Влияние органических и биологических мелиорантов на свойства засоленных почв Египта тема диссертации и автореферата по ВАК РФ 00.00.00, кандидат наук Котат Мохамед Хафез Абдель Фаттах Мохамед

  • Котат Мохамед Хафез Абдель Фаттах Мохамед
  • кандидат науккандидат наук
  • 2022, ФГБОУ ВО «Санкт-Петербургский государственный университет»
  • Специальность ВАК РФ00.00.00
  • Количество страниц 374
Котат Мохамед Хафез Абдель Фаттах Мохамед. Влияние органических и биологических мелиорантов на свойства засоленных почв Египта: дис. кандидат наук: 00.00.00 - Другие cпециальности. ФГБОУ ВО «Санкт-Петербургский государственный университет». 2022. 374 с.

Оглавление диссертации кандидат наук Котат Мохамед Хафез Абдель Фаттах Мохамед

Table of contents

Introduction

Chapter 1. New ways to soil reclamation in arid regions of Egypt

1.1. Saline-sodic soil properties in arid regions

1.2. Calcareous soil properties in arid regions

1.3. Characterization of soil ameliorants that are applicable in arid soils

1.3.1. Spent grain

1.3.2. Spent grain vermicomposting

1.3.2.a. Vermicomposting technology

1.3.2.b. History of vermicomposting

1.3.3. Plant Growth Promoting Rhizobacteria (PGPR)

1.3.3.a. The mechanisms of nitrogen fixation by plant growth-promoting rhizobacteria

1.3.3.b. The use of PGPR to protect plants from biotic and abiotic stresses

1.3.4. Using of humic substances as natural organic amendments to soils and plants

1.4. Biological correction of the plant-soil system by bio-organic ameliorants

1.4.1. Influence of organic and biological ameliorants on soil chemical properties

1.4.2. Influence of organic and biological ameliorants on soil biological properties

Chapter 2. Materials & methods

2.1. Study site information and soil characterization

2.2. Organic and biological ameliorants (description and preparations)

2.2.1. Bio-fertilizers preparation and seeds inoculation

2.2.2. The preparation of vermicompost from spent grain organic wastes

2.2.3. The humic substances extraction and preparation from vermicompost

2.2.4. Preparation of trace elements solutions

2.3. Experimental types and application rates

2.3.a. Laboratory experiment

2.3.b. Greenhouse experiments

2.4. Soil sampling

2.4.1. Soil physicochemical and chemical analyses

2.4.2. Biological analysis

2.5. Plant sampling and analytical determinations

2.5.1. Corn in greenhouse experiment

2.5.2. Wheat in field experiment

2.5.3. Calculation of seeds germination parameters

2.6. Water use efficiency

2.7. Statistical analyses

Chapter 3. The incubation experiment of saline-sodic soil with spent grain under laboratory conditions

3.1. Changes in the physicochemical properties during the soil incubation period

3.1.1. Changes in soil pH values

3.1.2. Exchangeable sodium percentage

3.1.3. Exchangeable sodium and electrical conductivity

3.1.4. Changes of cation exchange capacity

3.2. Changes in the soil biological parameters during the soil incubation period

3.2.1. Dehydrogenase and urease activities

3.3. Changes in soil fertility indicators during the incubation period

3.3.1. Changes in the total nitrogen content

3.3.2. Changes in available phosphorus and potassium contents

3.3.3. Changes in total organic carbon content

3.3.4. Changes in the soil micronutrients contents

3.4. Conclusion

Chapter 4. The vegetation experiment in saline-sodic soil under greenhouse conditions

4.1. Influence of soil ameliorants on the soil leachate properties under greenhouse experiment

4.1.1. Changes in the pH values of soil leachates

4.1.2. Changes in EC concentrations of soil leachates

4.1.3. Changes in nitrate and ammonium (NO3" and NH4+) ions concentrations of soil leachates

4.1.4. Change in soluble sodium ions concentration of soil leachates

4.1.5. Changes in the chloride ions concentration of soil leachates

4.1.6. Changes in calcium and potassium ions concentration of soil leachates

4.2. Influence of organic and biological ameliorants on soil properties and maize parameters after three months of soil amendments

4.2.1. Influence of organic and biological ameliorants on the physicochemical properties of soils

4.2.2. Influence of organic and biological ameliorants on the soil fertility indicators after three months of plant growth in greenhouse

4.2.3. Influence of agro-ameliorants amendments on germination and corn plant growth parameters under greenhouse experiment

4.2.4. Influence of different agro-ameliorants on maize yield parameters under greenhouse experiment

4.3. Conclusion

Chapter 5. The incubation experiment of calcareous soil under laboratory conditions

5.1. Effect of organic and biological ameliorants on soil chemical properties after 10 and 21 weeks of

calcareous soil incubation

5.1.1. Effect of organic and bio-organic ameliorants on soil total nitrogen

5.1.2. Effect of organic and biological ameliorants on soil available phosphorus

5.1.3. Effect of organic and biological ameliorants on soil organic carbon

5.1.4. Effect of organic biological ameliorants on C/N ratio in soil

5.1.5. Effect of organic and biological ameliorants on soil N/P ratio in soil

5.1.6. Effect of organic and biological ameliorants on micronutrients

5.2. Changes in dehydrogenase and urease activities after 10 and 21 weeks of calcareous soil incubation

5.3. Effect of organic and biological ameliorants on corn germination parameters after 21 days of seeds sowing in calcareous soil

5.3.1. Final germination percentage (FGP) and germination index (GI)

5.3.2. Coefficient of the velocity of germination (CVG)

5.4. Conclusion

Chapter 6. The vegetation experiment in calcareous soil under greenhouse conditions

6.1. Effect of soil organic and biological amendments on soil leachate properties during the vegetation experiment

6.1.1. Changes in nitrate and ammonium ions concentrations of soil leachates

6.1.2. Changes in chloride and sodium ions concentrations in soil leachates

6.1.3. Changes in calcium and potassium ions concentrations in soil leachates

6.2. Influence of different fertilizers and ameliorants on chemical properties after 120 days of soil seeds sowing in greenhouse

6.2.1. Changes in total nitrogen, available phosphorus, and available potassium in soil

6.2.2. Changes in n soluble cations calcium potassium, magnesium, and sodium

6.3. Influence of different fertilizers and ameliorants on total nitrogen and total phosphorus in corn plants after 120-days of seeds sowing in calcareous soil

6.4. Influence of different fertilizers and ameliorants on plant growth and yield parameters for corn plants

6.4.1. Changes in fresh and dry weight, ear weight, and weight of 100-grains

6.4.2. Changes in plant height, cob length, cob width, number of cobs, and grain yield

6.4.3. Changes in biological yield for corn plants

6.5. Conclusions

Chapter 7. Influence of different fertilizers and ameliorants on chemical properties of calcareous soil and plant

biometric parameters under growing wheat plants in the field experiment conditions

7.1. Influence of different fertilizers and ameliorants on soil fertility and chemical properties of calcareous soil after three and six months of wheat seeds sowing

7.1.1. Changes in soil organic carbon content

7.1.2. Changes in available phosphorus and available potassium contents in soil

7.1.3. Changes in pH value and ionic composition of calcareous soil

7.1.4. Changes in available micronutrients after three and six months of wheat seeds

sowing

7.2. Influence of agro-ameliorants measures on wheat performance and yield

7.2.1. Changes in grain yield and water use efficiency

7.2.2. Changes in biometric indicators of wheat productivity

7.3. Influence of agro-ameliorants on growth parameters of wheat plants after three months of seeds sowing

7.4. Conclusion

Final conclusion

List of Figures

List of Tables

Acknowledgements

References

Рекомендованный список диссертаций по специальности «Другие cпециальности», 00.00.00 шифр ВАК

Введение диссертации (часть автореферата) на тему «Влияние органических и биологических мелиорантов на свойства засоленных почв Египта»

Introduction

The relevance of the research topic:

Globally, there is enough quality land to feed a population nearly double the current population. However, the African population is already experiencing an acute shortage of fertile agricultural land, and it is already on the brink of food shortages. By 2030, Africa's population will reach 1.6 billion, with food insecurity increasing based on existing land resources [1]. The world population is expected to increase by 9.7 billion in 2050 also requires increased food production [1-2].

The degradation of arable soils leads to a steady decline in crop productivity. The vast territories of Egypt are characterized by the presence of soils that are classified as the worst due to the lack of organic matter and phytonutrients. It has been degraded due to salinization and erosion, theses the leading causes of land degradation [3]. On the other hand, the abuse of forest resources and rangelands has caused severe disturbances in natural ecosystems leading to loss of biodiversity and top fertile soil [4]. Globally, about 15 % of the total arable lands have been degraded by salinization and erosion [1].

Arabic Republic of Egypt (ARE) spreads over 100 thousand hectares; however, only about 4 % of this area supports 110 million. The country is the three most prominent nation in Africa in terms of population. According to projections, the present population growth will be 135 million in 2030, and different commodities' requirements will be doubled. The annual growth rate of 2.6 % forces the country's natural resources [5]. Land is the primary non-renewable resource and faces the most significant threat of degradation. Land resources of the country are degrading at an alarming rate and causing environmental problems. Almost 90 % of the country's total area falls under arid and semiarid regions [6].

The soil degradation of arid and semi-arid regions reduces soil productivity. There are many stresses experienced by a land resource system and its soils [6-8]. However, there are frequently one or two major stresses that prevent land use for most agricultural purposes. The causes of stressed systems are numerous, including salinity, alkalization, destruction of soil structure, wind speed, water erosion, and organic matter loss. The regions of the world joining result in such degradation that the term "desertification" is popularly used. In the semi-arid and arid parts of the region, there are expanses of saline and alkaline soils. However, salinity induced by irrigation is also consuming large areas of land in the semi-arid regions. In addition to moisture availability, salinity is a major problem of the semi-arid tropics [8].

The Egyptian soils exhibit poor aggregate stability and are low in micro and macronutrients contents, also are deficient in the organic matter [1,9]. Organic matter is regarded as a critical parameter of soil-plant productivity, i.e., it makes its most generous contribution to soil-plant productivity. It has many essential roles in soils, both in their physical structure and as a medium for biological activity. It provides nutrients to the soil, improves its water holding capacity, and helps the soil maintain good tilth and better aeration for germinating seeds and soil-plant root development

14,10].

Chemical fertilizers have been used to increase agriculture crop yield for decades. However, current agricultural trends focus on searching for alternatives to chemical fertilizers due to huge procurement costs, environmental contamination, and even improper application leading to land degradation [11]. Also, the world demands food production with high quality and maintaining soil biodiversity most sustainably. Besides, food produced premium organic fetch prices in the global market.

