Внутриклеточное перераспределение белка Hsp25/27 под действием стресса: регуляция и функциональная значимость тема диссертации и автореферата по ВАК РФ 03.00.25, кандидат биологических наук Брянцев, Антон Леонидович

  • Брянцев, Антон Леонидович
  • кандидат биологических науккандидат биологических наук
  • 2003, Москва
  • Специальность ВАК РФ03.00.25
  • Количество страниц 149
Брянцев, Антон Леонидович. Внутриклеточное перераспределение белка Hsp25/27 под действием стресса: регуляция и функциональная значимость: дис. кандидат биологических наук: 03.00.25 - Гистология, цитология, клеточная биология. Москва. 2003. 149 с.

Оглавление диссертации кандидат биологических наук Брянцев, Антон Леонидович

ОГЛАВЛЕНИЕ.

СПИСОК СОКРАЩЕНИЙ.

ГЛАВА I. ОБЗОР ЛИТЕРАТУРЫ.

ГИПЕРТЕРМИЯ.

ВОЗДЕЙСТВИЕ ТЕПЛОВОГО ШОКА НА КЛЕТО ЧНЫЕ СТРУКТУРЫ И

КОМПАРТМЕНТЫ.ю

Мембраны.ю

Цитоскелет.

Цитозоль и органеллы.

Клеточное ядро.

ВОЗДЕЙСТВИЕ ТЕПЛОВОГО ШОКА НА КЛЕТОЧНЫЕ БЕЛКИ.н

Белковые повреждения в ядре.

Белковые повреждения в цитоплазме.

БЕЛКИ ТЕПЛОВОГО ШОКА.

МОЛЕКУЛЯРНЫЕ ШАПЕРОНЫ.

КО-ШАПЕРОНЫ-БЕЛКОВЫЕ МОДУЛЯТОРЫ ШАПЕРОНОВ.

КРАТКАЯ ХАРАКТЕРИСТИКА СЕМЕЙСТВ БЕЛКОВ ТЕПЛОВОГО ШОКА.

Семейство HSP100.

Семейство HSP90.

Семейство HSP70.

Семейство HSP60.

Семейство малые БТШ (sHSP).

БЕЛОК ТЕПЛОВОГО ШОКА Hsp25/27.

Структура.

О л и гомери зац и я.

Фосфорилирование.зо

Биологические функции.

ВНУТРИКЛЕТОЧНЫЕ МЕХАНИЗМЫ БЕЛКОВОЙ ДЕГРАДАЦИИ.

ПРОТЕАСОМНАЯ СИСТЕМА ДЕГРАДАЦИИ БЕЛКОВ.

Внутриклеточная локализация элементов протеасомной системы.

УЧАСТИЕ БТШ В ДЕГРАДАЦИИ КЛЕТО ИНЫХ БЕЛКОВ.

Роль ко-шаперонов в опосредовании протеолиза.

МОДЕЛЬНЫЕ СИСТЕМЫ ДЛЯ ИССЛЕДОВАНИЙ ДЕЙСТВИЯ ТЕПЛОВОГО

ШОКА НА КЛЕТОЧНЫЕ БЕЛКИ IN VIVO.

ЛЮЦИФЕР АЗА КАК ЭКЗОГЕННЫЙ РЕПОРТЕР ДЛЯ ИЗУЧЕНИЯ

ПОВРЕЖДЕНИЯ КЛЕТОЧНЫХ БЕЛКОВ ПРИ ДЕЙСТВИИ СТРЕССА.

ЗЕЛЕНЫЙ ФЛУОРЕСЦЕНТНЫЙ БЕЛОК - НОВАЯ РЕПОРТЕРНАЯ СИСТЕМ Asi

ГЛАВА II. МАТЕРИАЛЫ И МЕТОДЫ.

МАТЕРИАЛЫ.

КЛЕТО ЧНЫЕ КУЛЬ ТУРЫ.

АНТИТЕЛА.,.

МОЛЕКУЛЯРНЫЕ КОНСТР УКЦИИ.

ХИМИЧЕСКИЕ РЕАГЕНТЫ.

МЕТОДЫ.

СОЗДАНИЕ СТРЕССОВЫХ УСЛОВИЙ.

ОБРАБОТКИ КЛЕТОК ВЕЩЕСТВАМИ, ВЛИЯЮЩИМИ НА

ФОСФОРИЛИРОВАНИЕ HSP25.

ТРАНСФЕКЦИЯ КЛЕТОК.

ПОЛУЧЕНИЕ ЦИТОПЛАСТОВ.

ФРАКЦИОНИРОВАНИЕ КЛЕТОК И ЦИТОПЛАСТОВ.

РАДИОИЗОТОПНОЕ МЕЧЕНИЕ И ИММУНОПРЕЦИПИТАЦИЯ.

АНАЛИЗ ЭФФЕКТИВНОСТИ РЕФОЛДИНГА ПОСЛЕ ТЕПЛОВОГО ШОКА.

ЭЛЕКТРОФОРЕЗ, ИЗОЭЛЕКТРИЧЕСКОЕ ФОКУСИРОВАНИЕ И

ИММУНОБЛОТГИНГ.

ИММУНОФЛУОРЕСЦЕНЦИЯ.

ТЕСТИРОВАНИЕ СТАБИЛЬНОСТИ F-АКТИНА.

КОМПЬЮТЕРНАЯ ОБРАБОТКА ИЗОБРАЖЕНИЙ.

ГЛАВА III. РЕЗУЛЬТАТЫ.

Изменения внутриклеточной локализации Hsp25, вызванные действием теплового шока и других стрессов.

Стрессы различной этиологии вызывают специфические обратимые изменения во внутриклеточной локализации Hsp25.

Структура стресс-индуцируемых ядерных гранул Hsp25.

РОЛЬ фосфорилирования HSP25 в регуляции его внутриклеточной локализации.

Гиперфосфорилирование и изменение внутриклеточной локализации Hsp25.

Роль фосфорилирования в процессе транспорта Hsp25 в ядро клетки.

Участие фосфорилирования в ассоциации Hsp25 с актиновым цитоскелетом.

Дополнительные факторы для перераспределения Hsp25 в клетке. функциональные последствия стресс-индуцируемого перераспределения

HSP25/27.

Влияние ассоциации Hsp25 с актиновыми фибриллами на их стабильность.

Ядерный Hsp25/27усиливает эффективность рефолдинга поврежденных белков в ядре.

ГЛАВА IV. ОБСУЖДЕНИЕ.

Изменения внутриклеточной локализации Hsp25, вызванные действием теплового шока и других стрессов.

Роль фосфорилирования HSP25 в регуляции его внутриклеточной локализации.

Функциональные последствия стресс-индуцируемого перераспределения HSP25/27.

Рекомендованный список диссертаций по специальности «Гистология, цитология, клеточная биология», 03.00.25 шифр ВАК

Введение диссертации (часть автореферата) на тему «Внутриклеточное перераспределение белка Hsp25/27 под действием стресса: регуляция и функциональная значимость»

Существование биологических систем, будь то бактерия или сложный многоклеточный организм возможно только в относительно узком диапазоне физико-химических параметров. Такие параметры как, например, температура и химический состав окружающей среды являются чрезвычайно лабильными и при этом оказывают прямое воздействие на жизнедеятельность и выживаемость организмов и их структурных единиц - клеток. Многоклеточные организмы высшего порядка частично решают проблему колебаний условий окружающей среды, создавая свой внутренний гомеостаз. Однако в процессе жизнедеятельности и, особенно, во время патофизиологических состояний организма (например, воспаление, отравление ядовитыми веществами, локальная дисфункция кровотока) возникают ситуации, когда клетки находятся в условиях, далеких от их физиологического оптимума. В мире постоянно меняющихся условий окружающей среды, выживание клеток становится возможным лишь благодаря хорошо отлаженным, отработанным в процессе эволюции молекулярным механизмам внутриклеточной защиты.

Важнейшим компонентом молекулярных механизмов внутриклеточной защиты являются белки теплового шока (БТШ). Название БТШ отражает историю их открытия, когда экспрессия этих белков впервые обнаружилась в клетках, подвергнутых кратковременному воздействию повышенной температуры (Ши^а 1962). Как оказалось впоследствии, БТШ экспрессируются во всех живых организмах от бактерии до человека и вовлечены в механизмы защиты клеток не только от изменений температурных условий, но также от повреждений, вызываемых воздействием свободных радикалов, нарушением энергетического баланса, изменением рН среды, действием токсинов и проч. Более того, многие белки, входящие в семейство БТШ, функционируют в клетках и при нормальных физиологических условиях, осуществляя поддержание других белковых молекул в клетке в функциональном состоянии. БТШ, выполняющие такого рода функцию, получили название молекулярных шаперонов. Таким образом, все молекулярные шапероны являются белками теплового шока, однако не все белки теплового шока -молекулярные шапероны.

Одним из представителей БТШ является белок Нзр25/27. В научной литературе для определения белка человека принято название НБр27, тогда как для гомологичных ему белков крысы и мыши используется аббревиатура Hsp25. Функционирование этого белка в нормальных физиологических условиях представляется неясным, хотя он конститутивно экспрессируется в достаточно больших количествах во многих мышечных тканях, особенно в сердце (Kiemenz et al 1993; Knowlton et al 1998; Scheler et al 1997).

Избирательное увеличение количества белка Hsp25/27 в клетках защищает последние от действия теплого шока (Chretien and Landry 1988; Landry et al 1989), окислительного стресса (Mehlen et al 1995b; Rogalla et al 1999), ишемии/реперфузии (Vander Heide 2002; Loktionova et al 1998; Brar et al 1999), действия некоторых токсических веществ (Huot et al 1991; Garrido et al 1996; Wu and Welsh 1996). Более того, по последним данным Hsp25/27 может блокировать реализацию программы «клеточного самоубийства» - апоптоза (Wagstaff et al 1999; Brar et al 1999; Bruey et al 2000; Charette et al 2000; Garrido et al 1999; Guenal et al 1997), тем самым повышая выживаемость клеток в условиях патофизиологических состояний. Таким образом, было продемонстрировано важное действие белка Hsp25/27 в качестве защитного фактора.

Несмотря на то, что Hsp25/27 явно вовлечен в процессы клеточной защиты, конкретные механизмы его действия остаются нераскрытыми. Некоторые исследователи приводят данные о том, что этот белок способен связываться с различными элементами цитоскелета, особенно с актиновыми фибриллами (Benndorf et al 1994; Loktionova et al 1996; Bryantsev et al 2002). С другой стороны известно, что Hsp25/27 образует под действием стресса крупные внутриклеточные гранулы, локализация которых, по разным сведениям, может быть ядерной (Arrigo et al 1988а; Loktionova et al 1996), околоядерной или цитоплазматической (Collier and Schlesinger 1986; Collier et al 1988). Считается, что такие «стрессовые гранулы» функционируют в качестве комплексов, обладающих шаперонными свойствами (Ehrnsperger et al 1999; Ehrnsperger et al 1997). Действительно, in vitro, в экспериментах с очищенными белками была продемонстрирована способность Hsp25/27 специфически связывать денатурированные белки и частично восстанавливать их поврежденную структуру (производить рефолдинг), на основании чего этот белок был отнесен к категории молекулярных шаперонов (Ehrnsperger et al 1997; Jakob et al 1993; Merck et al 1993a). Тем не менее, имеющаяся к настоящему времени информация о структуре молекулы

Hsp25/27 не предполагает существования нуклеотид-связывающего домена, необходимого молекулярным шаперонам для осуществления рефолдинга. Равно не было опубликовано данных о существовании шаперонной активности Hsp25/27 in vivo, в живой клетке. Таким образом, предположение о функционировании этого белка в роли молекулярного шаперона в клетках в условиях стресса остается недоказанным.

