Влияние гетеровалентного допирования на структуру и фотостимулированные процессы в галогенидном перовските CsPbBr3 тема диссертации и автореферата по ВАК РФ 00.00.00, кандидат наук Али Ибрагим Мохаммед Шарафелдин
- Специальность ВАК РФ00.00.00
- Количество страниц 278
Оглавление диссертации кандидат наук Али Ибрагим Мохаммед Шарафелдин
Table of Contents
Abstract
Introduction
Chapter 1. Literature review
1.1. Basic structure, properties of Perovskite materials and their Applications
1.2. Main characteristics of perovskite materials
1.2.1. Advances and challenges of organic-inorganic and all-inorganic PSCs
1.2.2. Optical properties
1.2.3. The intrinsic Defects in Perovskite
1.2.4. Doping of perovskite
1.2.5. Photoinduced defect formation
1.2.6. Photoluminescence (PL)
Chapter 2. Experimental methods and crystal characterization
2.1. Materials
2.1.1. Synthesis of CsPbBr3 powder
2.1.2. Silver Doped CsPbBr3
2.1.3. Bismuth Doped CsPbBr3
2.2. Characterizations of samples
2.2.1. X-ray powder diffraction (XRD)
2.2.2. Crystal-structure refinement
2.2.3. X-ray photoelectron spectroscopy
2.2.4. Atomic emission spectroscopy
2.2.5. Scanning electron microscope (SEM) and Energy Dispersive X-ray Analysis
2.2.6. Diffuse reflectance spectra
2.2.7. Photoinduced Defect Formation
2.2.8. Luminescence Spectra
2.2.9. Photostimulated photoluminescence quenching
Chapter 3. Effect of heterovalent doping on the structural properties in CsPbBr3 perovskite
3.1. Characterization of silver-doped CsPbBr3 perovskite samples
3.1.1. X-ray diffraction studies of Ag-CsPbBr3 samples
3.1.2. X-ray photoelectron spectra of Ag-CsPbBr3 samples
3.1.3. Scanning electron microscopy and energy-dispersive x-ray analysis for Ag-CsPbBr3 samples
3.2. Bismuth-doped perovskite CsPbBr3
3.2.1. X-ray diffraction studies of Bi-CsPbBr3 samples
3.2.2. X-ray photoelectron spectra of Bi-CsPbBr3 samples
3.2.3. Scanning electron microscopy and energy-dispersive x-ray analysis for Bi-CsPbBr3 samples
3.3. Conclusions to this Chapter
Chapter 4. Photostimulated defect formation of hetrovalent doped CSPbBr3 perovskite
4.1. Study of the optical properties of Ag-CsPbBr3
4.2. Study of the optical properties of Bi-CsPbBr3
4.3. Kinetics of photocoloration of hetrovalent doped CSPbBr3 perovskite
4.4. Conclusions to this Chapter
Chapter 5. Photoluminescence of pristine and doped CsPbBr3 samples
5.1. Photoluminescence of the pristine CsPbBr3
5.2. Photoluminescence of the Bi-doped CsPbBr?
5.3. Photoluminescence of the Ag-doped CsPbBr3
5.4. Conclusion to the Chapter
Conclusion
Acknowledgments
Reference
Рекомендованный список диссертаций по специальности «Другие cпециальности», 00.00.00 шифр ВАК
Оптически активные дефекты в стеклообразном диоксиде кремния, имплантированном ионами рения2022 год, кандидат наук Кубиси Мохамед Сайед Ибрагим
Вариация структурных и оптических свойств оптически чувствительных нано- и микроразмерных кристаллов с помощью микрофлюидных технологий2023 год, кандидат наук Корякина Ирина Георгиевна
Введение диссертации (часть автореферата) на тему «Влияние гетеровалентного допирования на структуру и фотостимулированные процессы в галогенидном перовските CsPbBr3»
Abstract
Metal halide perovskite materials have attracted intense interest in the photovoltaic community due to their high efficiency, ease of fabrication, and bandgap tunability. One avenue for improving the PV application is by replacing organic cations with inorganic cations, such as cesium (Cs). The advantage of cesium lead halide perovskite materials is their higher bandgap, which makes them suitable for tandem solar cells, spintronics, light-emitting diodes, lasers, photodetectors, X-ray detectors, and gamma detectors.
The aim of this work is to determine the effect of heterovalent doping on the structural and optical properties of CsPbBr3 perovskite as a promising material for photovoltaic elements.
To achieve the goal of this work the following tasks were solved: (i) investigate the impact of replacing some of the Pb in CsPbBr3 perovskite materials with Ag or Bi on the structure of perovskite; (ii) Study the effect of doping on the structure, optical and luminescent characteristics of the CsPbBr3 halide perovskite and (iii) Investigation of photoinduced defect formation on the photoluminescence of dispersed CsPbBr3.
The synthesis was carried out by the method of precipitation chemistry. Crystallinity, morphology, and optical properties of CsPbBr3 micropowders made were studied and characterized. The main idea is applying to introduce electronic impurities (atomic dopants) into the perovskite materials for tuning the light absorption coefficient, the optical, excitonic, and electrical properties of CsPbBr3 perovskite. This thesis investigated the photophysics of CsPbBr3 on absorption, and photostimulated defect formation of dispersed CsPbBr3 perovskites has been studied by diffuse reflectance spectroscopy. Ag doping does not affect the
fundamental light absorption of CsPbBr3 and does not cause an alteration of the apparent optical band gap. At the same time, Bi doping significantly extends the spectral region of absorption toward the extrinsic absorption spectral region. The study of photocoloration of solids extends a chance to explore both pre-existing and photoinduced defects. Two different mechanisms are realized: typical for both photoresistant and photosensitive solids have been demonstrated by means of physicochemical characterization of the materials and investigations of photoinduced coloration.
The doping with Bi results in strong resistance to photostimulated defect formation. In contrast, the doping with Ag significantly facilitates the photostimulated formation of the new defect states. At a higher degree of doping, Ag-doped CsPbBr3 demonstrates a behavior, which is typical for the photosensitive solids.
Bi doping results in significant quenching of the excitonic luminescence and shift of the luminescence band maximum position toward higher energy, while Ag doping does not change both parameters of the excitonic luminescence. Photoirradiation of the halide perovskite samples leads to the photostimulated luminescence quenching that, in general, correlates with photostimulated formation of the intrinsic defects.
Introduction
Hybrid organo-inorganic perovskites and inorganic perovskites, and perovskite-like materials have attracted significant attention in the scientific community as active components of solar cells due to their optoelectronic and electrophysical properties. Perovskite materials have shown astonishing achievements in perovskite solar cells ( PSCs), which achieved a record certified efficiency of over 25.2% [1]. They are also fascinating for broad applications in spintronics [2], light-emitting diodes [3,4], lasers [4], photodetectors [5-7], X-ray [8], and gamma detectors [9].
