Вопросы корректности и устойчивости задач возможностной оптимизации тема диссертации и автореферата по ВАК РФ 05.13.16, кандидат физико-математических наук Рыбкин, Владимир Александрович
- Специальность ВАК РФ05.13.16
- Количество страниц 101
Оглавление диссертации кандидат физико-математических наук Рыбкин, Владимир Александрович
Введение
1 Исчисление возможностей
1.1 Меры неопределенности
1.2 Возможностные величины.
1.3 Преобразования.
1.4 Операции.
1.5 Отношения.
1.6 Метризация множеств возможностных величин.
1.7 Замкнутые семейства.
1.8 Теорема представления.
1.9 Возможностные случайные величины.
2 Модели задач возможностной оптимизации и критерии устойчивости
2.1 Модели критерия.
2.2 Модели ограничений
2.3 Модели принятия решений.
2.4 Критерии устойчивости.
3 Исследование устойчивости задач возможностной оптимизации
3.1 Устойчивость критериев оптимальности.
3.1.1 Модель уровневой оптимизации.
3.1.2 Модель максимизации возможности
3.1.3 Модель максимизации необходимости
3.1.4 Принцип ожидаемой возможности.
3.2 Устойчивость решений задач возможностной оптимизации
3.3 Метод регуляризации.
Рекомендованный список диссертаций по специальности «Применение вычислительной техники, математического моделирования и математических методов в научных исследованиях (по отраслям наук)», 05.13.16 шифр ВАК
Методы решения задач возможностной оптимизации одного класса и программный комплекс их поддержки2007 год, кандидат физико-математических наук Гордеев, Роман Николаевич
Модели и методы возможностно-вероятностной оптимизации2010 год, кандидат физико-математических наук Новикова, Виктория Николаевна
Методы решения задач возможностной оптимизации с взаимодействующими параметрами2008 год, кандидат физико-математических наук Солдатенко, Илья Сергеевич
Модели и методы коррекции задач возможностного программирования и программный комплекс их поддержки2004 год, кандидат физико-математических наук Сорокин, Сергей Владимирович
Модели и методы принятия инвестиционных решений в условиях нечетких случайных данных2006 год, кандидат физико-математических наук Гришина, Елена Николаевна
Введение диссертации (часть автореферата) на тему «Вопросы корректности и устойчивости задач возможностной оптимизации»
Актуальность
Оптимизационные задачи возникают при формализации задач проектирования, анализе сложных экономических и технических систем, решении проблем управления, планирования производственных процессов. При этом может иметь место влияние на исходные данные неконтролируемых возмущающих факторов, ошибок, порождаемых идеализированностью математической модели, округлений, производимых при численной реализации метода решения и т. д. В этих условиях оказывается важным выделение классов оптимизационных задач, на решения которых подобные факторы не оказывают существенного влияния. Такие задачи называются устойчивыми. Вопросы устойчивости применительно к классическим постановкам задач принятия решений исследовались в фундаментальных трудах А.Н. Тихонова, получили развитие в работах С.А. Ашманова, Ф.П. Васильева, В.Г. Карманова, Д.А. Молодцова, В.В. Федорова и других авторов. В этих работах сформировались математический аппарат и методологические подходы к исследованию устойчивости.
Проблема устойчивости является актуальной и при моделировании задач принятия решений в рамках возможностной оптимизации.
Параметры этих задач изначально несут в себе элемент неопределенности, размытости. Реальные экспертные данные аппроксимируются получаемыми на практике возможностными распределениями значений нечетких параметров, и в случае неустойчивости исходной задачи аппроксимирующая модель оказывается неадекватной.
Тем не менее, вопросы устойчивости задач возможностной оптимизации изучены явно недостаточно. Наиболее значительными в этом направлении являются работы Р. Фуллера [51, 69, 72, 73, 74] и М. Ковач [23, 24]. В них исследована устойчивость некоторых классов оптимизационных задач и систем линейных уравнений с нечеткими параметрами. Однако, во всех этих работах исследуется фактически один критерий принятия решений — критерий Беллмана-Заде, и, вместе с тем, отсутствует единообразный подход к исследованию — определение устойчивости уточняется в контексте конкретной рассматриваемой задачи. Также следует отметить, что в подавляющем большинстве случаев остается открытым вопрос об условиях сильной устойчивости.