Противоречивыми являются также имеющиеся в литературе сведения об участии фосфорилирования Hsp25/27 в механизмах клеточной защиты. Известно, что тепловой шок и другие стрессы вызывают быстрое фосфорилирование этого белка в клетках (Crete and Landry 1990; Barchowsky et al 1994; Loktionova et al 1996). Внутриклеточный сигнальный процесс, приводящий к фосфорилированию Hsp25/27 достаточно хорошо изучен и киназы, непосредственно фосфорилирующие этот белок, полно охарактеризованы. Однако свойства фосфо-изоформ белка Hsp25/27 остаются не вполне ясными. С одной стороны, в экспериментах in vitro показано, что: 1) за связывание с актиновыми микрофиламентами ответственны нефосфорилированные формы Hsp25/27 и 2) нефосфорилированный Hsp25/27 ингибирует полимеризацию актина (Benndorf et al 1994). С другой стороны, существуют противоречивые данные о том, что индукция фосфорилирования Hsp25/27 in vivo, с помощью химических агентов, вызывает усиление стабильности актинового цитоскелета к актин-деполимеризующим воздействиям (Guay et al 1997). Кроме того, было показано, что во фракции актинового цитоскелета активированных тромбоцитов содержатся фосфорилированные формы Hsp25/27 (Zhu et al 1994). Несмотря на это, до сих пор не установлено четкой взаимосвязи между ассоциацией Hsp25/27 с актиновым цитоскелетом и защитой последнего. Например, в работах, демонстрирующих декорирование актиновых фибрилл белком Hsp25/27, не проводились функциональные тесты и наоборот, в экспериментах, демонстрирующих влияние этого белка на стабильность актиновой сети, не исследовалась его внутриклеточная локализация. Также остается непонятным, почему белок Hsp25/27 в момент стресса подвергается фосфорилированию. По данным экспериментов in vitro, фосфорилирование Hsp25/27 ведет к значительному снижению его шаперонных свойств, (Rogalla et al 1999) тогда, как именно эти свойства Hsp25/27 должны бы быть востребованы клеткой в случае стрессовых условий и в процессе восстановления.

Ситуация еще более усложняется, если учитывать имеющиеся в литературе косвенные предпосылки о том, что найденные в клетке стресс-индуцируемые гранулы состоят из дефосфорилированного Нзр25/27 (Ьокйопоуа е1 а1 1996).

Учитывая все вышеизложенное, целью данной работы явилось исследование поведения белка теплового шока Нзр25/27 в подвергнутых стрессу клетках, для более детального выявления механизмов клеточной защитвы.

Для достижения данной цели были сформулированы следующие задачи:

1. Выявить изменения внутриклеточного распределения белка Нзр25/27 в ответ на действие стрессов различной этиологии;

2. Исследовать роль фосфорилирования во внутриклеточном перераспределении белка НБр25/27;

3. Изучить функциональные последствия перераспределения белка Нзр25/27.

СПИСОК СОКРАЩЕНИЙ

А-мутант- Hsp27 человека, с заменами серинов в позициях 15, 78, 82 на аланины

DABCO - диазабицикло-2,2,2-октан

DAPI - 4',6-диаминидино-2-фенилиндол

DMEM - Dulbecco's Modified Essential Medium, среда роста

D-мутант - Hsp27 человека, с заменами серинов в позициях 15, 78, 82 на аспартаты ECL - усиленная хемилюминесценция EDTA - этилендиаминтетраацетат

EGFP - Enhanced Green Fluorescent Protein, усиленный зеленый флуоресцентный белок

EGTA - этиленгликольтетраацетат

ERK - Extracellular Response Kinase, киназа внеклеточных стимулов FBS - эмбриональная телячья сыворотка

GFP - Green Fluorescent Protein, зеленый флуоресцентный белок

G-мутант - Hsp27 человека, с заменами серинов в позициях 15, 78, 82 на глицины

HEPES - гидроксиэтилпиперазин этан сульфонат

Hsc70 - белок теплового шока 70 (конститутивная форма)

HSP - heat shock proteins, белки теплового шока

Hsp25/27 - белок теплового шока 25/27

Hsp70 - белок теплового шока 70 (индуцибельная форма)

MAP - Mitogen Activated Protein, киназы, активируемые митогенами

МАРКАРК- Mitogen Activated Protein Kinase Activated Protein, киназа

MEM - Minimal Essential Medium, среда роста

MKK - MAP Kinase Kinase, киназа MAP киназ

MKKK - MKK Kinase, киназа MKK

N-luc-EGFP - ядерная люцифераза, меченая зеленым флуоресцентным белком PML - Pro-Mielocytic Protein, белок про-миелоцитов PMSF - фенилметилсульфонил фторида РР - протеинфосфатаза

SDS - додецилсульфат (лаурилсульфат) натрия

ТАЕ- трис-ацетат-ЭДТА

Tris - трисоксиметиламинометан

БСА - бычий сывороточный альбумин

БТШ - белки теплового шока

ДМСО- диметилсульфоксид к ДНК - кодирующая ДНК

Till - тепловой шок

ФСБ - фосфатный солевой буфер

Похожие диссертационные работы по специальности «Гистология, цитология, клеточная биология», 03.00.25 шифр ВАК

Заключение диссертации по теме «Гистология, цитология, клеточная биология», Брянцев, Антон Леонидович

выводы

1. Исследована внутриклеточная локализация белка Hsp25/27 в разных типах культивируемых клеток до и после стрессов различной этиологии. Установлено, что стресс вызывает ассоциацию этого белка с актиновыми фибриллами и перераспределение в клеточное ядро с образованием ядерных гранул.

2. Фосфорилирование регулирует стресс-зависимое изменение локализации белка Hsp25/27 путем снижения степени его олигомеризации.

3. Стресс-вызванная ассоциация фосфорилированных изоформ белка Hsp25/27 с актиновыми фибриллами, стабилизирует и защищает актиновый цитоскелет от разрушения.

4. Установлена ассоциация поврежденных ядерных белков с ядерными гранулами белка Hsp25/27 in situ.

5. Впервые обнаружено, что белок Hsp25/27 усиливает рефолдинг поврежденных стрессом белков in vivo. Показано, что наиболее активными в этом процессе являются фосфорилированные формы этого белка.

6. Предложена схема внутриклеточного функционирования Hsp25/27 в ответ на стрессовые воздействия и роли фосфорилирования в регуляции функций Hsp25/27.

Выражаю искреннюю благодарность своим научным руководителям Александру Евгеньевичу Кабакову и Эдуарду Михайловичу Тарараку за опеку, необходимую поддержку, формирование моих научных пристрастий и участие в моей научной карьере. Особую благодарность приношу д.б.н. Тер-Аванесяну М.Д. и д.м.н. Ширинскому В.П., безоглядно (и несколько опрометчиво) разрешившим доступ к ресурсам своих лабораторий (лаборатория молекулярной генетики и лаборатория клеточной подвижности соответственно). Ваша помощь была неоценимой.

Свои искренние чувства благодарности адресую Александру Вячеславовичу Воротникову за предоставленную счастливейшую возможность обучиться новым биохимическим методам, постоянную готовность поделиться научным опытом и облегчить горечь разочарований. Спасибо за поддержку!

С теплым чувством благодарю руководителя отдела радиологии и биологии клеточного стресса Гронингенского университета (Нидерланды) Харма Кампингу (Harm Kampinga) за возможность получить неоценимый опыт работы в зарубежной лаборатории и доступ к некоторым достижениям научного прогресса (конфокальный микроскоп). Мне также невозможно не сказать теплые слова в адрес приятно вспоминать людей, работающих вместе со мной в Голландии: Florian Salomons, Bianca Brundel, Willy Lemstra-Wierenga, Alena Jiresova, Bart Kanon и многие другие. Спасибо вам за внимание и гостеприимство.

Глубокую признательность приношу всем сотрудникам моей родной лаборатории молекулярной и клеточной кардиологии за долготерпение и искреннее участие в моей работе: Ильинской Ольге Петровне, Калининой Наталье Игоревне, Антроповой Юлии Георгиевне и Соломатиной Марине Александровне.

Самую глубокую благодарность я приношу членам своей семьи за моральную и вполне материальную помощь, без которой эта работа не была бы завершена.

Огромное спасибо всем сотрудникам всем сотрудникам и аспирантам Института экспериментальной кардиологии, имевшим несчатье попасть в поле моей деятельности, но с большой честью перенесших это испытание: Судомойной Марине, Капчаеву Аскеру, Валуеву Игорю, Фоминову Глебу, Агафонову Михаилу, Крымскому Михаилу, Дуднаковой Татьяне и многим, многим другим. Я ценю вашу помощь, сочувствие и дружеское участие.

ЗАКЛЮЧЕНИЕ

В качестве заключения работы наши представления о возможных внутриклеточных механизмах работы белка Нзр25/27 были оформлены в качестве схемы (схема 6). Представленный рисунок достаточно сильно упрощен, поскольку наши представления никоим образом нельзя считать полными и законченными. Лишь дальнейшие скурпулезные исследования, направленные на разгадку механизмов клеточной защиты, позволят дополнить эти знания новыми важными подробностями. ф р 4 р р

Выеокоолигомерный нефосфорилированный

Hsp25/27 ш

Н и зкоол и гом ерн ы й (димерный)гипсрфосфорилнрованнын llsp25/27

Ядерные белки с наставной кои форма иней

Ядерные белки с поврежденной кон формацией О

20 S протеасомный комплекс

Мономер актина

Схема 6: Механизм работы Hsp25/27 в клетке при стрессовом воздействии.

I. Состояние в отсутствие стресса. Hsp25/27 депонирован в цитоплазме в виде крупных олигомеров. Базовое фосфоршшрованис, возможнозадсйствующее альтернативные MAP киназному каскаду пути, не приводит к значительным изменениям в олигомерном статусе Hsp25/27. Протсинфосфатаза 2А (РР2А) поддерживает высокий уровень нсфосфорилированныхизоформ.

II. Начало действия стресса. Активация МАРКА PK-2 через MAP киназный каскад приводит к гиперфоефорилированию и разборке крупных олигомеров Hsp25/27, Димеры/малые олигомеры Hsp25/27 проникают в ядро и ассоциируют с актиновыми филаментами. К этому времени в ядре начинают накапливаться денатурированные белки, а микрофиламенты теряют привычное белковое микроокружение и начинают разрушаться,

III. Продвипугая фаза стресса или период восстановления после окончания стрессового воздействия. В ядре импортированные малоолигомерные формы Hsp25/27 частично дефосфорилируюгся гипотетической фосфаггазой и формируют ядерные гранулы с привлечением 20S протсасом. В ядерных гранулах происходит удаление поврежденных белков путем протеолиза В ну клеоплазме низкоолигомерные формы Hsp25/27 помогают в рефолдинге денатурированных белков, возможно сохраняя их в фолдивг-компетентном состоянии. В цитоплазме фосфорилированные формы Hsp25/27 ассоциированы е актиновыми филаментами и стабилизируют их.

Список литературы диссертационного исследования кандидат биологических наук Брянцев, Антон Леонидович, 2003 год

1. Ahn J.Y., Tanahashi N., Akiyama K., Hisamatsu H., Noda C., Tanaka K., Chung C.H.,

2. Shibmara N., Willy P.J., Mott J.D., and . 1995. Primary structures of two homologous subunits of PA28, a gamma- interferon-inducible protein activator of the 20S proteasome. FEBS Lett 366:37-42.

3. Ali M. and Vedeckis W.V. 1990. Heat shock-induced loss of the glucocorticoidreceptor protein in cultured cells. Receptor 1:121-132.

4. Allen T.D., Cronshaw J.M., Bagley S., Kiseleva E., and Goldberg M.W. 2000. Thenuclear pore complex: mediator of translocation between nucleus and cytoplasm. J Cell Sci 113 ( Pt 10): 1651-1659.

5. Anderson R.L. and Hahn G.M. 1985. Differential effects of hyperthermia on the

6. Na+,K+-ATPase of Chinese hamster ovary cells. Radiat Res 102:314-323.

7. Anfinsen C.B. 1973. Principles that govern the folding of protein chains. Science181:223-230.

8. Anton L.C., Schubert U., Bacik I., Princiotta M.F., Wearsch P.A., Gibbs J., Day P.M.,

9. Realini C., Rechsteiner M.C., Bennink J.R., and Yewdell J.W. 1999. Intracellular localization of proteasomal degradation of a viral antigen. J Cell Biol 146:113-124.