Perovskite materials are also easier to fabricate using a simple solution process with earth-abundant chemical species. The criteria to be met by these elements include mainly size restrictions (i.e., tolerance of Goldschmidt and octahedral factor). The fact that several perovskite properties are exceptionally smoothly tunable why the composition is interchangeable [10].
The optoelectronic properties of perovskites offer extreme tenability, low-cost processes, and versatility. Their large absorption coefficient and composition-dependent bandgap make them ideal materials for light-absorbing and emitting applications. Mainly coulombic interactions between the photoexcited electrons and holes give rise to "excitonic effects" that modulate the optoelectronic behaviour of semiconductors [11].
Moreover, their defect tolerant crystal structure (the dominance of shallow point defects) restrains charge carrier recombination processes, and their long carrier diffusion length generates free charge carriers. These qualities are the underlying reasons for the remarkable efficiency of the derived solar cells. The limiting factor
of the commercialization of perovskite materials based devices is their sensitivity towards several environmental factors (e.g., humidity, heat, light) [12].
Although organic-inorganic perovskites have a suitable bandgap for PV application and can obtain high power conversion efficiency (PCE), the organic component volatility in the perovskite film and elsewhere in the device causes thermal instability in PSCs. Incorporating inorganic cations (Cs+) into organic-inorganic perovskites can further improve structural and thermal stability [13]. Even higher thermal stability would be achieved by replacing all the organic cations with inorganic cations [14]. Inorganic Cs-based perovskites have a wider bandgap than their organic counterparts, making them suitable for tandem solar cells, light-emitting diodes (LEDs), and sensors [15].
Thus these materials are appealing for alternative photovoltaic technologies. However, perovskite materials present substantial issues, such as instability to environmental conditions, toxicity (as most of the perovskite materials for PV applications contain lead), and electrical hysteresis. Numerous research groups are focusing on solving these issues [16]. In particular, the stability and hysteresis issues have shown remarkable improvement by using multi-cation mixed halide perovskite materials [17], and it was shown that lead might be replaced with tin for the production of environmentally friendly materials, with fewer issues related to disposal and/or recycling processes [18]. Therefore, the main goal of the perovskite research community is to fulfill the "golden triangle" of solar cell technology, this being cost, efficiency, and stability properties for the fast commercialization of the product.
The aim of this work was to study the effect of heterovalent cation doping on the structure and optical properties of perovskite materials. In order to achieve this goal, the following problems were to be solved:
1. Synthesis of nominally pure and doped Ag+ and Bi3+ micro dispersed samples of CsPbBr3.
2. Physico-chemical characterization of the synthesized samples to establish their structure and elemental composition.
3. Investigation of the effect of doping on the optical and luminescent characteristics of the CsPbBr3 halide perovskite.
4. Investigation of the processes of photoinduced defect formation and the effect of doping on the efficiency of processes.
5. Investigation of the effect of doping and photoinduced defect formation on the photoluminescence of dispersed CsPbBr3.
To solve these problems, the following research methods were selected. The effect of adding a small amount of Ag+ or Bi3+ cations in inorganic perovskite upon doping was considered. The study of the effect of photoinduced defect formation using diffuse reflectance spectroscopy was applied to analyze the samples' defective structure. We also examine the nature of the photoluminescence quenching and charge transfer properties between the cations doping either Ag+ (p-type) or Bi3+ (n-type) and pristine CsPbBr3 perovskite. Finally, the samples' comprehensive physicochemical characterization was carried out by the following methods:
• X-ray diffraction analysis
• Scanning electron microscopy
• X-ray photoelectron spectroscopy
• Luminescent technique
• Diffuse reflectance spectroscopy
The reliability and approbation of the research. The reliability of the results obtained is provided by the use of modern physicochemical research methods for studying the perovskite structure, reproducibility of experimental results, and the consistency of data obtained for perovskite materials exposed to light-irradiation with known literature data.
The research results were published in peer-reviewed journals[19-22]:
1) Ibrahim M. Sharaf, Anna V. Shurukhina and Alexei V. Emeline, Structural and Optical Properties of Pristine and Doped CsPbBr3 Perovskite, IOP Conf. Series: Earth and Environmental Science 706 (2021) 012044. https://iopscience.iop.org/article/10.1088/1755-1315/706/17012044
2) Ibrahim M. Sharaf, Anna V. Shurukhina, Irina S. Komarova and Alexei V. Emeline, Effect of heterovalent doping on photostimulated defect formation in CsPbBr3, Mendeleev Commun., 2021, Vol. 31, issue 4, p. 465-468, https: //www. doi.org/%2010.1016/j.mencom.2021.07.009
3) Vyacheslav N. Kuznetsov, Nadezhda I. Glazkova, Ruslan V. Mikhaylov, Ibrahim M. Sharaf, Vladimir K. Ryabchuk, Alexei V. Emeline, and Nick Serpon, Separation and Recombination of Photocarriers from Color Centers and Optically Silent Trap States from 100 to 450 K: The Halide Double Photochromic Perovskite Cs2AgBiBr6, ACS Appl. Mater. Interfaces, 21, 13, 21, 25513-25522 , https://pubs.acs.org/doi/pdf/10.1021/acsami.1c03721
4) Ibrahim M. Sharaf, Anna V. Shurukhina, Irina S. Komarova and Alexei V. Emeline, Photoinduced defect formation in pristine and doped CsPbBr3 perovskite, Journal of Xi'an University of Architecture & Technology,
Volume XI, Issue XII, 2019, https://www.xaj zkj dx.cn/gallery/62-dec2019.pdf
The results of the work were reported at the following scientific conferences:
1) Emeline A. V., Komarova I. S., Sharaf I., Photostimulated defect formation in pristine and doped halide perovskites, in: conf. MAPPIC-2019, October 14-15, 2019 Moscow, Russia, P-18.
2) Ibrahim Sharaf, Anna Shurukhina, Irina Komarova, Alexei Emeline, photoinduced defect formation of pristine and doped CsPbBr3 perovskite, in: Conf. ICESS 2020, 9-10 January, 2020, Saint Petersburg , Russia, p 15.
3) Sharaf I. M., Shurukhina A., Komarova I., Emeline A., Photostimulated Defect Formation in Doped and Undoped CsPbBr3 Perovskite, in: conf. MAPPIC-2020, 26-28 October 2020. Moscow, Russia, P-73.
4) Ibrahim M Sharaf, Alexei V. Emeline, Photoinduced defect formation in pristine and doped CsPbBr3 perovskite, in: Conference "Science and Progress", November 10-12, 2020. Saint-Petersburg State University (Saint-Petersburg, Russia).
5) Ibrahim M. Sharaf, Alexei V. Emeline" Photoinduced color center formation in pristine and doped CsPbBr3 perovskit" in: Conference Наука СПбГУ - 2020, December 24, 2020, Saint-Petersburg, Russia.