Таким образом, можно говорить о том, что различные модели критериев и ограничений, представляющие несомненный практический интерес при построении задач принятия решений в условиях неопределенности, образуют достаточно широкое поле исследования в контексте рассматриваемой проблемы.
Обзор литературы
Вопросам устойчивости моделей и принципов принятия решений в теории оптимизации систем и исследовании операций уделено значительное внимание. Очевидная важность и многообразие рассматриваемых аспектов позволило результатам исследований оформиться в самостоятельный раздел — теорию устойчивости задач оптимизации. Из большого числа работ, посвященных данной тематике, в первую очередь следует отметить общепризнанные монографии А.Н. Тихонова, В.Я. Арсенина [44], В.К. Иванова и др. [20], а также монографии С.А. Ашманова [5], Ф.П. Васильева, А.Ю. Иваницкого [11], В.Г. Карма-нова [21], Д.А. Молодцова [30], В.В. Федорова [50]. Достаточно полные библиографии по теории устойчивости приведены, например, в [11, 32].
Что касается устойчивости моделей нечеткой и возможностной оптимизации, составляющих подкласс класса задач оптимизации и принятия решений в условиях неопределенности, то здесь, как уже упоминалось ранее, основополагающими являются работы Р. Фуллера и М. Ковач. В них последовательно исследуется устойчивость систем линейных возможностных равенств, параметры которых характеризуются трапециевидными [23] и липшицуемыми распределениями [74], задач нечеткой линейной оптимизации в классах симметричных три-ангулярных [73] и непрерывных распределений [72]. Приведем основные полученные результаты.
В работе [23] рассмотрены системы линейных алгебраических уравнений с нечеткими коэффициентами, моделируемыми симметричными трапециевидными нечеткими числами с верхней шириной в > 0 и нижней шириной а > 0. Получена оценка
7 — <JS\\c — sup |а(х) — < min{l; ¿/а'}, где <т, as есть функции принадлежности нечетких решений исходной и возмущенной задач соответственно, S — величина возмущения.
В предположении, что множество четких оптимальных решений системы непусто, получена оценка р{х,Х*) = inf \х-у\< C0{S + e)(\x\i + l), х е Х*(6), где X* — множество оптимальных решений исходной системы, = х Е Мп | as(x) = 1}, С'о — некоторая положительная постоянная. В работе также отмечено, что так как симметричные трапециевидные или триангулярные нечеткие числа могут быть получены сглаживанием прямоугольных или острых нечетких чисел, то такое сглаживание представляет собой некоторую регуляризацию систем, рассматриваемых на классах прямоугольных или острых нечетких чисел.
В работе [73] исследована линейная задача минимизации четкой целевой функции при нечетких ограничениях, параметры которых являются симметричными триангулярными нечеткими числами. Получена оценка
1 1 i - flS\\c = sup Ifl{x) - HS(x) I <6[— + где /¿, ¡/ есть степени выполнения ограничений исходной и возмущенной систем, а — коэффициент нечеткости параметров технологической матрицы, d — минимальный коэффициент нечеткости компонент вектора ресурсов.
В работе [72] для задачи возможностного линейного программирования в постановке Дж. Бакли [68] получена оценка возмущения возможностного распределения целевого функционала, позволяющая сделать вывод о слабой устойчивости задачи при моделировании нечетких параметров непрерывными функциями распределения: sup \Poss[Zs = z]~ Poss[Z = z]\< co(S), xeRn и;(с>) = тах{со>(ау,5), со(а^б), и(Ь{,6), ш(Ь*,5), иси(с£,5). Здесь у
Ровэ^ = г], Робб^ = г] и аг-у, 6г-, с,, оф, с^ есть возможностные распределения целевых функционалов и параметры исходной и возмущенной задач соответственно. Отметим, что в теореме 3.3 мы получаем аналогичную оценку для задачи максимизации меры достижения нечеткой цели, используя несколько более простую технику доказательства, чем в данной работе.
