Вращение неупругой Земли тема диссертации и автореферата по ВАК РФ 01.03.01, доктор физико-математических наук Чуркин, Виктор Альбертович
- Специальность ВАК РФ01.03.01
- Количество страниц 117
Оглавление диссертации доктор физико-математических наук Чуркин, Виктор Альбертович
Введение
I. О применении реологических моделей в геодинамике
II. Деформация моделей неупругой Земли под действием возмущений
III. Тензор инерции Земли
IV. Выбор реологической модели Земли для исследования
V. Возмущенное вращение: эффект сжатия Земли
VI. Возмущенное вращение: эффект приливной деформации Земли
VII. Возмущение осевого вращения: действие момента сил на приливные "горбы"
VIII. Вращение деформированной приливами Земли: числовые оценки
IX. Реологическая интерпретация ненулевого объема Земли 104 Заключение . 112 Список литературы
Рекомендованный список диссертаций по специальности «Астрометрия и небесная механика», 01.03.01 шифр ВАК
Приливные и медленные деформации земной коры юга Сибири по экспериментальным данным2004 год, доктор физико-математических наук Тимофеев, Владимир Юрьевич
Математическое моделирование колебаний полюса возмущенных движений Земли относительно центра масс2007 год, кандидат физико-математических наук Перепелкин, Вадим Владимирович
Моделирование возмущенных движений Земли относительно центра масс на коротких интервалах времени2014 год, кандидат наук Нгуен Ле Зунг
Параметры вращения Земли по данным лазерной дальнометрии искусственных спутников1983 год, доктор физико-математических наук Нестеров, Вилен Валентинович
Моделирование вращения внесолнечных планет и пульсаров2004 год, кандидат физико-математических наук Китиашвили, Ирина Николаевна
Введение диссертации (часть автореферата) на тему «Вращение неупругой Земли»
Точность современных наблюдений - спутниковые лазерные измерения, РСДБ и т.д. - исключительно высока; она составляет ~ Ю-2 mas (миллисекунды дуги), что предъявляет весьма жесткие требования к теориям вращения Земли. В результате теоретические модели вынуждены включать в себя все большее количество геофизических факторов - океанические приливы, сезонные перемещения атмосферных масс, взаимодействие оболочек земной толщи, реологию земных пород и т.д. для уменьшения невязок с наблюдениями (Мориц и Мюллер, 1992).
Общая проблема построения высокоточной теории вращения Земли заключается, однако, не столько в большом количестве факторов, влияющих на ее вращение, сколько в трудности их выделения из высокоточных наблюдений. Решение этой проблемы, как легко видеть, невозможно без предварительной интерпретации наблюдательного материала, что предполагает использование априорных моделей Земли.
Вплоть до 80-х годов XX века точность наблюдений позволяла опираться в теоретических исследованиях на модель Земли, представляемую абсолютно-твердым телом (Woolard, 1953; Kinoshita, 1977). Эта математически корректная модель Земли во многих отношениях является базовой в том смысле, что на ее основе можно изучать динамическую роль гидродинамических оболочек Земли - океана, атмосферы и жидкого ядра. Начало таких исследований было положено известными работами Дж. Дарвина (Poincaré, 1911), Тиссерана (Tisserand, 1891) и Пуанкаре (Мориц и Мюллер, 1992). В настоящее время она находит также применение в исследованиях по динамике деформируемой Земли, для чего используются так называемые передаточные функции (Dehant and Defraigne, 1997; там же имеется большой список литературы).
Следует подчеркнуть, тем не менее, что модель абсолютно-твердой Земли геофизически несостоятельна; так, она предполагает бесконечную скорость упругих волн, что грубо противоречит сейсмическим наблюдениям. Поэтому неожиданное для наблюдательной астрономии открытие Чандлером вариаций широты с периодом 14 месяцев (вместо ожидаемого эйлеровского периода в 10 месяцев), интерпретированное Ньюкомом как эффект упругой деформации тела Земли (Манк и Макдональд, 1964), с точки зрения геофизики следует считать не только естественным, но и необходимым для качественного согласия астрономической и геофизической моделей Земли.