Bio-fertilizer (microbial inoculants) and organic alterations are cheap nutrient sources that could alternative chemical fertilizers and improve crop production in low-input agriculture. Organic alterations are applied, soil organic carbon increases, and microbial activity stimulates nitrogen (N) and phosphorus (P) to the soil. On the other hand, soil microorganisms play a vital role in recycling and providing nutrients for plant growth. Their population and activities may reflect not only soil quality but also soil environmental conditions [12]. They are involved in interactions with plant roots, either symbiotically or as free-living, improving the absorption of plant nutrients, bolstering crop production, and improving soil healthy [13-15].

The emerging trend of soil degradation due to a decrease in organic matter content in the soil and intensification erosion processes are the main reasons for soil pollution. A brand new agro-biotechnological approach is needed for solving the problem of soil fertility and degradation recovery. However, soil improvement and reproduction of its fertility against the background of creating a deficit-free balance of organic matter is impossible without the widespread use of organic fertilizers. Volumes of the annual output of organic fertilizers in ARE (less than 18 million tons), quality, and traditional technology of their application cannot meet the increased agricultural needs and production in Egypt, comprising at least 34.2 million tons [1].

The organic waste available in rural and urban communities can be utilized by applying composting technology to produce organic fertilizers that reduce the contribution of chemical fertilizers to protect our environment [16].

The biological system in Egypt has not been widely spread and developed due to the lack of the necessary quantity and qualitative composition of organic fertilizers, which urgently requires a change

in their application. The most critical problems facing agricultural production are preventing further environmental pollution and restoring the functioning of the soil-plant system. The use of resource-saving and environmentally friendly technologies will allow, on the one hand, to minimize the use of mineral fertilizers and chemical plant protection products and, on the other hand, to obtain environmentally safe food suitable for children and dietary nutrition.

Biological agriculture relies on advanced biotechnologies, mainly dependent on organic wastes with nitrogen fixation bacteria and solutions of humic substances preparations in crop production. Therefore, the introduction of biological farming methods into crop production is another very relevant direction. This is achieved using advanced biotechnology based on the production and use of brewer's spent grain organic wastes and mixed with a new generation of bio-conversion by Az. brasilense and earthworms as bio-organic ameliorants for saline calcareous soils. It is mainly related to the research topic.

The degree of scientific development of the selected topic

Currently, the crop production of Egypt, despite the lack of sufficient manure. Organic wastes from the food industry mixed with biofertilizers are not commonly used as organic fertilizer. The organic and biological amendments technologies are a perfect alternative/supplement for increasing the soil organic matter content and plant growth in advanced countries. But in Egypt, this excellent alternative source has not been applied so far. However, a considerable amount of spent grain is wasted/burnt every day. If this material is piled at the farm level, composted, and added into the soil, the fertility status can be improved, and crop yield can significantly be increased. Therefore, several promising ameliorants systems in Egypt are poorly developed for soil reclamation. So, we used four directions to develop and produce materials from spent grain organic wastes and Az. brasilense to enhance soil-plant productivity and fertility in Egypt:

The first direction is using industry organic wastes as soil ameliorants. Such as spent grain is a byproduct of the beer industry is the pulp remaining after cooking and removing the barley wort, contains particles of kernels and grain shells, and is a relatively inexpensive product. Spent grain is acidic (pH 3.8-4.2), rich in organic acids and most plant nutrients. Additionally, contain on some plant growth promoters are free of heavy metals and other toxic residues [17,18]. Spent grain, ameliorant for calcareous soil properties in Egypt, began to be used in agriculture recently [19]. The use of spent grain enhances seeds germination and increases soil productivity. Organic additives from the beryl industry residues have been used, these wastes are cheap, and their accumulation causes some environmental problems [20,21]. Spent grain has a negative ecological quality value due to its industrial waste

collection. It has recently been used as environmental-friendly organic fertilizers in the soil and the composting of agricultural biomass to improve the soil's physical and chemical properties [10,19-22]. Increase the number of phytonutrients in the root layer, create a good looseness of the arable layer for plants, and promote soil microorganisms and fungi beneficial for plants [23-25].

The second direction in our research work in Egypt is vermicompost production from spent grain by earthworms. At the same time, vermicomposting in Egypt is entirely undeveloped. The vermicomposting process composted organic materials through earthworms, associated prokaryotes, fungi, and microscopic invertebrates [26-29]. The vermicompost materials are used as organic ameliorants, dark brown or black, naturally granular, and deodorized organo-mineral mass. Structural vermicompost elements are coprolites, consist of a well-humified suitable type of humus. In addition, vermicompost is characterized by high biological activity [30,31]. [32] found that the action of earthworms contributes to the development of nitrogen-fixing microorganisms. The vermicompost from organic wastes can be a perfect organic amendment in saline agriculture and the reclamation of salt-affected soils [33-35].

The third direction is humic substances solutions isolated from vermicompost based on spent grain. The use of humic substances solutions on crop production, especially enriched with compounds of essential trace elements, is the most effective and economically justified method of influencing the production process of crops [36,37].

The last direction is the mixing of the HS with Az. brasilense nitrogen-fixation bacteria. The injection of soil and crops with bacterial preparations brought more attention from scientists and farmers. Studies of nitrogen-fixation bacteria have been recently attracted, particularly Az. brasilense and Az. lipoferum, belonging to the Azotobacteriaceae family. These bacteria have a beneficial effect on different plants in different arid regions. The genus Spirillum was first described by M.V. Beyerink in 1925 and decades later was reclassified as Az. brasilense due to the ability of its representatives to fix atmospheric nitrogen (N2), discovered and described by the group of Dr. Johanna Debereiner from Brazil in the 70s of the 20th century [38,39].

Application of bio-organic fertilizers such as Az. brasilense is one of the plant growth-promoting rhizobacteria (PGPR), with spent grain that can reduce the need for mineral fertilizers and improve soil enzyme activities, nitrogen, and phosphorus fixation in calcareous soil [7,12,37,40-44]. In this regard, the study of the influence of Az. brasilense on the plant production process and the introduction of this bacterial culture into agricultural production in the arid climate of Egypt is very timely.

The research objects are spent grain, compost, and vermicompost, Az. brasilense, humic substances extracted from vermicompost and enriched with essential trace elements, saline-sodic and calcareous soils.

The subject of the study is to study the effect of spent grain, compost, vermicompost isolated from spent grain, Az. brasilens, and solution of humic substances containing essential trace elements on the corn and wheat crop yields, enhance of chemical and biological properties of saline-sodic and calcareous soils, determination of nitrate, ammonium, and chloride ions levels in soil leachates.

The aims of this work:

To evaluate the effectiveness of using compost and vermicompost obtained from spent grain, deferent solutions of humic substances, and Az. brasilense on corn and wheat crop yields and properties of saline-sodic and calcareous soils. In accordance with the goal, the following tasks were formulated:

1. To identify the influence of vermicompost on the agrochemical properties of saline-sodic and calcareous soils;

2. To characterize the vermicompost as a soil organic ameliorant intended for the reclamation of saline-sodic and calcareous soils;

3. To evaluate the effect of humic substances solutions extracted from vermicompost on the growth parameters and productivity of wheat plants;

4. To identify the influence of Az. brasilense on plant tolerance of toxic ions to enhance germination and plant growth of corn in saline-sodic soil;

5. To identify the influence of Az. brasilense on nitrogen fixation and soil organic compounds in saline-sodic and calcareous soils;

6. To characterize the effect of organic and biological ameliorants on soil enzymes activities under laboratory and greenhouse experiments in saline-sodic and calcareous soils;

7. To identify the effect of spent grain and humic substances on the uptake of macronutrients and micronutrients contents in saline-sodic and calcareous soils;

8. To determine the effect of spent grain with Az. brasilense on reducing the negative effect of the salinity and toxic ions on crops;

9. To determine the effect of spent grain, humic substances, and vermicompost on the seeds germination rate of cultivated plants.

The scientific novelty of the results:

1. For the first time in arid regions of Egypt, a solution of humic substances extracted from vermicompost based on spent grain was used to enhance the productivity of wheat plants;

2. Traditional compost and vermicompost obtained based on spent grain were used as effective ameliorants for saline and calcareous soils.

3. A solution of humic substances extracted from vermicompost based on spent grain, mixed with essential trace elements and Az. brasilense is a new competitive solution for regulating plant productivity in arid regions;

4. In arid regions of Egypt, the Az. brasilense bacteria was used to reduce the negative consequences of salinity stress and toxic ions on plant growth and crop productivity in saline-sodic and calcareous soils;

5. For the first time, based on laboratory, greenhouse, and field experiments, it was found that traditional compost and vermicompost decreased toxic ions on plants, increases the fertility, and biological activity of arid soils;

6. For the first time, study the negative effects of organic (traditional compost, spent grain) and biological (Az. brasilense) ameliorants on soil leachates characterization;

7. Finally, we found the application of traditional compost, spent grain, and Az. brasilense enhance activities of soil enzymes in saline-sodic and calcareous soils of in arid regions.

The statements to be defended:

1. Traditional compost and vermicompost based on spent grain are effective ameliorants of saline and calcareous soils;

2. A novel liquid solution of humic substances extracted from vermicompost based on spent grain and enriched with essential trace elements used as soil and plant organic ameliorants;

3. Evaluation of the negative effect of mineral fertilizers, organic ameliorants, and Az. brasilense on ammonium, nitrate, and chloride ions in soil leachates for three months of seeds sowing;

4. Az. brasilense bacteria reduced the negative consequences of salinity stress and toxic ions on crop growth and productivity in saline-sodic and calcareous soils;

5. Humic substances extracted from vermicompost based on spent grain, mixed with essential trace elements, and Az. brasilense inoculation is a new ameliorant for saline-sodic and calcareous soil in arid regions.

The reliability and approbation of the results

The experiments were carried out in laboratory, greenhouse, and field conditions. Each variant had at least four replicates. The methods of variation statistics confirmed the degree of reliability of the obtained experiments. The conclusions were reliable at the accepted level of confidence P = 0.95%.

The results of the work were reported at the following scientific conferences:

1. Hafez M., Rashad M., Popov A.I. Effect of Bacteria Inoculation with Organic Wastes Incubation on the Chemical and Biological Properties of Saline Soil in Egypt // Conference: International Scientific Conference XXII Dokuchaev's youth reading.

http://www.dokuchaevskie.ru/wp content/uploads/2018/09/DMH_2019_cut.pdf#page volume: 22.

2. Hafez, M., Rashad, M., Popov A.I. Novel Environmental Additives to Decrease Nitrate Level in Agriculture Wastewater and Enhancement Nutrient Status under Greenhouse Plant Growth in Calcareous Soil // Материалы Междунар. молодежного науч. форума «ЛОМОНОСОВ-2020» [Электронный ресурс] / Отв.ред. И.А. Алешковский, А.В. Андриянов, Е.А. Антипов. М.: МАКС Пресс, 2020.