В заключение упомянем ряд работ [64, 65, 76, 89], посвященных выходящему за рамки тематики данной диссертации исследованию устойчивости некоторых задач многокритериальной нечеткой оптимизации.
Цель работы
Цель предлагаемой диссертационной работы состоит в исследовании устойчивости ряда моделей возможностной оптимизации, называемых базовыми, поведение которых относительно некорректности задания нечетких параметров не изучено до настоящего времени. При возможностной интерпретации нечеткости, которой мы придерживаемся в данной работе, под некорректностью задания параметров понимается наличие погрешностей в задании функций распределения их возможных значений. Устойчивость задачи в данном случае, в соответствии со сложившейся классической методологией [44], предлагается определять выполнением следующих условий: а) задача разрешима на множествах точных и приближенных параметров; б') оптимальные значения нечеткого целевого функционала, вычисленные по приближенным данным, при уменьшении погрешности приближения сходятся к его точному оптимальному значению; б") множество решений (оптимальных альтернатив) задачи с приближенными параметрами при уменьшении погрешности стягивается к множеству решений задачи с точными параметрами.
В случае а, б' назовем задачу устойчивой по результату (или слабо устойчивой), в случае а, б" — устойчивой по решению (сильно устойчивой).
Основные задачи
Основными решаемыми в диссертационной работе задачами являются:
• анализ специфики исследования устойчивости задач оптимизации в услових нечеткой или неполной информации при возмож-ностной интерпретации неопределенности;
• развитие и систематизация математического аппарата теории возможностей, необходимого для проведения данного исследования;
• выявление классов возможностных распределений нечетких параметров, гарантирующих устойчивое поведение критериев оптимальности;
• определение условий слабой и сильной устойчивости задач воз-можностной оптимизации, построенных на основе базовых моделей критериев и ограничений;
• установление взаимосвязей между слабо и сильно устойчивыми задачами;
• обоснование методов регуляризации неустойчивых задач;
• выработка алгоритмов и рекомендаций по аспектам устойчивости для реализации рассматриваемых задач в системах поддержки принятия решений.
Методика исследования
Для формализованного описания изучаемого класса задач используется математический аппарат современной теории возможностей, при доказательстве теорем используются методы возможностной оптимизации, математического программирования, математического и функционального анализа. Методологическую основу исследования составляют результаты классической теории устойчивости и корректности задач оптимизации.
Практическая значимость работы
Полученные результаты позволят обосновывать корректность применения рассмотренных моделей в задачах оптимизации технико-экономических систем различного назначения, решать вопросы применимости для этих моделей конкретных семейств нечетких величин. Предложенные алгоритмы и рекомендации могут быть использованы при разработке систем поддержки принятия решений.
Внедрение результатов работы
Проведенные научные исследования поддержаны грантом РФФИ, проект № 98-01-00212 «Разработка и исследование моделей и методов воз-можностной оптимизации», исполнителем которого диссертант являлся в 1998 - 2000 гг. Результаты диссертации используются также в учебном процессе на факультете прикладной математики и кибернетики Тверского госуниверситета.
Апробация
Основные результаты диссертационной работы докладывались автором на б-м и 7-м Европейских конгрессах по интеллектуальным технологиям и мягким вычислениям (ЕИИТ '98, ЕЦЕ1Т '99, Ахен, Германия), на научной конференции, посвященной 70-летию со дня рождения академика В.А. Мельникова (Москва, 1999 год), на I конференции-семинаре «Математические модели сложных систем» (Тверь, 1999 год), на семинарах в ТвГУ и ВЦ РАН.
Структура работы и ее содержание
Диссертация состоит из введения, трех глав, заключения и библиографии.