Факт деформируемости Земли прямым образом связан с проблемой реальной реологии земных недр: разные реологические модели Земли при прочих равных условиях будут деформироваться по-разному. Это обстоятельство приводит к трудной проблеме выбора реологической модели Земли, равно подтверждаемой астрономическими и геофизическими наблюдениями. Указанная проблема трудна потому, что в ней, как в фокусе, сходятся три большие научные области: физика твердого тела, геофизика и астрономия, каждая из которых имеет свои методы и задачи, отличные от других.
В качестве первой реологической модели деформируемой Земли исследователями естественным образом была принята модель идеальной упругости - простейшая из возможных. Вслед за полукачественными построениями Ньюкома модель Земли на основе теории идеальной упругости для описания ее деформации разработали Том-сон (лорд Кельвин) и Тэйт, результаты которых были весьма изящно представлены знаменитыми числами Лява (Love, 1926).
Легко видеть, однако, что тело Земли в целом не может также описываться моделью идеально-упругого тела (Джеффрис, I960). Прежде всего, она слишком велика для такой реологии, и потому давление в центральных областях Земли должно превышать предельно допустимое значение, совместимое с существованием кристаллической структуры. Кроме того, доступные прямому исследованию материалы внешней оболочки Земли (гранит, габбро, дунит, и т.д.) проявляют наряду с упругими и неупругие свойства; очевидно, что породы земных недр также должны быть частично неупругими.
Первое из указанных обстоятельств стимулировало построение слоистых моделей Земли. Так, прежде всего были исследованы слоистые модели Земли, состоящие из сферических слоев идеально-упругой мантии и жидкого ядра (Takeuchi, 1950; Моло-денский, 1953); несколько позднее Вар обобщил эти модели на случай эллиптичности идеально-упругих слоев (Wahr, 1979, 1981а, 1981b, 1981с). Модель Вара оказалась чрезвычайно результативной, обеспечивая высокую степень согласия данных наблюдений (на уровне точности того времени) с теоретическими оценками. Следует отметить, что "жидкое ядро" понимается в этих работах как идеально-упругое тело, упругий модуль сдвига которого равен нулю: такое тело есть не что иное как идеальная жидкость, лишенная вязкости (сухая жидкость, по выражению Джона фон Неймана). Подробное описание слоистых моделей Земли можно найти в работах Мельхиора (1976) и Морица и Мюллера (1992).
Что же касается эффектов неупругости, то они привлекли внимание исследователей в связи с обнаруженными невязками предсказаний теории Вара и высокоточными наблюдениями. Эти эффекты, составляя предмет настоящей работы, подробно обсуждаются ниже. Здесь же заметим, что механические свойства материалов изучались многими исследователями (Максвеллом, Кельвином, Фойхтом, Бингамом, Сен-Венаном и т.д.), ориентированными в основном на приложения в технике; ясное описание таких приложений можно найти, например, в книгах Тимошенко (1933), Качанова (1948) и Френкеля (1958). Неупругие свойства земных недр в геофизических проблемах с разной степенью подробности затрагиваются в работах Магницкого (1953), Джеффриса (1960) и Мельхиора (1976); широкий круг геологических задач, включая геотектонику плит, подробно рассмотрен Теркотом и Шубертом (1985). Собственно же реологические модели Земли немногочислены, причем реализуются два типа подходов, которые мы здесь условно назовем "априорным" и "апостериорным" :
1). Апостериорная подход. В основу этого подхода кладется не реологическая модель как таковая, а некий производный от нее параметр, например, величина угла (или время) запаздывания приливных "горбов" относительно линии, соединяющей центры масс Земли и возмущающего тела (Луны и/или Солнца). В качестве примера реализации такого подхода можно указать работу Красинского (1998);
2). Априорный подход. При этом подходе авторы исходят из той или иной конкретной реологии земных недр, т.е. в соответствующую модель Земли реологические параметры вводятся непосредственно. Таковы, например, отмеченные выше теории Томсона (в соавторстве с Тэйтом) и Вара, в которых реологическим параметром является упругий модуль сдвига (упругий модуль сжатия интерпретируется лито-статическим давлением). Аналогично, априорной реологической моделью неупругой Земли является теория БеЬа^ (1986, 1987а, 1987Ь), обобщающая теорию Вара на случай комплексной упругой постоянной; действительная ее часть является классической упругой постоянной, а мнимая часть - коэффициентом вязкости. В этой теории, впрочем, появление коэффициента вязкости не оговаривается какой-либо конкретной реологической моделью, так что она в некоторой степени может быть отнесена к апостериорному подходу *. В качестве применения конкретной реологической модели неупругой Земли особо отметим теорию движения полюса Земли, моделируемой максвелловской реологией (Манк и Макдональд, 1964).