3. Hafez, M., Mohamed, A.E., Rashad M. Popov, A.I. Efficiency of Application of Bacterial and Humic Preparations in the Arid Regions of Egypt // Biologically active preparations for plant growing: scientific justification - recommendations - practical results [Electronic resource]: materials of the XVI Intern. Scientific-practical conf., Minsk, October 22. 2020/ Belarus State University; editorial board: D. V. Maslak. ISBN 978-985-566-949-5. Pp. 163-168. https://elib.bsu.by/handle/123456789/250040

4. Цивка, К.И., Попов, А.И., Хафез, М., Рашад, M., Ковалева, Н.М. Основные Пути Оптимизации Продукционного Процесса Культивируемых Растений на Землях Подверженных Деградации // Международной Научно-Практической Конференции. Москва. ноябрь 2020-март 2021 УДК 631.4:631.41:631.175:632.9:004.13 (471.23). pp. 96100. DOI: 10.29003/m1684.978-5-317-06490-7/96-100.

5. Hafez, M., Rashad, M., Popov, I. A. Effect of Soil Types and Different Environmental Additives on CO2-Emission and Microbial Biomass during Long-Term Soil Incubation in Egypt // Международной конференции по естественным и гуманитарным наукам - «Science SPbU - 2020», состоявшейся 25.12.2020.

6. Hafez, M., Popov, A.I., Rashad, M., The response of saline-sodic soils to reclamation using biological and organic amendments under arid regions of Egypt // E3S Web of Conferences Volume 247, 01047, April 2021.

https://doi.org/10.1051/e3sconf/202124701047

7. Hafez, M., Rashad, M. Popov, A.I. Humic Substances Applications and Azospirillum Inoculation to Enhance Wheat Plant Production in Arid Region of Egypt // Материалы Международного молодежного научного форума «Л0М0Н0С0В-2021» / Отв. ред. И.А. Алешковский, А.В. Андриянов, Е.А. Антипов, Е.И. Зимакова. [Электронный ресурс] - М.: МАКС Пресс, 2021. -1электрон. опт. диск (DVD-ROM); 12 см. - 2000 экз. ISBN 978-5-317-06593-5. https://lomonosov-msu.ru/archive/Lomonosov 2021/data/section 23 22149.htm

8. Хафез, М., Рашад, M., Попов, А. И. Эффективность Использования Бактериального И Гуминовых Препаратов // В Условиях Засушливых Территорий Египта. 367. Paper presented at international conference on sciences and humanities 'Science SPbU - 2020', Санкт-Петербург, России. https://files.researchpark.ru/index.php/s/qkLPX5CxxE6N4y4

The personal contribution of the author

The author conducted all the experimental work and statistical analysis and presented these results for scientific analysis; together with the scientific supervisor and scientific consultant, they prepared and published articles.

Author's publications on the dissertation topic

The main results on the thesis topic are presented in 9 publications; 1 more was accepted for publication, and 4 are under review. All journals that have been published and are being prepared are peer-reviewed journals, indexed by the Web of Science and Scopus.

The research results were published in peer-reviewed journals:

1. Hafez M., Popov A.I., Rashad M. Influence of Agro-industrial Wastes and Azospirillum on Nutrients Status and Grain Yield under Corn Plant Growth in Arid Regions // Biosci. Res. 2019. Vol. 16, № 2. P. 2119-2130.

https://www.isisn.org/BR16(2)2019/2119-2130-16(2)2019BR19-272.pdf

2. Hafez M., Popov A.I., Rashad M. A Novel Environmental Additives to Decrease Nitrate Level in Agriculture Wastewater and Enhancement Nutrient Status under Greenhouse Plant Growth in Calcareous Soil // Plant Arch. 2020. Vol. 20, № Jan. P. 3165-3172. https://doi.org/doi.org/10.5194/soil-2019-69.

3. Hafez M., Rashad M., Popov A.I. The Biological Correction of Agro- Photosynthesis of Soil Plant Productivity // Plant Nutrition, 2020. Vol. 43, 17, P. 2929-2980.

https://doi.org/10.1080/01904167.2020.1799008

4. Hafez M., Popov A.I., Rashad M. Evaluation of the Effects of New Environmental Additives Compared to Mineral Fertilizers on the Leaching Characteristics of Some Anions and Cations under Greenhouse Plant Growth of Saline-Sodic Soils // Open Agric. J. 2020. Vol. 14, № 1. P. 246-256. https://doi.org/10.2174/1874331502014010246.

5. Hafez M., Popov A.I., Rashad M. Integrated use of bio-organic fertilizers for enhancing soil fertility-plant nutrition, germination status and initial growth of corn (Zea Mays L.) // Environ. Technol. Innov. Elsevier B.V., 2021. Vol. 21. P. 101329. https://doi.org/10.1016/j.eti.2020.101329.

6. Hafez, M., Mohamed E.A., Rashad M., Popov A.I. The efficiency of application of bacterial and humic preparations to enhance of wheat (Triticum aestivum L.) plant productivity in the arid regions of Egypt. Biotechnology Reports, 2021, 29, e00584. https://doi.org/10.1016/j.btre.2020.e00584

7. Hafez, M., Popov A.I., Rashad M. The response of saline-sodic soils to reclamation using biological and organic amendments under arid regions of Egypt // E3S Web of Conferences 2021. Vol. 247, 01047. https://doi.org/10.1051/e3sconf202124701047

8. Hafez, M., Sally F., Abo El-Ezz., Popov A.I., Rashad M. Organic Amendments Combined with Plant Growth-Promoting Rhizobacteria (Azospirillum brasilense) as an Eco-Friendly By-Product to Remediate and Enhance the Fertility of Saline Sodic-Soils in Egypt // Communications in Soil Science and Plant Analysis. 2021. Vol 52, P. 1416-1433.

https://doi.org/10.1080/00103624.2021.1885687

9. Rashad M., Hafez, M., Popov A.I. Humic substances composition and properties as an environmentally sustainable system: A review and way forward to soil conservation// Journal of Plant Nutrition. 2021. DOI: 10.1080/01904167.2021.2005801

Author's publications under review:

1. Hafez, M., Rashad, M., Popov, A.I. Enhancing calcareous and saline soils fertility by. increasing organic matter decomposition and enzyme activities: An incubation study// Communications in Soil Science and Plant Analysis, 2021. Under Review.

2. Hafez, M., Rashad, M., Popov, A.I. Influence of environmental-friendly bio-organic ameliorants on abiotic stress to sustainable agriculture in arid regions: A long term greenhouse study in northwestern Egypt // J. King Saud University-Science., 2021. Under Review.

3. Towards sustainable agriculture using extracts of natural materials for transferring organic wastes to environmental-friendly ameliorants in Egypt// International Journal of Environmental Science and Technology, 2021. Under Review.

4. Hafez, M., Rashad, M., Popov, A.I. The Biological Correction Using Humic Substances, Vermicompost, and Azospirillum as an Optimum Way of Optimizing Plant Production and Enhance Soil Micronutrients in Arid Regions // Open Agriculture journal, 2021. Under Review.

Author publications as activities (out of the dissertation topic):

1. Abdelraouf, R.E., Abdou, S.M., Mahmoud, M.M., Hafez, M., Popov, A.I., Hamed, L.M. Influence of N-Fertigation Stress and Agro-organic Wastes (Biochar) to Improve Yield and Water Productivity of Sweet Pepper Under Sandy Soils Conditions // Plant Arch. 2020. Vol. 20 (Jan), pp. 3165-3172.

http://www.plantarchives.org/special%20issue%2020-1/214__3208-3217_.pdf

2. Rashad, M., Kenawy, El-R., Hosny, A., Hafez M., Elbana, M. An environmental friendly superabsorbent composite based on rice husk as soil amendment to improve plant growth and water productivity under deficit irrigation conditions, Journal of Plant Nutrition, 2021. 44:7, 1010-1022, DOI: 10.1080/01904167.2020.1849293

The scope and structure of the thesis

The thesis consists of an introduction, three chapters, a conclusion, a list of figures, and tables, references, and an appendix. The full volume of the thesis is 182 pages with 91 figures and 40 tables, and 5 Images. The list of references contains 223 items.

Похожие диссертационные работы по специальности «Другие cпециальности», 00.00.00 шифр ВАК

Заключение диссертации по теме «Другие cпециальности», Котат Мохамед Хафез Абдель Фаттах Мохамед

7.4. Заключение.

Таким образом, внесение пивной дробины в известковую почву и особенно использование вермикомпоста, приготовленного из той же пивной дробины, можно считать удачным агротехническим приемом, основанном на применении этих мелиорантов, повышающих содержание углерода органических соединений и доступных растениям форм фосфора и калия в агропочве.

В полевом опыте из всех мелиорантов только внесенные в почву пивная дробина и вермикомпост в течение шести месяцев поддерживали относительно низкие значения рН.

В полевом эксперименте внесение пивной дробины в почву и инокуляция её культурой Л2. Ьгаяйвпяв способствовали значимому (Р < 0,05) увеличению в почвенном растворе ионов Са2+ и Mg2+, а внесение в почву вермикомпоста, приготовленного из пивной дробины, и раствора ГВ существенно (Р < 0,05) снижали содержание в почвенном растворе ионов натрия, хлорид-ионов и бикарбонат-ионов.

Внесение в почву вермикомпоста и раствора ГВ, модифицированного микроэлементами, значимо (Р < 0,05) увеличивали содержание доступных растениям микроэлементов в известковой почве, по сравнению с вариантами, в которых вносилась пивная дробина и проводилась инокуляция культурой Л2. Ътазйетв. Причем содержание доступных растениям микроэлементов в известковой почве в вариантах с внесением пивной дробины в почву и инокуляция её бактериальным препаратом существенно (Р < 0,05) превышало относительно контроля и варианта с внесением №К.

Органические (пивная дробина, вермикомпост, растворы ГВ) и биологические (культура Лг. Ътasilense) мелиоранты эффективно увеличивали и урожай пшеницы и, естественно, эффективность водопользования этими растениями, по сравнению с традиционно используемыми химическими удобрениями.

Внесение в известковую почву ГВ, пивной дробины и вермикомпоста значимо (Р < 0,05) увеличивало общее содержание ЫРК в пшенице спустя три месяца после посева, по сравнению с другими вариантами, а также с контролем и вариантом с внесением №К.

Внесение в известковую почву вермикомпоста, ГВ, обогащенных микроэлементами, пивной дробины и инокуляция почвы культурой Лг. Ътasilense значимо (Р < 0,05) увеличивали высоту растений пшеницы спустя три месяца после посева, по сравнению с другими вариантами, а также с контролем.

Внесение в известковую почву вермикомпоста, пивной дробины и ГВ, обогащенных микроэлементами, значимо (Р < 0,05) повышали и свежую, и сухую фитомассу пшеницы, по сравнению с остальными вариантами. Использование гуминовых препаратов было эффективнее увеличивали сухую фитомассу только по сравнению с химическими удобрениями и контролем. Причем инокуляция почвы культурой Лг. Ътasilense была действенной только относительно контроля.

