithiation // J. Phys. Chem. C. 2017. Vol. 121, № 44. P. 24381-24388.
51. Ishidzu K., Oka Y., Nakamura T. Lattice volume change during charge/discharge reaction and cycle performance of Li[NixCoyMnz]O2 // Solid State Ionics. 2016. Vol. 288. P. 176- 179.
52. Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides // Acta Crystallogr. Sect. A Cryst. physics, diffraction, Theor. Gen. Crystallogr. International Union of Crystallography, 1976. Vol. 32, № 5. P. 751-767.
53. Gagné O.C., Hawthorne F.C. Bond-length distributions for ions bonded to oxygen: results for the transition metals and quantification of the factors underlying bond-length variation in inorganic solids // IUCrJ. 2020. Vol. 7, № 4. P. 581-629.
54. Kong F. et al. Kinetic stability of bulk LiNiO2 and surface degradation by oxygen evolution in LiNiO2 -based cathode materials // Adv. Energy Mater. 2019. Vol. 9, № 2.
55. Lin F. et al. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries // Nat. Commun. 2014. Vol. 5, № 1. P. 3529.
56. Dose W.M. et al. Electrolyte reactivity at the charged Ni-rich cathode interface and degradation in Li-ion batteries // ACS Appl. Mater. Interfaces. 2022. Vol. 14, № 11. P. 13206- 13222.
57. Nguyen T.T.D. et al. Understanding the thermal runaway of Ni-rich lithium-ion batteries // World Electr. Veh. J. 2019. Vol. 10, № 4. P. 79.
58. Noh H.-J. et al. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion
batteries // J. Power Sources. 2013. Vol. 233. P. 121-130.
59. Gao A. et al. Evolution of Ni/Li antisites under the phase transition of a layered LiNi1/3Co1/3Mn1/3Ü2 cathode // J. Mater. Chem. A. 2020. Vol. 8, № 13. P. 6337-6348.
60. Boev A.Ü. et al. The role of antisite defect pairs in surface reconstruction of layered AMÜ2 oxides: A DFT+U study // Appl. Surf. Sci. 2021. Vol. 537. P. 147750.
61. Zheng J. et al. Ni/Li disordering in layered transition metal oxide: electrochemical impact, origin, and control // Acc. Chem. Res. 2019. Vol. 52, № 8. P. 2201-2209.
62. Bianchini M. et al. There and back again—the journey of LiNiÜ2 as a cathode active material // Angew. Chemie Int. Ed. 2019. Vol. 58, № 31. P. 10434-10458.
63. Ying B. et al. Monitoring the formation of nickel-poor and nickel-rich oxide cathode materials for lithium-ion batteries with synchrotron radiation // Chem. Mater. 2023. Vol. 35, № 4. P. 1514-1526.
64. Reed J., Ceder G. Role of Electronic Structure in the Susceptibility of Metastable Transition-Metal Oxide Structures to Transformation // Chem. Rev. 2004. Vol. 104, № 10. P. 4513-4534.
65. Kang K., Ceder G. Factors that affect Li mobility in layered lithium transition metal oxides // Phys. Rev. B. 2006. Vol. 74, № 9. P. 094105.
66. Ali O.A., Hameed M.A., Al-Zaidi Q.G. Electrical properties of pure NiO and NiO:Ag thin films prepared by pulsed laser deposition // Trans. Indian Natl. Acad. Eng. 2020. Vol. 5, № 1. P. 27-31.
67. Zheng J. et al. Tuning of thermal stability in layered Li(NixMnyCoz)O2 // J. Am. Chem. Soc. 2016. Vol. 138, № 40. P. 13326-13334.
68. Meng Y.S. et al. Cation ordering in layered O3 Li[NixLi1/3-2x/3Mn2/3-x/3]O2 (0 < x < 1/2) compounds // Chem. Mater. 2005. Vol. 17, № 9. P. 2386-2394.
69. Kim U. et al. Microstructure-controlled Ni-rich cathode material by microscale compositional partition for next-generation electric vehicles // Adv. Energy Mater. 2019. Vol. 9, № 15. P.1803902.
70. Xu Z. et al. Chemomechanical behaviors of layered cathode materials in alkali metal ion batteries // J. Mater. Chem. A. 2018. Vol. 6, № 44. P. 21859-21884.
71. Yoon C.S. et al. Structural stability of LiNiO2 cycled above 4.2 V // ACS Energy Lett. 2017. Vol. 2, № 5. P. 1150-1155.
72. Dokko K. In situ observation of LiNiO2 single-particle fracture during Li-ion extraction and insertion // Electrochem. Solid-State Lett. 1999. Vol. 3, № 3. P. 125.
73. Sun H.-H., Manthiram A. Impact of microcrack generation and surface degradation on a nickel-rich layered Li[Ni0.9Co0.05Mn0.05]O2 cathode for lithium-ion batteries // Chem. Mater.
2017. Vol. 29, № 19. P. 8486-8493.
74. Wang C. et al. Resolving atomic-scale phase transformation and oxygen loss mechanism in ultrahigh-nickel layered cathodes for cobalt-free lithium-ion batteries // Matter. 2021. Vol. 4, № 6. P. 2013-2026.
75. Mu L. et al. Oxygen release induced chemomechanical breakdown of layered cathode materials // Nano Lett. 2018. Vol. 18, № 5. P. 3241-3249.
76. Tian C. et al. Charge heterogeneity and surface chemistry in polycrystalline cathode materials // Joule. 2018. Vol. 2, № 3. P. 464-477.
77. Vetter J. et al. Ageing mechanisms in lithium-ion batteries // J. Power Sources. 2005. Vol. 147, № 1-2. P. 269-281.
78. Gallus D.R. et al. The influence of different conducting salts on the metal dissolution and capacity fading of NCM cathode material // Electrochim. Acta. 2014. Vol. 134. P. 393-398.
79. Jung R. et al. Nickel, manganese, and cobalt dissolution from Ni-rich NMC and their effects on NMC622-graphite cells // J. Electrochem. Soc. 2019. Vol. 166, № 2. P. A378- A389.
80. Ahaliabadeh Z. et al. Extensive comparison of doping and coating strategies for Ni-rich positive electrode materials // J. Power Sources. 2022. Vol. 540. P. 231633.
81. Binder J.O. et al. Investigation of fluorine and nitrogen as anionic dopants in nickel-rich cathode materials for lithium-ion batteries // ACS Appl. Mater. Interfaces. 2018. Vol. 10, № 51. P. 44452-44462.
82. Pouillerie C. et al. Synthesis and characterization of new LiNi1-yMgyO2 positive electrode materials for lithium-ion batteries // J. Electrochem. Soc. 2000. Vol. 147, № 6. P. 2061.
83. Li H. et al. Stabilizing nickel-rich layered oxide cathodes by magnesium doping for rechargeable lithium-ion batteries // Chem. Sci. 2019. Vol. 10, № 5. P. 1374-1379.
84. Choi J. et al. The role of Zr doping in stabilizing Li[Ni0.6Co0.2Mn0.2]O2 as a cathode material for lithium-ion batteries // ChemSusChem. 2019. Vol. 12, № 11. P. 2439-2446.
85. Kim Y. Thermochemical investigation of Zr doping in LiNi8/12Co2/12Mn2/12O2 based on phase equilibria simulation // Int. J. Quantum Chem. 2019. Vol. 119, № 24.
86. Min K. et al. A first-principles study of the preventive effects of Al and Mg doping on the degradation in LiNi0.8Co0.1Mn0.1O2 cathode materials // Phys. Chem. Chem. Phys. 2017. Vol. 19, № 3. P. 1762-1769.