Теория, предлагаемая в данной работе, реализует априорный подход с тем, однако, отличием, что она в равной степени применима к большому классу конкретных реологических моделей, характеризуемых разнообразными наборами реологических параметров (упругость, вязкость, вязкоупругость, пластичность, и т.д.).
Диссертация имеет следующую структуру:
В главе I кратко анализируется ряд геодинамических проблем, связанных с применением реологических моделей: проблема описания многочисленных эффектов неупругости; проблема ненулевой вязкости ядра Земли в ракурсе частотных характеристик динамической ее реакции на приложенное к ней возмущение; проблема применения неравновесной термодинамики, необходимой для корректного описания дис-сипативных процессов в недрах Земли, обусловленных эффектами неупругости.
В главе II проводится обобщение теории Томсона и Тэйта (в формулировке чисел Лява) на случай широкого класса реологических моделей, представимых алгебраическими, дифференциальными, интегральными или интегро-дифференциальными со Эта работа будет рассмотрена в главе I с большими подробностями отношениями между тензорами напряжений и деформаций. Показано, что в общем случае число Лява, связывающее возмущающий потенциал с возмущением (деформацией тела Земли или возмущенным ее потенциалом) должно замениться интегральным оператором, который мы ниже называем реологическим оператором. Построены явные выражения реологического оператора для реологических моделей Гука, Максвелла, Фойхта, Гогенемсера-Прагера и интегральной модели, предложенной автором. В рамках этих моделей исследованы временные характеристики чисел Лява на приложенное к Земле в некоторый момент времени постоянное возмущение, а также проведен анализ амплитудных и частотных характеристик чисел Лява для гармонического возмущающего потенциала.
В главе III на базе реологического оператора общего вида построено интегральное выражение для возмущенного тензора инерции Земли, обусловленного как покачиванием оси вращения Земли, так и приливной (в квадрупольном приближении) деформацией ее тела. Полученное выражение подставляется в уравнения Эйлера-Лиувилля и приводит к интегро-дифференциальным уравнениям вращения Земли. Структура этих уравнений такова, что она допускает общее решение в виде квадратур с ядром (передаточной функцией), содержащим ядро исходного реологического оператора в аналитически нераскрытом виде. Эти решения мы формулируем как в терминах возмущений компонент угловой скорости вращения Земли, так и в терминах возмущений углов Эйлера.
В главе IV производится выбор реологической модели (из числа рассмотренных) в целях конкретного применения построенной в предыдущих главах теорий. Показано, что качественное согласие с данными сейсмических наблюдений в наибольшей степени достигается для реологической модели Фойхта. Далее строятся выражения для передаточных функций моделей Земли в рамках идеально-упругой и фойхтов-ской реологий, на основе которых исследуется вращение Земли, сжатой с полюсов; предполагается, что ось вращения Земли не совпадает с осью аксиальной симметрии. Показано, что чандлеровские колебания полюса фойхтовской модели Земли затухают (в отличие от идеально-упругой модели) за время приблизительно равное 104 лет.