На основе расчёта обобщенных функций желательности Харингтона было получено, что влияние химических удобрений на биометрические показатели продуктивности пшеницы и агрономические характеристики растений пшеницы было хорошее, в остальных вариантах — очень хорошее, поэтому мы рекомендуем в растениеводстве использовать органические и биологические мелиоранты

Иными словами, органические и биологические мелиоранты были эффективнее, чем традиционные химические удобрения во всех случаях.

Обобщённое заключение

Таким образом, в ходе проведения лабораторного, вегетационного и полевого опытов было выявлено следующее.

В полевом опыте внесение в известковую почву вермикомпоста, приготовленного из пивной дробины, повышало в агропочве содержание углерода органических соединений и доступных растениям форм фосфора и калия, а также в течение шести месяцев поддерживало относительно низкие значения pH.

Также в условиях вегетационного опыта, было выявлено, что внесение пивной дробины в известковую почву повышало содержание водорастворимых ионов калия.

Внесение в почву пивной дробины, как мелиоранта, снижало содержание в почвенном растворе ионов натрия, хлорид-ионов и бикарбонат-ионов.

Использование гуминовых препаратов эффективно увеличивало прирост и свежей, и сухой фитомассы пшеницы по сравнению с химическими удобрениями и контролем. При этом внесение в известковую почву гуминовых препаратов, обогащенных микроэлементами, значимо (P < 0,05) повышали и свежую, и сухую фитомассу пшеницы по сравнению с другими вариантами, кроме варианта, в котором вносился вермикомпост.

Органические (пивная дробина, вермикомпост, растворы гуминовых веществ) и биологические (культура Az. brasilense) мелиоранты эффективно увеличивали и урожай пшеницы и, естественно, эффективность водопользования этими растениями, по сравнению с традиционно используемыми химическими удобрениями

На основе расчёта обобщенных функций желательности Харингтона было получено, что влияние химических удобрений на биометрические показатели продуктивности пшеницы и агрономические характеристики растений пшеницы было хорошее, в остальных вариантах, в которых использовались биологические и органические мелиоранты, — очень хорошее.

В условиях лабораторного эксперимента после 21 недели инкубации засоленной карбонатно-натриевой почвы в вариантах с внесением пивной дробины совместно с инокуляцией её культурой Az. brasilense наблюдалось увеличение толерантности проростков сельскохозяйственных культур к ионам натрия.

В условиях вегетационного опыта инокуляция засоленной карбонатно-натриевой почвы Az. brasilense по сравнению с контролем способствовала обогащению почв азотом и углеродом органических соединений.

Инокуляция засоленной карбонатно-натриевой почвы в лабораторном пыте культурой Az. brasilense существенно активизировала действие дегидрогеназы и уреазы.

В условиях вегетационного опыта внесение пивной дробины в исследуемую известковую почву и инокуляция её Az. brasilense по сравнению с контролем способствовали увеличению активности дегидрогеназы и уреазы,

В ходе лабораторного эксперимента с засоленной карбонатно-натриевой почвой было выявлено, что применение пивной дробины с инокуляцией после 10 и 21 недели инкубации увеличивало содержание в почве общего азота, углерода органических соединений и доступных растениям форм фосфора и калия, а также подвижных соединений эссенциальных микроэлементов.

В условиях вегетационного опыта инкубирование известковой почвы с пивной дробиной (отдельно или в сочетании с Az. brasilense) приводило к заметному увеличению в ней содержания общего азота и углерода органических соединений, подвижных форм фосфора, ссужало отношение C/N и расширяло отношение N:P, увеличивало растворимость микроэлементов (Fe2+, Zn2+, Mn2+, Cu2+ и борат-иона).

В условия полевого опыта внесение в почву вермикомпоста и раствора гуминовых веществ, модифицированного микроэлементами, значимо (P < 0,05) увеличивали содержание доступных растениям микроэлементов в известковой почве, по сравнению с вариантами, в которых вносилась пивная дробина и проводилась инокуляция культурой Az. brasilense. Причем содержание доступных растениям микроэлементов в известковой почве в вариантах с внесением пивной дробины в почву и инокуляция её бактериальным препаратом существенно (P < 0,05) превышало относительно контроля и варианта с внесением NPK.

В ходе лабораторного эксперимента с засоленной карбонатно-натриевой почвой было выявлено, что совместное внесение пивной дробины в почву и инокуляция её культурой Az. brasilense снижали негативное действие водорастворимых солей на растения.

В условиях вегетационного опыта органические (пивная дробина и компост) и биологические (культура Az. brasilense) мелиоранты будучи внесенными в засоленную карбонатно-натриевую почву, увеличивали величины индекса всхожести, конечного процента всхожести и скорости прорастания семян кукурузы.

Органические и биологические мелиоранты были эффективнее, чем традиционные химические удобрения во всех случаях.

Список литературы диссертационного исследования кандидат наук Котат Мохамед Хафез Абдель Фаттах Мохамед, 2022 год

Список литературы

1. Negm A.M., Abu-hashim M. Sustainability of Agricultural Environment in Egypt: Part II // The Handbook of Environmental Chemistry / ed. Negm A.M., Abu-hashim M. Cham: Springer International Publishing, 2019. Vol. 77. 317-347 p.

2. Arora S., Singh A.K., Singh Y.P. Bioremediation of Salt Affected Soils: An Indian Perspective // Bioremediation of Salt Affected Soils: An Indian Perspective / ed. Arora S., Singh A.K., Singh Y.P. Cham: Springer International Publishing, 2017. 1-313 p.

3. Zhang W. wen et al. Effects of salinity on the soil microbial community and soil fertility // J. Integr. Agric. CAAS. Publishing services by Elsevier B.V, 2019. Vol. 18, № 6. P. 1360-1368.

4. Dal Cortivo C. et al. Effects of Seed-Applied Biofertilizers on Rhizosphere Biodiversity and Growth of Common Wheat (Triticum aestivum L.) in the Field // Front. Plant Sci. 2020. Vol. 11, № February. P. 1-14.

5. Ministry of Agriculture and Land Reclamation Center D.R. Egyptian National Action Program To Combat Desertification // Arab Repub. Egypt. 2005.

6. Shaddad S.M., Buttafuoco G., Castrignano A. Assessment and Mapping of Soil Salinization Risk in an Egyptian Field Using a Probabilistic Approach // Agronomy. 2020. Vol. 10, № 1. P. 85.

7. Hafez M., Popov A.I., Rashad M. A Novel Environmental Additives to Decrease Nitrate Level in Agriculture Wastewater and Enhancement Nutrient Status under Greenhouse Plant Growth in Calcareous Soil // Plant Arch. 2020. Vol. 20, № Jan. P. 3165-3172.

8. Mahmoodabadi M. et al. Reclamation of calcareous saline sodic soil with different amendments (I): Redistribution of soluble cations within the soil profile // Agric. Water Manag. Elsevier B.V., 2013. Vol. 120, № 1. P. 30-38.

9. McCauley A., Jones C., Olson-Rutz K. Nutrient Management: Soil pH and Organic Matter // Nutr. Manag. 2017. № 8. P. 1-16.

10. Rashad M. et al. Influence of Environment-Friendly Organic Wastes on the Properties of Sandy Soil under Growing Zea mays L. in Arid Regions. // World Academy of Science, Engineering and Technology. 2017. Vol. 10, № 9. 579-585 p.

11. ALmamori H A. and Abdul-ratha H. Effect of Addition of Vermicompost, Bio and Mineral Fertilizer on the Availability of Some Nutrients in Soil and Potato Yield // Iraqi J. Agric. Sci. 2020. Vol. 51. P. 644-656.

12. Singh S.R. et al. Influence of bio-inoculants and inorganic fertilizers on yield, nutrient balance, microbial dynamics and quality of strawberry (Fragariax ananassa) under rainfed conditions of Kashmir valley // Indian J. Agric. Sci. 2010. Vol. 80, № 4. P. 275-281.

13. Bashan Y., Holguin G., De-Bashan L.E. Azospirillum-plant relationships: Physiological, molecular, agricultural, and environmental advances (1997-2003) // Canadian Journal of Microbiology. 2004. Vol. 50, № 8. P. 521-577.

14. Bashan Y. et al Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998-2013) // Plant Soil. 2014. Vol. 378, № 1-2. P. 133.

15. Galindo F.S. et al. Influence of Azospirillum brasilense associated with silicon and nitrogen fertilization on macronutrient contents in corn // Open Agric. 2020. Vol. 5, № 1. P. 126-137.

16. Gune§ A. et al. Nutritional content analysis of plant growth-promoting rhizobacteria species // Eur. J. Soil Biol. 2014. Vol. 60. P. 88-97.

17. Aboukila E. Use of Spent Grains, Cheese Whey, Gypsum, And Compost for Reclamation of Sodic Soils and Improvement of Corn Seed Germination // Alexandria Sci. Exch. J. 2019. Vol. 40, № APRIL-JUNE. P. 314-328.

18. Bougrier C. et al. Use of trace elements addition for anaerobic digestion of brewer ' s spent grains // J. Environ. Manage. Elsevier, 2018. Vol. 223, № March. P. 101-107.

19. Aboukila E.F. et al. Reclamation of calcareous soil and improvement of squash growth using brewers' spent grain and compost // J. Saudi Soc. Agric. Sci. 2018. Vol. 17, № 4. P. 390-397.

20. Hafez M., Popov A.I., Rashad M. Influence of Agro-industrial Wastes and Azospirillum on Nutrients Status and Grain Yield under Corn Plant Growth in Arid Regions // Biosci. Res. 2019. Vol. 16, № 2. P. 2119-2130.

21. Mussatto S.I. Brewer's spent grain: a valuable feedstock for industrial applications // J. Sci. Food Agric. 2014. Vol. 94, № 7. P. 1264-1275.

22. Amenkhienan B.E., Isitekhale H.H. Effect of brewery spent grain on the growth and yield of sorghum (Sorghum bicolor (l.) Moench) // Sustain. Agri, Food Environ. Res. 2020. Vol. 8, № 1. P. 44-54.

23. Rudenko E.Yu., Paderova K.M., Antropova E.D. M.G.S. Влияние пивной дробины на биологическую активность черноземной почвы // Достижения науки и техники АПК. 2010. № 10. P. 10-11.

24. Crosier J.D. Agricultural Utilization of Brewers' Spent Grains & Sawdust: Effects on Fertility of Soils and Productivity of Crops // A thesis Present. to Fac. Coll. Arts Sci. Ohio Univ. 2014. № c. P. 1-43.

25. Jackowski M. et al. Brewer's Spent Grains—Valuable Beer Industry By-Product // Biomolecules. 2020. Vol. 10, № 12. P. 1669.

26. Sinha, Rajiv, Herat, Sunil, Valani, Dalsukhbhai, Chauhan K. Earthworms Vermicompost: A

Powerful Crop Nutrient over the Conventional Compost & Protective Soil Conditioner against the Destructive Chemical Fertilizers for Food Safety and Security // Am-Euras. J. Agric. Environ. Sci. 2009. Vol. 5, № S. P. 1-55.