10. Arbabi S. and Maier R.V. 2002. Mitogen-activated protein kinases. Crit Care Med30:S74-S79.

11. Armstrong S.C., Delacey M., and Ganóte C.E. 1999. Phosphorylation state of hsp27and p38 MAPK during preconditioning and protein phosphatase inhibitor protection of rabbit cardiomyocytes. J Mol Cell Cardiol 31:555-567.

12. Arrigo A.P., Suhan J.P., and Welch W.J. 1988a. Dynamic changes in the structure andintracellular locale of the mammalian low-molecular-weight heat shock protein. Mol Cell Biol 8:5059-5071.

13. Arrigo A.P., Tanaka K., Goldberg A.L., and Welch W.J. 1988b. Identity of the 19Sprosome' particle with the large multifunctional protease complex of mammalian cells (the proteasome). Nature 331:192-194.

14. Ashok B.T., Kim E., Mittelman A., and Tiwari R.K. 2001. Proteasome inhibitorsdifferentially affect heat shock protein response in cancer cells. IntJ Mol Med 8:385-390.

15. Attaix D., Combaret L., Pouch M.N., and Taillandier D. 2001. Regulation of proteolysis. Curr Opin Clin Nutr Metab Care 4:45-49.

16. Barchowsky A., Williams M.E., Benz C.C., and Chepenik K.P. 1994. Oxidantsensitive protein phosphorylation in endothelial cells. Free Radio Biol Med 16:711-111.

17. Bell J., Neilson L., and Pellegrini M. 1988. Effect of heat shock on ribosome synthesisin Drosophila melanogaster. Mol Cell Biol 8:91-95.

18. Ben Levy R., Leighton I.A., Doza Y.N., Attwood P., Morrice N., Marshall C.J., and

19. Cohen P. 1995. Identification of novel phosphorylation sites required for activation of MAPKAP kinase-2. EMBOJ 14:5920-5930.

20. Bence N.F., Sampat R.M., and Kopito R.R. 2001. Impairment of the ubiquitinproteasome system by protein aggregation. Science 292:1552-1555.

21. Benndorf R., Hayess K., Ryazantsev S., Wieske M., Behlke J., and Lutsch G. 1994.

22. Phosphorylation and supramolecular organization of murine small heat shock protein HSP25 abolish its actin polymerization-inhibiting activity. J Biol Chem 269:20780-20784.

23. Benndorf R., Sun X., Gilmont R.R., Biederman K.J., Molloy M.P., Goodmurphy C.W.,

24. Cheng H., Andrews P.C., and Welsh M.J. 2001. HSP22, a new member of the small heat shock protein superfamily, interacts with mimic of phosphorylated HSP27 ((3D)HSP27). J Biol Chem 216:26753-26761.

25. Bercovich B., Stancovski I., Mayer A., Blumenfeld N., Laszlo A., Schwartz A.L., and

26. Ciechanover A. 1997. Ubiquitin-dependent degradation of certain protein substrates in vitro requires the molecular chaperone Hsc70. J Biol Chem 272:9002-9010.

27. Bergeron M., Ferriero D.M., and Sharp F.R. 1998. Developmental expression of hemeoxygenase-1 (HSP32) in rat brain: an immunocytochemical study. Brain Res Dev Brain Res 105:181-194.

28. Bialojan C. and Takai A. 1988. Inhibitory effect of a marine-sponge toxin, okadaicacid, on protein phosphatases. Specificity and kinetics. Biochem J 256:283-290.

29. Bimston D., Song J., Winchester D., Takayama S., Reed J.C., and Morimoto R.I. 1998.

30. BAG-1, a negative regulator of Hsp70 chaperone activity, uncouples nucleotide hydrolysis from substrate release. EMBOJ 17:6871-6878.

31. Bird T.A., Schule H.D., Delaney P., de R., Sleath P., Dower S.K., and Virca G.D.1994. The interleukin-1 -stimulated protein kinase that phosphorylates heat shock protein hsp27 is activated by MAP kinase. FEBS Lett 338:31-36.

32. Bitar K.N., Kaminski M.S., Hailat N. Cease K.B., and Strahler J.R. 1991. Hsp27 is amediator of sustained smooth muscle contraction in response to bombesin. Biochem Biophys Res Commun 181:1192-1200.

33. Blair O.C., Winward R.T., and Roti R. 1979. The effect of hyperthermia on the proteincontent of HeLa cell nuclei: a flow cytometric analysis. Radiat Res 78:474-484.

34. Bochtler M., Ditzel L., Groll M., Hartmann C., and Huber R. 1999. The proteasome.

35. Annu Rev Biophys Biomol Struct 28:295-317.

36. Boelens W.C., Croes Y., and de J. 2001. Interaction between alphaB-crystallin and thehuman 20S proteasomal subunit C8/alpha7. Biochim Biophys Acta 1544:311319.

37. Bond U. 1988. Heat shock but not other stress inducers leads to the disruption of a subset of snRNPs and inhibition of in vitro splicing in HeLa cells. EMBO J 7:35093518.

38. Bonelli M.A., Alfieri R.R., Poli M., Petronini P.G., and Borghetti A.F. 2001. Heatinduced proteasomic degradation of HSF1 in serum-starved human fibroblasts aging in vitro. Exp Cell Res 267:165-172.

39. Borrelli M.J., Lepock J.R., Frey H.E., Lee Y.J., and Corry P.M. 1996. Excess proteinin nuclei isolated from heat-shocked cells results from a reduced extractability of nuclear proteins. J Cell Physiol 167:369-379.

40. Borrelli M.J., Wong R.S., and Dewey W.C. 1986. A direct correlation betweenhyperthermia-induced membrane blebbing and survival in synchronous G1 CHO cells. J Cell Physiol 126:181-190.

41. Boston R.S., Viitanen P.V., and Vierling E. 1996. Molecular chaperones and proteinfolding in plants. Plant Mol Biol 32:191-222.

42. Brooks P., Fuertes G., Murray R.Z., Bose S., Knecht E., Rechsteiner M.C., Hendil

43. K.B., Tanaka K., Dyson J., and Rivett J. 2000. Subcellular localization ofproteasomes and their regulatory complexes in mammalian cells. Biochem J 346 Pt 1:155-161.

44. Bruey J.M., Ducasse C., Bonniaud P., Ravagnan L., Susin S.A., Diaz-Latoud C.,

45. Gurbuxani S., Arrigo A.P., Kroemer G., Solary E., and Garrido C. 2000. Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol 2:645-652.

46. Brunke M., Tyedmers J., and Zimmermann R. 1996. Protein folding within andprotein transport into mammalian microsomes are differentially affected by photoaffinity labeling of microsomes with 8-azido-ATP. Biochem Biophys Res Commun 218:454-460.

47. Bryantsev A.L., Loktionova S.A., Ilyinskaya O.P., Tararak E.M., Kampinga H.H., and

48. Kabakov A.E. 2002. Distribution, phosphorylation, and activities of Hsp25 in heat-stressed H9c2 myoblasts: a functional link to cytoprotection. Cell Stress Chaperones 7:146-155.

49. Buchner J., Schmidt M., Fuchs M., Jaenicke R., Rudolph R., Schmid F.X., and

50. Kiefhaber T. 1991. GroE facilitates refolding of citrate synthase by suppressing aggregation. Biochemistry 30:1586-1591.

51. Burgman P.W. and Konings A.W. 1992. Heat induced protein denaturation in theparticulate fraction of HeLa S3 cells: effect of thermotolerance. J Cell Physiol 153:88-94.

52. Bush K.T., Goldberg A.L., and Nigam S.K. 1997. Proteasome inhibition leads to aheat-shock response, induction of endoplasmic reticulum chaperones, and thermotolerance. J Biol Chem 272:9086-9092.

53. Caims J., Qin S., Philp R., Tan Y.H., and Guy G.R. 1994. Dephosphorylation of thesmall heat shock protein Hsp27 in vivo by protein phosphatase 2A. J Biol Chem 269:9176-9183.

54. Chalfie M., Tu Y., Euskirchen G., Ward W.W., and Prasher D.C. 1994. Greenfluorescent protein as a marker for gene expression. Science 263:802-805.

55. Charette S.J. and Landry J. 2000. The interaction of HSP27 with Daxx identifies apotential regulatory role of HSP27 in Fas-induced apoptosis. Ann N Y Acad Sci 926:126-131.

56. Charette S.J., Lavoie J.N., Lambert H., and Landry J. 2000. Inhibition of Daxxmediated apoptosis by heat shock protein 27. Mol Cell Biol 20:7602-7612.

57. Chen S., Roseman A.M., Hunter A.S., Wood S.P., Burston S.G., Ranson N.A., Clarke

58. A.R., and Saibil H.R. 1994. Location of a folding protein and shape changes in GroEL-GroES complexes imaged by cryo-electron microscopy. Nature 371:261-264.

59. Chen X., Easton D., Oh H.J., Lee-Yoon D.S., Liu X., and Subjeck J. 1996. The 170kDa glucose regulated stress protein is a large HSP70-, HSP110- like protein of the endoplasmic reticulum. FEBS Lett 380:68-72.

60. Chiang H.L., Terlecky S.R., Plant C.P., and Dice J.F. 1989. A role for a 70-kilodaltonheat shock protein in lysosomal degradation of intracellular proteins. Science 246:382-385.

61. Chretien P. and Landry J. 1988 . Enhanced constitutive expression of the 27-kDa heatshock proteins in heat-resistant variants from Chinese hamster cells. J Cell Physiol 137:157-166.

62. Chu G.L., Ross G., Wong R.S., Waiters R., and Dewey W.C. 1993. Content ofnonhistone protein in nuclei after hyperthermic treatment. J Cell Physiol 154:217-221.

63. Ciavarra R.P., Duvall W., and Castora F.J. 1992. Induction of thermotolerance in Tcells protects nuclear DNA topoisomerase I from heat stress. Biochem Biophys Res Commun 186:166-172.

64. Ciocca D.R., Fuqua S.A., Lock L., Toft D.O., Welch W.J., and McGuire W.L. 1992.

65. Response of human breast cancer cells to heat shock and chemotherapeutic drugs. Cancer Res 52:3648-3654.

66. Ciocca D.R., Oesterreich S., Chamness G.C., McGuire W.L., and Fuqua S.A. 1993.

67. Biological and clinical implications of heat shock protein 27,000 (Hsp27): a review. J Natl Cancer Inst 85:1558-1570.

68. Clerk A. and Sugden P.H. 1998. The p38-MAPK inhibitor, SB203580, inhibits cardiacstress-activated protein kinases/c-Jun N-terminal kinases (SAPKs/JNKs). FEBS Lett 426:93-96.

69. Clifton A.D., Young P.R., and Cohen P. 1996. A comparison of the substratespecificity of MAPKAP kinase-2 and MAPKAP kinase-3 and their activation by cytokines and cellular stress. FEBS Lett 392:209-214.

70. Cole A. and Armour E.P. 1988. Ultrastructural study of mitochondrial damage in CHOcells exposed to hyperthermia. RadiatRes 115:421-435.

71. Collier N.C., Heuser J., Levy M.A., and Schlesinger M.J. 1988. Ultrastructural andbiochemical analysis of the stress granule in chicken embryo fibroblasts. J Cell Biol 106:1131-1139.

72. Collier N.C. and Schlesinger M.J. 1986. The dynamic state of heat shock proteins inchicken embryo fibroblasts. J Cell Biol 103:1495-1507.

73. Connell P., Ballinger C.A., Jiang J., Wu Y., Thompson L.J., Hohfeld J., and Patterson

74. C. 2001. The co-chaperone Chip regulates protein triage decisions mediated by heat-shock proteins. Nat Cell Biol 3:93-96.

75. Conti E., Franks N.P., and Brick P. 1996. Crystal structure of firefly luciferase throwslight on a superfamily of adenylate-forming enzymes. Structure 4:287-298.

76. Cormack B.P., Valdivia R.H., and Falkow S. 1996. FACS-optimized mutants of thegreen fluorescent protein (GFP). Gene 173:33-38.