В главе V исследуется вращение аксиально-сжатой Земли под действием приливного потенциала возмущающего тела без учета приливной деформации ее поверхности. Получены выражения для возмущений углов прецессии и нутации моделей идеально-упругой и фойхтовской реологий. Наиболее интересным результатом этой главы является заключение о вековом возрастании угла нутации фойхтовской модели Земли (приблизительно 0.01"/Ю0 лет).
В главе VI исследуется динамика вращения аксиально-сжатой Земли под действием приливной деформации тела Земли. Показано, что для фойхтовской модели
Земли (в отличие от идеально-упругой модели) имеет место слабая интерференция возмущенных углов прецессии и нутации. Возмущение же осевого вращение Земли представляет собой периодическую осцилляцию: гармоническую для идеально-упругой Земли и слабо модулированную (колебанием той же частоты) для фойхтов-ской модели Земли.
В главе VII исследуется динамика осевого вращения аксиально-сжатой Земли, обусловленная действием возмущающего гравитационного момента сил на приливные "горбы". Показано, что для модели идеально-упругой Земли этот эффект равен нулю, тогда как для фойхтовской модели Земли он приводит к сложной многочастотной картине периодических возмущений и к вековому замедлению вращения Земли.
В главе VIII проводятся числовые оценки эффектов, полученные в двух предыдущих главах (VI и VII); они или близки к наблюдаемым эффектам (так, вековое увеличение периода вращения Земли под действием Луны и 0.12 мсек/100 лет), или же находятся за пределами современных наблюдательных возможностей: например, 4-х месячная гармоника солнечного возмущения периода осевого вращения Земли составляет рй Ю-8 мксек.
В главе IX теория автора применяется для анализа возмущения вращения модели идеально-упругой Земли под действием краткодействующего толчка (падение крупного астероида, сильное землетрясение и т.п.). Идея такого обобщения теории заключается в том, что эффект запаздывания реакции Земли на возмущение имеет место как в случае неупругости земных недр, так и вследствие конечности времени распространения волн деформации по телу Земли. Указанная аналогия формализована автором в виде эвристической модели реологического оператора. Показано, что возбужденные толчком колебания оси вращения Земли затухают в течение времени ~ 103 лет; колебания возмущения угловой скорости осевого вращения вокруг нового (после толчка) ее значения также затухают за время порядка нескольких прохождений упругих волн по телу Земли. Эффект затухания объясняется трансформацией энергии толчка в энергию многократно отраженных от поверхности Земли сейсмических волн. На примере мощного взрыва вулкана Тамбор (1815 г., Индонезия) оценено изменение периода осевого вращения Земли, оно не превышает 4.2 мксек.
Общность излагаемой в настоящей работе теории достигается ее построением в специальной "полупустой" форме, способной к трансформации в конкретную аналитическую структуру после подстановки в нее конкретной реологической модели. Именно, вместо исходной реологической модели в теорию вводится некоторый интегральный оператор и показывается, что довольно большой класс реологических моделей может быть представлен его ядром. Решение уравнений вращения Земли (мы используем известные уравнения Эйлера-Лиувилля) строится, далее, таким образом, что в нем сохраняется исходное ядро в аналитически нераскрытом виде. Это и есть искомая' "полупустая" форма теории.
Чтобы получить на выходе теории конкретное число нам теперь остается только заложить в теорию конкретную реологическую модель или, быть может, линейную комбинацию нескольких моделей. Это очень удобно, потому что мы крайне плохо представляем себе реологию недр реальной (не модельной) Земли; адекватную реологическую модель Земли еще предстоит найти. В этом отношении наша теория, как мы надеемся, окажется весьма полезной: сопоставление особенностей вращения Земли, вызываемых разными реологическими моделями, и их сравнение с данными высокоточных наблюдений может быть весьма информативным.
