Свойства ультрахолодных ридберговского газа и плазмы, полученных при помощи лазерного охлаждения: эксперимент и теория тема диссертации и автореферата по ВАК РФ 01.04.21, кандидат наук Зеленер, Борис Борисович
- Специальность ВАК РФ01.04.21
- Количество страниц 265
Оглавление диссертации кандидат наук Зеленер, Борис Борисович
Оглавление
ВВЕДЕНИЕ
ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ
1.1. Лазерное охлаждение газов в магнитооптической ловушке
1.1.1. Оптическое охлаждение за счет фотонной отдачи
1.1.2 Оптическая патока
1.1.3 Доплеровский предел
1.1.4 Локализация облака холодных атомов
1.2. Методы создания и диагностики ридберговских атомов и плазмы
1.2.1. Обзор импульсных методик возбуждения ридберговских атомов
1.2.2. Регистрация ридберговских атомов
1.2.3. Ридберговские атомы в электрическом поле
1.2.4. Управление взаимодействием и пространственные манипуляции в газе ультрахолодных ридберговских атомов
1.2.5. Диагностика ультрахолодной плазмы
1.3. Эксперименты с антиводородом
1.4. Теоретические исследования ультрахолодной плазмы
1.5. Рекомбинация в ультрахолодной неравновесной ридберговской плазме
ГЛАВА 2. ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ РИДБЕРГОВСКОГО ГАЗА Ы7
2.1. Экспериментальная установка для исследования ультрахолодного газа лития-7 в магнитооптической ловушке
2.1.1. Свойства атома лития-7
2.1.2. Вакуумная система
2.1.3 Стабилизация частот источников лазерного излучения
2.1.3.1. Стабилизация частоты охлаждающего лазера по резонансам пропускания термостабилизированного интерферометра Фабри-Перо (ИФП)
2.1.3.2. Дрейф термостабилизированного интерферометра Фабри-Перо
2.1.3.3. Стабилизация частоты лазера оптической накачки по резонансам насыщенного поглощения в парах лития-7
2.1.4. Калибровка и дрейф измерителя длины волны
2.1.5. Замедление пучка атомов лития-7
2.1.5.1. Источник атомного пучка
2.1.5.2. Зеемановский замедлитель
2.1.6. Магнитооптическая ловушка для атомов лития-7
2.2. Характеристики облака газа холодных атомов
2.2.1. Контроль размера и профиля интенсивности облака газа холодных атомов
2.2.2. Измерение плотности и количества атомов на разных подуровнях основного состояния
2.2.3. Реализация высокой концентрации газа атомов лития-7 в магнитооптической ловушке
2.2.4. Измерение распределения плотности атомов в МОЛ
2.2.5. Измерение температуры газа ультрахолодных атомов лития-7
2.2.6. Скорость загрузки и время жизни атомов в ловушке
2.3. Эффективное детектирование ридберговских состояний атомов лития-7
2.3.1. Непрерывное возбуждение газа холодных атомов в ридберговские состояния
2.3.2. Измерение частоты ридберговских переходов
2.3.3. Энергия пБ состояний и порог ионизации атома лития-7
2.3.4. Запрещенные переходы 2Р-пР и 2P-nF в спектре энергий ультрахолодных ридберговских атомов лития-7
2.3.5. Двухфотонные ридберговские резонансы в литии-7 полученные методом падения резонансной флюоресценции
ГЛАВА 3. РАСЧЕТ ФУНКЦИИ РАСПРЕДЕЛЕНИЯ, КОЭФФИЦИЕНТОВ ДИФФУЗИИ В ПРОСТРАНСТВЕ ЭНЕРГИИ И РЕКОМБИНАЦИИ МЕТОДОМ РЕШЕНИЯ СИСТЕМЫ КИНЕТИЧЕСКИХ УРАВНЕНИЙ БАЛАНСА В УЛЬТРАХОЛОДНОЙ ПЛАЗМЕ
3.1. Расчеты методом молекулярной динамики
3.2. Описание алгоритма
3.3. Погрешности при расчете методом молекулярной динамики
3.4. Расчеты методом решения системы кинетических уравнений баланса
3.5. Влияние неидеальности на скорость столкновительной рекомбинации в плазме
ГЛАВА 4. ОСОБЕННОСТИ СТОЛКНОВИТЕЛЬНЫХ И ИЗЛУЧАТЕЛЬНЫХ ПРОЦЕССОВ В УЛЬТРАХОЛОДНЫХ СИСТЕМАХ ЗАРЯЖЕННЫХ ЧАСТИЦ В
ПРИСУТСТВИИ МАГНИТНОГО ПОЛЯ
4.1. Коэффициент трехчастичной рекомбинации слабонеидеальной
ультрахолодной плазмы в сильном магнитном поле
4.2. Эффект замедления рекомбинации неравновесных носителей заряда в
полупроводнике в магнитном поле
4.3. Эффект магнитной стабилизации ридберговских атомов и многочастичных
комплексов в ультрахолодной плазме
4.4. Функция распределения электронов и коэффициент рекомбинации в ультрахолодной плазме в магнитном поле. Метод молекулярной динамики
4.5. Некоторые особенности процесса охлаждения протонов и антипротонов в ультрахолодном электронном газе
ЗАКЛЮЧЕНИЕ
СПИСОК ЛИТЕРАТУРЫ