Похожие диссертационные работы по специальности «Применение вычислительной техники, математического моделирования и математических методов в научных исследованиях (по отраслям наук)», 05.13.16 шифр ВАК
Математические модели и методы отыскания квазиэффективных портфелей в условиях неопределенности комбинированного типа2012 год, кандидат физико-математических наук Шефова, Наталья Александровна
Автоматизированное проектирование сложных технических систем в условиях неопределенности1998 год, доктор технических наук Ярушкина, Надежда Глебовна
Моделирование квазирисков инвестиционно-финансовой деятельности2006 год, кандидат экономических наук Милосердов, Александр Анатольевич
Методы и модели анализа надежности и безопасности информационных систем при неполной информации2001 год, доктор технических наук Уткин, Лев Владимирович
Автоматизированное проектирование вычислительных сетей промышленных предприятий в условиях нечетко заданного трафика2001 год, кандидат технических наук Краснов, Сергей Васильевич
Заключение диссертации по теме «Применение вычислительной техники, математического моделирования и математических методов в научных исследованиях (по отраслям наук)», Рыбкин, Владимир Александрович
Заключение
Проведенное в диссертационной работе исследование в рамках предлагаемого единообразного подхода определяет условия сильной и слабой устойчивости базовых моделей возможностной оптимизации, обосновывает необходимость и корректность применения регуляризующих методов, соответствующих специфике рассматриваемых задач. Среди полученных результатов основными являются следующие:
1. Показана устойчивость моделей оптимизации модального значения и максимизации уровня в классе возможностных величин, обладающих квазивогнутыми полунепрерывными сверху распределениями. Так как полунепрерывность сверху распределений возможностных величин обуславливается аксиоматикой [92], это позволяет говорить об устойчивости данных моделей в общем случае.
2. Показана устойчивость модели максимизации меры достижения нечеткой цели в классе квазивогнутых непрерывных распределений при моделировании неопределенности как мерой возможности, так и мерой необходимости. Отмечено, что требование непрерывности для данной модели является существенным.
3. Доказано, что в случае устойчивости (по решению или по результату) рассмотренные модели имеют ограниченное множество решений. При этом условии доказана эквивалентность устойчивости по результату устойчивости по решению.
4. Получено условие сильной устойчивости для всех рассмотренных моделей. Его смысл — задача должна допускать повышение возможности выполнения ограничений, затребованное значение уровня не должно быть максимальным.
5. Предложен метод регуляризации неустойчивых задач возможност-ной оптимизации, основанный на коррекции возможности выполнения ограничений.
В плане дальнейших исследований перспективным представляется рассмотрение устойчивости моделей максимизации меры с возмож-ностными параметрами, определяемыми полунепрерывными сверху распределениями. Предполагается, что подобное исследование может быть осуществлено введением соответствующей псевдо-метрики в классе полунепрерывных распределений.
Список литературы диссертационного исследования кандидат физико-математических наук Рыбкин, Владимир Александрович, 2000 год
1. Аверкин А.Н. и др. Нечеткие множества в моделях управления и искусственного интеллекта / Под редакцией Поспелова Д.А. М.: Наука, 1986.
2. Агаян Г.М., Рютин A.A., Тихонов А.Н. О задаче линейного программирования с приближенными данными // ЖВМиМФ, 1984, т. 24, № 9, с. 1303-1311.
3. Алефельд Г., Херцбергер Ю. Введение в интервальные вычисления. М.: Мир, 1987.
4. Ашманов С. А. Условие устойчивости задач линейного программирования // ЖВМиМФ, 1981, т. 21, № 6, с. 1402-1410.
5. Ашманов С. А. Линейное программирование. М.: Наука, 1981.
6. Борисов А.Н., Алексеев A.B., Меркурьева Г.В. и др. Обработка нечеткой информации в системах принятия решений. М.: Радио и связь, 1989.
7. Борисов А.Н., Крумберг O.A., Федоров И.П. Принятие решений на основе нечетких моделей. Рига: Зинатне, 1990.
8. Васильев Ф.П. Численные методы решения экстремальных задач. М.: Наука, 1980.
9. Васильев Ф.П. Критерии устойчивости общей задачи линейного программирования // Вест. Моск. ун-та, Сер. 15. Вычислительная математика и кибернетика, 1998, № 2, с. 17-20.
10. Васильев Ф.П. К вопросу устойчивости методов регуляризации в линейном программировании // Вест. Моск. ун-та, Сер. 15. Вычислительная математика и кибернетика, 1998, № 3, с. 19-23.