87. He T. et al. The effects of alkali metal ions with different ionic radii substituting in Li sites on the electrochemical properties of Ni-Rich cathode materials // J. Power Sources. 2019. Vol. 441. P. 227195.
88. Eilers-Rethwisch M., Winter M., Schappacher F.M. Synthesis, electrochemical investigation and structural analysis of doped Li[Nio.6Mno.2Coo.2-xMx]O2 (x = 0, 0.05, M = Al, Fe, Sn) cathode materials // J. Power Sources. 2018. Vol. 387. P. 101-107.
89. Kim Y., Seong W.M., Manthiram A. Cobalt-free, high-nickel layered oxide cathodes for lithium-ion batteries: Progress, challenges, and perspectives // Energy Storage Mater. 2021. Vol. 34. P. 250-259.
90. Xie Q., Li W., Manthiram A. A Mg-doped high-nickel layered oxide cathode enabling safer, high-energy-density Li-ion batteries // Chem. Mater. 2019. Vol. 31, № 3. P. 938- 946.
91. Wang Y.-Y. et al. Elucidating the effect of the dopant ionic radius on the structure and electrochemical performance of Ni-rich layered oxides for lithium-ion batteries // ACS Appl. Mater. Interfaces. 2021. Vol. 13, № 47. P. 56233-56241.
92. Dixit M. et al. Unraveling the effects of Al doping on the electrochemical properties of LiNi0.5Co0.2Mn0.3O2 using first principles // J. Electrochem. Soc. 2017. Vol. 164, № 1. P. A6359- A6365.
93. Zhao W. et al. Optimized Al doping improves both interphase stability and bulk structural integrity of Ni-rich NMC cathode materials // ACS Appl. Energy Mater. 2020. Vol. 3, № 4. P. 3369-3377.
94. Jeong M. et al. Stabilizing effects of Al-doping on Ni-rich LiNi0.80Co0.15Mn0.05O2 cathode for Li rechargeable batteries // J. Power Sources. 2020. Vol. 474. P. 228592.
95. Kam K.C. et al. Electrochemical and physical properties of Ti-substituted layered nickel manganese cobalt oxide (NMC) cathode materials // J. Electrochem. Soc. 2012. Vol. 159, № 8. P. A1383-A1392.
96. Kim J.H. et al. Incorporation of titanium into Ni-rich layered cathode materials for lithium-ion batteries // ACS Appl. Energy Mater. 2020. Vol. 3, № 12. P. 12204-12211.
97. Schipper F. et al. From surface ZrO2 coating to bulk Zr doping by high temperature annealing of nickel-rich lithiated oxides and their enhanced electrochemical performance in lithium-ion batteries // Adv. Energy Mater. 2018. Vol. 8, № 4.
98. Schipper F. et al. Stabilizing nickel-rich layered cathode materials by a high-charge cation doping strategy: zirconium-doped LiNi0.6Co0.2Mn0.2O2 // J. Mater. Chem. A. 2016. Vol. 4, № 41. P. 16073-16084.
99. Li J. et al. An effective doping strategy to improve the cyclic stability and rate capability of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode // Chem. Eng. J. 2020. Vol. 402. P. 126195.
100. Susai F.A. et al. Improving performance of LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium-ion batteries by doping with molybdenum-ions: theoretical and experimental studies //
ACS Appl. Energy Mater. 2019. Vol. 2, № 6. P. 4521-4534.
101. Dalkilic M. et al. W-doping of dense NMC811 hydroxide through wet-impregnation and its impact on crystal structure, phase transition related gas evolution and electrochemical performance at elevated upper cut-off voltage // J. Electrochem. Soc. 2022. Vol. 169, № 12. P. 120501.
102. Roitzheim C. et al. Boron in Ni-rich NCM811 cathode material: impact on atomic and microscale properties // ACS Appl. Energy Mater. 2022. Vol. 5, № 1. P. 524-538.
103. Dong J. et al. Boron improved electrochemical performance of LiNi0.8Co0.1Mn0.1O2 by enhancing the crystal growth with increased lattice ordering // J. Mater. Sci. Mater. Electron. 2019. Vol. 30, № 19. P. 18200-18210.
104. Han S.-H. et al. Communication—improvement of structural stability during highvoltage cycling in high-nickel cathode materials with B2O3 addition // J. Electrochem. Soc. 2016. Vol. 163, № 5. P. A748-A750.
105. Gomez-Martin A. et al. Magnesium substitution in Ni-rich NMC layered cathodes for high-energy lithium ion batteries // Adv. Energy Mater. 2022. Vol. 12, № 8. P. 2103045.
106. Konishi H., Yoshikawa M., Hirano T. The effect of thermal stability for high-Ni-content layer-structured cathode materials, LiNi0.8Mn0.1-xCo0.1MoxO2 (x = 0, 0.02, 0.04) // J. Power Sources. 2013. Vol. 244. P. 23-28.
107. Li Z.-Y. et al. Al Substitution Induced Differences in Materials Structure and Electrochemical Performance of Ni-Rich Layered Cathodes for Lithium-Ion Batteries // J. Phys. Chem. C. 2019. Vol. 123, № 32. P. 19298-19306.
108. Qian H. et al. Surface doping vs. bulk doping of cathode materials for lithium-ion batteries: a review // Electrochem. Energy Rev. 2022. Vol. 5, № 4. P. 2.
109. Cheng J. et al. Enhancing surface oxygen retention through theory-guided doping selection in Lh-xNiO2 for next-generation lithium-ion batteries // J. Mater. Chem. A. 2020. Vol. 8, № 44. P. 23293-23303.
110. Susai F.A. et al. Studies of nickel-rich LiNi0.85Co0.10Mn0.05O2 cathode materials doped with molybdenum ions for lithium-ion batteries // Materials (Basel). 2021. Vol. 14, № 8. P. 2070.
111. Huang Y. et al. Tellurium surface doping to enhance the structural stability and electrochemical performance of layered Ni-rich cathodes // ACS Appl. Mater. Interfaces. 2019. Vol. 11, № 43. P. 40022-40033.
112. Weigel T. et al. Structural and electrochemical aspects of LiNi0.8Co0.1Mn0.1O2 cathode materials doped by various cations // ACS Energy Lett. 2019. Vol. 4, № 2. P. 508-516.
113. Steiner J.D. et al. Targeted surface doping with reversible local environment
improves oxygen stability at the electrochemical interfaces of nickel-rich cathode materials // ACS Appl. Mater. Interfaces. 2019. Vol. 11, № 41. P. 37885-37891.
114. Sim S.-J. et al. Improving the electrochemical performances using a V-doped Ni-rich NCM cathode // Sci. Rep. 2019. Vol. 9, № 1. P. 8952.
115. Lide DR. CRC Handbook of Chemistry and Physics. CRC Press, 1995. P. 1435-1436.
116. Wise A.M. et al. Effect of AhO3 coating on stabilizing LiNi0.4Mn0.4Co0.2O2 cathodes // Chem. Mater. 2015. Vol. 27, № 17. P. 6146-6154.
117. Ahn J. et al. Ultrathin ZrO2 on LiNi0.5Mn0.3Co0.2O2 electrode surface via atomic layer deposition for high-voltage operation in lithium-ion batteries // Appl. Surf. Sci. 2019. Vol. 484. P. 701-709.
118. Cho W. et al. Improved electrochemical and thermal properties of nickel rich LiNi0.6Co0.2Mn0.2O2 cathode materials by SiO2 coating // J. Power Sources. 2015. Vol. 282. P. 45-50.