77. Coss R.A., Dewey W.C., and Bamburg J.R. 1982. Effects of hyperthermia on dividing

78. Chinese hamster ovary cells and on microtubules in vitro. Cancer Res 42:10591071.

79. Crete P. and Landry J. 1990. Induction of HSP27 phosphorylation andthermoresistance in Chinese hamster cells by arsenite, cycloheximide, A23187, and EGTA. Radiat Res 121:320-327.

80. Csermely P., Schnaider T., Soti C., Prohaszka Z., and Nardai G. 1998. The 90-kDamolecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol Ther 79:129-168.

81. Cuesta R., Laroia G., and Schneider R.J. 2000. Chaperone hsp27 inhibits translationduring heat shock by binding eIF4G and facilitating dissociation of cap-initiation complexes. Genes Dev 14:1460-1470.

82. D'Orazi G., Cecchinelli B., Bruno T., Manni I., Higashimoto Y., Saito S., Gostissa M.,

83. Coen S., Marchetti A., Del Sal G., Piaggio G., Fanciulli M., Appella E., and Soddu S. 2002. Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis. Nat Cell Biol 4:11-19.

84. Desterro J.M., Rodriguez M.S., and Hay R.T. 2000. Regulation of transcription factorsby protein degradation. Cell Mol Life Sci 57:1207-1219.

85. Dick T.P., Ruppert Т., Groettrup M., Kloetzel P.M., Kuehn L., Koszinowski U.H.,

86. Stevanovic S., Schild H., and Rammensee H.G. 1996. Coordinated dual cleavages induced by the proteasome regulator PA28 lead to dominant MHC ligands. Cell 86:253-262.

87. Dickson J. A. and Calderwood S.K. 1979. Effects of hyperglycemia and hyperthermiaon the pH, glycolysis, and respiration of the Yoshida sarcoma in vivo. J Natl Cancer Inst 63:1371-1381.

88. Dimopoulou K. and Thomopoulos G.N. 2000. Ultrastructural studies on the effect ofheat shock treatment on larval salivary gland cells of Drosophila auraria. J Submicrosc Cytol Pathol 32:573-584.

89. Dorion S., Berube J., Huot J., and Landry J. 1999. A short lived protein involved in theheat shock sensing mechanism responsible for stress-activated protein kinase 2 (SAPK2/p38) activation. J Biol Chem 274:37591-37597.

90. Duan H., Lin C.Y., and Mazzone T. 1997. Degradation of macrophage ApoE in anonlysosomal compartment. Regulation by sterols. J Biol Chem 272:3115631162.

91. Dubois M.F., Hovanessian A.G., and Bensaude O. 1991. Heat-shock-induceddenaturation of proteins. Characterization of the insolubilization of the interferon-induced p68 kinase. J Biol Chem 266:9707-9711.

92. Dul J.L., Davis D.P., Williamson E.K., Stevens F.J., and Argon Y. 2001. Hsp70 andantifibrillogenic peptides promote degradation and inhibit intracellular aggregation of amyloidogenic light chains. J Cell Biol 152:705-716.

93. Duncan R. and Hershey J. W. 1984. Heat shock-induced translational alterations in

94. HeLa cells. Initiation factor modifications and the inhibition of translation. J Biol Chem 259:11882-11889.

95. Duprez E., Saurin A.J., Desterro J.M., Lallemand-Breitenbach V., Howe K., Boddy

96. M.N., Solomon E., de The H., Hay R.T., and Freemont P.S. 1999. SUMO-1 modification of the acute promyelocytic leukaemia protein PML: implications for nuclear localisation. J Cell Sci 112 (Pt 3):381-393.

97. Easton D.P., Kaneko Y., and Subjeck J.R. 2000. The hspl 10 and Grpl 70 stressproteins: newly recognized relatives of the Hsp70s. Cell Stress Chaperones 5:276-290.

98. Ehrnsperger M., Graber S., Gaestel M., and Buchner J. 1997. Binding of non-nativeprotein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J 16:221-229.

99. Ehrnsperger M., Lilie H., Gaestel M., and Buchner J. 1999. The dynamics of Hsp25quaternary structure. Structure and function of different oligomeric species. J Biol Chem 274:14867-14874.

100. Ellis R.J. and Hemmingsen S.M. 1989. Molecular chaperones: proteins essential forthe biogenesis of some macromolecular structures. Trends Biochem Sci 14:339342.

101. Ellis R.J. and van der Vies S.M. 1991. Molecular chaperones. Artrtu Rev Biochem60:321-347.

102. Engel K., Kotlyarov A., and Gaestel M. 1998. Leptomycin B-sensitive nuclear exportof MAPKAP kinase 2 is regulated by phosphorylation. EMBO J 17:3363-3371.

103. Evan G.l. and Hancock D.C. 1985. Studies on the interaction of the human c-mycprotein with cell nuclei: p62c-myc as a member of a discrete subset of nuclear proteins. Cell 43:253-261.

104. Fabunmi R.P., Wigley W.C., Thomas P.J., and DeMartino G.N. 2001. Interferongamma regulates accumulation of the proteasome activator PA28 and immunoproteasomes at nuclear PML bodies. J Cell Sci 114:29-36.

105. Fitzgerald J., Lamande S.R., and Bateman J.F. 1999. Proteasomal degradation ofunassembled mutant type I collagen pro-alphal(I) chains. J Biol Chem 274:27392-27398.

106. Freeman B.C. and Morimoto R.I. 1996. The human cytosolic molecular chaperoneshsp90, hsp70 (hsc70) and hdj-1 have distinct roles in recognition of a non-native protein and protein refolding. EMBO J 15:2969-2979.

107. Freeman B.C., Myers M.P., Schumacher R., and Morimoto R.I. 1995. Identification ofa regulatory motif in Hsp70 that affects ATPase activity, substrate binding and interaction with HDJ-1. EMBO J 14:2281-2292.

108. Fu L. and Liang J.J. 2002. Detection of protein-protein interactions among lenscrystallins in a mammalian two-hybrid system assay. J Biol Chem 277:42554260.

109. Fuchs L.C., Giulumian A.D., Knoepp L., Pipkin W., Dickinson M., Hayles C., and

110. Brophy C. 2000. Stress causes decrease in vascular relaxation linked with altered phosphorylation of heat shock proteins. Am J Physiol Regal Integr Comp Physiol 279:R492-R498.

111. Gaestel M., Benndorf R., Hayess K., Priemer E., and Engel K. 1992.

112. Dephosphorylation of the small heat shock protein hsp25 by calcium/calmodulin-dependent (type 2B) protein phosphatase. J Biol Chem 267:21607-21611.

113. Gaestel M., Schroder W., Benndorf R., Lippmann C., Buchner K., Hucho F., Erdmann

114. V.A., and Bielka H. 1991. Identification of the phosphorylation sites of the murine small heat shock protein hsp25. J Biol Chem 266:14721-14724.

115. Garrido C., Bruey J.M., Fromentin A., Hammann A., Arrigo A.P., and Solary E. 1999.

116. HSP27 inhibits cytochrome c-dependent activation of procaspase-9. FASEB J 13:2061-2070.

117. Garrido C., Gurbuxani S., Ravagnan L., and Kroemer G. 2001. Heat shock proteins:endogenous modulators of apoptotic cell death. Biochem Biophys Res Commurt 286:433-442.

118. Garrido C., Mehlen P., Fromentin A., Hammann A., Assem M., Arrigo A.P., and

119. Chauffert B. 1996. Inconstant association between 27-kDa heat-shock protein (Hsp27) content and doxorubicin resistance in human colon cancer cells. The doxorubicin-protecting effect of Hsp27. Eur J Biochem 237:653-659.

120. Gattoni R., Mahe D., Mahl P., Fischer N., Mattei M.G., Stevenin J., and Fuchs J.P.1996. The human hnRNP-M proteins: structure and relation with early heat shock-induced splicing arrest and chromosome mapping. Nucleic Acids Res 24:2535-2542.

121. Gebauer M., Melki R., and Gehring U. 1998. The chaperone cofactor Hop/p60interacts with the cytosolic chaperonin- containing TCP-1 and affects its nucleotide exchange and protein folding activities. J Biol Chem 273:2947529480.

122. Gemold M., Knauf U., Gaestel M., Stahl J., and Kloetzel P.M. 1993. Development andtissue-specific distribution of mouse small heat shock protein hsp25. Dev Genet 14:103-111.

123. Geum D., Son G.H., and Kim K. 2002. Phosphorylation-dependent cellularlocalization and thermoprotective role of heat shock protein 25 in hippocampal progenitor cells. J Biol Chem 277:19913-19921.

124. Glickman M.H. andCiechanover A. 2002. Theubiquitin-proteasomeproteolyticpathway: destruction for the sake of construction. Physiol Rev 82:373-428.

125. Glover J.R. and Lindquist S. 1998. Hspl04, Hsp70, and Hsp40: a novel chaperonesystem that rescues previously aggregated proteins. Cell 94:73-82.

126. Goloubinoff P., Mogk A., Zvi A.P., Tomoyasu T., and Bukau B. 1999. Sequentialmechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc Natl A cad Sci USA 96:13732-13737.

127. Gotoh Y. and Cooper J.A. 1998 . Reactive oxygen species- and dimerization-inducedactivation of apoptosis signal-regulating kinase 1 in tumor necrosis factor-alpha signal transduction. J Biol Chem 273:17477-17482.

128. Gottifredi V. and Prives C. 2001. P53 and PML: new partners in tumor suppression.

129. Trends Cell Biol 11:184-187.

130. Grenert J.P., Johnson B.D., and Toft D.O. 1999. The importance of ATP binding andhydrolysis by hsp90 in formation and function of protein heterocomplexes. J Biol Chem 274:17525-17533.

131. Grimwade D. and Solomon E. 1997. Characterisation of the PML/RAR alpharearrangement associated with t( 15; 17) acute promyelocytic leukaemia. Curr Top Microbiol Immunol 220:81 -112.

132. Groettrup M., Soza A., Eggers M., Kuehn L., Dick T.P., Schild H., Rammensee H.G.,

133. Koszinowski U.H., and Kloetzel P.M. 1996. A role for the proteasome regulator PA28alpha in antigen presentation. Nature 381:166-168.

134. Guay J., Lambert H., Gingras-Breton G., Lavoie J.N., Huot J., and Landry J. 1997.

135. Regulation of actin filament dynamics by p38 map kinase-mediated phosphorylation of heat shock protein 27. J Cell Sci 110 (Pt 3):357-368.

136. Guenal I., Sidoti-de Fraisse C., Gaumer S., and Mignotte B. 1997. Bcl-2 and Hsp27 actat different levels to suppress programmed cell death. Oncogene 15:347-360.

137. Guo Z. and Cooper L.F. 2000. An N-terminal 33-amino-acid-deletion variant of hsp25retains oligomerization and functional properties. Biochem Biophys Res Commurt 270:183-189.

138. Gusarova V., Caplan A.J., Brodsky J.L., and Fisher E.A. 2001. Apoprotein Bdegradation is promoted by the molecular chaperones hsp90 and hsp70. J Biol Chem 276:24891-24900.

139. Hansen L.K., Houchins J.P., and Leary J.J. 1991. Differential regulation of HSC70,

140. HSP70, HSP90 alpha, and HSP90 beta mRNA expression by mitogen activation and heat shock in human lymphocytes. Exp Cell Res 192:587-596.

141. Hansen R.K., Parra I., Lemieux P., Oesterreich S., Hilsenbeck S.G., and Fuqua S.A.1999. Hsp27 overexpression inhibits doxorubicin-induced apoptosis in human breast cancer cells. Breast Cancer Res Treat 56:187-196.

142. Hartl F.U., Hlodan R., and Langer T. 1994. Molecular chaperones in protein folding:the art of avoiding sticky situations. Trends Biochem Sci 19:20-25.

143. Heads R.J., Latchman D.S., and Yellon D.M. 1995. Differential stress protein mRNAexpression during early ischaemic preconditioning in the rabbit heart and its relationship to adenosine receptor function. JMol Cell Cardiol 27:2133-2148.