11. Васильев Ф.П., Иваницкий АЛО. Линейное программирование. М.: Факториал, 1998.
12. Гольштейн Е.Г., Юдин Д.Б. Новые направления в линейном программировании. М.: Советское радио, 1966.
13. Данциг Дж. Линейное программирование, его обобщения и применение. М.: Прогресс, 1966.
14. Демьянов В.Ф., Малоземов В.Н. Введение в минимакс. М.: Наука, 1972.
15. Дюбуа Д., Прад А. Теория возможностей. Приложения к представлению знаний в информатике. М.: Радио и связь, 1990.
16. Евтушенко Ю.Г. Методы решения экстремальных задач и их применение в системах оптимизации. М.: Наука, 1982.
17. Еремин И.И. Противоречивые модели оптимального планирования. М.: Наука, 1988.
18. Заде JI.A. Понятие лингвистической переменной и его применение к принятию приближенных решений. М.: Мир, 1976.
19. Зангвилл У.И. Нелинейное программирование. М.: Советское радио, 1973.
20. Иванов В.К., Васин В.В., Танана В.П. Теория линейных некорректных задач и ее приложения. М.: Наука, 1978.
21. Карманов В.Г. Математическое программирование. М.: Наука, 1980.
22. Ковалерчук Б.Я. О корректности применения и обосновании теории размытой оптимизации // Изв. АН УзССР, серия техн. наук, 1981, № 5, с. 7-12.
23. Ковач М., Васильев Ф.П., Фуллер Р. Об устойчивости нечеткого решения систем линейных алгебраических уравнений с нечеткими коэффициентами // Вест. Моск. ун-та, Сер. 15. Вычислительная математика и кибернетика, 1989, № 1, с. 5-9.
24. Ковач М., Фуллер Р. О нечетко расширенных линейных системах равенств и неравенств / Актуальные вопросы прикл. математики, М.: МГУ, 1989, с. 73-80.
25. Колмогоров А.Н. Основные понятия теории вероятностей. М: Наука, 1974.
26. Кофман А. Введение в теорию нечетких подмножеств. М.: Радио и связь, 1982.
27. Минаев Ю.Н. Стабильность экономико-математических моделей. М.: Статистика, 1980.
28. Мину М. Математическое программирование. М.: Наука, 1990.
29. Моисеев H.H., Иванилов Ю.П., Столярова E.H. Методы оптимизации. М.: Наука, 1978.
30. Молодцов Д.А. Устойчивость принципов оптимальности. М.: Наука, 1987.
31. Морозов В.А. Методы регуляризации неустойчивых задач. М.: МГУ, 1987.
32. Морозов В.А., Гребенников А.И. Методы решения некорректно поставленных задач: алгоритмический аспект. М.: МГУ, 1992.
33. Муртаф М. Современное линейное программирование. М.: Мир, 1984.
34. Нечеткие множества и теория возможностей / Перевод с английского В.Б. Кузьмина под редакцией Травкина С.И. М.: Радио и связь, 1986.
35. Орлов А.И. Устойчивость в социально-экономических моделях. М.: Наука, 1979.
36. Орловский С.А. Проблемы принятия решений при нечеткой исходной информации. М.: Наука, 1981.
37. Рыбкин В.А. Исследование устойчивости одной задачи возможностного линейного программирования // Ученые записки ТвГУ, 1998, т. 4, с. 9-13.
38. Рыбкин В.А. Исследование устойчивости задач возможностной оптимизации // Сборник докладов научной конференции, посвященной 70-летию со дня рождения академика В.А. Мельникова, РАН, Москва, 1999, с. 190-192.
39. Рыбкин В.А., Язенин A.B. О сильной устойчивости в задачах возможностной оптимизации // Известия РАН. Теория и системы управл., 2000, № 2, с. 90-95.
40. Рыбкин В.А. О специфике вопросов устойчивости в нечеткой оптимизации // Моделирование сложных систем: сборник научных трудов, вып. 3, Тверь, 2000.
41. Сухарев А.Г., Тимохов A.B., Федоров В.В. Курс методов оптимизации. М.: Наука, 1986.