119. Kong J.-Z. et al. Ultrathin ZnO coating for improved electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material // J. Power Sources. 2014. Vol. 266. P. 433-439.
120. Qin C. et al. Improvement of electrochemical performance of nickel rich LiNi0.6Co0.2Mn0.2O2 cathode active material by ultrathin TiO2 coating // Dalt. Trans. 2016. Vol. 45, № 23. P. 9669-9675.
121. Li Q. et al. Realizing superior cycle stability of a Ni-rich layered LiNi0.83Co0.12Mn0.05O2 cathode with a B2O3 surface modification // ChemElectroChem. 2020. Vol. 7, № 4. P. 998-1006.
122. Wu F. et al. Lithium-active molybdenum trioxide coated LiNi0.5Co0.2Mn0.3O2 cathode material with enhanced electrochemical properties for lithium-ion batteries // J. Power Sources. 2014. Vol. 269. P. 747-754.
123. Chen Z. et al. Role of surface coating on cathode materials for lithium-ion batteries // J. Mater. Chem. 2010. Vol. 20, № 36. P. 7606.
124. Xie H. et al. A general route of fluoride coating on the cyclability regularity of highvoltage NCM cathodes // Chem. Commun. 2020. Vol. 56, № 80. P. 12009-12012.
125. Liu X. et al. CaF2-coated Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials for Li-ion batteries // Electrochim. Acta. 2013. Vol. 109. P. 52-58.
126. Park B.-C. et al. Improvement of structural and electrochemical properties of AlF3-coated Li[Nh/3Co1/3Mm/3]O2 cathode materials on high voltage region // J. Power Sources. 2008. Vol. 178, № 2. P. 826-831.
127. Han B. et al. Understanding the role of temperature and cathode composition on
interface and bulk: optimizing aluminum oxide coatings for Li-ion cathodes // ACS Appl. Mater. Interfaces. 2017. Vol. 9, № 17. P. 14769-14778.
128. Nisar U. et al. Valuation of surface coatings in high-energy density lithium-ion battery cathode materials // Energy Storage Mater. 2021. Vol. 38. P. 309-328.
129. Hao S., Wolverton C. Lithium transport in amorphous AhO3 and AlF3 for discovery of battery coatings // J. Phys. Chem. C. 2013. Vol. 117, № 16. P. 8009-8013.
130. Xu S. et al. Lithium transport through lithium-ion battery cathode coatings // J. Mater. Chem. A. 2015. Vol. 3, № 33. P. 17248-17272.
131. Liu W. et al. Significantly improving cycling performance of cathodes in lithium ion batteries: The effect of AhO3 and LiAlO2 coatings on LiNi0.6Co0.2Mn0.2O2 // Nano Energy. 2018. Vol. 44. P. 111-120.
132. Song B. et al. Long-life nickel-rich layered oxide cathodes with a uniform Li2ZrO3 surface coating for lithium-ion batteries // ACS Appl. Mater. Interfaces. 2017. Vol. 9, № 11. P. 9718-9725.
133. Liu S. et al. Enhancing electrochemical performance of LiNi0.6Co0.2Mn0.2O2 by lithium-ion conductor surface modification // Electrochim. Acta. 2017. Vol. 224. P. 171-177.
134. Engun S. et al. Unveiling the enhanced electrochemical performance of LiNi0.5Mn0.3Co0.2O2 sol-gel coated with Li-La-Zr-O based gel // J. Alloys Compd. 2023. Vol. 957. P. 170466.
135. Hu Y. et al. Electrical characterization of amorphous LiAlO2 thin films deposited by atomic layer deposition // RSC Adv. 2016. Vol. 6, № 65. P. 60479-60486.
136. Park J.S. et al. Ultrathin lithium-ion conducting coatings for increased interfacial stability in high voltage lithium-ion batteries // Chem. Mater. 2014. Vol. 26, № 10. P. 3128-3134.
137. Yang L. et al. Electrical conductivity of Al-doped Li2ZrO3 ceramics for Li-ion conductor electrolytes // Ceram. Int. 2021. Vol. 47, № 13. P. 17950-17955.
138. Stramare S., Thangadurai V., Weppner W. Lithium Lanthanum Titanates: A Review // Chem. Mater. 2003. Vol. 15, № 21. P. 3974-3990.
139. He X., Zhu Y., Mo Y. Origin of fast ion diffusion in super-ionic conductors // Nat. Commun. 2017. Vol. 8, № 1. P. 15893.
140. Shao C. et al. Structure and ionic conductivity of cubic Li?La3Zr2O12 solid electrolyte prepared by chemical co-precipitation method // Solid State Ionics. 2016. Vol. 287. P. 13-16.
141. Han B. et al. From coating to dopant: how the transition metal composition affects alumina coatings on Ni-rich cathodes // ACS Appl. Mater. Interfaces. 2017. Vol. 9, № 47. P. 41291-41302.
142. He T. et al. Sufficient utilization of zirconium ions to improve the structure and surface properties of nickel-rich cathode materials for lithium-ion batteries // ChemSusChem. 2018. Vol. 11, № 10. P. 1639-1648.
143. Zhu J. et al. Enhanced electrochemical performance of Li3PO4 modified Li[Ni0.8Co0.1Mn0.1]O2 cathode material via lithium-reactive coating // J. Alloys Compd. 2019. Vol. 773. P. 112-120.
144. Zou P. et al. Facile and efficient fabrication of Li3PO4-coated Ni-rich cathode for high-performance lithium-ion battery // Appl. Surf. Sci. 2020. Vol. 504. P. 144506.
145. Xia S. et al. Rearrangement on surface structures by boride to enhanced cycle stability for LiNi0.80Co0.15Al0.05O2 cathode in lithium ion batteries // J. Energy Chem. 2020. Vol. 45. P. 110-118.
146. Hashigami S. et al. Improvement of cycleability and rate-capability of LiNi0.5Co0.2Mn0.3O2 cathode materials coated with lithium boron oxide by an antisolvent precipitation method // ChemistrySelect. 2019. Vol. 4, № 29. P. 8676-8681.
147. Li Y. et al. Enhanced electrochemical properties of SiO2-Li2SiO3-coated NCM811 cathodes by reducing surface residual lithium // J. Alloys Compd. 2022. Vol. 923. P. 166317.
148. Liu S. et al. Synthesis of Li2Si2O5-coated LiNi0.6Co0.2Mn0.2O2 cathode materials with enhanced high-voltage electrochemical properties for lithium-ion batteries // J. Alloys Compd. 2016. Vol. 674. P. 447-454.
149. Kuwata N., Iwagami N., Kawamura J. ArF excimer laser deposition of wide-band gap solid electrolytes for thin film batteries // Solid State Ionics. 2009. Vol. 180, № 6-8. P. 644-648.
150. Li Y. et al. Surface-engineering of layered LiNi0.815Co0.15Al0.035O2 cathode material for high-energy and stable Li-ion batteries // J. Energy Chem. 2018. Vol. 27, № 2. P. 559-564.
151. Gan Q. et al. Polyvinylpyrrolidone-induced uniform surface-conductive polymer coating endows Ni-rich LiNi0.8Co0.1Mn0.1O2 with enhanced cyclability for lithium-ion batteries // ACS Appl. Mater. Interfaces. 2019. Vol. 11, № 13. P. 12594-12604.
152. Xu G.-L. et al. Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes // Nat. Energy. 2019. Vol. 4, № 6. P. 484-494.