6) Ibrahim M. Sharaf, Anna V. Shurukhina, Alexei V. Emeline, Structural and optical properties of pristine and doped CsPbBr3 perovskite, in: Conf. GMEE2021, February 2-3, 2021 , Changsha, China.
The scientific novelty of the results:
1. the systematic studies of the type and concentration of heterovalent dopant on the structure of CsPbBr3 halide perovskite.
2. the effect of heterovalent dopant types and contents on photostimulated defect formation.
3. the intrinsic defect states redistribution is determined by the type and concentration of heterovalent dopants.
4. Correlation between the efficiency of photostimulated defect formation in doped halide perovskite and degree of the lattice distortion.
5. Dependence of either photoresistant or photosensitive type of halide perovskite on the type and concentration of the heterovalent dopants.
6. Correlation between dopant induced luminescence quenching and the number of the intrinsic compensating defects
7. Correlation between photostimulated luminescence quenching and the number of photoinduced defects.
Thesis statements to be defended:
1. Heterovalent doping of CsPbBr3 halide perovskite results in lattice distortion dependent on the type and concentration of the dopants.
2. Monovalent and trivalent cation doping leads to stabilization of intrinsic compensating defects, which type and their spectral and energy distributions are determined by the type and concentration of the dopants.
3. Characteristics and mechanisms of photostimulated defect formation depend on the type and concentration of the heterovalent dopants.
4. Mechanisms of the excitonic luminescence quenching are determined by the type and concentration of the intrinsic defects.
5. Correlations between structural parameter (lattice volume) and efficiency of photostimulated defect formation and excitonic luminescence band characteristics.
The author's personal contribution was conducting experimental studies, processing and interpreting data obtained by spectral methods, analyzing the results obtained, as well as writing articles, and preparing reports on the results of research.
The personal contribution of the author. The author with Anna Shurukhina were synthesized a series of Ag+ and Bi3+ samples of doped CsPbBr3 perovskites. Samples characterization was carried out with technical support by resource centers "Nanophotonics", "X-ray Diffraction Studies", "Physical Methods of Surface Investigation", "Centre for Geo-Environmental Research and Modelling (GEOMODEL)", "Chemistry Educational Centre", "Innovative technologies of composite nanomaterials", and "center for Optical and Laser Materials Research" of the Research Park of St. Petersburg State University, analysis of the results was carried out by the author. The author personally obtained all results on absorption, photoluminescence quenching, and photoinduced coloration of defects. Results and conclusions were discussed with the supervisor. Together with co-authors and the supervisor, the authors were conducting experimental studies, processing and interpreting data obtained by spectral methods, analyzing the results obtained, writing articles, and preparing reports on research results.
Похожие диссертационные работы по специальности «Другие cпециальности», 00.00.00 шифр ВАК
Заключение диссертации по теме «Другие cпециальности», Али Ибрагим Мохаммед Шарафелдин
Заключение
В заключение, на основании полученных в работе основных результатов можно сделать следующие выводы:
1. Синтезированы два набора перовскита CsPbBr3, допированного Вь и Ag, с содержанием Ag 0,0 ат%, 0,038 ат%, 0,088 ат%, 0,29 ат% и 0,44 ат%, и Bi 0,0 ат%, 0,088 ат%, 0,18 ат%, 0,26 ат% и 0,43 ат%.
2. Образцы перовскита CsPbBr3 кристаллизуется в орторомбической фазе перовскита. Введение контролируемых примесей Ag или Bi не приводит к изменению фазового состава.
3. Гетеровалентное допирование перовскита СбРЬБгз приводит к изменению объема элементарной ячейки. Характер изменения зависит от типа и концентрации допантов. Допирование Ag и Bi сохраняет стабильность параметра решетки.. Допирование как Ag, так и Bi поддерживает стабильность параметра решетки.
4. Допирование Ag не влияет на фундаментальное поглощение света CsPbBr3 и не приводит к изменению оптическоой ширины запрещенной зоны (2,26 эВ). В то же время, допирование Bi значительно расширяет спектральную область поглощения, вызванную образованием дефектных состояний.
5. Допирование Bi или Ag приводит к перераспределению собственных дефектов и образованию доминирующих типов дефектных состояний в зависимости от типа и концентрации допанта для компенсации избытка заряда соответствующих катионов допанта, что приводит к различным типам собственных дефектов.
6. Фотовозбуждение перовскитных материалов в области собственного поглощения приводит к образованию фотоиндуцированных дефектов. Этот эффект фотоиндуцированного дефектообразования высокоэффективен для
образцов, содержащих серебро. Образование дефектов в перовскитовых материалах, содержащих висмут, низкоэффективно.
7. Допирование Bi приводит к повышению устойчивости к фотостимулированному дефектообразованию, тогда как допирование Ag значительно облегчает фотостимулированное образование новых дефектных состояний и при более высокой степени допирования Ag-допированный СбРЬБгз демонстрирует поведение, характерное для фоточувствительных твердых тел.
8. Допирование Bi приводит к значительному тушению экситонной люминесценции и смещению положения максимума полосы люминесценции в сторону более высоких энергий, в то время как Ag=допирование не изменяет оба параметра экситонной люминесценции.
9. Допирование Ag и Bi приводит к изменению параметра FWHM полосы люминесценции, и его изменения коррелируют с изменениями объема ячейки, вызванными допированием.
10. Фотооблучение образцов галогенидного перовскита приводит к фотостимулированному тушению люминесценции, что в целом коррелирует с фотостимулированным образованием внутренних дефектов.
На основании полученных результатов можно сделать следующие выводы:
1. Гетеровалентное допирование не влияет на кристаллическую структуру галогенидного перовскита CsPbBr3, однако нарушает решетку, что приводит к изменению объема ячейки в зависимости от концентрации допирующего элемента.
2. Гетеровалентное допирование Ag+ и ВР+ приводит к образованию внутренних дефектов, компенсирующих избыток заряда допирующих катионов. Внутренние дефекты, индуцированные Вьдопированием, оптически активны и ответственны за расширение края поглощения в
эксктринную область спектра поглощения, в то время как внутренние дефекты, индуцированные Ag-допированием, изначально оптически неактивны и становятся оптически активными при облучении за счет фотогенерации носителей заряда.
3. Увеличение концентрации допирующих элементов приводит к перераспределению собственных дефектов и стабилизации определенного типа собственных дефектов в зависимости от типа и концентрации допирующих элементов.
4. Эффективность фотостимулированного дефектообразования в галогенидных перовскитах CsPbBr3, допированных Ag и В^ коррелирует с изменением объема решетки, вызванным допированием, что указывает на степень искажения кристаллической структуры.
5. Характер кинетики фотостимулированного дефектообразования в нетронутом и Вьдопированном галогенидном перовските CsPbBr3 соответствует фотоустойчивым твердым телам и указывает на то, что механизм фотостимулированного дефектообразования обусловлен захватом носителей заряда предсуществующими дефектными состояниями.