Рекомендованный список диссертаций по специальности «Лазерная физика», 01.04.21 шифр ВАК
Экспериментальныеисследования свойств газа ультрахолодных высоковозбужденных и частично ионизированных атомов лития-72016 год, кандидат наук Саакян Сергей Арамович
Экспериментальное исследование ультрахолодной плазмы кальция-402021 год, кандидат наук Вильшанская Евгения Владимировна
Вторичное лазерное охлаждение атомов тулия2017 год, кандидат наук Вишнякова Гульнара Александровна
Термодинамика ультрахолодной ридберговской плазмы2015 год, кандидат наук Бутлицкий Михаил Анатольевич
Спектроскопия 5D уровней рубидия в магнитооптической ловушке2014 год, кандидат наук Снигирев, Степан Александрович
Введение диссертации (часть автореферата) на тему «Свойства ультрахолодных ридберговского газа и плазмы, полученных при помощи лазерного охлаждения: эксперимент и теория»
Введение
Открытие в 20 веке таких новых направлений физики, как квантовая механика, физика лазеров, твердого тела, плазмы, вакуума, взаимодействия излучения с веществом позволили в 21 веке, уже на новом уровне, перейти к более подробному теоретическому и экспериментальному изучению фундаментальных основ строения различных видов материи. С появлением лазерного охлаждения и пленения атомов в магнитооптической, дипольной или магнитной ловушках, открылась возможность изучения взаимодействия в газе нейтральных и высоковозбужденных атомов различных элементов, а также плазмы в условиях глубокого вакуума при температурах ниже 10 мК при наличии или отсутствии квантового вырождения. Создание гигантского адронного коллайдера позволило приступить к созданию атомов антиводорода при помощи торможения антипротонов в магнитном поле и столкновительного охлаждения с электронным и позитронным газом с последующим захватом в квадрупольную магнитную ловушку. В то же время бурно развивалась вычислительная техника, а вместе с ней методы численного эксперимента. Например, симуляция физического эксперимента при помощи метода молекулярной динамики (ММД) позволяет из первых принципов рассчитать кинетические свойства невырожденных систем, состоящих из высоковозбужденных атомов и частично ионизованной плазмы при наличии или в отсутствии внешнего магнитного поля. Эти численные расчеты позволяют выбрать физические параметры эксперимента и выбрать направление развития методик. В тоже время очень актуальны реальные эксперименты на ультрахолодных ридберговских атомах, которые позволяют смоделировать процесс захвата антиводорода или манипуляции кубитами в квантовых компьютерах.
Целью данной работы являлось:
1. Экспериментальное изучение ультрахолодного газа высоковозбужденных атомов. Для достижения этой цели была создана установка по лазерному охлаждению и захвату в магнитооптическую ловушку (МОЛ) атомов лития-7, реализовано возбуждение захваченных в МОЛ атомов в ридберговские состояния при помощи непрерывного ультрафиолетового лазера, предложена новая неразрушающая методика диагностики энергетических спектров ридберговских состояний по спаду флюоресценции облака атомов в МОЛ.
2. Теоретическое изучение кинетических свойств ультрахолодных газов высоковозбужденных атомов и плазмы. Для достижения этой цели реализована расчетная модель, использовавшая для исследования кинетики неидеальной плазмы метод молекулярной динамики и метод решения кинетических уравнений баланса, развиты методы расчета, рассмотрены погрешности и предложены методы их оценки.
Научная новизна полученных результатов. Впервые в России создана установка по лазерному охлаждению и пленению в магнитооптическую ловушку атомов лития-7 с последующим созданием ультрахолодных ридберговских атомов. Разработана новая методика регистрации энергетических спектров высоковозбужденных состояний атомов. При помощи данной методики впервые измерены энергии для различных пБ, пР, пО, пБ - конфигураций в широком диапазоне значений главного квантового числа от п = 38 до п = 165 для холодных атомов лития-7. При когерентном возбуждении ридберговских состояний получены узкие линии поглощения. Проведена оценка влияния температуры и электромагнитного поля на ширину резонанса.