153. Zhang Y., Song Y., Liu J. Double conductor coating to improve the structural stability and electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode material // ACS Sustain. Chem. Eng. 2023. Vol. 11, № 6. P. 2264-2274.
154. Kim J.-M. et al. A review on the stability and surface modification of layered transition-metal oxide cathodes // Mater. Today. 2021. Vol. 46. P. 155-182.
155. Huang W.-J. et al. Boosting rate performance of LiNi0.8Co0.15Al0.05O2 cathode by simply mixing lithium iron phosphate // J. Alloys Compd. 2020. Vol. 827. P. 154296.
156. Huang Y. et al. Preparation and performance of the heterostructured material with a Ni-rich layered oxide core and a LiNi0.5Mm.5O4-like spinel shell // ACS Appl. Mater. Interfaces. 2019. Vol. 11, № 18. P. 16556-16566.
157. Kim H. et al. Enhancing interfacial bonding between anisotropically oriented grains using a glue-nanofiller for advanced Li-ion battery cathode // Adv. Mater. 2016. Vol. 28, № 23. P. 4705-4712.
158. Lu Y. et al. Recent advances in Ni-rich layered oxide particle materials for lithiumion batteries // Particuology. 2020. Vol. 53. P. 1-11.
159. Sun Y.-K. et al. Synthesis and characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the microscale core-shell structure as the positive electrode material for lithium batteries // J. Am. Chem. Soc. 2005. Vol. 127, № 38. P.13411-13418.
160. Sun Y.-K. et al. Synthesis of spherical nano-to microscale core-shell particles Li[(Ni0.8Co0.1Mn0.1)(1 -x) (Ni0.5Mn0.5)x]O2 and their applications to lithium batteries // Chem. Mater. 2006. Vol. 18, № 22. P. 5159-5163.
161. Hou P. et al. Core-shell and concentration-gradient cathodes prepared via co-precipitation reaction for advanced lithium-ion batteries // J. Mater. Chem. A. 2017. Vol. 5, № 9. P. 4254-4279.
162. Teichert P. et al. Degradation and aging routes of Ni-rich cathode based Li-ion batteries // Batteries. 2020. Vol. 6, № 1. P. 8.
163. Sun Y.-K. et al. Nanostructured high-energy cathode materials for advanced lithium batteries // Nat. Mater. 2012. Vol. 11, № 11. P. 942-947.
164. Sun Y.-K. et al. High-energy cathode material for long-life and safe lithium batteries // Nat. Mater. 2009. Vol. 8, № 4. P. 320-324.
165. Lim B.-B. et al. Advanced concentration gradient cathode material with two-dlope for high-energy and safe lithium batteries // Adv. Funct. Mater. 2015. Vol. 25, № 29. P. 4673-4680.
166. Kim U. et al. Concentration gradient cathodes: microstructure-controlled Ni-rich cathode material by microscale compositional partition for next-generation electric vehicles // Adv. Energy Mater. 2019. Vol. 9, № 15. P. 1803902.
167. Zhu W. et al. Ultrathin AhO3 coating on LiNi0.8Co0.1Mn0.1O2 cathode material for enhanced cycleability at extended voltage ranges // Coatings. 2019. Vol. 9, № 2. P. 92.
168. Ho V.-C. et al. Crucial role of thioacetamide for ZrO2 coating on the fragile surface
of Ni-rich layered cathode in lithium ion batteries // J. Power Sources. 2020. Vol. 450. P. 227625.
169. Fan Q. et al. Constructing effective TiO2 nano-coating for high-voltage Ni-rich cathode materials for lithium ion batteries by precise kinetic control // J. Power Sources. 2020. Vol. 477. P. 228745.
170. Woo S.-U. et al. Significant improvement of electrochemical performance of AlF3-coated LifNi0.8Co0.1Mn0.1P2 cathode materials // J. Electrochem. Soc. 2007. Vol. 154, № 11. P. A1005.
171. Xiao Z. et al. Modification research of LiAlO2-coated LiNi0.8Co0.1Mn0.1O2 as a cathode material for lithium-ion battery // Ionics (Kiel). 2018. Vol. 24, № 1. P. 91-98.
172. Zhang M. et al. Surface coating with Li3BO3 protection layer to enhance the electrochemical performance and safety properties of Ni-rich LiNi0.85Co0.05Mn0.10O2 cathode material // Powder Technol. 2021. Vol. 394. P. 448-458.
173. He X. et al. Grain boundaries and their impact on Li kinetics in layered-oxide cathodes for Li-ion batteries // J. Phys. Chem. C. 2021. Vol. 125, № 19. P. 10284-10294.
174. Abakumov A.M. et al. Grain boundaries as a diffusion-limiting factor in lithium-rich NMC cathodes for high-energy lithium-ion batteries // ACS Appl. Energy Mater. 2021. Vol. 4, № 7. P. 6777-6786.
175. Lee S. et al. Revisiting primary particles in layered lithium transition-metal oxides and their impact on structural degradation // Adv. Sci. 2019. Vol. 6, № 6. P. 1800843.
176. Chung H. et al. Mitigating anisotropic changes in classical layered oxide materials by controlled twin boundary defects for long cycle life Li-ion batteries // Chem. Mater. 2022. Vol. 34, № 16. P. 7302-7312.
177. Yan P. et al. Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries // Nat. Energy. 2018. Vol. 3, № 7. P. 600-605.
178. Sun Y.-Q. et al. Li3PO4 electrolyte of high conductivity for all-solid-state lithium battery prepared by plasma spray // J. Eur. Ceram. Soc. 2022. Vol. 42, № 10. P. 4239-4247.
179. Park H.G. et al. Correlation between grain boundary coating and chemomechanics in Ni-rich layered Li cathodes // Chem. Eng. J. 2023. Vol. 452. P. 139442.
180. Bunyanidhi P. et al. Mechanofusing garnet solid electrolyte on the surface of Ni-rich layered oxide cathode towards high-rate capability of cylindrical Li-ion battery cells // J. Power Sources. 2022. Vol. 549. P. 232043.
181. Lal H.B., Gaur K., Pathak A.J. Electronic and ionic conduction in some simple lithium salts // J. Mater. Sci. 1989. Vol. 24, № 4. P. 1159-1164.
182. Ji Y.J. et al. Li3BO3-Li3PO4 composites for efficient buffer layer of sulphide-based
all-solid-state batteries // Batteries. 2023. Vol. 9, № 6. P. 292.
183. Jung S.H. et al. Li3BO3 -U2CO3 : Rationally Designed Buffering Phase for Sulfide All-Solid-State Li-Ion Batteries // Chem. Mater. 2018. Vol. 30, № 22. P. 8190-8200.
184. Touboul M., Sephar N., Quarton M. Electrical conductivity and phase diagram of the system Li2SO4-LisPO4 // Solid State Ionics. 1990. Vol. 38, № 3-4. P. 225-229.
185. Homma K. et al. Optimization of a heterogeneous ternary Li3PO4-Li3BO3-Li2SO4 mixture for Li-ion conductivity by machine learning // J. Phys. Chem. C. 2020. Vol. 124, № 24. P. 12865-12870.
186. West A.R. Ionic conductivity of oxides based on Li4SiO4 // J. Appl. Electrochem. 1973. Vol. 3, № 4. P. 327-335.
187. Dissanayake M.A.K.L., West A.R. Structure and conductivity of an Li4SiO4 -Li2SO4 solid solution phase // J. Mater. Chem. 1991. Vol. 1, № 6. P. 1023-1025.