6. Увеличение концентрации допирующего элемента Ag приводит к трансформации кинетики фотостимулированного дефектообразования от кинетики, характерной для фотоустойчивых твердых тел, к кинетике, характерной для фоточувствительных твердых тел, что в свою очередь свидетельствует об изменении доминирующего механизма фотостимулированного дефектообразования.
7. Изменения параметра FWHM полосы люминесценции при увеличении концентрации допирующих веществ коррелируют с изменением объема ячейки под действием допирующих веществ и могут быть объяснены неоднородным браденированием экситонной люминесценции.
8. Тушение люминесценции, вызванное увеличением концентрации допанта В^ коррелирует с увеличением числа компенсирующих внутренних дефектов. Механизм тушения связан с распадом экситонов на компенсирующих внутренних дефектах.
9. Фотостимулированное тушение люминесценции связано с фотостимулированным образованием дефектных состояний и может быть приписано распаду экситонов на фотоиндуцированных дефектах.
10. Внутренние дефекты, компенсирующие избыток заряда в Вь допированных образцах, и фотоиндуцированные дефекты в Ag-допированном галогенидном перовските могут быть отнесены к междоузельным Вг-состояниям.
Список литературы диссертационного исследования кандидат наук Али Ибрагим Мохаммед Шарафелдин, 2022 год
С писок литературы
1. Kojima A. et al. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells // J. Am. Chem. Soc. 2009. Vol. 131, № 17. P. 60506051.
2. Yang Y. et al. Large polarization-dependent exciton optical Stark effect in lead iodide perovskites // Nat. Commun. 2016. Vol. 7, № 1. P. 12613.
3. Tan Z.-K. et al. Bright light-emitting diodes based on organometal halide perovskite // Nat. Nanotechnol. 2014. Vol. 9, № 9. P. 687-692.
4. Veldhuis S. A. et al. Perovskite Materials for Light-Emitting Diodes and Lasers // Adv. Mater. 2016. Vol. 28, № 32. P. 6804-6834.
5. Wang H., Kim D. H. Perovskite-based photodetectors: materials and devices // Chem. Soc. Rev. 2017. Vol. 46, № 17. P. 5204-5236.
6. Ahmadi M., Wu T., Hu B. A Review on Organic-Inorganic Halide Perovskite Photodetectors: Device Engineering and Fundamental Physics // Adv. Mater. 2017. Vol. 29, № 41. P. 1605242.
7. Yang B. et al. Ultrasensitive and Fast All-Inorganic Perovskite-Based Photodetector via Fast Carrier Diffusion // Adv. Mater. 2017. Vol. 29, № 40. P. 1703758.
8. Yakunin S. et al. Detection of X-ray photons by solution-processed lead halide perovskites // Nat. Photonics. 2015. Vol. 9, № 7. P. 444-449.
9. Yakunin S. et al. Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites // Nat. Photonics. 2016. Vol. 10, № 9. P. 585-589.
10. Vidyasagar C. C., Muñoz Flores B. M., Jiménez Pérez V. M. Recent Advances in Synthesis and Properties of Hybrid Halide Perovskites for Photovoltaics // Nano-Micro Lett. 2018. Vol. 10, № 4. P. 68.
11. Chen X. et al. Excitonic Effects in Methylammonium Lead Halide Perovskites // J. Phys. Chem. Lett. 2018. Vol. 9, № 10. P. 2595-2603.
12. Hong S. J. et al. First-principles mechanism study on distinct optoelectronic properties of Cl-doped 2D hybrid tin iodide perovskite // J. Mater. Chem. C. 2020. Vol. 8, № 28. P. 9540-9548.
13
14
15
16
17
18
19
20
21
22
23
24
25
26
Green M. A. et al. Solar cell efficiency tables (version 52) // Prog. Photovoltaics Res. Appl. 2018. Vol. 26, № 7. P. 427-436.
Wang Y. et al. Shanghai Institute of Pollution Control and Ecological Security // Chinese Academy of Sciences. 2012.
Conings B. et al. Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite // Adv. Energy Mater. 2015. Vol. 5, № 15. P. 1500477.
Ansari M. I. H., Qurashi A., Nazeeruddin M. K. Frontiers, opportunities, and challenges in perovskite solar cells: A critical review // J. Photochem. Photobiol. C Photochem. Rev. 2018. Vol. 35. P. 1-24.
Grätzel M. The Rise of Highly Efficient and Stable Perovskite Solar Cells // Acc. Chem. Res. 2017. Vol. 50, № 3. P. 487-491.
Konstantakou M., Stergiopoulos T. A critical review on tin halide perovskite solar cells // J. Mater. Chem. A. 2017. Vol. 5, № 23. P. 11518-11549.
Sharaf I. M., Shurukhina A. V., Emeline A. V. Structural and Optical Properties of Pristine and Doped CsPbBr3 Perovskite // IOP Conf. Ser. Earth Environ. Sci. 2021. Vol. 706, № 1. P. 012044.
Sharaf I. M. et al. defect formation in CsPbBr3. 2021. P. 1-4.
Kuznetsov V. N. et al. Separation and Recombination of Photocarriers from Color Centers and Optically Silent Trap States from 100 to 450 K: The Halide Double Photochromic Perovskite Cs2AgBiBr6 // ACS Appl. Mater. Interfaces. 2021. Vol. 13, № 21. P. 25513-25522.
Perovskite D. C. et al. PHOTOINDUCED DEFECT FORMATION IN PRISTINE AND. 2019. Vol. XI, № Xii. P. 576-580.
Miyata A. et al. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites // Nat. Phys. 2015. Vol. 11, № 7. P. 582-587.
Rose G. Beschreibung einiger neuen Mineralien des Urals // Ann. der Phys. und Chemie. 1839. Vol. 124, № 12. P. 551-573.
Wells H.L. Über die Cäsium- und Kalium-Bleihalogenide // Zeitschrift für Anorg. Chemie. 1893. Vol. 3, № 1. P. 195-210.
M0LLER C.K. Crystal Structure and Photoconductivity of Cesium Plumbohalides // Nature. 1958. Vol. 182, № 4647. P. 1436-1436.
27. Weber D. CH3NH3PbX3, ein Pb(II)-System mit kubischer Perowskitstruktur / CH3NH3PbX3, a Pb(II)-System with Cubic Perovskite Structure // Zeitschrift für Naturforsch. B. 1978. Vol. 33, № 12. P. 1443-1445.
28. Poglitsch A., Weber D. Dynamic disorder in methylammonium trihalogenoplumbates (II) observed by millimeter-wave spectroscopy // J. Chem. Phys. 1987. Vol. 87, № 11. P. 6373-6378.
29. Stoumpos C. C., Kanatzidis M. G. The Renaissance of Halide Perovskites and Their Evolution as Emerging Semiconductors // Acc. Chem. Res. 2015. Vol. 48, № 10. P. 2791-2802.