Новизна работы
В работе применен новый подход к построению теории вращения Земли, позволяющий получить характеристики вращения при любой принятой реологии земных недр. Это позволяет строить теории наиболее точно представляющие наблюдения, выявлять новые явления во вращении Земли и способствовать их объяснению.
Обоснованность полученных результатов
Результаты получены с использованием строгого математического аппарата и основополагающих реологических закономерностей, и сопоставлены, насколько это оказалось возможным, как с известными теориями вращения Земли, так и с данными наблюдений.
Практическое значение работы
Полученные результаты могут быть использованы для получения новых разложений нутации и прецессии Земли и других твердых небесных тел для любой конкретной реологии их недр.
Аппробация работы
Результаты диссертации докладывались на 3-й Орловской конференции, Одесса, 1992 г.; конференции "Теоретическая, прикладная и вычислительная небесная механика", Санкт-Петербург, 1993 г.; международной конференции "Современные проблемы теоретической астрономии", посвященной 75-летию ИТА РАН, Санкт-Петербург,
1994 г.; конференции "Компьютерные методы небесной механики", Санкт-Петербург,
1995 г.; симпозиум MAC № 172 "The rotation of unelastic body", Paris,-1995 г.; конференции "Компьютерные методы небесной механики-97", Санкт-Петербург, 1997 г.; конференции "Астрометрия, геодинамика и небесная механика на пороге XXI века", Санкт-Петербург, 2000 г.; научных семинарах ИТА РАН и ИПА РАН.
Публикации
По теме диссертации опубликовано 8 работ:
1). Мячин В.Ф. и Чуркин В.А., Принцип остаточного действия в механике Волътерра и его применение к построению геодинамических моделей. Препринт ИТА РАН, № 23, 1992.
2). Мячин В.Ф. и Чуркин В.А., Свободное вращение тела, близкого к абсолютно твердому. Препринт ИТА РАН, № 41, 1995.
3). Чуркин В.А., Феноменологическая теория вращения неупругой Земли. Препринт ИТА РАН, № 59, 1996.
4). Tchourkin V.A., Théorie phénoménologique de la rotation de la Terre non élastique. Marées Terrestres - Bulletin d'Informations, 1996, v.125, p.9558 - 9587, Bruxelles.
5). Чуркин В.A., Числа Лява для моделей неупругой Земли. Препринт ИПА РАН, № 121, 1998.
6). Чуркин В.А., Деформация поверхности упругой, неоднородной и несферической Земли. Труды ИПА РАН, вып. 3, "Астрометрия и геодинамика", 1998. с.125-137.
7). Чуркин В.А., Размер деформируемой Земли как реологическая модель. Труды ИПА РАН, вып. 4, "Астрометрия, геодинамика и небесная механика", 1999. с.187-198.
8). Чуркин В.А., Неупругая Земля: приливные эффекты для реологической модели Фойхта. вып. 5, "Астрометрия, геодинамика и небесная механика", 2000. с.225-257.
В совместных работах автору принадлежат главы об интегральных операторах.
На защиту выносятся следующие основные результаты:
1. Обобщенная теория чисел Лява, связывающая возмущенный потенциал неупругой Земли с возмущающим потенциалом посредством интегрального реологического оператора, ядро которого зависит от произвольной линейной реологической модели.
2. Применение обобщенной теории чисел Лява к известным дифференциальным реологическим моделям (Гука, Максвелла, Фойхта и Гогенемсера-Прагера) и к интегро-дифференциальной реологической модели автора.
3. Интегро-дифференциальная форма уравнений Эйлера-Лиувилля для неупругой Земли, содержащих ядро произвольного реологического интегрального оператора.
4. Решение интегро-дифференциальных уравнений Эйлера-Лиувилля в форме квадратур с передаточными функциями, содержащими ядро произвольного реологического оператора.