27. Aynehband A., Gorooei A., Moezzi A.A. Vermicompost: An Eco-Friendly Technology for Crop Residue Management in Organic Agriculture // Energy Procedia. Elsevier B.V., 2017. Vol. 141. P. 667-671.

28. Dominguez J., Edwards C.A. Vermicomposting organic wastes: A review // Soil Zool. Sustain. Dev. 21st century. 2004. P. 369-395.

29. Arancon N.Q. et al. Effects of vermicomposts produced from cattle manure, food waste and paper waste on the growth and yield of peppers in the field // Pedobiologia (Jena). 2005. Vol. 49, № 4. P. 297-306.

30. Sinha R.K. et al. The wonders of earthworms &amp; its vermicompost in farm production: Charles Darwin's 'friends of farmers', with potential to replace destructive chemical fertilizers // Agric. Sci. 2010. Vol. 01, № 02. P. 76-94.

31. Hafez M., Rashad M., Popov A.I. The biological correction of agro-photosynthesis of soil plant productivity // J. Plant Nutr. Taylor & Francis, 2020. Vol. 0, № 0. P. 1-52.

32. Simek M., Pizl V., Chalupsky J. The effect of some terrestrial oligochaeta on nitrogenase activity in the soil // Plant Soil. 1991. Vol. 137, № 1. P. 161-165.

33. Yucel N.C., Chitilova M. Improving Wheat Performance by Fish Flour and Vermicompost Priming against Salt Stress // Int. J. Agric. Biol. 2017. Vol. 19, № 6. P. 1483-1488.

34. Ding Z. et al. A vermicompost and deep tillage system to improve saline-sodic soil quality and wheat productivity // J. Environ. Manage. 2021. Vol. 277, № May 2020. P. 111388.

35. Liu M. et al. Maize (Zea mays) growth and nutrient uptake following integrated improvement of vermicompost and humic acid fertilizer on coastal saline soil // Appl. Soil Ecol. Elsevier, 2019. Vol. 142, № March 2018. P. 147-154.

36. Попов А.И. В.И.А. концептуальная модель действия органо-минерального удобрения на продукционный процесс растений // Биологически активные препараты для растениеводства Попов. Минск, Беларусь, 2020. P. 128-130.

37. Hafez M. et al. The efficiency of application of bacterial and humic preparations to enhance of wheat (Triticum aestivum L.) plant productivity in the arid regions of Egypt // Biotechnol. Reports. Elsevier B.V., 2021. Vol. 29. P. e00584.

38. Steenhoudt O. Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects // FEMS Microbiol. Rev. 2000. Vol. 24, № 4. P. 487-506.

39. Fukami J., Cerezini P., Hungria M. Azospirillum: benefits that go far beyond biological nitrogen fixation // AMB Express. Springer Berlin Heidelberg, 2018. Vol. 8, № 1. P. 73.

40. Akhtar M.F. u. Z. et al. Evaluation of biofertilizer in combination with organic amendments and rock phosphate enriched compost for improving productivity of chickpea and maize // Soil Environ. 2017. Vol. 36, № 1. P. 59-69.

41. Hafez M., Popov A.I., Rashad M. Evaluation of the Effects of New Environmental Additives Compared to Mineral Fertilizers on the Leaching Characteristics of Some Anions and Cations under Greenhouse Plant Growth of Saline-Sodic Soils // Open Agric. J. 2020. Vol. 14, № 1. P. 246-256.

42. Hafez M., Popov A.I., Rashad M. Integrated use of bio-organic fertilizers for enhancing soil fertility-plant nutrition, germination status and initial growth of corn (Zea Mays L.) // Environ. Technol. Innov. Elsevier B.V., 2021. Vol. 21. P. 101329.

43. Singh J.S., Pandey V.C., Singh D.P. Efficient soil microorganisms: A new dimension for sustainable agriculture and environmental development // Agric. Ecosyst. Environ. Elsevier B.V., 2011. Vol. 140, № 3-4. P. 339-353.

44. Hafez M. et al. Organic Amendments Combined with Plant Growth-Promoting Rhizobacteria ( Azospirillum Brasilense ) as an Eco-Friendly By-Product to Remediate and Enhance the Fertility of Saline Sodic-Soils in Egypt // Commun. Soil Sci. Plant Anal. 2021. Vol. 52, № 12. P. 14161433.

45. WorldBankGroup. Egypt wheather [Electronic resource] // Climate Change Knowledge Portal for Egypt. 2020. URL: https://climateknowledgeportal.worldbank.org/country/egypt/climate-data-historical.

46. Ahmad P., Azooz M.M., Prasad M.N.V. Salt Stress in Plants // Salt Stress in Plants: Signalling, Omics and Adaptations / ed. Ahmad P., Azooz M.M., Prasad M.N. V. New York, NY: Springer New York, 2013. Vol. 14. v-vi p.

47. Rath K.M., Rousk J. Salt effects on the soil microbial decomposer community and their role in organic carbon cycling: A review // Soil Biol. Biochem. Elsevier Ltd, 2015. Vol. 81. P. 108-123.

48. Rashad M., Dultz S., Guggenberger G. Dissolved organic matter release and retention in an alkaline soil from the Nile River Delta in relation to surface charge and electrolyte type // Geoderma. Elsevier B.V., 2010. Vol. 158, № 3-4. P. 385-391.

49. Qadir M. et al. Productivity enhancement of salt-affected environments through crop diversification // L. Degrad. Dev. 2008. Vol. 19, № 4. P. 429-453.

50. Machado R.M.A., Serralheiro R.P. Soil salinity: Effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization // Horticulturae. MDPI Multidisciplinary Digital

51

52.

53.

54.

55.

56.

57.

58.

59.

60.

61

62

63

64

Publishing Institute, 2017. Vol. 3, № 2.

Richards L.A. Diagnosis and improvement of saline and alkali soils. Soil Sc, 1954. 78-154 p. Pistocchi C. et al. Exchangeable Sodium Percentage decrease in saline sodic soil after Basic Oxygen Furnace Slag application in a lysimeter trial // J. Environ. Manage. Elsevier Ltd, 2017. Vol. 203. P. 896-906.

Shi S. et al. Response of microbial communities and enzyme activities to amendments in saline-alkaline soils // Appl. Soil Ecol. Elsevier, 2019. Vol. 135, № September 2018. P. 16-24. Diacono M., Montemurro F. Effectiveness of Organic Wastes as Fertilizers and Amendments in Salt-Affected Soils // Agriculture. 2015. Vol. 5, № 2. P. 221-230.

Hu Y., Schmidhalter U. Drought and salinity: A comparison of their effects on mineral nutrition of plants // J. Plant Nutr. Soil Sci. 2005. Vol. 168, № 4. P. 541-549.

Li H., Zhao Q., Huang H. Current states and challenges of salt-affected soil remediation by cyanobacteria // Sci. Total Environ. Elsevier B.V., 2019. Vol. 669. P. 258-272. Zhao Y. et al. Extensive reclamation of saline-sodic soils with flue gas desulfurization gypsum on the Songnen Plain, Northeast China // Geoderma. Elsevier, 2018. Vol. 321, № 1. P. 52-60. Erel R. et al. Long-term irrigation with reclaimed wastewater: Implications on nutrient management, soil chemistry and olive (Olea europaea L.) performance // Agric. Water Manag. Elsevier, 2019. Vol. 213, № July 2018. P. 324-335.

Chaganti V.N., Crohn D.M., Simûnek J. Leaching and reclamation of a biochar and compost amended saline-sodic soil with moderate SAR reclaimed water // Agric. Water Manag. Elsevier B.V., 2015. Vol. 158. P. 255-265.

Tiwari S. et al. Salt-tolerant rhizobacteria-mediated induced tolerance in wheat (Triticum aestivum) and chemical diversity in rhizosphere enhance plant growth // Biol. Fertil. Soils. 2011. Vol. 47, № 8. P. 907-916.

Rojas-Tapias D. et al. Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays) // Appl. Soil Ecol. Elsevier B.V., 2012. Vol. 61. P. 264-272.

Hamdia M.A.E., Shaddad M.A.K., Doaa M.M. Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions. 2004. № Boyer 1982. P. 165-174.

Normandin V., Kotuby- Amacher J., Miller R.O. Modification of the ammonium acetate extractant for the determination of exchangeable cations in calcareous soils // Commun. Soil Sci. Plant Anal. 1998. Vol. 29, № 11-14. P. 1785-1791.

FAO-UNESCO. Soil classification |FAO SOILS PORTAL| Food and Agriculture Organization

of the United Nations [Electronic resource] // Website. 2018. URL: http://www.fao.org/soils-portal/data-hub/soil-classification/en/°/o0Ahttp://www.fao.org/soils-portal/en/.

65. Abo-Sedera E.-H.O. a. and S. a. Conditioning Effect of Composts and Acrylamide Hydrogels on a Sandy Calcareous Soil . II-Physico-bio-chemical Properties of the Soil // Int. J. Agric. Biol. 2006. Vol. 12. P. 23-56.

66. Hopkins B., Ellsworth J. Phosphorus availability with alkaline/calcareous soil // West. Nutr. Manag. Conf. 2005.

67. Parastesh F., Alikhani H.A., Etesami H. Vermicompost enriched with phosphate-solubilizing bacteria provides plant with enough phosphorus in a sequential cropping under calcareous soil conditions // J. Clean. Prod. Elsevier Ltd, 2019. Vol. 221. P. 27-37.

68. Mahdi C.H.H., Mouhamad R.S. Behavior of Phosphorus in the Calcareous Soil Advances in Agricultural Technology & Plant Sciences Behavior of Phosphorus in the Calcareous Soil // Adv. Agric. Technol. Plant Sci. 2018. Vol. 1, № 4.

69. Mussatto S.I., Roberto I.C. Chemical characterization and liberation of pentose sugars from brewer's spent grain // J. Chem. Technol. Biotechnol. 2006. Vol. 81, № 3. P. 268-274.

70. Rashad. M , Hafez. M , Emran. M , Aboukila. E N.I. Influence of Environment-Friendly Organic Wastes on the Properties of Sandy Soil under Growing Zea mays L. in Arid Regions. // World Acad. Sci. Eng. Technol. 2016. Vol. 10, № 9. P. 588-594.

71. Paustian K. et al. Management options for reducing CO2 emissions from agricultural soils // Biogeochemistry. 2000. Vol. 48, № 1. P. 147-163.

72. Kaloi G.M. et al. Integrated use of spentwash and mineral fertilizers on germination and initial growth of sugarcane (Saccharum officinarum L.) // Soil Environ. 2015. Vol. 34, № 1. P. 1-8.