30. Sutton R. J. et al. Cubic or Orthorhombic? Revealing the Crystal Structure of Metastable Black-Phase CsPbI3 by Theory and Experiment // ACS Energy Lett. 2018.
31. Goldschmidt V. M. Die Gesetze der Krystallochemie // Naturwissenschaften. 1926. Vol. 14, № 21. P. 477-485.
32. Hirotsu S. et al. Structural Phase Transitions in CsPbBr3 // J. Phys. Soc. Japan. 1974.
33. Li Z. et al. Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys // Chem. Mater. 2016. Vol. 28, № 1. P. 284-292.
34. Dastidar S. et al. High Chloride Doping Levels Stabilize the Perovskite Phase of Cesium Lead Iodide // Nano Lett. 2016. Vol. 16, № 6. P. 3563-3570.
35. Li C. et al. Formability of ABX3 ( X = F, Cl, Br, I) halide perovskites // Acta Crystallogr. Sect. B Struct. Sci. 2008. Vol. 64, № 6. P. 702-707.
36. Li B. et al. Pathways toward high-performance inorganic perovskite solar cells : challenges and strategies. 2019.
37. Saliba M. et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance // Science (80-. ). 2016. Vol. 354, № 6309. P. 206-209.
38. Sutton R. J. et al. Bandgap-Tunable Cesium Lead Halide Perovskites with High Thermal Stability for Efficient Solar Cells // Adv. Energy Mater. 2016. Vol. 6, № 8. P. 1502458.
39. Stoumpos C. C., Malliakas C. D., Kanatzidis M. G. Semiconducting Tin and
Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties // Inorg. Chem. 2013. Vol. 52, № 15. P. 9019-9038.
40. Akkerman Q. A. et al. Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions // J. Am. Chem. Soc. 2015. Vol. 137, № 32. P. 10276-10281.
41. Luo P. et al. Solvent Engineering for Ambient-Air-Processed, Phase-Stable CsPbl3 in Perovskite Solar Cells // J. Phys. Chem. Lett. 2016. Vol. 7, № 18. P. 3603-3608.
42. Eperon G.E. et al. Inorganic caesium lead iodide perovskite solar cells // J. Mater. Chem. A. 2015. Vol. 3, № 39. P. 19688-19695.
43. Hu Y. et al. Bismuth Incorporation Stabilized a-CsPbI 3 for Fully Inorganic Perovskite Solar Cells // ACS Energy Lett. 2017. Vol. 2, № 10. P. 2219-2227.
44. Stoumpos C. C. et al. Crystal Growth of the Perovskite Semiconductor CsPbBr3 : A New Material for High-Energy Radiation Detection // Cryst. Growth Des. 2013. Vol. 13, № 7. P. 2722-2727.
45. Chen Y. et al. Tuning the electronic structures of all-inorganic lead halide perovskite CsPbI3 via heterovalent doping: A first-principles investigation // Chem. Phys. Lett. 2019. Vol. 722. P. 90-95.
46. Yang R. X. et al. Spontaneous Octahedral Tilting in the Cubic Inorganic Cesium Halide Perovskites CsSnX3 and CsPbX3 (X = F, Cl, Br, I) // J. Phys. Chem. Lett. 2017. Vol. 8, № 19. P. 4720-4726.
47. Tang P. J. P., Pullin M. J., Phillips C. C. Binding energy of the free exciton in indium arsenide // Phys. Rev. B. 1997. Vol. 55, № 7. P. 4376-4381.
48. Kang J., Wang L. High Defect Tolerance in Lead Halide Perovskite. 2017.
49. Brandt R. E. et al. Searching for " Defect-Tolerant " Photovoltaic Materials: Combined Theoretical and Experimental Screening. 2017.
50. Ullah S. et al. All-inorganic CsPbBr3 perovskite: a promising choice for photovoltaics // Mater. Adv. 2021. Vol. 2, № 2. P. 646-683.
51. Yin J. et al. Unlocking the Effect of Trivalent Metal Doping in All-Inorganic CsPbBr3 Perovskite // ACS Energy Lett. 2019. Vol. 4, № 3. P. 789-795.
52. Ricciarelli D. et al. Electronic Properties and Carrier Trapping in Bi and Mn
Co-doped CsPbCls Perovskite // J. Phys. Chem. Lett. 2020. Vol. 11, № 14. P. 5482-5489.
53. Brennan M. C. et al. Origin of the Size-Dependent Stokes Shift in CsPbBr3 Perovskite Nanocrystals // J. Am. Chem. Soc. 2017. Vol. 139, №№ 35. P. 1220112208.
54. Shi T. et al. Unipolar self-doping behavior in perovskite CH3NH3PbBr3 // Appl. Phys. Lett. 2015. Vol. 106, № 10. P. 103902.
55. Sarritzu V. et al. Direct or Indirect Bandgap in Hybrid Lead Halide Perovskites? // Adv. Opt. Mater. 2018. Vol. 6, № 10. P. 1701254.
56. Hutter E. M. et al. Direct-indirect character of the bandgap in methylammonium lead iodide perovskite // Nat. Mater. 2017. Vol. 16, №2 1. P. 115-120.
57. Yu Z.-L. et al. Theoretical study on the effect of the optical properties and electronic structure for the Bi-doped CsPbBr3 // J. Phys. Condens. Matter. 2020. Vol. 32, № 20. P. 205504.
58. Lozhkina O. A. et al. Energy Conversion and Storage; Plasmonics and Optoelectronics Invalidity of Band Gap Engineering Concept for Bi3+ Heterovalent Doping in CsPbBr3 Halide Perovskite . Invalidity of Band Gap Engineering Concept for Bi3+ Heterovalent Doping in. 2018.
59. Zhou S. et al. Ag-Doped Halide Perovskite Nanocrystals for Tunable Band Structure and Efficient Charge Transport. 2019.
60. Akkerman Q. A. et al. Strongly emissive perovskite nanocrystal inks for highvoltage solar cells // Nat. Energy. 2017. Vol. 2, № 2. P. 16194.
61. Abdelhady A. L. et al. Heterovalent Dopant Incorporation for Bandgap and Type Engineering of Perovskite Crystals. 2016.
62. Saba M. et al. Excited State Properties of Hybrid Perovskites // Acc. Chem. Res. 2016. Vol. 49, № 1. P. 166-173.
63. Green M. A., Ho-Baillie A., Snaith H. J. The emergence of perovskite solar cells // Nat. Photonics. 2014. Vol. 8, № 7. P. 506-514.
64. D'Innocenzo V. et al. Excitons versus free charges in organo -lead tri-halide perovskites // Nat. Commun. 2014. Vol. 5, № 1. P. 3586.
65. Wang P. et al. Solvent-controlled growth of inorganic perovskite films in dry
environment for efficient and stable solar cells // Nat. Commun. 2018. Vol. 9, № 1. P. 2225.