5. Применение разработанной автором теории вращения неупругой Земли к фойх-товской модели земных недр и числовые оценки реологических поправок к прецессии, нутации и осевому вращению Земли.
Похожие диссертационные работы по специальности «Астрометрия и небесная механика», 01.03.01 шифр ВАК
Численно-аналитическое исследование параметров вращения Земли с\nприложениями для спутниковой навигации2015 год, кандидат наук Филиппова Александра Сергеевна
Изучение возмущенных вращательных движений небесного тела с приложением к теории вращения Земли2014 год, кандидат наук Баркин, Михаил Юрьевич
Теория и задачи устойчивости деформирования сложных сред1982 год, доктор физико-математических наук Спорыхин, Анатолий Николаевич
Вращение Земли: анализ вариаций и их прогнозирование2005 год, кандидат физико-математических наук Зотов, Леонид Валентинович
Исследование поступательно-вращательного движения планет и спутников в рамках модели вязкоупругого тела2002 год, кандидат физико-математических наук Бондаренко, Валерий Валентинович
Заключение диссертации по теме «Астрометрия и небесная механика», Чуркин, Виктор Альбертович
Заключение
Теории вращения моделей абсолютно-твердой и идеально-упругой Земли с точностью до несущественных с принципиальной точки зрения деталей математического аппарата имеют однозначный реологический смысл. Однако, как мы видели, теории вращения модели неупругой Земли (или, точнее, модели реально-упругой Земли) в узком смысле этого слова не существует. Поэтому целью нашей работы было построение некоторой математической формы, которая превращается в теорию вращения Земли после внесения в нее той или иной конкретной реологической модели; такого рода теорию можно было бы назвать "пучком" моделей вращения Земли.
В основу нашей работы легло достаточно очевидное обобщение теории .чисел Ля-ва на случай зависящих от времени тензоров напряжений и деформаций (Чуркин, 1998), что характерно для неустановившейся динамики неупругих сред. Как следствие, классические числа Лява заменились интегральным оператором, ядро L(t) которого определяется видом рассматриваемой реологической модели. Весьма интересно, что решения уравнений Эйлера-Лиувилля (описывающих возмущение вращения Земли под действием различных факторов) удается написать в виде квадратур, содержащих в себе ядро L(t) в аналитически нераскрытом виде (Чуркин, 1996). Это означает, что анализ возмущений вращения Земли с различной реологией земных недр сводится по существу к единообразному вычислению ряда интегралов.
Вполне понятно, что в условиях крайне скудных данных о реальной реологии земных недр такая теория оказывается весьма перспективной. Конечно, в нашей работе мы не смогли охватить достаточно представительный спектр реологических моделей (которых существует великое множество) и ограничились только двумя моделями: идеально-упругой и фойхтовской. Модель идеальной упругости была взята нами для сравнения (ибо она простейшая для деформируемой Земли), тогда как. фойхтовская модель была выбрана нами потому, во-первых, что она удовлетворяет сейсмическим данным о непрозрачности области земного ядра для прохождения достаточно коротких сейсмических волн, и потому, во-вторых, что из моделей неупругой среды она также наиболее простая. Тем не менее оценки основных возмущенных эффектов в прецессии, нутации и осевом вращении Земли находятся во вполне удовлетворительном согласии с данными наблюдений. Это означает, что реологическая модель Фойх-та заслуживает внимания и развития с более полным учетом геофизических факторов (главным из которых следует считать слоистое строение Земли); таким образом, результаты, полученные выше, следует рассматривать как предварительные.
Настоящая работа была частично поддержана грантом РФФИ РАН N~ 96-0219600 и Министерством науки и технологии РФ (программа "Астрономия", номер проекта 1.8.1.2).
Список литературы диссертационного исследования доктор физико-математических наук Чуркин, Виктор Альбертович, 2000 год
1. Араманович И.Г., Лунц Г.Л. и Эльсгольц Л.Э., 1965. Функции комплексного переменного. Операционное исчисление. Теория устойчивости.: "Наука" ,• Москва.