73. Adhikary S. Vermicompost, the story of organic gold: A review // Agric. Sci. 2012. Vol. 03, № 07. P. 905-917.

74. Mupambwa H.A. Potential of Chicken Manure Vermicompost as a Substitute for Pine Bark Based Growing Media for Vegetables // Int. J. Agric. Biol. 2017. Vol. 19, № 05. P. 1007-1011.

75. Gajalakshmi S. Vermiconversion of paper waste by earthworm born and grown in the waste-fed reactors compared to the pioneers raised to adulthood on cowdung feed // Bioresour. Technol. 2004. Vol. 94, № 1. P. 53-56.

76. Garg P., Gupta A., Satya S. Vermicomposting of different types of waste using Eisenia foetida: A comparative study // Bioresour. Technol. 2006. Vol. 97, № 3. P. 391-395.

77. Suthar S. Vermistabilization of municipal sewage sludge amended with sugarcane trash using epigeic Eisenia fetida (Oligochaeta) // J. Hazard. Mater. 2009. Vol. 163, № 1. P. 199-206.

78. Ceustermans A., Coosemans J., Ryckeboer J. Compost Microbial Activity Related to Compost

Stability // Microbes at Work. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. P. 115-134.

79. Verkhovtseva N. V. et al. Comparative Investigation of Vermicompost Microbial Communities // Microbiol. Compost. 2002. P. 99-108.

80. Cai L. et al. Comparison of chemical and microbiological changes during the aerobic composting and vermicomposting of green waste // PLoS One. 2018. Vol. 13, № 11. P. 1-16.

81. Sochacki D. et al. Estimating the Feasibility of Implementing a Vermicomposting Program to Address Food Waste in the Pylaia-Chortiatis Municipality , Greece Estimating the feasibility of implementing a vermicomposting program to address food waste in the Pylaia - Chortiatis. 2018. № May.

82. Sinha R.K. et al. Sustainable Agriculture by Vermiculture : Earthworms and Vermicompost Can Ameliorate Soils Damaged by Agrochemicals , Restore Soil Fertility , Boost Farm Productivity and Sequester Soil Organic Carbon to Mitigate Global Warming // Int. J. Agric. Res. Rev. 2014. Vol. 2, № 8. P. 99-114.

83. Zahra M.T. et al. Vermicompost Augmented with Plant Growth Promoting Rhizobacteria Improved Soil Fertility and Growth of Brassica rapa // Int. J. Agric. Biol. 2019. P. 1645-1654.

84. Sinha, Rajiv, Herat, Sunil, Valani, Dalsukhbhai, Chauhan K. Earthworms Vermicompost: A Powerful Crop Nutrient over the Conventional Compost & Protective Soil Conditioner against the Destructive Chemical Fertilizers for Food Safety and Security // Am-Euras. J. Agric. Environ. Sci. 2009. Vol. 5, № S. P. 1-55.

85. Sharma K., Garg V.K. Vermicomposting of Waste // Sustainable Resource Recovery and Zero Waste Approaches. Elsevier, 2019. P. 133-164.

86. Darwin C. The formation of vegetable mould, through the action of worms. 1881. P. 347.

87. Marques A.P.G.C. et al. Assessment of the plant growth promotion abilities of six bacterial isolates using Zea mays as indicator plant // Soil Biol. Biochem. Elsevier Ltd, 2010. Vol. 42, № 8. P. 1229-1235.

88. Sajid Mahmood Nadeem , Muhammad Naveed , Zahir A. Zahir and H. z N.A. Plant Microbe Symbiosis: Fundamentals and Advances // Plant Microbe Symbiosis: Fundamentals and Advances / ed. Arora N.K. New Delhi: Springer India, 2013. № May 2014. 1-459 p.

89. Perez-Montano F. et al. Plant growth promotion in cereal and leguminous agricultural important plants: From microorganism capacities to crop production // Microbiol. Res. 2014. Vol. 169, № 5-6. P. 325-336.

90. Roesti D. et al. Plant growth stage, fertiliser management and bio-inoculation of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria affect the rhizobacterial community structure in rain-fed wheat fields // Soil Biol. Biochem. 2006. Vol. 38, № 5. P. 1111-1120.

91. Nadeem S.M. et al. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments // Biotechnol. Adv. Elsevier B.V., 2014. Vol. 32, № 2. P. 429-448.

92. Singh A., Chauhan P.S. Ecological Significance of Soil-Associated Plant Growth-Promoting Biofilm-Forming Microbes for Stress Management // Biofilms in Plant and Soil Health. Chichester, UK: John Wiley & Sons, Ltd, 2017. № August. P. 291-326.

93. Liu C.-H. et al. 1-Aminocyclopropane-1-carboxylate (ACC) Deaminase Gene in Pseudomonas azotoformans Is Associated with the Amelioration of Salinity Stress in Tomato // J. Agric. Food Chem. 2021. Vol. 69, № 3. P. 913-921.

94. Olivares F.L. et al. Plant growth promoting bacteria and humic substances: crop promotion and mechanisms of action // Chem. Biol. Technol. Agric. Springer International Publishing, 2017. Vol. 4, № 1. P. 30.

95. Neweigy N.A. et al. Response of sorghum to inoculation with azospirillum, organic and inorganic fertilization in the presence of phosphate solubilizing microorganisms. // Ann. Agric. Sci. Moshtohor. 1997. Vol. 35, № 3. P. 1383-1401.

96. Elgharably A.G. Nutrient Availability and Wheat Growth as Affected by Plant Residues and Inorganic Fertilizers in Saline Soils // Environ. Sci. 2008. P. 1-181.

97. Hayat R. et al. Soil beneficial bacteria and their role in plant growth promotion: a review // Ann. Microbiol. 2010. Vol. 60, № 4. P. 579-598.

98. Salhia Supervisors Tarek El Bashiti Abdoud El Kichaoui B.M. The Effect of Azotobacter chrococcum as Nitrogen biofertilizer on the growth and yield of Cucumis Sativus Submitted in Partial Fulfillment of Requirements for the Degree of Master of Biological Sciences / Botany. 2010. № December 2010.

99. Ma P. et al. Soil Fertility and Biodiversity in Organic Farming. 2002. Vol. 296, № 2092. P. 16941697.

100. Egamberdiyeva D. The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils // Appl. Soil Ecol. 2007. Vol. 36, № 2-3. P. 184-189.

101. Nadeem S.M. et al. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments // Biotechnol. Adv. Elsevier Inc., 2014. Vol. 32, № 2. P. 429-448.

102. Alvarez R. de C.F. et al. Application methods of Azospirillum brasilense in first-and second-crop corn // Rev. Bras. Eng. Agric. e Ambient. 2019. Vol. 23, № 11. P. 840-846.

103. Shahzad S.M. et al. PGPR with varied ACC-deaminase activity induced different growth and yield response in maize (Zea mays L.) under fertilized conditions // Eur. J. Soil Biol. Elsevier,

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

2013. Vol. 57. P. 27-34.

Olivares F.L. et al. Substrate biofortification in combination with foliar sprays of plant growth promoting bacteria and humic substances boosts production of organic tomatoes // Sci. Hortic. (Amsterdam). Elsevier B.V., 2015. Vol. 183. P. 100-108.

Zarea M.J. et al. Effect of Piriformospora indica and Azospirillum strains from saline or nonsaline soil on mitigation of the effects of NaCl // Soil Biol. Biochem. Elsevier Ltd, 2012. Vol. 45. P. 139-146.

Zawoznik M.S. et al. Response to saline stress and aquaporin expression in Azospirillum-inoculated barley seedlings // Appl. Microbiol. Biotechnol. 2011. Vol. 90, № 4. P. 1389-1397. Dobbelaere S. et al. Responses of agronomically important crops to inoculation with Azospirillum // Funct. Plant Biol. 2001. Vol. 28, № 9. P. 871.

Abdelraouf R.E. et al. Water Stress Mitigation on Growth, Yield and Quality Traits of Wheat (Triticum aestivum L.) Using Biofertilizer Inoculation // J. Appl. Sci. Res. 2013. Vol. 9, № 3. P. 2135-2145.

Barassi C. et al. Azospirillum spp., a dynamic soil bacterium favourable to vegetable crop production // Dyn Soil Dyn Plant. 2007. Vol. 1, № 2. P. 68-82.

De Freitas Andrade A. et al. Azospirillum brasilense inoculation methods in corn and sorghum // Pesqui. Agropecu. Trop. 2019. Vol. 49, № June.

Ashraf M. et al. Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress // Biol. Fertil. Soils. 2004. Vol. 40, № 3. P. 157-162.

Nadeem S.M. et al. Mitigation of salinity-induced negative impact on the growth and yield of wheat by plant growth-promoting rhizobacteria in naturally saline conditions // Ann. Microbiol. 2013. Vol. 63, № 1. P. 225-232.

Klavins M., Purmalis O. Humic substances as surfactants // Environ. Chem. Lett. 2010. Vol. 8, № 4. P. 349-354.

Hafez M., Rashad M., Popov A.I. The biological correction of agro-photosynthesis of soil plant productivity // J. Plant Nutr. Taylor & Francis, 2020. Vol. 43, № 19. P. 2929-2980. Canellas L.P., Olivares F.L. Physiological responses to humic substances as plant growth promoter // Chemical and Biological Technologies in Agriculture. 2014. Vol. 1, № 1. P. 1-11. Попов А.И. ГУМИНОВЫЕ ВЕЩЕСТВА СВОЙСТВА, СТРОЕНИЕ, ОБРАЗОВАНИЕ Под. Издательство С.-Петербургского университета 2004, 2004. 249 p.

Zhang Y., Wang J. Extraction Methods Study and Structure Analysis of Humic Acid in Surface Soil along Main Transportation Road. 2012. Vol. 523. P. 201-204.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

Chen C. et al. Direct observation of macromolecular structures of humic acid by AFM and SEM. 2007. Vol. 302. P. 121-125.

Souza F. De, Braganc S.R. Extraction and characterization of humic acid from coal for the application as dispersant of ceramic powders. 2017. № x x. P. 1-7.

Ertani A. et al. Humic-like substances from agro-industrial residues affect growth and nitrogen assimilation in maize (Zea mays L.) plantlets // J. Geochemical Explor. Elsevier B.V., 2013. Vol. 129. P. 103-111.

Song X.-Y. et al. Carbon Sequestration in Soil Humic Substances Under Long-Term Fertilization in a Wheat-Maize System from North China // J. Integr. Agric. Chinese Academy of Agricultural Sciences, 2014. Vol. 13, № 3. P. 562-569.

Eyheraguibel B., Silvestre J., Morard P. Effects of humic substances derived from organic waste enhancement on the growth and mineral nutrition of maize // Bioresour. Technol. 2008. Vol. 99, № 10. P. 4206-4212.

Saleem M.A. et al. Foliar application of boron improved the yield and quality of wheat (Triticum aestivum l.) in a calcareous field // Soil Environ. 2020. Vol. 39, № 1. P. 59-66. Correia L. V. et al. Inoculation of Wheat With Azospirillum spp.: A Comparison Between Foliar and In-furrow Applications // J. Agric. Sci. 2019. Vol. 12, № 1. P. 194.