188. Choi J., Lee J. Improved Li-ion conductivity of 0.7Li4SiO4-0.3Li3PO4 by aluminum doping // Solid State Ionics. 2016. Vol. 289. P. 173-179.
189. Khorassani A., West A. New Li+ ion conductors in the system Li4SiO4-Li3AsO4 // Solid State Ionics. 1982. Vol. 7, № 1. P. 1-8.
190. Khorassani A., West A.R. Li+ ion conductivity in the system Li4SiO4-Li3VO4 // J. Solid State Chem. 1984. Vol. 53, № 3. P. 369-375.
191. Lu S. et al. Single-crystal nickel-based cathodes: fundamentals and recent advances // Electrochem. Energy Rev. 2022. Vol. 5, № 4. P. 15.
192. Li J. et al. Comparison of single crystal and polycrystalline LiNi0.5Mn0.3Co0.2O2 positive electrode materials for high voltage Li-ion cells // J. Electrochem. Soc. 2017. Vol. 164, № 7. P. A1534-A1544.
193. Cheng E.J. et al. Mechanical and physical properties of LiNi0.33Mn0.33Co0.33O2 (NMC) // J. Eur. Ceram. Soc. 2017. Vol. 37, № 9. P. 3213-3217.
194. Liu G. et al. Single-crystalline particles: an effective way to ameliorate the intragranular cracking, thermal stability, and capacity fading of the LiNi0.6Co0.2Mn0.2O2 electrodes // J. Electrochem. Soc. 2018. Vol. 165, № 13. P. A3040-A3047.
195. Langdon J., Manthiram A. A perspective on single-crystal layered oxide cathodes for lithium-ion batteries // Energy Storage Mater. 2021. Vol. 37. P. 143-160.
196. Moiseev I.A. et al. Single crystal Ni-rich NMC cathode materials for lithium-ion batteries with ultra-high volumetric energy density // Energy Adv. 2022. Vol. 1, № 10. P. 677-681.
197. Zeng W. et al. Single-crystal high-nickel layered cathodes for lithium-ion batteries: advantages, mechanism, challenges and approaches // Curr. Opin. Electrochem. 2022. Vol. 31. P. 100831.
198. Teichert P., Jahnke H., Figgemeier E. Degradation mechanism of monocrystalline Ni-rich Li[NixMnyCoz]O2 (NMC) active material in lithium-ion batteries // J. Electrochem. Soc. 2021. Vol. 168, № 9. P. 090532.
199. Zhang H. et al. Single-crystalline Ni-rich LiNixM%Co1-x-yO2 cathode materials: a perspective // Adv. Energy Mater. 2022. Vol. 12, № 45. P. 2202022.
200. Qian G. et al. Single-crystal nickel-rich layered-oxide battery cathode materials: synthesis, electrochemistry, and intra-granular fracture // Energy Storage Mater. 2020. Vol. 27. P. 140-149.
201. Liu X. et al. Electrochemo-mechanical effects on structural integrity of Ni-rich cathodes with different microstructures in all solid-state batteries // Adv. Energy Mater. 2021. Vol. 11, № 8. P. 2003583.
202. Sun H.-H. et al. Nanorod gradient cathode: preventing electrolyte penetration into cathode particles // ACS Appl. Energy Mater. 2019. Vol. 2, № 8. P. 6002-6011.
203. Yoon C.S. et al. Microstructure evolution of concentration gradient Li[Ni0.75Co0.10Mn0.15]O2 cathode for lithium-ion batteries // Adv. Funct. Mater. 2018. Vol. 28, № 28. P. 1802090.
204. Xu Z. et al. Charge distribution guided by grain crystallographic orientations in polycrystalline battery materials // Nat. Commun. 2020. Vol. 11, № 1. P. 83.
205. Romano Brandt L. et al. Synchrotron X-ray quantitative evaluation of transient deformation and damage phenomena in a single nickel-rich cathode particle // Energy Environ. Sci. 2020. Vol. 13, № 10. P. 3556-3566.
206. Xu X. et al. Radially oriented single-crystal primary nanosheets enable ultrahigh rate and cycling properties of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries // Adv. Energy Mater. 2019. Vol. 9, № 15. P. 1803963.
207. Ryu H.-H. et al. A highly stabilized Ni-rich NCA cathode for high-energy lithiumion batteries // Mater. Today. 2020. Vol. 36. P. 73-82.
208. Zhu J., Chen G. Single-crystal based studies for correlating the properties and highvoltage performance of Li[NixM%Co1-x-y]O2 cathodes // J. Mater. Chem. A. 2019. Vol. 7, № 10. P. 5463-5474.
209. Park K. et al. Improved cycling stability of Li[Ni0.90Co0.05Mn0.05]O2 through microstructure modification by boron doping for Li-ion batteries // Adv. Energy Mater. 2018. Vol. 8, № 25. P. 1801202.
210. Jung C. et al. New insight into microstructure engineering of Ni-rich layered oxide cathode for high performance lithium ion batteries // Adv. Funct. Mater. 2021. Vol. 31, № 18. P.2010095.
211. Zhang Y. et al. A simple method for industrialization to enhance the tap density of LiNi0.5Co0.2Mn0.3O2 cathode material for high-specific volumetric energy lithium-ion batteries // RSC Adv. 2016. Vol. 6, № 70. P. 65941-65949.
212. Lin C.-H. et al. Synthesis of micron-sized LiNi0.8Co0.1Mn0.1O2 and its application in bimodal distributed high energy density Li-ion battery cathodes // Energies. 2022. Vol. 15, № 21. P. 8129.
213. Paulsen J. Y.H.Y. Bimodal lithium transition metal based oxide powder for use in a rechargeable battery (US10069140B2). 2013. P. 22.
214. Kim D.-H., Paulsen J., Kumakuray S., Lee Y., Shu L. Y.T. Positive electrode material for rechargeable lithium ion batteries (US20210005877A1). 2019. P. 21.
215. Kumakura S., Paulsen J., Yang T., Yang H. H.S.-Y. Positive electrode material for rechargeable lithium ion batteries and methods of making thereof (US11271203B2). 2018. P. 25.
216. Yue P. et al. Effect of synthesis routes on the electrochemical performance of Li[Ni0.6Co0.2Mn0.2]O2 for lithium ion batteries // J. Solid State Electrochem. 2012. Vol. 16, № 12. P. 3849-3854.
217. Wang L. et al. One-step solid-state synthesis of Ni-rich cathode materials for lithium-ion batteries // Materials (Basel). 2023. Vol. 16, № 8. P. 3079.
218. Xiang Y. et al. Effects of synthesis conditions on the structural and electrochemical properties of the Li-rich material Li[Li0.2Ni0.17Co0.16Mn0.47]O2 via the solid-state method // Electrochim. Acta. 2013. Vol. 91. P. 214-218.
219. Entwistle T. et al. Co-precipitation synthesis of nickel-rich cathodes for Li-ion batteries // Energy Reports. 2022. Vol. 8. P. 67-73.
220. Shen Y. et al. Ammonia-low coprecipitation synthesis of lithium layered oxide cathode material for high-performance battery // Chem. Eng. J. 2021. Vol. 411. P. 128487.
221. Dong H., Koenig G.M. A review on synthesis and engineering of crystal precursors produced via coprecipitation for multicomponent lithium-ion battery cathode materials // CrystEngComm. 2020. Vol. 22, № 9. P. 1514-1530.
222. Lu H. et al. High capacity Li[Ni0.8Co0.1Mn0.1]O2 synthesized by sol-gel and co-precipitation methods as cathode materials for lithium-ion batteries // Solid State Ionics. 2013. Vol. 249-250. P. 105-111.