42. Тихонов А.Н. О некорректных задачах оптимального планирования // ЖВ-МиМФ, 1966, т. 6, № 1, с. 81-89.
43. Тихонов А.Н., Караманов В.Г., Руднева Т.Л. Об устойчивости задач линейного программирования. Сб. работ НИВЦ МГУ «Вычислительные методы и программирование», М.: МГУ, 1969, Вып. 12, с. 3-9.
44. Тихонов А.Н., Арсенин В.Я. Методы решения некорректных задач. М.: Наука, 1974.
45. Тихонов А.Н. О нормальных решениях приближенных систем линейных алгебраических уравнений // Докл. АН СССР, 1980, т. 254, № 3, с. 549-554.
46. Тихонов А.Н., Гончарский A.B., Степанов В.В., Ягола А.Г. Регуляризующие алгоритмы и априорная информация. М.: Наука, 1983.
47. Тихонов А.Н., Морозов В.А., Кармазин В.Н. О задаче коррекции линейных неравенств. Сб. работ НИВД МГУ «Численный анализ: методы, алгоритмы, приложения», М.: МГУ, 1985, с. 3-13.
48. Трухаев Р.И. Модели принятия решений в условиях неопределенности. М.: Наука, 1981.
49. Федоров В.В. К вопросу об устойчивости задачи линейного программирования // ЖВМиМФ, 1975, т. 15, № 6, с. 1412-1423.
50. Федоров В.В. Численные методы максимина. М.: Наука, 1979.
51. Фуллер Р. Исследование некоторых классов нечетких линейных задач. Автореферат диссертации на соискание ученой степени кандидата физико-математических наук. Москва, 1987.
52. Цурков В.И. Декомпозиция в задачах большой размерности. М.: Наука, 1981.
53. Шер А.П. Решение задачи математического программирования с линейной целевой функцией в размытых ограничениях // Автоматика и телемеханика, 1980, № 7, с. 137-143.
54. Шокин Ю.И. Интервальный анализ. Новосибирск: Наука, 1981.
55. Юдин Д.Б. Математические методы управления в условиях неполной информации. М.: Советское радио, 1974.
56. Язенин A.B. Задача векторной оптимизации с нечеткими коэффициентами важности критериев // Математические методы оптимизации и управления в сложных системах. Калинин, КГУ, 1981, с. 38-51.
57. Язенин A.B. Нечеткое математическое программирование. Калинин, 1986, 60 с.
58. Язенин A.B. Гибридная экспертная система для планирования // Изв. АН СССР. Техн. кибернетика, 1989, № 5, с. 162-167.
59. Язенин A.B. Линейное программирование со случайными нечеткими данными // Изв. АН СССР. Техн. кибернетика, 1991, № 3, с. 52-58.
60. Язенин A.B. Модели возможнос.тного программирования в оптимизации систем // Изв. АН СССР. Техн. кибернетика, 1991, № 5, с. 133-142.
61. Язенин A.B. Возможностное и интервальное линейное программирование // Изв. РАН. Техн. кибернетика, 1993, № 5, с. 149-155.
62. Язенин A.B. Моделирование ограничений в задачах возможностного линейного программирования // Изв. РАН. Техн. кибернетика, 1994, № 2, с. 84-88.
63. Язенин A.B. Методы оптимизации и принятия решений при нечетких данных. Автореферат диссертации на соискание ученой степени доктора физико-математических наук. Тверь, 1995.
64. Ammar E.E., Kassem M.A. On stability analysis of multicriteria LP problems with fuzzy parameters // Fuzzy Sets and Systems 82 (1996), p. 331-334.
65. Ammar E.E. Stability of multiobjective NLP problems with fuzzy parameters in the objectives and constraints functions // Fuzzy Sets and Systems 90 (1997), p. 225-234.
66. Bellman R., Zadeh L.A. Decision making in a fuzzy environment // Management Sci. 17 (1970), p. 141-164.
67. Buckley J.J. Possibility and necessity in optimization // Fuzzy Sets and Systems 25 (1988), p. 1-13.
68. Buckley J.J. Possibilistic linear programming with triangular fuzzy numbers // Fuzzy Sets and Systems 26 (1988), p. 135-138.