Benlloch M. et al. Response of olive trees to folk application of humic substances extracted from leonardite. 1996. Vol. 66. P. 191-200.

Nassar I. et al. Effect of Beer Industry Wastes Compost on Some Physical and Chemical Properties of a Sandy Soil Effect of Beer Industry Wastes and Compost on Some Physical and Chemical Properties of a Sandy Soil // J. Agric. Environ. Sci. 2014. № December. P. ISBN 16871464.

Zhang T. et al. Effects of different amendments for the reclamation of coastal saline soil on soil nutrient dynamics and electrical conductivity responses // Agric. Water Manag. Elsevier B.V., 2015. Vol. 159. P. 115-122.

Ahmad W. et al. Maize yield and soil properties as influenced by integrated use of organic, inorganic and bio-fertilizers in a low fertility soil // Soil Environ. 2013. Vol. 32, № 2. P. 121-129. Meena M.D. et al. Municipal solid waste (MSW): Strategies to improve salt affected soil sustainability: A review // Waste Manag. Elsevier Ltd, 2019. Vol. 84. P. 38-53. Попов А.И., Коноплина Л.Ю., Шарпатый В. А., Прилепа С.В., Сазанова Е.В. Х.Г.Д. Component Composition of Soil Organic Matter // Sci. hertage. 2021. Vol. 2, № 65. P. 6. Park J.H. et al. Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils // J. Hazard. Mater. Elsevier B.V., 2011. Vol. 185, № 2-3. P. 549-574.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

Ryals R., Silver and W.L. Effects of organic matter amendments on net primary productivity and greenhouse gas emissions in annual grasslands. 2013. Vol. 23, № 1. P. 46-59. Turrion M.B. et al. Effects on soil organic matter mineralization and microbiological properties of applying compost to burned and unburned soils // J. Environ. Manage. Elsevier Ltd, 2012. Vol. 95. P. S245-S249.

Gill S. et al. Organic amendment accelerates nitrification in soil. 2006. Vol. 25, № 1. P. 35-39. Hashemabadi D. et al. Organic N-fertilizer, rhizobacterial inoculation and fungal compost improve nutrient uptake, plant growth and the levels of vindoline, ajmalicine, vinblastine, catharanthine and total alkaloids in Catharanthus roseus L. // Folia Hortic. 2018. Vol. 30, № 2. P. 203-213.

Carvalho M.T. de M. The impact of wood biochar as a soil amendment in aerobic rice systems of the Brazilian Savannah [Tese]. 2015. 160 p.

Xu L. et al. Vermicompost improves the physiological and biochemical responses of blessed thistle (Silybum marianum Gaertn.) and peppermint (Mentha haplocalyx Briq) to salinity stress // Ind. Crops Prod. 2016. Vol. 94. P. 574-585.

Rehim A. et al. Integrated use of farm manure and synthetic nitrogen fertilizer improves nitrogen use efficiency, yield and grain quality in wheat // Ital. J. Agron. 2020. Vol. 15, № 1. P. 29-34. Liang Q. et al. Effects of 15 years of manure and mineral fertilizers on enzyme activities in particle-size fractions in a North China Plain soil // Eur. J. Soil Biol. Elsevier Masson SAS, 2014. Vol. 60. P. 112-119.

Luo S. et al. Aggregate-related changes in soil microbial communities under different ameliorant applications in saline-sodic soils // Geoderma. Elsevier, 2018. Vol. 329, № May. P. 108-117. de Freitas J.R. Yield and N assimilation of winter wheat (Triticum aestivum L., var. Norstar) inoculated with rhizobacteria // Pedobiologia (Jena). 2000. Vol. 44, № 2. P. 97-104. Shehzadi S., Shah Z., Mohammad W. Residual effect of organic wastes and chemical fertilizers on wheat yield under wheat-maize cropping sequence // Soil Environ. 2014. Vol. 33, № 2. P. 8895.

Zaghloul R. Efficiency of some organic manures and biofertilization with Azospirillum brasilense for wheat manuring . // Ann. Agric. Sc., Moshtohor,. 2020. Vol. 34, № April. P. 627-640. Scherer H.W., Metker D.J., Welp G. Effect of long-term organic amendments on chemical and microbial properties of a luvisol // Plant, Soil Environ. 2011. Vol. 57, № No. 11. P. 513-518. Climate-Data.org. climate-data.org. 2019.

Pii Y. et al. Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review // Biol. Fertil. Soils. 2015. Vol.

51, № 4. P. 403-415.

147. Official Methods of Analysis of the Association of Official Analytical Chemists // J. Pharm. Sci. 1971. Vol. 60, № 2. P. 334.

148. Anderson, J.P.E., Page, A.L., Miller, R.H. and Keeney D.R. Methods of Soil Analysis and Soil Respiration. 1982.

149. Corwin D.L., Yemoto K. Salinity: Electrical Conductivity and Total Dissolved Solids // Methods Soil Anal. 2017. Vol. 2, № 1. P. 0.

150. Soltanpour P.N., Schwab A.P. A new soil test for simultaneous extraction of macro- and micro-nutrients in alkaline soils // Commun. Soil Sci. Plant Anal. 1977. Vol. 8, № 3. P. 195-207.

151. Ouyang W. et al. The effect on soil nutrients resulting from land use transformations in a freeze-thaw agricultural ecosystem // Soil Tillage Res. Elsevier B.V., 2013. Vol. 132. P. 30-38.

152. Casida L.E., Klein D.A., Santoro T. Soil Dehydrogenase Activity // Soil Sci. 1964. Vol. 98, № 6. P. 371-376.

153. Kandeler E., Gerber H. Short-term assay of soil urease activity using colorimetric determination of ammonium // Biol. Fertil. Soils. 1988. Vol. 6, № 1. P. 68-72.

154. Edje A.O.T., Burris J.S. Association of Official Seed Analysts Society of Commercial Seed Technologists ( SCST ) Seedling Vigor in Soybeans // J. Seed Technol. 2015. Vol. 60, № 1970. P. 149-157.

155. Motsara M.R., Roy R.N. Guide to laboratory establishment for plant nutrient analysis // Fao Fertilizer and Plant Nutrition Bulletin 19. 2008. 219 p.

156. Estefan G., Sommer R., Ryan J. Methods of Soil , Plant , and Water Analysis : A manual for the West Asia and North // Int. Cent. Agric. Res. Dry Areas ICARDA@cgiar.org. 2013.

157. Maguire J.D. Speed of Germination—Aid In Selection And Evaluation for Seedling Emergence And Vigor 1 // Crop Sci. 1962. Vol. 2, № 2. P. 176-177.

158. Ferguson J. Aosa perspective of seed vigor testing // J. Seed Technol. 1993. Vol. 17, № 2. P. 101104.

159. French R.J., Schultz J.E. Water use efficiency of wheat in a Mediterranean-type environment. I. The relation between yield, water use and climate // Aust. J. Agric. Res. 1984. Vol. 35, № 6. P. 743-764.

160. Siddique K.H.M. et al. Water use and water use efficiency of old and modern wheat cultivars in a Mediterranean-type environment // Aust. J. Agric. Res. 1990.

161. Rashad, M., Hafez, M., Emran, M., Aboukila, E. N.I. Influence of Environment-Friendly Organic Wastes on the Properties of Sandy Soil under Growing Zea mays L. in Arid Regions. // World Acad. Sci. Eng. Technol. 2016. Vol. 10, № 9. P. 588-594.

162. Sastre-Conde I. et al. Remediation of saline soils by a two-step process: Washing and amendment with sludge // Geoderma. Elsevier B.V., 2015. Vol. 247-248. P. 140-150.

163. Zhen Z. et al. Effects of manure compost application on soil microbial community diversity and soil microenvironments in a temperate cropland in China // PLoS One. 2014. Vol. 9, № 10.

164. Shrivastava P., Kumar R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation // Saudi J. Biol. Sci. King Saud University, 2015. Vol. 22, № 2. P. 123-131.

165. Zhang H. et al. Soil Bacteria Confer Plant Salt Tolerance by Tissue-Specific Regulation of the Sodium Transporter HKT1 // Mol. Plant-Microbe Interact. 2008. Vol. 21, № 6. P. 737-744.

166. Trivedi P. et al. Soil aggregation and associated microbial communities modify the impact of agricultural management on carbon content // Environ. Microbiol. 2017. Vol. 19, № 8. P. 30703086.

167. Ai C. et al. The alleviation of acid soil stress in rice by inorganic or organic ameliorants is associated with changes in soil enzyme activity and microbial community composition // Biol. Fertil. Soils. 2015. Vol. 51, № 4. P. 465-477.

168. Yu Y.-Y. et al. Combination of agricultural waste compost and biofertilizer improves yield and enhances the sustainability of a pepper field // J. Plant Nutr. Soil Sci. 2019. Vol. 182, № 4. P. 560-569.

169. Sant'Anna S.A.C. et al. Biological nitrogen fixation and soil N2O emissions from legume residues in an Acrisol in SE Brazil // Geoderma Reg. Elsevier B.V., 2018. Vol. 15. P. e00196.

170. Barra P.J. et al. Phosphobacteria inoculation enhances the benefit of P-fertilization on Lolium perenne in soils contrasting in P-availability // Soil Biol. Biochem. Elsevier, 2019. Vol. 136, № June. P. 107516.

171. Wang X., Cai Q.S. Steel Slag as an Iron Fertilizer for Corn Growth and Soil Improvement in a Pot Experiment1 1 Project supported by the National Natural Science Foundation of China (No. 30270800). // Pedosphere. 2006. Vol. 16, № 4. P. 519-524.

172. Yang G. et al. The chirality induction and modulation of polymers by circularly polarized light // Symmetry. 2019. Vol. 11, № 4.

173. Teutscherova N. et al. Leaching of ammonium and nitrate from Acrisol and Calcisol amended with holm oak biochar: A column study // Geoderma. 2018. Vol. 323, № February. P. 136-145.

174. Zhang A. et al. Using side-dressing technique to reduce nitrogen leaching and improve nitrogen recovery efficiency under an irrigated rice system in the upper reaches of Yellow River Basin, Northwest China // J. Integr. Agric. Chinese Academy of Agricultural Sciences, 2016. Vol. 15, № 1. P. 220-231.

175. Vinod P.N., Chandramouli P.N., Koch M. Estimation of Nitrate Leaching in Groundwater in an Agriculturally Used Area in the State Karnataka, India, Using Existing Model and GIS // Aquat. Procedia. Elsevier B.V., 2015. Vol. 4, № Icwrcoe. P. 1047-1053.

176. Shi Y., Liu X., Zhang Q. Effects of combined biochar and organic fertilizer on nitrous oxide fluxes and the related nitrifier and denitrifier communities in a saline-alkali soil // Sci. Total Environ. 2019. Vol. 686. P. 199-211.