66. Huang J. et al. Understanding the physical properties of hybrid perovskites for photovoltaic applications // Nat. Rev. Mater. 2017. Vol. 2, № 7. P. 17042.
67. Singh R. K. et al. Investigation of optical and dielectric properties of CsPbI3 inorganic lead iodide perovskite thin film // J. Taiwan Inst. Chem. Eng. 2019. Vol. 96. P. 538-542.
68. Liu X. et al. Boosting the efficiency of carbon-based planar CsPbBr3 perovskite solar cells by a modified multistep spin-coating technique and interface engineering // Nano Energy. 2019. Vol. 56. P. 184-195.
69. Luo P. et al. Fast anion-exchange from CsPbI3 to CsPbBr3 via Br2-vapor-assisted deposition for air-stable all-inorganic perovskite solar cells // Chem. Eng. J. 2018. Vol. 343. P. 146-154.
70. Manuscript A. Materials Chemistry C.
71. An W. E. Y. et al. Determination of complex optical constants and photovoltaic device design of all-inorganic CsPbBr3 perovskite thin films. 2020. Vol. 28, № 10. P. 15706-15717.
72. Ball J. M., Petrozza A. Defects in perovskite-halides and their effects in solar cells // Nat. Energy. 2016. Vol. 1, № 11. P. 16149.
73. Strak P. et al. Exact method of determination of the recombination mode from time resolved photoluminescence data. 2017. № December 2019.
74. Walsh A., Zunger A. Instilling defect tolerance in new compounds // Nat. Mater. 2017. Vol. 16, № 10. P. 964-967.
75. Schulze P. D., Hardy J. R. Frenkel Defects in Alkali Halides // Phys. Rev. B. 1972. Vol. 6, № 4. P. 1580-1584.
76. Meggiolaro D. et al. Iodine chemistry determines the defect tolerance of lead-halide perovskites // Energy Environ. Sci. 2018. Vol. 11, № 3. P. 702-713.
77. Peaker A. R., Markevich V. P., Coutinho J. Tutorial: Junction spectroscopy techniques and deep-level defects in semiconductors // J. Appl. Phys. 2018. Vol. 123, № 16. P. 161559.
78. Jin H. et al. Materials Horizons It ' s a trap ! On the nature of localised states and charge trapping in lead halide perovskites. Royal Society of Chemistry,
79. Yin W. et al. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. 2015. Vol. 063903, № 2014.
80. Zhao T. et al. Intrinsic and Extrinsic Charge Transport in CH3NH3PbI3 Perovskites Predicted from First-Principles // Sci. Rep. 2016. Vol. 6, № 1. P. 19968.
81. Leijtens T. et al. Carrier trapping and recombination: the role of defect physics in enhancing the open circuit voltage of metal halide perovskite solar cells // Energy Environ. Sci. 2016. Vol. 9, № 11. P. 3472-3481.
82. Ayres J. R. Characterization of trapping states in polycrystalline-silicon thin film transistors by deep level transient spectroscopy // J. Appl. Phys. 1993. Vol. 74, № 3. P. 1787-1792.
83. de Quilettes D. W. et al. Impact of microstructure on local carrier lifetime in perovskite solar cells // Science (80-. ). 2015. Vol. 348, № 6235. P. 683-686.
84. Jones T. W. et al. Lattice strain causes non-radiative losses in halide perovskites // Energy Environ. Sci. 2019. Vol. 12, № 2. P. 596-606.
85. Vorpahl S. M. et al. Orientation of Ferroelectric Domains and Disappearance upon Heating Methylammonium Lead Triiodide Perovskite from Tetragonal to Cubic Phase // ACS Appl. Energy Mater. 2018. Vol. 1, № 4. P. 1534-1539.
86. Liu C., Cheng Y.-B., Ge Z. Understanding of perovskite crystal growth and film formation in scalable deposition processes // Chem. Soc. Rev. 2020. Vol. 49, № 6. P. 1653-1687.
87. Park J. S. et al. Point defect engineering in thin-film solar cells // Nat. Rev. Mater. 2018. Vol. 3, № 7. P. 194-210.
88. Mannodi-kanakkithodi A. et al. First-principles Study of Intrinsic and Extrinsic Point Defects in Lead- Based Hybrid Perovskites.
89. Etgar L. et al. Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells // J. Am. Chem. Soc. 2012. Vol. 134, № 42. P. 17396-17399.
90. Laban W. A., Etgar L. Depleted hole conductor-free lead halide iodide heterojunction solar cells // Energy Environ. Sci. 2013. Vol. 6, № 11. P. 3249.
91. You J. et al. Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility // ACS Nano. 2014. Vol. 8, № 2. P. 1674-
92. Norris D. J., Efros A. L., Erwin S. C. Doped Nanocrystals // Science (80-. ). 2008. Vol. 319, № 5871. P. 1776-1779.
93. Hu Y. et al. Fe2+ doped in CsPbCl3 perovskite nanocrystals: impact on the luminescence and magnetic properties // RSC Adv. 2019. Vol. 9, № 57. P. 33017-33022.
94. Das Adhikari S. et al. Chemically Tailoring the Dopant Emission in Manganese-Doped CsPbCl3 Perovskite Nanocrystals // Angew. Chemie Int. Ed. 2017. Vol. 56, № 30. P. 8746-8750.
95. Luo B. et al. B-Site doped lead halide perovskites: Synthesis, band engineering, photophysics, and light emission applications // J. Mater. Chem. C. 2019. Vol. 7, № 10. P. 2781-2808.
96. Kumawat N. K. et al. Metal Doping/Alloying of Cesium Lead Halide Perovskite Nanocrystals and their Applications in Light-Emitting Diodes with Enhanced Efficiency and Stability // Isr. J. Chem. 2019. Vol. 59, № 8. P. 695707.
97. Tang C. et al. Design of doped cesium lead halide perovskite as a photo-catalytic CO2 reduction catalyst // J. Mater. Chem. A. 2019. Vol. 7, № 12. P. 6911-6919.
98. Ding H. et al. Transition metal halide-doped, highly stable all-inorganic perovskite nanocrystals for fabrication of white light-emitting diodes // J. Mater. Chem. C. 2019. Vol. 7, № 6. P. 1690-1695.
99. Murugadoss G., Thangamuthu R. Metals doped cesium based all inorganic perovskite solar cells: Investigations on Structural, morphological and optical properties // Sol. Energy. 2019. Vol. 179. P. 151-163.
100. Jiang Q. et al. Electrochemical Lithium Doping Induced Property Changes In Halide Perovskite CsPbBr3 Crystal // ACS Energy Lett. 2018. Vol. 3, № 1. P. 264-269.
101. Li Q. et al. Excitonic Luminescence Engineering in Tervalent-Europium-Doped Cesium Lead Halide Perovskite Nanocrystals and Their Temperature-Dependent Energy Transfer Emission Properties // J. Phys. Chem. C. 2018. Vol. 122, № 50. P. 29044-29050.