223. Li W. et al. The effect of chelating agent on synthesis and electrochemical properties of LiNi0.6Co0.2Mn0.2O2 // SN Appl. Sci. 2020. Vol. 2, № 4. P. 554.
224. Shi Y. et al. Urea-based hydrothermal synthesis of LiNi0.5Co0.2Mn0.3O2 cathode material for Li-ion battery // J. Power Sources. 2018. Vol. 394. P. 114-121.
225. Widiyandari H. et al. Synthesis of LiNi0.8Mn0.1Co0.1O2 cathode material by
hydrothermal method for high energy density lithium ion battery // J. Phys. Conf. Ser. 2019. Vol. 1153. P. 012074.
226. Zhang Y. et al. Hydrothermal preparing agglomerate LiNi0.8Co0.1Mn0.1O2 cathode material with submicron primary particle for alleviating microcracks // J. Power Sources. 2020. Vol. 477. P. 228701.
227. Jiang M. et al. Synthesis of Ni-rich layered-oxide nanomaterials with enhanced Li-ion diffusion pathways as high-rate cathodes for Li-ion batteries // ACS Appl. Energy Mater. 2020. Vol. 3, № 7. P. 6583-6590.
228. Haik O. et al. Characterizations of self-combustion reactions (SCR) for the production of nanomaterials used as advanced cathodes in Li-ion batteries // Thermochim. Acta. 2009. Vol. 493, № 1-2. P. 96-104.
229. Li Y. et al. Spray pyrolysis synthesis of nickel-rich layered cathodes
LiNii-2 xCoxMnxO2 ( x = 0.075, 0.05, 0.025) for lithium-ion batteries // J. Energy Chem. 2018. Vol. 27, № 2. P. 447-450.
230. Malik M., Chan K.H., Azimi G. Review on the synthesis of LiNixMnyCo1-x-yO2 (NMC) cathodes for lithium-ion batteries // Mater. Today Energy. 2022. Vol. 28. P. 101066.
231. Pardikar K. et al. Status and outlook for lithium-ion battery cathode material synthesis and the application of mechanistic modeling // J. Phys. Energy. 2023. Vol. 5, № 2. P. 022002.
232. Liang Y. et al. Process engineering to increase the layered phase concentration in the immediate products of flamespray pyrolysis // ACS Appl. Mater. Interfaces. 2021. Vol. 13, № 23. P. 26915-26923.
233. Fröhlich K. et al. New large-scale production route for synthesis of lithium nickel manganese cobalt oxide // J. Solid State Electrochem. 2017. Vol. 21, № 12. P. 3403-3410.
234. Zang G. et al. Techno-economic analysis of cathode material production using flame-assisted spray pyrolysis // Energy. 2021. Vol. 218. P. 119504.
235. Abram C. et al. Flame aerosol synthesis and electrochemical characterization of Ni-rich layered cathode materials for Li-ion batteries // ACS Appl. Energy Mater. 2019. Vol. 2, № 2. P. 1319-1329.
236. Wang L. et al. Synthesis of porous peanut-like LiNi0.5Mn1.5O4 cathode materials through an ethylene glycol-assisted hydrothermal method using urea as a precipitant // J. Mater. Chem. A. 2015. Vol. 3, № 38. P. 19497-19506.
237. Yang G., Park S.-J. Conventional and Microwave Hydrothermal Synthesis and Application of Functional Materials: A Review // Materials (Basel). 2019. Vol. 12, № 7. P. 1177.
238. Komarneni S., Roy R., Li Q.H. Microwave-hydrothermal synthesis of ceramic
powders // Mater. Res. Bull. 1992. Vol. 27, № 12. P. 1393-1405.
239. Schütz M.B. et al. Microwave-assisted synthesis of nanocrystalline binary and ternary metal oxides // Int. Mater. Rev. 2018. Vol. 63, № 6. P. 341-374.
240. Zhao R. et al. Synthesis of layered materials by ultrasonic/microwave-assisted coprecipitation method: A case study of LiNi0.5Co0.2Mn0.3O2 // Sustain. Mater. Technol. 2018. Vol. 18. P. e00083.
241. van Bommel A., Dahn J.R. Analysis of the growth mechanism of coprecipitated spherical and dense nickel, manganese, and cobalt-containing hydroxides in the presence of aqueous ammonia // Chem. Mater. 2009. Vol. 21, № 8. P. 1500-1503.
242. Para M.L. et al. A modelling and experimental study on the co-precipitation of Ni0.8Mn0.1Co0.1(OH)2 as precursor for battery cathodes // Chem. Eng. Sci. 2022. Vol. 254. P.117634.
243. Li L. et al. Thermodynamic analysis on the coprecipitation of Ni-Co-Mn hydroxide // Metall. Mater. Trans. B. 2017. Vol. 48, № 5. P. 2743-2750.
244. Oliva P. et al. Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides // J. Power Sources. 1982. Vol. 8, № 2. P. 229-255.
245. R.M. Garrels C.L.C. Solutions, Minerals and Equilibria. New York: Harper&Row, 1965.
246. Cui Y. et al. Preparation of ultra-stable LifNi0.6Co0.2Mn0.2JO2 cathode material with a continuous hydroxide co-precipitation method // J. Alloys Compd. 2019. Vol. 793, P. 77-85.
247. Shen Y. et al. Insight into the coprecipitation-controlled crystallization reaction for preparing lithium-layered oxide cathodes // ACS Appl. Mater. Interfaces. 2021. Vol. 13, № 1. P. 717-726.
248. Yang Y. et al. Growth mechanisms for spherical mixed hydroxide agglomerates prepared by co-precipitation method: A case of Ni1/3Co1/3Mm/3(OH)2 // J. Alloys Compd. 2015. Vol. 619. P. 846-853.
249. Hwa Lee S. et al. A kinetic descriptor to optimize Co-precipitation of Nickel-rich cathode precursors for Lithium-ion batteries // J. Electroanal. Chem. 2022. Vol. 924. P. 116828.
250. Wang D. et al. Growth mechanism of Ni0.3Mn0.7CO3 precursor for high capacity Li-ion battery cathodes // J. Mater. Chem. 2011. Vol. 21, № 25. P. 9290.
251. Alpay B.C., Keles O. Effect of impeller design on the properties of Li1.03Ni0.8Mn0.1Co0.1O2 cathode material synthesized via co-precipitation method // J. Alloys Compd. 2023. Vol. 947. P. 169583.
252. Wu K. et al. A novel synthesis strategy to improve cycle stability of LiNi0.8Mn0.1Co0.1O2 at high cut-off voltages through core-shell structuring // Nano Res. 2019.
Vol. 12, № 10. P. 2460-2467.
253. Qiu Z. et al. A facile method for synthesis of LiNi0.8Co0.15Al0.05O2 cathode material // Solid State Ionics. 2017. Vol. 307. P. 73-78.
254. Yao X. et al. Oxalate co-precipitation synthesis of LiNi0.6Co0.2Mn0.2O2 for low-cost and high-energy lithium-ion batteries // Mater. Today Commun. 2019. Vol. 19. P. 262-270.
255. Himmah Sekar Eka Ayu Gustiana et al. Synthesis and characterization of NMC811 by oxalate and hydroxide coprecipitation method // Evergreen. 2022. Vol. 9, № 2. P. 438-442.
256. Mallick S. et al. Low-cobalt active cathode materials for high-performance lithiumion batteries: synthesis and performance enhancement methods // J. Mater. Chem. A. 2023. Vol. 11, № 8. P. 3789-3821.