144. Hedges J.C., Dechert M.A., Yamboliev I.A., Martin J.L., Hickey E., Weber L.A., and

145. Gerthoffer W.T. 1999. A role for p38(MAPK)/HSP27 pathway in smooth muscle cell migration. J Biol Chem 274:24211-24219.

146. Heine U., Sverak L., Kondratick J., and Bonar R.A. 1971. The behavior of HeLa-S3cells under the influence of supranormal temperatures. J Ultrastruct Res 34:375-396.

147. Hendrick J. P. and Hartl F.U. 1993. Molecular chaperone functions of heat-shockproteins. Annu Rev Biochem 62:349-384.

148. Hendrick J.P., Langer T., Davis T.A., Hartl F.U., and Wiedmann M. 1993. Control offolding and membrane translocation by binding of the chaperone DnaJ to nascent polypeptides. Proc Natl Acad Sci U S A 90:10216-10220.

149. Henle K.J., Nagle W.A., Moss A.J., and Herman T.S. 1984. Cellular ATP content ofheated Chinese hamster ovary cells. Radiat Res 97:630-633.

150. Herbst R., Schafer U., and Seckler R. 1997. Equilibrium intermediates in the reversibleunfolding of firefly (Photinus pyralis) luciferase. J Biol Chem 272:7099-7105.

151. Hickey E., Brandon S.E., Potter R., Stein G., Stein J., and Weber L.A. 1986. Sequenceand organization of genes encoding the human 27 kDa heat shock protein. Nucleic Acids Res 14:4127-4145.

152. Higashi T., Takechi H., Uemura Y., Kikuchi H., and Nagata K. 1994. Differentialinduction of mRN A species encoding several classes of stress proteins following focal cerebral ischemia in rats. Brain Res 650:239-248.

153. Higashikubo R. and Roti R. 1993. Alterations in nuclear protein mass andmacromolecular synthesis following heat shock. Radiat Res 134:193-201.

154. Hino M., Kurogi K., Okubo M.A., Murata-Hori M., and Hosoya H. 2000. Small heatshock protein 27 (HSP27) associates with tubulin/microtubules in HeLa cells. Biochem Biophys Res Commun 271:164-169.

155. Ho S.C., Chaudhuri S„ Bachhawat A., McDonald K., and Pillai S. 2000. Acceleratedproteasomal degradation of membrane Ig heavy chains. J Immunol 164:47134719.

156. Hoch B., Lutsch G., Schlegel W.P., Stahl J., Wallukat G., Bartel S., Krause E.G.,

157. Benndorf R., and Karczewski P. 1996. HSP25 in isolated perfused rat hearts: localization and response to hyperthermia. Mol Cell Biochem 160-161:231-239.

158. Hohfeld J., Cyr D.M., and Patterson C. 2001. From the cradle to the grave: molecularchaperones that may choose between folding and degradation. EMBO Rep 2:885-890.

159. Hohfeld J. and Jentsch S. 1997. GrpE-like regulation of the hsc70 chaperone by theanti-apoptotic protein BAG-1. EMBO J 16:6209-6216.

160. Hohfeld J., Minami Y., and Hartl F.U. 1995. Hip, a novel cochaperone involved in theeukaryotic Hsc70/Hsp40 reaction cycle. Cell 83:589-598.

161. Hook D.W. and Harding J.J. 1997. Molecular chaperones protect catalase againstthermal stress. Eur J Biochem 247:380-385.

162. Huot J., Houle F., Marceau F., and Landry J. 1997. Oxidative stress-induced actinreorganization mediated by the p38 mitogen-activated protein kinase/heat shock protein 27 pathway in vascular endothelial cells. Circ Res 80:383-392.

163. Huot J., Houle F., Spitz D.R., and Landry J. 1996. HSP27 phosphorylation-mediatedresistance against actin fragmentation and cell death induced by oxidative stress. Cancer Res 56:273-279.

164. Huot J., Lambert H., Lavoie J.N., Guimond A., Houle F., and Landry J. 1995.

165. Characterization of 45-kDa/54-kDa HSP27 kinase, a stress-sensitive kinase which may activate the phosphorylation-dependent protective function of mammalian 27-kDa heat-shock protein HSP27. EurJBiochem 227:416-427.

166. Huot J., Roy G., Lambert H., Chretien P., and Landry J. 1991. Increased survival aftertreatments with anticancer agents of Chinese hamster cells expressing the human Mr 27,000 heat shock protein. Cancer Res 51:5245-5252.

167. Ibitayo A.I., Sladick J., Tuteja S., Louis-Jacques O., Yamada H., Groblewski G.,

168. Welsh M., and Bitar K.N. 1999. HSP27 in signal transduction and association with contractile proteins in smooth muscle cells. Am J Physiol 277:G445-G454.

169. Imamura T., Haruta T., Takata Y., Usui I., Iwata M., Ishihara H., Ishiki M., Ishibashi

170. O., Ueno E., Sasaoka T., and Kobayashi M. 1998. Involvement of heat shock protein 90 in the degradation of mutant insulin receptors by the proteasome. J Biol Chem 273:11183-11188.

171. Inouye S. and Tsuji F.I. 1994. Aequorea green fluorescent protein. Expression of thegene and fluorescence characteristics of the recombinant protein. FEBS Lett 341:277-280.

172. Irmer H. and Hohfeld J. 1997. Characterization of functional domains of the eukaryoticco-chaperone Hip. J Biol Chem 272:2230-2235.

173. Ito H., Kamei K., Iwamoto I., Inaguma Y., Nohara D., and Kato K. 2001.

174. Phosphorylation-induced change of the oligomerization state of alpha B-crystallin. J Biol Chem 276:5346-5352.

175. Izaki K., Kinouchi H., Watanabe K., Owada Y., Okubo A., Itoh H., Kondo H.,

176. Tashima Y., Tamura S., Yoshimoto T., and Mizoi K. 2001. Induction of mitochondrial heat shock protein 60 and 10 mRNAs following transient focal cerebral ischemia in the rat. Brain Res Mol Brain Res 88:14-25.

177. Jaenicke R. 1991. Protein folding: local structures, domains, subunits, and assemblies.

178. Biochemistry 30:3147-3161.

179. Jaenicke R. 1993. What does protein refolding in vitro tell us about protein folding inthe cell? Philos Trans R Soc LondB Biol Sci 339:287-294.

180. Jakob U., Gaestel M., Engel K., and Buchner J. 1993. Small heat shock proteins aremolecular chaperones. J Biol Chem 268:1517-1520.

181. Jakob U., Lilie H., Meyer I., and Buchner J. 1995. Transient interaction of Hsp90 withearly unfolding intermediates of citrate synthase. Implications for heat shock in vivo. J Biol Chem 270:7288-7294.

182. Jans D.A. 1995. The regulation of protein transport to the nucleus by phosphorylation.

183. Biochem J 311 ( Pt 3):705-716.

184. Jantschitsch C., Kindas M., Metze D., Amann G., Micksche M., and Trautinger F.1998. Expression of the small heat shock protein HSP 27 in developing human skin. Br J Dermatol 139:247-253.

185. Johnson B.D., Chadli A., Felts S.J., Bouhouche I., Catelli M.G., and Toft D.O. 2000.

186. Hsp90 chaperone activity requires the full-length protein and interaction among its multiple domains. J Biol Chem 275:32499-32507.

187. Johnson B.D., Schumacher R.J., Ross E.D., and Toft D.O. 1998. Hop modulates

188. Hsp70/Hsp90 interactions in protein folding. J Biol Chem 273:3679-3686.

189. Jorritsma J.B., Kampinga H.H., Scaf A.H., and Konings A.W. 1985. Strand breakrepair, DNA polymerase activity and heat radiosensitization in thermotolerant cells. Int J Hyperthermia 1:131-145.

190. Josefsberg L.B., Galiani D., Dantes A., Amsterdam A., and Dekel N. 2000. Theproteasome is involved in the first metaphase-to-anaphase transition of meiosis in rat oocytes. Biol Reprod 62:1270-1277.

191. Kabakov A.E. and Gabai V.L. 1997. Heat shock proteins and cytoprotection: ATPdeprivated mammalian cells. R.G. Landes company, Austin, Texas, USA.

192. Kampinga H.H. 1993. Thermotolerance in mammalian cells. Protein denaturation andaggregation, and stress proteins. J Cell Sci 104 (Pt 1): 11-17.

193. Kampinga H.H., Brunsting J.F., Stege G.J., Konings A.W., and Landry J. 1994. Cellsoverexpressing Hsp27 show accelerated recovery from heat-induced nuclear protein aggregation. Biochem Biophys Res Commun 204:1170-1177.

194. Kampinga H.H., Jorritsma J.B., and Konings A.W. 1985. Heat-induced alterations in

195. DNA polymerase activity of HeLa cells and of isolated nuclei. Relation to cell survival. Int J Radiat Biol Relat Stud Phys Chem Med47:29-40.

196. Kampinga H.H., Luppes J.G., and Konings A.W. 1987. Heat-induced nuclear proteinbinding and its relation to thermal cytotoxicity. Int J Hyperthermia 3:459-465.

197. Kamradt M.C., Chen F., and Cryns V.L. 2001. The small heat shock protein alpha Bcrystallin negatively regulates cytochrome c- and caspase-8-dependent activation of caspase-3 by inhibiting its autoproteolytic maturation. J Biol Chem 276:16059-16063.

198. Kandil E., Kohda K., Ishibashi T., Tanaka K., and Kasahara M. 1997. PA28 subunitsof the mouse proteasome: primary structures and chromosomal localization of the genes. Immunogenetics 46:337-344.

199. Kato К., Goto S., Inaguma Y., Hasegawa K., Morishita R., and Asano T. 1994a.

200. Purification and characterization of a 20-kDa protein that is highly homologous to alpha В crystallin. J Biol Chem 269:15302-15309.

201. Kato K., Hasegawa K., Goto S., and Inaguma Y. 1994b. Dissociation as a result ofphosphorylation of an aggregated form of the small stress protein, hsp27. J Biol Chem 269:11274-11278.

202. Kaye F.J., Modi S., Ivanovska I., Koonin E.V., Thress K., Kubo A., Kornbluth S., and

203. Rose M.D. 2000. A family of ubiquitin-like proteins binds the ATPase domain of Hsp70-like Stch. FEBS Lett 467:348-355.

204. Kim D., Kim S.H., and Li G.C. 1999. Proteasome inhibitors MG132 and lactacystinhyperphosphorylate HSF1 and induce hsp70 and hsp27 expression. Biochem Biophys Res Commun 254:264-268.

205. King K.L., Li A.F., Chau G.Y., Chi C.W., Wu C.W., Huang C.L., and Lui W.Y. 2000.

206. Prognostic significance of heat shock protein-27 expression in hepatocellular carcinoma and its relation to histologic grading and survival. Cancer 88:24642470.

207. Klemenz R., Andres A.C., Frohli E., Schafer R., and Aoyama A. 1993. Expression ofthe murine small heat shock proteins hsp 25 and alpha В crystallin in the absence of stress. J Cell Biol 120:639-645.

208. Kloetzel P.M., Soza A., and Stohwasser R. 1999. The role of the proteasome systemand the proteasome activator PA28 complex in the cellular immune response. Biol Chem 380:293-297.

209. Knauf U., Jakob U., Engel K., Buchner J., and Gaestel M. 1994. Stress- and mitogeninduced phosphorylation of the small heat shock protein Hsp25 by MAPKAP kinase 2 is not essential for chaperone properties and cellular thermoresistance. EMBOJ 13:54-60.

210. Knoepp L., Beall A., Woodrum D., Mondy J.S., Shaver E., Dickinson M., and Brophy

211. C.M. 2000. Cellular stress inhibits vascular smooth muscle relaxation. J Vase Surg 31:343-353.

212. Knowlton A. A. 2001. Mutation of amino acids 566-572 (KKKVLDK) inhibits nuclearaccumulation of heat shock protein 72 after heat shock. J Mol Cell Cardiol 33:49-55.

213. Knowlton A.A., Kapadia S., Torre-Amione G., Durand J.B., Bies R., Young J., and

214. Mann D.L. 1998. Differential expression of heat shock proteins in normal and failing human hearts. J Mol Cell Cardiol 30:811-818.