102. Mir W. J. et al. Postsynthesis Doping of Mn and Yb into CsPbX3 (X = Cl, Br,
or I) Perovskite Nanocrystals for Downconversion Emission // Chem. Mater. 2018. Vol. 30, № 22. P. 8170-8178.
103. Pan G. et al. Impurity Ions Codoped Cesium Lead Halide Perovskite Nanocrystals with Bright White Light Emission toward Ultraviolet-White Light-Emitting Diode // ACS Appl. Mater. Interfaces. 2018. Vol. 10, № 45. P. 39040-39048.
104. Duan J. et al. Lanthanide Ions Doped CsPbBr 3 Halides for HTM-Free 10.14%-Efficiency Inorganic Perovskite Solar Cell with an Ultrahigh Open-Circuit Voltage of 1.594 V // Adv. Energy Mater. 2018. Vol. 8, № 31. P. 1802346.
105. Eperon G. E., Ginger D. S. B-Site Metal Cation Exchange in Halide Perovskites // ACS Energy Lett. 2017. Vol. 2, № 5. P. 1190-1196.
106. Vitoreti A. B. F. et al. Study of the Partial Substitution of Pb by Sn in Cs-Pb-Sn-Br Nanocrystals Owing to Obtaining Stable Nanoparticles with Excellent Optical Properties // J. Phys. Chem. C. 2018. Vol. 122, № 25. P. 14222-14231.
107. Parobek D. et al. Direct Hot-Injection Synthesis of Mn-Doped CsPbBr3 Nanocrystals // Chem. Mater. 2018. Vol. 30, № 9. P. 2939-2944.
108. Zou S. et al. Template-Free Synthesis of High-Yield Fe-Doped Cesium Lead Halide Perovskite Ultralong Microwires with Enhanced Two-Photon Absorption // J. Phys. Chem. Lett. 2018. Vol. 9, № 17. P. 4878-4885.
109. Pan G. et al. Doping Lanthanide into Perovskite Nanocrystals: Highly Improved and Expanded Optical Properties // Nano Lett. 2017. Vol. 17, № 12. P. 8005-8011.
110. Begum R. et al. Engineering Interfacial Charge Transfer in CsPbBr3 Perovskite Nanocrystals by Heterovalent Doping // J. Am. Chem. Soc. 2017. Vol. 139, № 2. P. 731-737.
111. Swarnkar A., Ravi V. K., Nag A. Beyond Colloidal Cesium Lead Halide Perovskite Nanocrystals: Analogous Metal Halides and Doping // ACS Energy Lett. 2017. Vol. 2, № 5. P. 1089-1098.
112. Zhang Z. et al. Bandgap Narrowing in Bi-Doped CH3NH3PbCl3 Perovskite Single Crystals and Thin Films // J. Phys. Chem. C. 2017. Vol. 121, № 32. P. 17436-17441.
113. Miao X. et al. Air-stable CsPb1-xBixBr3 (0 < x « 1) perovskite crystals:
optoelectronic and photostriction properties // J. Mater. Chem. C. 2017. Vol. 5, № 20. P. 4931-4939.
114. Yamada Y. et al. Impact of Chemical Doping on Optical Responses in Bismuth-Doped CH3NH3PbBr3 Single Crystals: Carrier Lifetime and Photon Recycling // J. Phys. Chem. Lett. 2017. Vol. 8, № 23. P. 5798-5803.
115. Pazoki M., Edvinsson T. Metal replacement in perovskite solar cell materials: Chemical bonding effects and optoelectronic properties // Sustain. Energy Fuels. Royal Society of Chemistry, 2018. Vol. 2, № 7. P. 1430-1445.
116. Abdi-jalebi M. et al. Monovalent Cation Doping of CH3NH3PbI3 for Efficient Perovskite Solar Cells. 2017. № March. P. 1-9.
117. Yang D., Huo D. Cation doping and strain engineering of CsPbBr3 -based perovskite light emitting diodes // J. Mater. Chem. C. 2020. Vol. 8, № 20. P. 6640-6653.
118. Pazoki M. et al. Effect of metal cation replacement on the electronic structure of metalorganic halide perovskites: Replacement of lead with alkaline-earth metals // Phys. Rev. B. 2016. Vol. 93, № 14. P. 144105.
119. Abdi-Jalebi M. et al. Impact of Monovalent Cation Halide Additives on the Structural and Optoelectronic Properties of CH3NH3PbI3 Perovskite // Adv. Energy Mater. 2016. Vol. 6, № 10. P. 1502472.
120. Shahbazi S. et al. Ag Doping of Organometal Lead Halide Perovskites: Morphology Modification and p-Type Character // J. Phys. Chem. C. 2017. Vol. 121, № 7. P. 3673-3679.
121. Chang C. et al. NaI Doping Effect on Photophysical Properties of Organic-Lead-Halide Perovskite Thin Films by Using Solution Process // Adv. Mater. Sci. Eng. 2019. Vol. 2019. P. 1-9.
122. Lu M. et al. Spontaneous Silver Doping and Surface. 2018.
123. Abdi-jalebi M. et al. Pristine NaI CuI AgI Intensity Conduction Band ( CB ) Fermi Level Intensity Valence. 2018.
124. Chen Q. et al. Ag-Incorporated Organic-Inorganic Perovskite Films and Planar Heterojunction Solar Cells. 2017.
125. Zhou S. et al. Ag-Doped Halide Perovskite Nanocrystals for Tunable Band Structure and Efficient Charge Transport. 2019.
126. Ray B. C., Prusty R. K., Nayak D. Defects in Crystalline Solids // Phase Transformations and Heat Treatments of Steels. CRC Press, 2020. P. 37-50.
127. Trukhin A. Point Defects and Elementary Excitations in Crystalline and Vitreous SiO2. 2015. № October.
128. Emeline A. et al. Spectroscopic and Photoluminescence Studies of a Wide Band Gap Insulating Material : Powdered and Colloidal ZrO2 Sols. 1998. Vol. 7463, № 6. P. 5011-5022.
129. Peaker A. R. et al. Recombination via point defects and their complexes in solar silicon // Phys. status solidi. 2012. Vol. 209, № 10. P. 1884-1893.
130. Khabibrakhmanov R. et al. UV-induced defect formation in cubic ZrO2. Optical demonstration of Y, Yb and Er dopants interacting with photocarriers // Chem. Phys. Lett. 2020. Vol. 742. P. 137136.
131. Kuznetsov V. N. et al. Visible-NIR Light Absorption of Titania Thermochemically Fabricated from Titanium and its Alloys; UV- and Visible-Light-Induced Photochromism of Yellow Titania // J. Phys. Chem. C. 2013. Vol. 117, № 48. P. 25852-25864.
132. Emeline A. V et al. Spectroscopic Studies of Pristine and Fluorinated Nano-ZrO2 in Photostimulated Heterogeneous Processes. 2009. P. 4566-4574.