257. Zheng J. et al. Effect of calcination temperature on the electrochemical properties of nickel-rich LiNi0.76Mn0.14Co0.10O2 cathodes for lithium-ion batteries // Nano Energy. 2018. Vol. 49. P. 538-548.
258. Xiao P. et al. Effects of oxygen pressurization on Li+/Ni2+ cation mixing and the oxygen vacancies of LiNi0.8Co0.15Al0.05O2 cathode materials // ACS Appl. Mater. Interfaces. 2022. Vol. 14, № 28. P. 31851-31861.
259. Liang R. et al. Influence of oxygen percentage in calcination atmosphere on structure and electrochemical properties of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries // Ceram. Int. 2019. Vol. 45, № 15. P. 18965-18971.
260. Fu C. et al. Nickel-rich layered microspheres cathodes: lithium/nickel disordering and electrochemical performance // ACS Appl. Mater. Interfaces. 2014. Vol. 6, № 18. P. 15822-15831.
261. Ronduda H. et al. On the sensitivity of the Ni-rich layered cathode materials for Li-ion batteries to the different calcination conditions // Nanomaterials. 2020. Vol. 10, № 10. P. 2018.
262. Abebe E.B. et al. Effect of Li excess on electrochemical performance of Ni-rich LiNi0.9Co0.05Mn0.05O2 cathode materials for Li-ion batteries // ACS Appl. Energy Mater. 2021. Vol. 4, № 12. P. 14295-14308.
263. Wang J. et al. Doping strategy in nickel-rich layered oxide cathode for lithium-ion battery // Renewables. 2023. Vol. 1, № 3. P. 316-340.
264. Li J. et al. Synthesis of single crystal LiNi0.5Mn0.3Co0.2O2 for lithium ion batteries // J. Electrochem. Soc. 2017. Vol. 164, № 14. P. A3529-A3537.
265. Wang L. et al. Single-crystal LiNi0.6Co0.2Mn0.2O2 as high performance cathode materials for Li-ion batteries // J. Alloys Compd. 2016. Vol. 674. P. 360-367.
266. Fan X. et al. Crack-free single-crystalline Ni-rich layered NCM cathode enable superior cycling performance of lithium-ion batteries // Nano Energy. 2020. Vol. 70. P. 104450.
267. Kim Y. Lithium nickel cobalt manganese oxide synthesized using alkali chloride flux: morphology and performance as a cathode material for lithium ion batteries // ACS Appl. Mater. Interfaces. 2012. Vol. 4, № 5. P. 2329-2333.
268. Pan T. et al. Structural degradation of layered cathode materials in lithium-ion batteries induced by ball milling // J. Electrochem. Soc. 2019. Vol. 166, № 10. P. A1964-A1971.
269. Renfrew S.E., McCloskey B.D. Residual lithium carbonate predominantly accounts for first cycle CO2 and CO outgassing of Li-stoichiometric and Li-rich layered transition-metal oxides // J. Am. Chem. Soc. 2017. Vol. 139, № 49. P. 17853-17860.
270. Kimijima T., Zettsu N., Teshima K. Growth manner of octahedral-shaped Li(Ni1/3Co1/3Mm/3)O2 single crystals in molten Na2SO4 // Cryst. Growth Des. 2016. Vol. 16, № 5. P. 2618-2623.
271. Zheng L., Bennett J.C., Obrovac M.N. All-dry synthesis of single crystal NMC cathode materials for Li-ion batteries // J. Electrochem. Soc. 2020. Vol. 167, № 13. P. 130536.
272. Zhu J. et al. Flux-free synthesis of single-crystal LiNi0.8Co0.1Mn0.1O2 boosts its electrochemical performance in lithium batteries // J. Power Sources. 2020. Vol. 464. P. 228207.
273. Spence S.L. et al. Tuning the morphology and electronic properties of single-crystal LiNi0.5Mn1.5O4-« : exploring the influence of LiCl-KCl molten salt flux composition and synthesis temperature // Inorg. Chem. 2020. Vol. 59, № 15. P. 10591-10603.
274. Xiao B., Sun X. Surface and subsurface reactions of lithium transition metal oxide cathode materials: an overview of the fundamental origins and remedying approaches // Adv. Energy Mater. 2018. Vol. 8, № 29. P. 1802057.
275. Wang X., Yushin G. Chemical vapor deposition and atomic layer deposition for advanced lithium ion batteries and supercapacitors // Energy Environ. Sci. 2015. Vol. 8, № 7. P. 1889-1904.
276. Hou Q. et al. Carbon coating nanostructured-LiNi1/3Co1/3Mm/3O2 cathode material synthesized by chemical vapor deposition method for high performance lithium-ion batteries // J. Alloys Compd. 2018. Vol. 747. P. 796-802.
277. Neudeck S. et al. Effect of low-temperature AhO3 ALD coating on Ni-rich layered oxide composite cathode on the long-term cycling performance of lithium-ion batteries // Sci. Rep. 2019. Vol. 9, № 1. P. 5328.
278. Cheng X. et al. Realizing superior cycling stability of Ni-rich layered cathode by combination of grain boundary engineering and surface coating // Nano Energy. 2019. Vol. 62. P. 30-37.
279. Yoon M. et al. Reactive boride infusion stabilizes Ni-rich cathodes for lithium-ion batteries // Nat. Energy. 2021. Vol. 6, № 4. P. 362-371.
280. Petrícek V., Dusek M., Palatinus L. Crystallographic Computing System JANA2006: General features // Zeitschrift für Krist. - Cryst. Mater. 2014. Vol. 229, № 5. P. 345- 352.
281. Toby B.H. R factors in Rietveld analysis: How good is good enough? // Powder Diffr. 2006. Vol. 21, № 1. P. 67-70.
282. Palatinus L. et al. Specifics of the data processing of precession electron diffraction tomography data and their implementation in the program PETS2.0 // Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2019. Vol. 75, № 4. P. 512-522.
283. Hadermann J., Abakumov A.M. Structure solution and refinement of metal-ion battery cathode materials using electron diffraction tomography // Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2019. Vol. 75, № 4. P. 485-494.
284. De Backer A. et al. StatSTEM: An efficient program for accurate and precise model-based quantification of atomic resolution electron microscopy images // J. Phys. Conf. Ser. 2017. Vol. 902. P. 012013.
285. De Backer A. et al. StatSTEM: An efficient approach for accurate and precise model-based quantification of atomic resolution electron microscopy images // Ultramicroscopy. 2016. Vol. 171. P. 104-116.
286. Van Aert S. et al. Procedure to count atoms with trustworthy single-atom sensitivity // Phys. Rev. B. 2013. Vol. 87, № 6. P. 064107.
287. Dudarev S.L. et al. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study // Phys. Rev. B. 1998. Vol. 57, № 3. P. 1505-1509.
288. Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple // Phys. Rev. Lett. 1996. Vol. 77, № 18. P. 3865-3868.
289. Kresse G., Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set // Comput. Mater. Sci. 1996. Vol. 6, № 1. P. 15-50.
290. Aksyonov D.A. et al. Understanding migration barriers for monovalent ion insertion in transition metal oxide and phosphate based cathode materials: A DFT study // Comput. Mater. Sci. 2018. Vol. 154. P. 449-458.
291. Nam K. et al. Combining in-situ synchrotron X-ray diffraction and absorption techniques with transmission electron microscopy to study the origin of thermal instability in overcharged cathode materials for lithium-ion batteries // Adv. Funct. Mater. 2013. Vol. 23, № 8. P. 1047-1063.