2. Ботт М., 1974. Внутреннее строение Земли.: "Мир", Москва.
3. Вебстер А.Г., 1933. Механика материальных точек и твердых, упругих и жидких тел.: Гос. тех-теор. изд-во, Ленинград-Москва.
4. Гленсдорф П. и Пригожин И., 1973. Термодинамическая теория структуры, устойчивости и флуктуаций.: "Мир", Москва.де Гроот С.Р., 1956. Термодинамика необратимых процессов.: Гос. изд-во тех-теор. литературы, Москва.
5. Гросберг А.Ю. и Хохлов А.Р., 1989. Статистическая теория макромолекул.: "Наука", Москва.
6. Джеффрис Г., 1960. Земля.: Из-во Иностранной литературы, Москва.
7. Дэй У.А., 1974. Термодинамика простых сред с памятью.: "Мир", Москва.
8. Жарков В.Н., 1983. Внутреннее строение Земли и планет.: "Наука"; Москва.
9. Ильюшин A.A., 1971. Механика сплошной среды.: Из-во Московского университета.
10. Качанов Л.М., 1948. Механика пластических сред.: ОГИЗ, Гос. изд-во тех-теор. литературы, Ленинград-Москва.
11. Квасников И.А., 1987. Термодинамика и статистическая физика.: Изд-во Московского университета.
12. Красинский Г.А., 1998. Приливные эффекты во вращательном движении Земли и Луны. 1. Математическая модель.: Труды ИПА РАН, вып.З, "Астрометрия и геодинамика", СПб.
13. Кристенсен Р., 1974. Введение в теорию вязкоупругости.: "Мир", Москва.
14. Ландау Л.Д. и Лифшиц Е.М., 1962. Теория поля.: Гос. из-во физ-мат. литературы, Москва.
15. Манк У. и Макдональд Г., 1964. Вращение Земли.: "Мир", Москва.
16. Мельхиор П., 1976. Физика и динамика планет, Часть II.: "Мир", Москва.
17. Миркин Л.И., 1968. Физические основы прочности и пластичности.: Изд-во Московского университета.
18. Моисеев H.H., 1988. Экология человечества глазами математика.: "Молодая гвардия", Москва.
19. Молоденский М.С., 1953. Земные приливы, свободная нутация и некоторые вопросы строения Земли. Труды ГеоФИАН СССР, N-19.
20. Мориц Г. и Мюллер А., 1992. Вращение Земли.: "Наукова думка", Киев.
21. Мячин В.Ф. и Чуркин В.А., 1992. Принцип остаточного действия & механике Волътерра и его применение к построению геодинамических моделей.: Препринт ИТА РАН, №23, С.-Петербург.
22. Прагер В., 1963. Введение в механику сплошных сред.: Изд-во Иностранной литературы, Москва.
23. Работнов Ю.Н., 1977. Элементы наследственной механики твердых тел.: "Наука", Москва.
24. Ржаницын А.Р., 1968. Теория ползучести.: Изд-во литературы по строительству, Москва.
25. Рейнер М., 1965. Реология.: "Мир", Москва.
26. Теркот Д. и Шуберт Дж., 1985. Геодинамика.: "Мир", Москва.
27. Тимошенко С.П., 1933. Сопротивление материалов. Часть II: Гос. тех-теор. изд-во, Ленинград-Москва.
28. Трусделл К., 1975. Первоначальный курс рациональной механики сплошных сред.: "Мир", Москва.
29. Френкель Я.И., 1958. Введение в теорию металлов.: Гос. изд-во физ-мат. литературы, Москва.
30. Честер Дж., 1966. Теория необратимых процессов.: "Наука", Москва.
31. Чуркин В.А., 1996. Феноменологическая теория вращения неупругой Земли.: Препринт ИТА РАН, №59, С.-Петербург.