133. Lushchik A. et al. Radiation creation of cation defects in alkali halide crystals: Review and today's concept (Review Article) // Low Temp. Phys. 2018. Vol. 44, № 4. P. 269-277.
134. Lushchik C., Lushchik A. C. Radiational creation of defects in alkali halides at 2-600 K. 2016. № January 1987.
135. Braslavsky S. E. et al. Glossary of terms used in photocatalysis and radiation catalysis (IUPAC Recommendations 2011) // Pure Appl. Chem. 2011. Vol. 83, № 4. P. 931-1014.
136. Kuznetsov V. N. et al. Advanced diffuse reflectance spectroscopy for studies of photochromic/photoactive solids // J. Phys. Condens. Matter. IOP Publishing, 2019. Vol. 31, № 42. P. ab2bab.
137. Li J. et al. Ultraviolet light induced degradation of luminescence in CsPbBr3 perovskite nanocrystals // Mater. Res. Bull. 2018. Vol. 102. P. 86-91.
138. Esparza D. et al. Light-induced effects on crystal size and photo-stability of
colloidal CsPbBr3 perovskite nanocrystals // Mater. Res. Express. 2019. Vol. 6, № 4. P. 045041.
139. Huang K. et al. y-ray Radiation on Flexible Perovskite Solar Cells // ACS Appl. Energy Mater. 2020. Vol. 3, № 8. P. 7318-7324.
140. Cohen M. L., Chelikowsky J. R. Electronic Structure and Optical Properties of Semiconductors // Physical Review Letters. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. Vol. 75, № 17. 3544-3547 p.
141. MK Bajuri. No Title p // Phys. Rev. E. 2015. № 1993. P. 24.
142. Crystal Structure[1] // Metallography and Microstructures. ASM International, 2004. P. 29-43.
143. Scholes G. D., Rumbles G. Excitons in nanoscale systems // Nat. Mater. 2006. Vol. 5, № 9. P. 683-696.
144. Mariano F. et al. The enhancement of excitonic emission crossing Saha equilibrium in trap passivated CH3NH3PbBr3 perovskite // Commun. Phys. 2020. Vol. 3, № 1. P. 41.
145. Quan L. N. et al. Tailoring the Energy Landscape in Quasi-2D Halide Perovskites Enables Efficient Green-Light Emission // Nano Lett. 2017. Vol. 17, № 6. P. 3701-3709.
146. Yang M. et al. High stability luminophores: fluorescent CsPbX3 (X = Cl, Br and I) nanofiber prepared by one-step electrospinning method // Opt. Express. 2018. Vol. 26, № 16. P. 20649.
147. Dirin D. N. et al. Harnessing Defect-Tolerance at the Nanoscale: Highly Luminescent Lead Halide Perovskite Nanocrystals in Mesoporous Silica Matrixes // Nano Lett. 2016. Vol. 16, № 9. P. 5866-5874.
148. Jiang Y. et al. Photoluminescence Mechanisms of All-Inorganic Cesium Lead Bromide Perovskites Revealed by Single Particle Spectroscopy // ChemNanoMat. 2020. Vol. 6, № 3. P. 327-335.
149. Quan L. N. et al. Highly Emissive Green Perovskite Nanocrystals in a Solid State Crystalline Matrix // Adv. Mater. 2017. Vol. 29, № 21. P. 1605945.
150. Kim Y. C. et al. Luminescent down-shifting CsPbBr3 perovskite nanocrystals for flexible Cu(In,Ga)Se2 solar cells // Nanoscale. 2020. Vol. 12, № 2. P. 558562.
151. Malgras V. et al. Stable Blue Luminescent CsPbBr3 Perovskite Nanocrystals Confined in Mesoporous Thin Films // Angew. Chemie - Int. Ed. 2018. Vol. 57, № 29. P. 8881-8885.
152. Protesescu L. et al. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3 , X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut // Nano Lett. 2015. Vol. 15, № 6. P. 3692-3696.
153. Xu L. et al. A comprehensive review of doping in perovskite nanocrystals/quantum dots: evolution of structure, electronics, optics, and light-emitting diodes // Mater. Today Nano. 2019. Vol. 6.
154. van der Stam W. et al. Highly Emissive Divalent-Ion-Doped Colloidal CsPb1-xMxBr3 Perovskite Nanocrystals through Cation Exchange // J. Am. Chem. Soc. 2017. Vol. 139, № 11. P. 4087-4097.
155. Lu M. et al. Simultaneous Strontium Doping and Chlorine Surface Passivation Improve Luminescence Intensity and Stability of CsPbI3 Nanocrystals Enabling Efficient Light-Emitting Devices // Adv. Mater. 2018. Vol. 30, № 50. P. 1804691.
156. De A., Mondal N., Samanta A. Luminescence tuning and exciton dynamics of Mn-doped CsPbCl3 nanocrystals // Nanoscale. 2017. Vol. 9, № 43. P. 1672216727.
157. Yao J.-S. et al. Ce3+ -Doping to Modulate Photoluminescence Kinetics for Efficient CsPbBr3 Nanocrystals Based Light-Emitting Diodes // J. Am. Chem. Soc. 2018. Vol. 140, № 10. P. 3626-3634.
158. Tenailleau C. et al. Cell refinement of CsPbBr3 perovskite nanoparticles and thin films To cite this version : HAL Id : hal-02360759 // Nanoscale Adv. Royal Society of Chemistry, 2019. Vol. 1. P. 147-153.
159. Yang F. et al. Surface stabilized cubic phase of CsPbI3 and CsPbBr3 at room temperature // Chinese Phys. B. 2019. Vol. 28, № 5. P. 056402.
160. Imran M. et al. Colloidal Synthesis of Strongly Fluorescent CsPbBr3 Nanowires with Width Tunable down to the Quantum Confinement Regime // Chem. Mater. 2016. Vol. 28, № 18. P. 6450-6454.
161. Zhang M. et al. Growth and characterization of all-inorganic lead halide perovskite semiconductor CsPbBr3 single crystals // CrystEngComm. 2017. Vol. 19, № 45. P. 6797-6803.
162. Abdi-Jalebi M. et al. Dedoping of Lead Halide Perovskites Incorporating Monovalent Cations // ACS Nano. 2018. Vol. 12, № 7. P. 7301-7311.
163. Lozhkina O. A. et al. Invalidity of Band-Gap Engineering Concept for Bi3+ Heterovalent Doping in CsPbBr3 Halide Perovskite // J. Phys. Chem. Lett. 2018. Vol. 9, № 18. P. 5408-5411.
164. Series C., Reshetnikova A. A., Matyushkin L. B. Effect of bismuth substitution for lead in CsPbBr3 perovskite. 2018.
165. Zhu F.-P. et al. Superbroad near-infrared photoluminescence from bismuth-doped CsPbI3 perovskite nanocrystals // Opt. Express. 2017. Vol. 25, № 26. P. 33283.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.