215. Koegl M., Hoppe Т., Schlenker S., Ulrich H.D., Mayer T.U., and Jentsch S. 1999. Anovel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell 96:635-644.

216. Konings A.W. and Ruifrok A.C. 1985. Role of membrane lipids and membranefluidity in thermosensitivity and thermotolerance of mammalian cells. Radiat Res 102:86-98.

217. Kushnirov V.V., Kryndushkin D.S., Boguta M., Smirnov V.N., and Ter-Avanesyan.2000. Chaperones that cure yeast artificial PSI+. and their prion-specific effects. Curr Biol 10:1443-1446.

218. Kyriakis J.M. and Avruch J. 2001. Mammalian mitogen-activated protein kinase signaltransduction pathways activated by stress and inflammation. Physiol Rev 81:807-869.

219. Laemmli U.K. 1970. Cleavage of structural protein during the assembly of head ofbacteriophage T4. Nature 227:680-685.

220. Lambert H., Charette S.J., Bernier A.F., Guimond A., and Landry J. 1999. HSP27multimerization mediated by phosphorylation-sensitive intermolecular interactions at the amino terminus. J Biol Chem 274:9378-9385.

221. Landry J., Chretien P., Lambert H., Hickey E., and Weber L.A. 1989. Heat shockresistance conferred by expression of the human HSP27 gene in rodent cells. J Cell Biol 109:7-15.

222. Landry J. and Huot J. 1995. Modulation of actin dynamics during stress andphysiological stimulation by a signaling pathway involving p38 MAP kinase and heat-shock protein 27. Biochem Cell Biol 73:703-707.

223. Landry J. and Huot J. 1999. Regulation of actin dynamics by stress-activated proteinkinase 2 (SAPK2)-dependent phosphorylation of heat-shock protein of 27 kDa (Hsp27). Biochem Soc Symp 64:79-89.

224. Landry J., Lambert H., Zhou M., Lavoie J.N., Hickey E., Weber L.A., and Anderson

225. C.W. 1992. Human HSP27 is phosphorylated at serines 78 and 82 by heat shock and mitogen-activated kinases that recognize the same amino acid motif as S6 kinase II. J Biol Chem 267:794-803.

226. Laskey R.A., Honda B.M., Mills A.D., and Finch J.T. 1978. Nucleosomes areassembled by an acidic protein which binds histones and transfers them to DNA. Nature 275:416-420.

227. Laszlo A. 1988. Evidence for two states of thermotolerance in mammalian cells. IntJ1. Hyperthermia 4:513-526.

228. Laszlo A. 1992. The effects of hyperthermia on mammalian cell structure and function.1. Cell Prolif25:59-&7.

229. Laszlo A., Wright W., and Roti R. 1992. Initial characterization of heat-induced excessnuclear proteins in HeLa cells. J Cell Physiol 151:519-532.

230. Lavoie J., Chretien P., and Landry J. 1990. Sequence of the Chinese hamster small heatshock protein HSP27. Nucleic Acids Res 18:1637-1637.

231. Lavoie J.N., Gingras B., Tanguay R.M., and Landry J. 1993a. Induction of Chinesehamster HSP27 gene expression in mouse cells confers resistance to heat shock. HSP27 stabilization of the microfilament organization. J Biol Chem 268:34203429.

232. Lavoie J.N., Hickey E., Weber L.A., and Landry J. 1993b. Modulation of actinmicrofilament dynamics and fluid phase pinocytosis by phosphorylation of heat shock protein 27. J Biol Chem 268:24210-24214.

233. Lee D.H. and Goldberg A.L. 1998. Proteasome inhibitors: valuable new tools for cellbiologists. Trends Cell Biol 8:397-403.

234. Lee J.C., Kassis S., Kumar S., Badger A., and Adams J.L. 1999. p38 mitogen-activatedprotein kinase inhibitors—mechanisms and therapeutic potentials. Pharmacol Ther 82:389-397.

235. Leger J.P., Smith F.M., and Currie R.W. 2000. Confocal microscopic localization ofconstitutive and heat shock- induced proteins HSP70 and HSP27 in the rat heart. Circulation 102:1703-1709.

236. Lemieux P., Oesterreich S., Lawrence J.A., Steeg P.S., Hilsenbeck S.G., Harvey J.M.,and Fuqua S.A. 1997. The small heat shock protein hsp27 increases invasiveness but decreases motility of breast cancer cells. Invasion Metastasis 17:113-123.

237. Lepock J.R., Frey H.E., Heynen M.L., Senisterra G.A., and Warters R.L. 2001. Thenuclear matrix is a thermolabile cellular structure. Cell Stress Chaperones 6:136-147.

238. Lewis C.D. and Laemmli U.K. 1982. Higher order metaphase chromosome structure:evidence for metalloprotein interactions. Cell 29:171-181.

239. Li G.C. and Hahn G.M. 1980. A proposed operational model of thermotolerance basedon effects of nutrients and the initial treatment temperature. Cancer Res 40:4501-4508.

240. Li S., Piotrowicz R.S., Levin E.G., Shyy Y.J., and Chien S. 1996. Fluid shear stressinduces the phosphorylation of small heat shock proteins in vascular endothelial cells. Am J Physiol 271:C994-1000.

241. Li Y.M. and Casida J.E. 1992. Cantharidin-binding protein: identification as proteinphosphatase 2A. Proc Natl Acad Sci USA 89:11867-11870.

242. Lindner R.A., Carver J.A., Ehrnsperger M., Buchner J., Esposito G., Behlke J., Lutsch

243. G., Kotlyarov A., and Gaestel M. 2000. Mouse Hsp25, a small shock protein. The role of its C-terminal extension in oligomerization and chaperone action. Eur JBiochem 267:1923-1932.

244. Lindquist S. 1986. The heat-shock response. Annu Rev Biochem 55:1151-1191.

245. Littlewood T.D., Hancock D.C., and Evan G.I. 1987. Characterization of a heat shockinduced insoluble complex in the nuclei of cells. J Cell Sci 88 ( Pt l):65-72.

246. Liu R.Y., Li X., Li L., and Li G.C. 1992. Expression of human hsp70 in rat fibroblastsenhances cell survival and facilitates recovery from translational and transcriptional inhibition following heat shock. Cancer Res 3667-3673.

247. Loktionova S.A., Ilyinskaya O.P., Gabai V.L., and Kabakov A.E. 1996. Distincteffects of heat shock and ATP depletion on distribution and isoform patterns of human Hsp27 in endothelial cells. FEBS Lett 392:100-104.

248. Loktionova S.A., Ilyinskaya O.P., and Kabakov A.E. 1998. Early and delayedtolerance to simulated ischemia in heat- preconditioned endothelial cells: a role for HSP27. Am J Physiol 275:H2147-H2158.

249. Loktionova S.A. and Kabakov A.E. 1998. Protein phosphatase inhibitors and heatpreconditioning prevent Hsp27 dephosphorylation, F-actin disruption and deterioration of morphology in ATP-depleted endothelial cells. FEBS Lett 433:294-300.

250. Luders J., Demand J., and Hohfeld J. 2000. The ubiquitin-related BAG-1 provides alink between the molecular chaperones Hsc70/Hsp70 and the proteasome. J Biol Chem 275:4613-4617.

251. Luders J., Demand J., Schonfelder S., Frien M., Zimmermann R., and Hohfeld J. 1998.

252. Cofactor-induced modulation of the functional specificity of the molecular chaperone Hsc70. Biol Chem 379:1217-1226.

253. Lupas A., Koster A.J., and Baumeister W. 1993. Structural features of 26S and 20Sproteasomes. Enzyme Protein 47:252-273.

254. Luscher B. and Eisenman R.N. 1988. c-myc and c-myb protein degradation: effect ofmetabolic inhibitors and heat shock. Mol Cell Biol 8:2504-2512.

255. Lutsch G., Vetter R., Offhauss U., Wieske M., Grone H.J., Klemenz R., Schimke I.,

256. Stahl J., and Benndorf R. 1997. Abundance and location of the small heat shock proteins HSP25 and alphaB-crystallin in rat and human heart. Circulation 96:3466-3476.

257. Maizels E.T., Peters C.A., Kline M., Cutler R.E., Shanmugam M., and Hunzicker D.1998. Heat-shock protein-25/27 phosphorylation by the delta isoform of protein kinase C. Biochem J 332 ( Pt 3):703-712.

258. Manzerra P. and Brown I.R. 1996. The neuronal stress response: nuclear translocationof heat shock proteins as an indicator of hyperthermic stress. Exp Cell Res 229:35-47.

259. Martin J. 1997. Molecular chaperones and mitochondrial protein folding. J Bioenerg1. Biomembr 29:35-43.

260. Martin J., Horwich A.L., and Hartl F.U. 1992. Prevention of protein denaturationunder heat stress by the chaperonin Hsp60. Science 258:995-998.

261. Martin J., Langer T., Boteva R., Schramel A., Horwich A.L., and Hartl F.U. 1991.

262. Chaperonin-mediated protein folding at the surface of groEL through a 'molten globule'-like intermediate. Nature 352:36-42.

263. McLaughlin M.M., Kumar S., McDonnell P.C., Van Horn S., Lee J.C., Livi G.P., and

264. Young P.R. 1996. Identification of mitogen-activated protein (MAP) kinase-activated protein kinase-3, a novel substrate of CSBP p38 MAP kinase. J Biol Chem 271:8488-8492.

265. Meacham G.C., Patterson C., Zhang W., Younger J.M., and Cyr D.M. 2001. The

266. Hsc70 co-chaperone Chip targets immature CFTR for proteasomal degradation. Nat Cell Biol 3:100-105.

267. Mehlen P., Mehlen A., Godet J., and Arrigo A.P. 1997b. hsp27 as a switch betweendifferentiation and apoptosis in murine embryonic stem cells. J Biol Chem 272:31657-31665.

268. Mehlen P., Preville X., Chareyron P., Briolay J., Klemenz R., and Arrigo A.P. 1995b.

269. Constitutive expression of human hsp27, Drosophila hsp27, or human alpha B-crystallin confers resistance to TNF- and oxidative stress-induced cytotoxicity in stably transfected murine L929 fibroblasts. J Immunol 154:363-374.

270. Mehlen P., Schulze O., and Arrigo A.P. 1996b. Small stress proteins as novelregulators of apoptosis. Heat shock protein 27 blocks Fas/APO-1- and staurosporine-induced cell death. J Biol Chem 271:16510-16514.

271. Meijerman I., Blom W.M., de B., Mulder G J., and Nagelkerke J.F. 1999. Changes of

272. G-actin localisation in the mitotic spindle region or nucleus during mitosis and after heat shock: a histochemical study of G-actin in various cell lines with fluorescent labelled vitamin D-binding protein. Biochim Biophys Acta 1452:1224.

273. Meloche S., Landry J., Huot J., Houle F., Marceau F., and Giasson E. 2000. p38 MAPkinase pathway regulates angiotensin Il-induced contraction of rat vascular smooth muscle. Am J Physiol Heart Circ Physiol 279:H741-H751.

274. Merck K.B., Groenen P.J., Voorter C.E., de Haard-Hoekman W.A., Horwitz J.,

275. Bloemendal H., and de Jong W.W. 1993a. Structural and functional similarities of bovine alpha-crystallin and mouse small heat-shock protein. A family of chaperones. J Biol Chem 268:1046-1052.

276. Merck K.B., Horwitz J., Kersten M., Overkamp P., Gaestel M., Bloemendal H., and de

277. Jong W.W. 1993b. Comparison of the homologous carboxy-terminal domain and tail of alpha-crystallin and small heat shock protein. Mol Biol Rep 18:209215.

278. Michel M.C., Li Y., and Heusch G. 2001. Mitogen-activated protein kinases in dieheart. Naunyn Schmiedebergs Arch Pharmacol 363:245-266.