177. Yu Y. et al. Effect of organic materials on the chemical properties of saline soil in the Yellow River Delta of China // Front. Earth Sci. 2015. Vol. 9, № 2. P. 259-267.

178. Ashraf M., Foolad M.R. Roles of glycine betaine and proline in improving plant abiotic stress resistance // Environ. Exp. Bot. 2007. Vol. 59, № 2. P. 206-216.

179. Bano A., Fatima M. Salt tolerance in Zea mays (L). following inoculation with Rhizobium and Pseudomonas // Biol. Fertil. Soils. 2009. Vol. 45, № 4. P. 405-413.

180. Abdelraouf R.E. et al. Influence Of N-Fertigation Stress and Agro- Organic Wastes ( Biochar ) to Improve Yield and Water Productivity of Sweet Pepper under Sandy Soils Conditions // Plant Arch. 2020. Vol. 20, № Jan. P. 3208-3217.

181. Doan T.T. et al. Impact of compost, vermicompost and biochar on soil fertility, maize yield and soil erosion in Northern Vietnam: A three year mesocosm experiment // Sci. Total Environ. Elsevier B.V., 2015. Vol. 514. P. 147-154.

182. Hafez M., Popov A.I., Rashad M. The response of saline-sodic soils to reclamation using biological and organic amendments under arid regions of Egypt // E3S Web Conf. / ed. Smyatskaya Y., Aktar T. 2021. Vol. 247. P. 01047.

183. Soumare A. et al. Exploiting Biological Nitrogen Fixation: A Route Towards a Sustainable Agriculture // Plants. 2020. Vol. 9, № 8. P. 1011.

184. Deshev M.G., Desheva G.N., Stamatov S.K. Germination and early seedling growth characteristics of arachis hypogaea L. Under salinity (NaCl) stress // Agric. Conspec. Sci. 2020. Vol. 85, № 2. P. 113-121.

185. Zaeim A.N., Torkaman M., Ghasemeeyan H. The Importance of Biofertilizers in Sustainable Production of Wheat: A Review. 2017. Vol. 3, № 6. P. 252-258.

186. El-Yazal M.A.S. et al. Impacts of Phosphorus as Soil Application on Growth, Yield and some Chemical Constitutes of Common Bean Plants Grown under Saline Soil Conditions // Sustain. Food Prod. 2020. Vol. 7, № February. P. 24-36.

187. Oliveira I.J. et al. Inoculation with Azospirillum brasiliense increases maize yield // Chem. Biol. Technol. Agric. Springer International Publishing, 2018. Vol. 5, № 1.

188. Swarnalakshmi K. et al. Evaluating the influence of novel cyanobacterial biofilmed biofertilizers

189.

190.

191.

192.

193.

194.

195.

196.

197.

198.

199.

200.

201.

202.

on soil fertility and plant nutrition in wheat // Eur. J. Soil Biol. Elsevier Masson SAS, 2013. Vol. 55. P. 107-116.

El- Shakweer M.H.A., El- Sayad E.A., Ewees M.S.A. Soil and plant analysis as a guide for interpretation of the improvement efficiency of organic conditioners added to different soils in Egypt // Commun. Soil Sci. Plant Anal. 1998. Vol. 29, № 11-14. P. 2067-2088. Oliveira C. V. et al. Carbon and nitrogen stock of Acrisols and Nitisols in South Bahia, Brazil // Geoderma Reg. Elsevier B.V., 2019. Vol. 16. P. e00218.

Wang Y. et al. Soil aggregation regulates distributions of carbon, microbial community and enzyme activities after 23-year manure amendment // Appl. Soil Ecol. Elsevier B.V., 2017. Vol. 111. P. 65-72.

Sihver L., Mortazavi S.M.J. Radiation Risks and Countermeasures for Humans on Deep Space Missions // IEEE Aerosp. Conf. Proc. IEEE, 2019. Vol. 2019-March. P. 1-10. Shahrajabian M.H. et al. Evaluate germination and seedling growth of three cultivars of fennel under diatomite and soil management // Cercet. Agron. Mold. 2019. Vol. 52, № 3. P. 291-298. Anim-Gyampo M. et al. Quality and health risk assessment of shallow groundwater aquifers within the Atankwidi basin of Ghana // Groundw. Sustain. Dev. Elsevier, 2019. Vol. 9, № March. P. 100217.

Perego A. et al. Nitrate leaching under maize cropping systems in Po Valley (Italy) // Agric. Ecosyst. Environ. Elsevier B.V., 2012. Vol. 147, № 1. P. 57-65.

Primo E.D. et al. Bacterial Metabolites in Sustainable Agroecosystem // Bact. Metab. Sustain. Agroecosystem. 2015. Vol. 12, № February 2017. P. 337-349.

Duguid J.G. et al. Raman spectroscopy of DNA-metal complexes. II. The thermal denaturation of DNA in the presence of Sr2+, Ba2+, Mg2+, Ca2+, Mn2+, Co2+, Ni2+, and Cd2+ // Biophys. J. Elsevier, 1995. Vol. 69, № 6. P. 2623-2641.

Mahboob A. et al. Improving yield and quality of maize by different drip-fertigation rates of n, p and k fertilizers // Soil Environ. 2020. Vol. 39, № 1. P. 50-58.

Ali Suhail T., Al-Dulaimi, Al-Rawi W.A.A. Effects of biofertilizers and compost application on leaves mineral content of plum transplants // Plant Arch. 2020. Vol. 20, № April. P. 1949-1952. Videgain-Marco M. et al. Effects of biochar application in a sorghum crop under greenhouse conditions: Growth parameters and physicochemical fertility // Agronomy. 2020. Vol. 10, № 1. Asiloglu R. et al. Protist-enhanced survival of a plant growth promoting rhizobacteria, Azospirillum sp. B510, and the growth of rice (Oryza sativa L.) plants // Appl. Soil Ecol. Elsevier, 2020. Vol. 154, № May. P. 103599.

Aseri G.K. et al. Biofertilizers improve plant growth, fruit yield, nutrition, metabolism and

rhizosphere enzyme activities of Pomegranate (Punica granatum L.) in Indian Thar Desert // Sci. Hortic. (Amsterdam). 2008. Vol. 117, № 2. P. 130-135.

203. Bianco A. et al. The role of microorganisms on biotransformation of brewers' spent grain // Applied Microbiology and Biotechnology. Applied Microbiology and Biotechnology, 2020. Vol. 104, № 20. P. 8661-8678.

204. Doan T.T. et al. Interactions between compost, vermicompost and earthworms influence plant growth and yield: A one-year greenhouse experiment // Sci. Hortic. (Amsterdam). Elsevier B.V., 2013. Vol. 160. P. 148-154.

205. Saad T.M. et al. response of five varieties of wheat (triticum aestivum L.) to local isolates of Azospirillum bacteria (Azospirillum) // Plant Arch. 2019. Vol. 19, № 1. P. 917-922.

206. Soomro Z.H., Baloch P.A., Gandhai A.W. Comparative effects of foliar and soil applied on growth and fodder yield of maize // Pakistan J. Agric. 2011.

207. Pii Y. et al. Plant-microorganism-soil interactions influence the Fe availability in the rhizosphere of cucumber plants // Plant Physiol. Biochem. 2015. Vol. 87, № 1. P. 45-52.

208. Mengel K., Blibl W. Bicarbonate , the m o s t important factor inducing iron chlorosis in vine grapes on calcareous soil Introduction Iron chlorosis on calcareous soils is a problem which has been known for a very long time . However , it is still not possible to control the. 1984. Vol. 4. P. 333-344.

209. Hossain M.Z. et al. Effect of Different Organic Wastes on Soil Propertie s and Plant Growth and Yield: a Review // Sci. Agric. Bohem. 2017. Vol. 48, № 4. P. 224-237.

210. Kang S. et al. Effects of limited irrigation on yield and water use efficiency of winter wheat in the Loess Plateau of China // Agric. Water Manag. 2002. Vol. 55, № 3. P. 203-216.

211. Canellas L.P. et al. A combination of humic substances and Herbaspirillum seropedicae inoculation enhances the growth of maize (Zea mays L.) // Plant Soil. 2013. Vol. 366, № 1-2. P. 119-132.

212. Subhan A. et al. Effect of Organic and Inorganic Fertilizer on the Water Use Efficiency and Yield Attributes of Wheat under Heavy Textured Soil // Sarhad J. Agric. 2017. Vol. 33, № 4.

213. Piccolo A. The supramolecular structure of humic substances: A novel understanding of humus chemistry and implications in soil science // Advances in Agronomy. 2002. Vol. 75. P. 57-134.

214. Ibrahim M. et al. Response of wheat growth and yield to various levels of compost and organic manure // Pakistan J. Bot. 2008. Vol. 40, № 5. P. 2135-2141.

215. Munareto J.D. et al. Nitrogen management alternatives using Azospirillum brasilense in wheat // Pesqui. Agropecuâria Bras. 2019. Vol. 54.

216. Ahmad R., Irshad M. Effect of boron application time on yield of wheat, rice and cotton crop in

Pakistan // Soil Environ. 2011. Vol. 30, № 1. P. 50-57.

217. Fakir O., Rahman M., Jahiruddin M. Effects of Foliar Application of Boron (B) on the Grain Set and Yield of Wheat (Triticum aestivum L.) // Am. J. Exp. Agric. 2016.

218. Curtin D., Martin R.J., Scott C.L. Wheat (Triticum aestivum) response to micronutrients (Mn, Cu, Zn, B) in canterbury, New Zealand // New Zeal. J. Crop Hortic. Sci. 2008. Vol. 36, № 3. P. 169-181.

219. Laghari G.M. et al. Effect of NPK and Boron on Growth and Yield of Wheat Variety TJ-83 at Tandojam Soil // Adv. Environ. Biol. 2016. Vol. 10, № October. P. 209-216.

220. Khan M.B. et al. Foliar application of micronutrients improves the wheat yield and net economic return // Int. J. Agric. Biol. 2010. Vol. 12, № (6). P. 953-956.

221. Effects of humic acid foliar spraying and nitrogen fertilizer management on yield of peanut (Arachis hypogaea L.) in Iran // J. Eng. Appl. Sci. 2012. Vol. 7, № 4. P. 289-293.

222. Karimi E. et al. The Effect of Humic Acid and Biochar on Growth and Nutrients Uptake of Calendula (Calendula officinalis L.) // Commun. Soil Sci. Plant Anal. Taylor & Francis, 2020. Vol. 51, № 12. P. 1-12.

223. El-Howeity M.A., Asfour M.M. Response of some varieties of canola plant (Brassica napus L.) cultivated in a newly reclaimed desert to plant growth promoting rhizobacteria and mineral nitrogen fertilizer // Ann. Agric. Sci. Faculty of Agriculture, Ain Shams University, 2012. Vol. 57, № 2. P. 129-136.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.