292. Morales J., Pérez-Vicente C., Tirado J.L. Cation distribution and chemical deintercalation of Lh-xNh+xO2 // Mater. Res. Bull. 1990. Vol. 25, № 5. P. 623-630.
293. Zhang X. et al. Minimization of the cation mixing in Lh+x(NMC)1-xO2 as cathode material // J. Power Sources. 2010. Vol. 195, № 5. P. 1292-1301.
294. Hua W. et al. Na-doped Ni-rich LiNi0.5Co0.2Mn0.3O2 cathode material with both high rate capability and high tap density for lithium ion batteries // Dalt. Trans. 2014. Vol. 43, № 39. P. 14824-14832.
295. Chebiam R. V., Prado F., Manthiram A. Structural instability of delithiated Li1-xNi1-yCoyO2 cathodes // J. Electrochem. Soc. 2001. Vol. 148, № 1. P. A49.
296. Bak S.-M. et al. Structural changes and thermal stability of charged LiNixM%CozO2 cathode materials studied by combined in-situ time-resolved XRD and mass spectroscopy // ACS Appl. Mater. Interfaces. 2014. Vol. 6, № 24. P. 22594-22601.
297. Karakulina O.M. et al. Antisite disorder and bond valence compensation in Li2FePO4F cathode for Li-ion batteries // Chem. Mater. 2016. Vol. 28, № 21. P. 7578-7581.
298. Vainshtein, B. K., Zvyagin, B. B., Avilov A.S. Electron diffraction structure analysis // Electron Diffraction Techniques / ed. Cowley J.M. Oxford University Press, 1992. P. 216-312.
299. Hwang S., Su D. TEM studies on electrode materials for secondary ion batteries // Encyclopedia of Inorganic and Bioinorganic Chemistry. Wiley, 2019. P. 1-27.
300. Zhu J. et al. Atomic-level understanding of surface reconstruction based on Li[NixMnyCo 1 -x-y]O2 single-crystal studies // ACS Appl. Energy Mater. 2020. Vol. 3, № 5. P. 4799-4811.
301. Kim U.-H. et al. Cation ordered Ni-rich layered cathode for ultra-long battery life // Energy Environ. Sci. 2021. Vol. 14, № 3. P. 1573-1583.
302. LeBeau J.M. et al. Standardless atom counting in scanning transmission electron microscopy // Nano Lett. 2010. Vol. 10, № 11. P. 4405-4408.
303. Bals S. et al. Statistical estimation of atomic positions from exit wave reconstruction with a precision in the picometer range // Phys. Rev. Lett. 2006. Vol. 96, № 9. P. 096106.
304. Guzzinati G. et al. Recent advances in transmission electron microscopy for materials science at the EMAT lab of the University of Antwerp // Materials (Basel). 2018. Vol. 11, № 8. P. 1304.
305. Hofer F., Golob P. New examples for near-edge fine structures in electron energy loss spectroscopy // Ultramicroscopy. 1987. Vol. 21, № 4. P. 379-383.
306. Dai S. et al. Enhanced electrochemical performance and thermal properties of Ni- rich LiNi0.8Co0.1Mn0.1O2 cathode material via CaF2 coating // J. Electroanal. Chem. 2019. Vol. 847. P. 113197.
307. Shi Y., Zhou X., Yu G. Material and structural Design of novel binder systems for high-energy, high-power lithium-ion batteries // Acc. Chem. Res. 2017. Vol. 50, № 11. P. 2642- 2652.
308. Xu R. et al. Mechanical and structural degradation of LiNixM%CozO2 Cathode in Li-ion batteries: an experimental study // J. Electrochem. Soc. 2017. Vol. 164, № 13. P. A3333- A3341.
309. Furushima R. et al. Relationship between hardness and fracture toughness in WC-FeAl composites fabricated by pulse current sintering technique // Int. J. Refract. Met. Hard Mater. 2014. Vol. 42. P. 42-46.
310. Uvarov N.F. et al. Nanocomposite ionic conductors in the Li2SO4-AhO3 system // Solid State Ionics. 1994. Vol. 74, № 1-2. P. 15-27.
311. Stewner F. Die Kristallstruktur von a-Li3BO3 // Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1971. Vol. 27, № 5. P. 904-910.
312. Xie Q. et al. Insights into boron-based polyanion-tuned high-nickel cathodes for high-energy-density lithium-ion batteries // Chem. Mater. 2019. Vol. 31, № 21. P. 8886-8897.
313. Zhang X. et al. Sol/antisolvent coating for high initial coulombic efficiency and ultra-stable mechanical integrity of Ni-rich cathode materials // ACS Appl. Mater. Interfaces. 2022. Vol. 14, № 40. P. 45272-45288.
314. Wu C.-Y. et al. Tuning (003) interplanar space by boric acid co-sintering to enhance Li+ storage and transfer in Li(Ni0.8Co0.1Mn0.1)O2 cathode // J. Alloys Compd. 2021. Vol. 865. P. 158806.
315. Nagao K. et al. Highly stable Li/Li3BO3-Li2SO4 interface and application to bulk-type all-solid-state lithium metal batteries // ACS Appl. Energy Mater. 2019. Vol. 2, № 5. P. 3042- 3048.
316. Jung S.H. et al. Li3BO3-Li2CO3 : rationally designed buffering phase for sulfide all-solid-state Li-ion batteries // Chem. Mater. 2018. Vol. 30, № 22. P. 8190-8200.
317. Kurmaev E.Z. et al. Analysis of oxyanion (BO33-, CO32-, SO42-, PO43-, SeO44-) substitution in Y123 compounds studied by X-ray photoelectron spectroscopy // J. Supercond. 1996. Vol. 9, № 1. P. 97-100.
318. Wei Cho Foo, Ozcomert J.S., Trenary M. The oxidation of the P-rhombohedral boron (111) surface // Surf. Sci. 1991. Vol. 255, № 3. P. 245-258.
319. Brow R.K. An XPS study of oxygen bonding in zinc phosphate and zinc borophosphate glasses // J. Non. Cryst. Solids. 1996. Vol. 194, № 3. P. 267-273.
320. Lelong G. et al. Lithium borate crystals and glasses: How similar are they? A non-resonant inelastic X-ray scattering study around the B and O K -edges // J. Non. Cryst. Solids.
2017. Vol. 472. P. 1-8.
321. Kim Y.S. et al. Evolution of a radially aligned microstructure in boron-doped Li[Ni0.95Co0.04Al0.01]O2 cathode particles // ACS Appl. Mater. Interfaces. 2022. Vol. 14, № 15. P. 17500-17508.
322. Ricci F. et al. An ab initio electronic transport database for inorganic materials // Sci. Data. 2017. Vol. 4, № 1. P. 170085.
323. Zhuravlev V.D. et al. Effect of lithium borate coating on the electrochemical properties of LiCoO2 electrode for lithium-ion batteries // Chim. Techno Acta. 2020. Vol. 8, № 1. P. 1055-1069.
324. Schweidler S. et al. Investigation into mechanical degradation and fatigue of high-Ni NCM cathode material: a long-term cycling study of full cells // ACS Appl. Energy Mater. 2019. Vol. 2, № 10. P. 7375-7384.
325. Hietaniemi M. et al. Effect of precursor particle size and morphology on lithiation of Ni0.6Mn0.2Co0.2(OH)2 // J. Appl. Electrochem. 2021. Vol. 51, № 11. P. 1545-1557.
326. Delaney G.W., Hilton J.E., Cleary P.W. Defining random loose packing for nonspherical grains // Phys. Rev. E. 2011. Vol. 83, № 5. P. 051305.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.