32. Чуркин В.А., 1998. Числа Лява для моделей неупругой Земли.: Препринт ИПА РАН, №121, С.-Петербург.
33. Чуркин В.А., 1998. Деформация поверхности упругой, неоднородной и несферической Земли.: Труды ИПА РАН, вып.З, "Астрометрия и геодинамика", СПб.
34. Anderson D.L. and Minster J.B., 1979. The frequency dependence of Q in the Earth and implication for mantle rheology and Chandler wobble.: Geophys. J. R. Astron. Soc., 58: 431-440.
35. Batrakov Yu. V., 1972. Irrigation projects and the Earth's rotation.: Extra Collection of papers Contributed to the IAU Symposium №48 "Rotation of the Earth": 19-23.
36. Boltzmann L., 1874. Zur Theorie der elastichen Nachwirkung.: Wiener Ber., Bd. 70, S.274.
37. Dehant V., 1986. Integration des équations aux déformations d'une Terre elliptique, inelastique en rotation uniforme et â noyau liquide.: Ph.D.Thesis, Université Catholique de Louvain, 298 pp.
38. Dehant V., 1987a. Integration of the gravitational motion equations for an elliptical uniformly rotating Earth with an inelastic mantle.: Phys. Earth Planet. Inter., 49: 242258.
39. Dehant V., 1987b. Tidal parameters for an inelastic Earth.: Phys. Earth Planet. Inter., 49: 97-116.
40. Dehant V. and Defraigne P., 1997. New transfer functions for nutations of a non-rigid Earth.: J. Geophys. Res., v.102, № B12: 27659-27688.
41. Hohenemser K. und Prager W., 1932. Uber die Ansätze der Mechanic isotroper Konünua.: Zeitschr. f. angew. Math. u. Mech., Bd.12, H.4.
42. McCarthy D.D. (ed.), 1996. IERS Standarts. IERS Technical Note 21, Observatoire de Paris, Paris, p.42.
43. McADoo D.C. and Burns J. A., 1974 .Approximate Axial Alignment Times for Spinning Bodies. Icarus, v.21, pp.86-93.
44. Maxwell J., 1867. On the Dynamical Theory of Gases. Philos. Trans., v.157, p.52.
45. Poincaré H., 1911. Leçons sur les Hypothèses Cosmogoniques. Paris.
46. Takeuchi H., 1950. On the Earth tide of the compressible Earth of variable density and elasticity. Trans. Amer. Geophys. Union, v.31,
47. Tchourkin V.A., 1996. Théorie phénoménologique de la rotation de la Terre non élastique.: Marrées Terrestres Bulletin d'Informations, v.125, Bruxelles, pp. 9558-9587.
48. Tisserand F., 1891. Traité de Mécanique Céleste., Vol.II, Paris.
49. Voigt W., 1890. Uber die innere Reibung der festen Körper, insbesondere der Kristalle. Abhandl. d. Math. Klasse d. Königl. Ges. d. Wiss., Göttingen, Bd.36, S.l.
50. Volterra V., 1931. Theory of Functionals and of Integral and Integro-Differential Equations.: London a. Glasgow.
51. Wahr J.M., 1979. The Tidal Motions of a Rotating, Elliptical, Elastic and Oceanless Earth.: Ph.D.Thesis, University of Colorado, 216 pp.
52. Wahr J.M., 1981a. A normal mode expansion for the forced response of a rotating Earth.: Geophys. J. R. Astron. Soc., 64: 651-675.
53. Wahr J.M., 1981b. Body tides on an elliptical, rotating, elastiic and oceanless Earth.: Geophys. J. R. Astron. Soc., 64: 677-703.
54. Wahr J.M., 1981c. The forced nutations of an elliptical, rotating, elastiic and oceanless Earth.: Geophys. J. R. Astron. Soc., 64: 705-727.
55. Woolard E.W., 1953. Theory of the rotation of the earth around its center of mass.: Astron. J., 58: 2.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.