69. Canestrelli E., Giove S., Fuller R. Stability in possibilistic quadratic programming // Fuzzy Sets and Systems 82 (1996), p. 51-56.
70. Dubois D., Prade H. Systems of fuzzy linear constraints // Fuzzy Sets and Systems 3 (1978), p. 37-48.
71. Dubois D., Prade H. Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York, 1980.
72. Fedrizzi M., Fuller R. Stability in possibilistic linear programming with continuous fuzzy number parameters // Fuzzy Sets and Systems 47 (1992), p. 187-191.
73. Fuller R. On stability in fuzzy linear programming problems // Fuzzy Sets and Systems 30 (1989), p. 339-344.
74. Fuller R. On stability in possibilistic linear equality systems with Lipschitzian fuzzy numbers // Fuzzy Sets and Systems 34 (1990), p. 347-353.
75. Kaleva O. Fuzzy differencial equations // Fuzzy Sets and Systems 24 (1987), p. 301— 317.
76. Kassem M.A., Ammar E.E. Stability of multiobjective nonlinear programming problems with fuzzy parameters in the constraints // Fuzzy Sets and Systems 74 (1995) p. 343-351.
77. Kwakernaak H. Fuzzy random variables I. Definitions and theorems // Inform. Sci. 15 (1978), p. 1-29.
78. Kwakernaak H. Fuzzy random variables II. xAlgorithms and examples for discrete case // Inform. Sci. 17 (1979), p. 253-278.
79. Lodwick W. Analysis of structure in fuzzy linear programs // Fuzzy Sets and Systems 38 (1990), p. 15-26.
80. Luhandjula M.K. Linear programming problems under randomness and fuzziness // Fuzzy Sets and Systems 10 (1983), p. 45-55.
81. Luhandjula M.K. On possibilistic linear programming // Fuzzy Sets and Systems 18 (1986), p. 15-30.
82. Luhandjula M.K. Fuzzy optimization: an appraisal // Fuzzy Sets and Systems 30 (1989), p. 257-287.
83. Nahmias S. Fuzzy variables // Fuzzy Sets and Systems 1 (1978), p. 97-110.
84. Nahmias S. Fuzzy variables in a random environment // Advances in fuzzy sets theory, Amsterdam, 1979.
85. Puri M.L., Ralescu D.A. Fuzzy random variables // Journal of mathematical analysis and applications 114 (1986), p. 409-422.
86. Rybkin V.A., Yazenin A.V. Regularization and stability of possibilistic linear programming problems // Proceedings of 6th European Congress on Intelligent Techniques & Soft Computing, Aachen, Germany, 1998, v. 1, p. 37-41.
87. Rybkin V.A., Yazenin A.V. Strong and weak stability in possibilistic linear programming // Proceedings of 7th European Congress on Intelligent Techniques & Soft Computing, Aachen, Germany, 1999, v. 1, p. 193-196.
88. Rybkin V.A., Yazenin A.V. On the problem of stability in possibilistic optimization // International Journal of General Systems, 2000 (in print).
89. Saad O.M. Stability on multiobjective linear programming problems with fuzzy parameters // Fuzzy Sets and Systems 74 (1995), p. 207-215.
90. Tanaka H., Asai K. Fuzzy linear programming with fuzzy numbers // Fuzzy Sets and Systems 13 (1984), p. 1-10.
91. Yazenin A.V. Fuzzy and stochastic programming // Fuzzy Sets and Systems 22 (.1987), p. 171-180.
92. Yazenin A.V. On the problem of possibilistic optimization // Fuzzy Sets and Systems 81 (1996), p. 133-140.
93. Yazenin A.V., Wagenknecht M. Possibilistic optimization. Cottbus, Germany, 1996.
94. Zadeh L.A. Fuzzy sets // Information and Control 8 (1965), p. 338-353.
95. Zadeh L.A. Fuzzy sets as a basis for a theory of possibility // Fuzzy Sets and Systems 1 (1978), p. 3-28.
96. Zimmermann H.-J. Applications of fuzzy set theory to mathematical programming // Inform. Sci. 36 (1985), p. 29-58.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.