279. Michels A.A., Kanon B., Bensaude O., and Kampinga H.H. 1999. Heat shock protein

280. Hsp) 40 mutants inhibit Hsp70 in mammalian cells. J Biol Chem 274:3675736763.

281. Michels A.A., Kanon B., Konings A.W., Ohtsuka K., Bensaude O., and Kampinga

282. H.H. 1997. Hsp70 and Hsp40 chaperone activities in the cytoplasm and the nucleus of mammalian cells. J Biol Chem 272:33283-33289.

283. Michels A. A., Nguyen V.T., Konings A.W., Kampinga H.H., and Bensaude O. 1995.

284. Thermostability of a nuclear-targeted luciferase expressed in mammalian cells. Destabilizing influence of the intranuclear microenvironment. EurJBiochem 234:382-389.

285. Minami Y., Hohfeld J., Ohtsuka K., and Hartl F.U. 1996. Regulation of the heat-shockprotein 70 reaction cycle by the mammalian DnaJ homolog, Hsp40. J Biol Chem 271:19617-19624.

286. Minami Y. and Minami M. 1999. Hsc70/Hsp40 chaperone system mediates the Hsp90dependent refolding of firefly luciferase. Genes Cells 4:721-729.

287. Miron T., Vancompernolle K., Vandekerckhove J., Wilchek M., and Geiger B. 1991. A25.kD inhibitor of actin polymerization is a low molecular mass heat shock protein. J Cell Biol 114:255-261.

288. Miron T., Wilchek M., and Geiger B. 1988. Characterization of an inhibitor of actinpolymerization in vinculin- rich fraction of turkey gizzard smooth muscle. Eur J Biochem 178:543-553.

289. Morin J.G. and Hastings J.W. 1971. Energy transfer in a bioluminescent system. J Cell1. Physiol 77:313-318.

290. Motohashi K., Watanabe Y., Yohda M., and Yoshida M. 1999. Heat-inactivatedproteins are rescued by the DnaK.J-GrpE set and ClpB chaperones. Proc Natl AcadSci USA 96:7184-7189.

291. Mounier N. and Arrigo A.P. 2002. Actin cytoskeleton and small heat shock proteins:how do they interact? Cell Stress Chaperones 7:167-176.

292. Murata S., Kawahara H., Tohma S., Yamamoto K., Kasahara M., Nabeshima Y.,

293. Tanaka K., and Chiba T. 1999. Growth retardation in mice lacking the proteasome activator PA28gamma. J Biol Chem 274:38211-38215.

294. Nebreda A.R. and Porras A. 2000. p38 MAP kinases: beyond the stress response.

295. Trends Biochem Sci 25:257-260.

296. New L., Jiang Y., Zhao M., Liu K., Zhu W., Flood L.J., Kato Y., Parry G.C., and Han

297. J. 1998. PRAK, a novel protein kinase regulated by the p38 MAP kinase. EMBOJ 17:3372-3384.

298. Nguyen V.T. and Bensaude 0.1994. Increased thermal aggregation of proteins in

299. ATP-depleted mammalian cells. Eur J Biochem 220:239-246.

300. Nguyen V.T., Morange M., and Bensaude O. 1989. Protein denaturation during heatshock and related stress. Escherichia coli beta-galactosidase and Photinus pyralis luciferase inactivation in mouse cells. J Biol Chem 264:10487-10492.

301. Nishimura R.N., Dwyer B.E., Vinters H.V., De V., and Cole R. 1991. Heat shock incultured neurons and astrocytes: correlation of ultrastructure and heat shock protein synthesis. Neuropathol Appl Neurobiol 17:139-147.

302. Nolan N.L. and Kidwell W.R. 1982. Effect of heat shock on poly(ADP-ribose)synthetase and DNA repair in Drosophila cells. Radiat Res 90:187-203.

303. Nollen E.A., Brunsting J.F., Roelofsen H., Weber L.A., and Kampinga H.H. 1999. Invivo chaperone activity of heat shock protein 70 and thermotolerance. Mol Cell Biol 19:2069-2079.

304. Nollen E.A., Brunsting J.F., Song J., Kampinga H.H., and Morimoto R.I. 2000. Baglfunctions in vivo as a negative regulator of Hsp70 chaperone activity. Mol Cell Biol 20:1083-1088.

305. Nollen E.A., Salomons F.A., Brunsting J.F., Want J.J., Sibon O.C., and Kampinga

306. H.H. 2001. Dynamic changes in the localization of thermally unfolded nuclear proteins associated with chaperone-dependent protection. ProcNatl Acad Sci U SA 98:12038-12043.

307. Oda K., Ikehara Y., and Omura S. 1996. Lactacystin, an inhibitor of the proteasome,blocks the degradation of a mutant precursor of glycosylphosphatidylinositol-linked protein in a pre-Golgi compartment. Biochem Biophys Res Commun 219:800-805.

308. Oh H.J., Chen X., and Subjeck J.R. 1997. Hspl 10 protects heat-denatured proteins andconfers cellular thermoresistance. J Biol Chem 272:31636-31640.

309. Oh H.J., Easton D., Murawski M., Kaneko Y., and Subjeck J.R. 1999. Thechaperoning activity of hspl 10. Identification of functional domains by use of targeted deletions. J Biol Chem 274:15712-15718.

310. Okubo A., Kinouchi H., Owada Y., Kunizuka H., Itoh H., Izaki K., Kondo H.,

311. Tashima Y., Yoshimoto T., and Mizoi K. 2000. Simultaneous induction of mitochondrial heat shock protein mRNAs in rat forebrain ischemia. Brain Res Mol Brain Res 84:127-134.

312. Ono K. and Han J. 2000. The p38 signal transduction pathway: activation and function.1. Cell Signal 12:1-13.

313. Panasenko O.O., Kim M.V., Marston S.B., and Gusev N.B. 2003. Interaction of thesmall heat shock protein with molecular mass 25 kDa (hsp25) with actin. Eur J Biochem 270:892-901.

314. Parag H.A., Raboy B., and Kulka R.G. 1987. Effect of heat shock on proteindegradation in mammalian cells: involvement of the ubiquitin system. EMBOJ 6:55-61.

315. Park Y.M., Han M.Y., Blackburn R.V., and Lee Y.J. 1998. Overexpression of HSP25reduces the level of TNF alpha-induced oxidative DNA damage biomarker, 8-hydroxy-2'-deoxyguanosine, in L929 cells. J Cell Physiol 174:27-34.

316. Parsell D.A., Kowal A.S., Singer M.A., and Lindquist S. 1994. Protein disaggregationmediated by heat-shock protein Hsp 104. Nature 372:475-478.

317. Parsell D.A. and Lindquist S. 1993. The function of heat-shock proteins in stresstolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27:437-496.

318. Parsell D.A., Sanchez Y., Stitzel J.D., and Lindquist S. 1991. Hspl04 is a highlyconserved protein with two essential nucleotide- binding sites. Nature 353:270273.

319. Parsell D.A., Taulien J., and Lindquist S. 1993. The role of heat-shock proteins inthermotolerance. Philos Trans R Soc LondB Biol Sci 339:279-285.

320. Patino M.M., Liu J.J., Glover J.R., and Lindquist S. 1996. Support for the prionhypothesis for inheritance of a phenotypic trait in yeast. Science 273:622-626.

321. Paul C., Manero F., Gonin S., Kretz-Remy C., Virot S., and Arrigo A.P. 2002. Hsp27as a negative regulator of cytochrome C release. Mol Cell Biol 22:816-834.

322. Perng M.D., Cairns L., van den I.J., Prescott A., Hutcheson A.M., and Quinlan R.A.1999. Intermediate filament interactions can be altered by HSP27 and alphaB-crystallin. J Cell Sci 112 ( Pt 13):2099-2112.

323. Pinto M., Morange M., and Bensaude O. 1991. Denaturation of proteins during heatshock. In vivo recovery of solubility and activity of reporter enzymes. J Biol Chem 266:13941-13946.

324. Piotrowicz R.S., Hickey E., and Levin E.G. 1998. Heat shock protein 27 kDaexpression and phosphorylation regulates endothelial cell migration. FASEBJ 12:1481-1490.

325. Pirkkala L., Alastalo T.P., Zuo X., Benjamin I.J., and Sistonen L. 2000. Disruption ofheat shock factor 1 reveals an essential role in the ubiquitin proteolytic pathway. Mol Cell Biol 20:2670-2675.

326. Prescott D.M., Myerson D., and Wallace J. 1972. Enucleation of mammalian cells withcytochalasin B. Exp Cell Res 71:480-485.

327. Raboy B., Sharon G., Parag H.A., Shochat Y., and Kulka R.G. 1991. Effect of stresson protein degradation: role of the ubiquitin system. Acta Biol Hung 42:3-20.

328. Raynes D.A. arid Guerriero V., Jr. 1998. Inhibition of Hsp70 ATPase activity andprotein renaturation by a novel Hsp70-binding protein. J Biol Chem 273:3288332888.

329. Reits E.A., Benham A.M., Plougastel B., Neefjes J., and Trowsdale J. 1997. Dynamicsof proteasome distribution in living cells. EMBOJ 16:6087-6094.

330. Rihs H.P., Jans D.A., Fan H., and Peters R. 1991. The rate of nuclear cytoplasmicprotein transport is determined by the casein kinase II site flanking the nuclear localization sequence of the SV40 T-antigen. EMBO J 10:633-639.

331. Ritossa F. 1996. Discovery of the heat shock response. Cell Stress Chaperones 1:9798.

332. Ritossa F.M. 1962. A new puffing pattern induced by a temperature shock and DNP in

333. Drosophila. Experentia 18:571-573.

334. Rivett A.J., Bose S., Brooks P., and Broadfoot K.I. 2001. Regulation of proteasomecomplexes by gamma-interferon and phosphorylation. Biochimie 83:363-366.

335. RoffM., Thompson J., Rodriguez M.S., Jacque J.M., Baleux F., Arenzana S., and Hay

336. R.T. 1996. Role of IkappaBalpha ubiquitination in signal-induced activation of NFkappaB in vivo. J Biol Chem 271:7844-7850.

337. Rogalla T., Ehrnsperger M., Preville X., Kotlyarov A., Lutsch G., Ducasse C., Paul C.,

338. Wieske M., Arrigo A.P., Buchner J., and Gaestel M. 1999. Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stress/tumor necrosis factor alpha by phosphorylation. J Biol Chem 274:1894718956.

339. Rosette C. and Karin M. 1996. Ultraviolet light and osmotic stress: activation of the

340. JNK cascade through multiple growth factor and cytokine receptors. Science 274:1194-1197.

341. Ross C.A. 1997. Intranuclear neuronal inclusions: a common pathogenic mechanismfor glutamine-repeat neurodegenerative diseases? Neuron 19:1147-1150.

342. Roti Roti, Kampinga H.H., Malyapa R.S., Wright W.D., vanderWaal R.P., and Xu M.1998. Nuclear matrix as a target for hyperthermic killing of cancer cells. Cell Stress Chaperones 3:245-255.

343. Roti Roti and Turkel N. 1994. Heat-induced changes in nuclear-associated proteins innormal and thermotolerant HeLa cells. Radiat Res 139:73-81.

344. Roti Roti, Uygur N., and Higashikubo R. 1986. Nuclear protein following heat shock:protein removal kinetics and cell cycle rearrangements. Radiat Res 107:250261.

345. Roti Roti, Wright W.D., and VanderWaal R. 1997. The nuclear matrix: a target forheat shock effects and a determinant for stress response. Crit Rev Eukaryot Gene Expr 7:343-360.

346. Rousseau S., Houle F., Landry J., and Huot J. 1997. p38 MAP kinase activation byvascular endothelial growth factor mediates actin reorganization and cell migration in human endothelial cells. Oncogene 15:2169-2177.

347. Rust W., Kingsley K., Petnicki T., Padmanabhan S., Carper S.W., and Plopper G.E.1999. Heat shock protein 27 plays two distinct roles in controlling human breast cancer cell migration on laminin-5. Mol Cell Biol Res Commun 1:196-202.

348. Saibil H. 2000. Molecular chaperones: containers and surfaces for folding, stabilisingor unfolding proteins. Curr Opin Struct Biol 10:251-258.

349. Saitoh M., Nishitoh H., Fujii M., Takeda K., Tobiume K., Sawada Y., Kawabata M.,

350. Miyazono K., and Ichijo H. 1998. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 17:2596-2606.

351. Saklatvala J., Kaur P., and Guesdon F. 1991. Phosphorylation of the small heat-shockprotein is regulated by interleukin 1, tumour necrosis factor, growth factors, bradykinin and ATP. BiochemJlll ( Pt 3):635-642.

352. Salituro F.G., Germann U.A., Wilson K.P., Bemis G.W., Fox T., and Su M.S. 1999.1.hibitors of p38 MAP kinase: therapeutic intervention in cytokine-mediated diseases. Curr Med Chem 6:807-823.

353. Salvador-Silva M., Ricard C.S., Agapova O.A., Yang P., and Hernandez M.R. 2001.

354. Expression of small heat shock proteins and intermediate filaments in the human optic nerve head astrocytes exposed to elevated hydrostatic pressure in vitro. JNeurosci Res 66:59-73.

355. Samali A., Robertson J.D., Peterson E., Manero F., van Zeijl L., Paul C., Cotgreave

356. A., Arrigo A.P., and Orrenius S. 2001. Hsp27 protects mitochondria of thermotolerant cells against apoptotic stimuli. Cell Stress Chaperones 6:49-58.

357. Santos B.C., Chevaile A., Kojima R., and Gullans S.R. 1998. Characterization of the

358. Hspl 10/SSE gene family response to hyperosmolality and other stresses. Am J Physiol 274:F1054-F1061.

359. Satoh J. and Kim S.U. 1995. Cytokines and growth factors induce HSP27phosphorylation in human astrocytes. JNeuropathol Exp Neurol 54:504-512.

360. Satoh K., Wakui H., Komatsuda A., Nakamoto Y., Miura A.B., Itoh H., and Tashima

361. Y. 1994. Induction and altered localization of 90-kDa heat-shock protein in rat kidneys with cisplatin-induced acute renal failure. Ren Fail 16:313-323.

362. Satyal S.H., Schmidt E., Kitagawa K., Sondheimer N., Lindquist S., Kramer J.M., and

363. Morimoto R.l. 2000. Polyglutamine aggregates alter protein folding homeostasis in Caenorhabditis elegans. Proc Natl Acad Sci USA 97:57505755.

364. Schirmer E.C., Glover J.R., Singer M.A., and Lindquist S. 1996. HSPlOO/Clp proteins:a common mechanism explains diverse functions. Trends Biochem Sci 21:289296.

365. Schubert U., Anton L.C., Gibbs J., Norbury C.C., Yewdell J.W., and Bennink J.R.2000. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 404:770-774.

366. Sheth K., De A., Nolan B., Friel J., Duffy A., Ricciardi R., Miller G., and Bankey P.2001. Heat shock protein 27 inhibits apoptosis in human neutrophils. J Surg Res 99:129-133.

367. Spector D.L. 2001. Nuclear domains. J Cell Sci 114:2891-2893.

368. Spiro I. J., Denman D.L., and Dewey W.C. 1982. Effect of hyperthermia on CHO DNApolymerases alpha and beta. Radiat Res 89:134-149.

369. Stege G.J., Li G.C., Li L., Kampinga H.H., and Konings A.W. 1994a. On the role ofhsp72 in heat-induced intranuclear protein aggregation. Int J Hyperthermia 10:659-674.

370. Stege G.J., Li L., Kampinga H.H., Konings A.W., and Li G.C. 1994b. Importance ofthe ATP-binding domain and nucleolar localization domain of HSP72 in the protection of nuclear proteins against heat-induced aggregation. Exp Cell Res 214:279-284.

371. Stokoe D., Engel K., Campbell D.G., Cohen P., and Gaestel M. 1992. Identification of

372. MAPKAP kinase 2 as a major enzyme responsible for the phosphorylation of the small mammalian heat shock proteins. FEBSLett 313:307-313.

373. Tyedmers J., Brunke M., Lechte M., Sandholzer U., Dierks T., Schlotterhose P.,

374. Schmidt B., and Zimmermann R. 1996. Efficient folding of firefly Iuciferase after transport into mammalian microsomes in the absence of luminal chaperones and folding catalysts. J Biol Chem 271:19509-19513.

375. Uozaki H., Horiuchi H., Ishida T., Iijima T., Imamura T., and Machinami R. 1997.

376. W.W. 1998. alpha B-crystallin and hsp25 in neonatal cardiac cells-differences in cellular localization under stress conditions. Eur J Cell Biol 75:38-45.325. van den IJssel P.R., Overkamp P., Knauf U., Gaestel M., and de Jong W.W. 1994.

377. Alpha A-crystallin confers cellular thermoresistance. FEBS Lett 355:54-56.

378. Vander Heide R.S. 2002. Increased expression of HSP27 protects canine myocytesfrom simulated ischemia-reperfiision injury. Am J Physiol Heart Circ Physiol 282:H935-H941.

379. Vidair C.A. and Dewey W.C. 1986. Evaluation of a role for intracellular Na+, K+,

380. Ca2+, and Mg2+ in hyperthermic cell killing. Radiat Res 105:187-200.

381. Voges D., Zwickl P., and Baumeister W. 1999. The 26S proteasome: a molecularmachine designed for controlled proteolysis. Anrtu Rev Biochem 68:1015-1068.

382. Wagner M., Hermanns I., Bittinger F., and Kirkpatrick C.J. 1999. Induction of stressproteins in human endothelial cells by heavy metal ions and heat shock. Am J Physiol 277:L1026-L1033.

383. Wagstaff M.J., Collaco-Moraes Y., Smith J., de Belleroche J.S., Coffin R.S., and1.tchman D.S. 1999. Protection of neuronal cells from apoptosis by Hsp27 delivered with a herpes simplex virus-based vector. J Biol Chem 274:50615069.

384. Walz J., Erdmann A., Kania M., Typke D., Koster A.J., and Baumeister W. 1998. 26Sproteasome structure revealed by three-dimensional electron microscopy. J Struct Biol 121:19-29.

385. Wang P. and Bitar K.N. 1998. Rho A regulates sustained smooth muscle contractionthrough cytoskeletal reorganization of HSP27. Am J Physiol 275:G1454-G 1462.

386. Wang S. and Hazelrigg T. 1994 . Implications for bed mRNA localization from spatialdistribution of exu protein in Drosophila oogenesis. Nature 369:400-403.

387. Wang T.T., Chiang A.S., Chu J.J., Cheng T.J., Chen T.M., and Lai Y.K. 1998.

388. Concomitant alterations in distribution of 70 kDa heat shock proteins, cytoskeleton and organelles in heat shocked 9L cells. Int J Biochem Cell Biol 30:745-759.

389. Wang X.Y., Chen X., Oh H.J., Repasky E., Kazim L., and Subjeck J. 2000.

390. Characterization of native interaction of hspl 10 with hsp25 and hsc70. FEBS Lett 465:98-102.

391. Ward W.W. and Bokman S.H. 1982. Reversible denaturation of Aequorea greenfluorescent protein: physical separation and characterization of the renatured protein. Biochemistry 21:4535-4540.

392. Weber-Ban E.U., Reid B.G., Miranker A.D., and Horwich A.L. 1999. Globalunfolding of a substrate protein by the Hspl 00 chaperone ClpA. Nature 401:9093.

393. Wegrzyn R.D., Bapat K., Newnam G.P., Zink A.D., and Chernofif Y.O. 2001.

394. Mechanism of prion loss after Hspl 04 inactivation in yeast. Mol Cell Biol 21:4656-4669.

395. Welch W.J. 1985. Phorbol ester, calcium ionophore, or serum added to quiescent ratembryo fibroblast cells all result in the elevated phosphorylation of two 28,000-dalton mammalian stress proteins. J Biol Chem 260:3058-3062.

396. Westra A. and Dewey W.C. 1971 . Variation in sensitivity to heat shock during thecell-cycle of Chinese hamster cells in vitro. Int J Radial Biol Relat Stud Phys Chem Med 19:467-477.

397. Whitesell L. and Cook P. 1996 . Stable and specific binding of heat shock protein 90by geldanamycin disrupts glucocorticoid receptor function in intact cells. Mol Endocrinol 10:705-712.

398. Wiech H., Buchner J., Zimmermann R., and Jakob U. 1992. Hsp90 chaperones proteinfolding in vitro. Nature 358:169-170.

399. Wigley W.C., Fabunmi R.P., Lee M.G., Marino C.R., Muallem S., DeMartino G.N.,and Thomas P.J. 1999. Dynamic association of proteasomal machinery with the centrosome. J Cell Biol 145:481-490.

400. Will O., Mahler H.C., Arrigo A.P., and Epe B. 1999. Influence of glutathione levelsand heat-shock on the steady-state levels of oxidative DN A base modifications in mammalian cells. Carcinogenesis 20:333-337.

401. Wojcik C., Tanaka K., Paweletz N., Naab U., and Wilk S. 1998. Proteasome activator

402. PA28) subunits, alpha, beta and gamma (Ki antigen) in NT2 neuronal precursor cells and HeLa S3 cells. Eur J Cell Biol 77:151-160.

403. Wong J.W., Shi B., Farboud B., McClaren M., Shibamoto T., Cross C.E., and Isseroff

404. R.R. 2000. Ultraviolet B-mediated phosphorylation of the small heat shock protein HSP27 in human keratinocytes. J Invest Dermatol 115:427-434.

405. Xu Z., Yang S., and Zhu D. 1997. GroE assists refolding of recombinant human prourokinase. JBiochem (Tokyo) 121:331-337.

406. Yamagishi N. Nishihori H., Ishihara K., Ohtsuka K., and Hatayama T. 2000.

407. Modulation of the chaperone activities of Hsc70/Hsp40 by Hspl05alpha and Hspl05beta. Biochem Biophys Res Commun 272:850-855.

408. Yamane M., Hattori H., Sugito K., Hayashi Y., Tohnai I., Ueda M., Nishizawa K., and

409. Ohtsuka K. 1995. Cotranslocation and colocalization of hsp40 (DnaJ) with hsp70 (DnaK) in mammalian cells. Cell Struct Funct 20:157-166.

410. Yamao F. 1999. Ubiquitin system: selectivity and timing of protein destruction. J

411. Biochem (Tokyo) 125:223-229.

412. Yamboliev I.A., Hedges J.C., Mutnick J.L., Adam L.P., and Gerthoffer W.T. 2000.

413. Evidence for modulation of smooth muscle force by the p38 MAP kinase/HS P27 pathway. Am J Physiol Heart Circ Physiol 278: H1899-H1907.

414. Yang F., Moss L.G., and Phillips G.N., Jr. 1996. The molecular structure of greenfluorescent protein. Nat Biotechnol 14:1246-1251.

415. Yatsunami J., Komori A., Ohta T., Suganuma M., Yuspa S.H., and Fujiki H. 1993.

416. Hyperphosphorylation of cytokeratins by okadaic acid class tumor promoters in primary human keratinocytes. Cancer Res 53:992-996.

417. Yew P.R. 2001. Ubiquitin-mediated proteolysis of vertebrate Gl- and S-phaseregulators. J Cell Physiol 187:1-10.

418. Yoshida K., Aki T., Harada K., Shama K.M., Kamoda Y., Suzuki A., and Ohno S.1999. Translocation of HSP27 and MKBP in ischemic heart. Cell Struct Funct 24:181-185.

419. Zantema A., Verlaan D., Maasdam D., Bol S., and Van d. 1992. Heat shock protein 27and alpha B-crystallin can form a complex, which dissociates by heat shock. J Biol Chem 267:12936-12941.

420. Zhou M., Wu X., and Ginsberg H.N. 1996. Evidence that a rapidly turning overprotein, normally degraded by proteasomes, regulates hsp72 gene transcription in HepG2 cells. J Biol Chem 271:24769-24775.

421. Zhu Y., Neill S., Saklatvala J., Tassi L., and Mendelsohn M.E. 1994. Phosphorylated

422. HSP27 associates with the activation-dependent cytoskeleton in human platelets. Blood 84:3715-3723.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.