Теоретически предсказан эффект замедления рекомбинации электронов
и дырок в полупроводнике в однородном магнитном поле. Предсказана
6
магнитная стабилизация ридберговских атомов и многочастичных комплексов в ультрахолодной плазме, находящейся в магнитном поле. Впервые методом молекулярной динамики рассчитана функция распределения, коэффициенты диффузии и рекомбинации электрона в пространстве энергий для ультрахолодной плазмы в магнитном поле. При помощи метода молекулярной динамики из первых принципов промоделированы условия торможения и захвата антипротонов в газе позитронов с последующим образованием атомов антиводорода в эксперименте лаборатории ALPHA CERN.
Практическая значимость полученных результатов.
Предложенная в данной работе методика регистрации энергетических спектров высоковозбужденных атомов универсальна для любого элемента, захваченного в МОЛ. По измеренным значениям энергий различных конфигураций можно рассчитать квантовый дефект и порог ионизации атома. При этом точность определения порога ионизации сравнима с самыми прецизионными измерениями методом селективной ионизации электрическим полем. Изучение высоковозбужденных атомов важно также в астрофизике при исследовании спектров излучения звезд и газовых скоплений.
Полученные в данной работе результаты расчетов ММД представляют интерес при анализе экспериментов, связанных с получением антиводорода как в электромагнитных ловушках (лаборатории в CERN и в будущих экспериментах лабораторий NICA, FAIR), так и в рамках пучковых экспериментов.
На созданной установке в дальнейшем на основе полученных теоретических данных будут проведены эксперименты по симуляции процесса создания антиводорода в сильном магнитном поле. Также будут исследованы эффект замедления рекомбинации в магнитном поле и образование пространственных самоорганизующихся структур в плотном
газе ридберговских атомов и ультрахолодной ридберговской плазме.
7
Кроме того, экспериментальное и теоретическое исследование ридберговского вещества и ультрахолодной плазмы в магнитном поле дает возможность сформулировать новые направления в области создания квантовых компьютеров и нанотехнологий.
Основные положения, выносимые на защиту:
1. Впервые измеренные энергии для различных nS, nP, nD, nF -конфигураций в широком диапазоне значений главного квантового числа от п = 38 до п = 165 атомов лития-7 при помощи новой методики на впервые созданной экспериментальной установке с использованием магнитооптической ловушки и резонансного двухступенчатого возбуждения.
2. Полученный коэффициент рекомбинации, рассчитанный при помощи системы кинетических уравнений баланса. Совпадение коэффициентов рекомбинации, полученных разными способами в пределах расчетной погрешности, подтверждает достоверность предложенного нами метода и показывает область перехода от дискретного спектра в квазинепрерывный спектр.
3. Предсказанная магнитная стабилизация ридберговских атомов и многочастичных комплексов в ультрахолодной плазме.
4. Впервые методом молекулярной динамики рассчитанная функция распределения, коэффициент диффузии электрона в пространстве энергий, а также коэффициент рекомбинации для ультрахолодной плазмы в магнитном поле.
5. Рассчитанные при помощи метода молекулярной динамики из первых принципов условия торможения и захвата антипротонов в газе позитронов с последующим образованием атомов антиводорода в эксперименте лаборатории ALPHA CERN.
Апробация работы. Приглашенные доклады: New theoretical and
experimental methods for Rydberg Matter and Ultracold Plasma study, 8th
8
International Conference On The Frontiers Of Plasma Physics And Technology (FPPT-8), Vina del Mar, Chile, 2017, Theory And Experiment Of Rydberg Matter And Ultracold Plasma, 7th International Conference On The Frontiers Of Plasma Physics And Technology (FPPT-7), Kochi, India, 2015, Ultracold Plasma and Rydberg atoms in a Magnetic Field, ICPP2014, Lisbon, Portugal, 2014г., Ультрахолодная плазма и ридберговское вещество в магнитооптической ловушке. Теория и эксперимент. XLI Международная (Звенигородская) конференция по физике плазмы и УТС, Звенигород, Россия, 2014 г., Study of ultracold Rydberg matter. Current situation and frontiers., Seminar for Young Scientists "Physics of high energy density in matter" 2012. Секционные: «Equations of State for Matter», Elbrus, 2016, 2014, 2012, 42nd European Physical Society Conference on Plasma Physics, Lisbon, Portugal, 2015, Interaction of intense energy fluxes with matter, Elbrus, 2017, 2015, 2013, Новосибирск, Академгородок, 2015, SCCS2014, Santa Fe, USA, 2014, International Conference on Coherent and Nonlinear Optics (ICONO 2013), 2013, Moscow, Russia, Strongly coupled ultracold and quantum plasma», Португалия, Лиссабон, 2011 г., «Оптические методы исследования потоков» Москва, 2011 г.
Публикации. Основные результаты работы изложены в следующих рецензируемых журналах, входящих в перечень ВАК:
1. Бронин С.Я., Зеленер Б.Б., Зеленер Б.В., Маныкин Э.А., Хихлуха Д.Р. "Функция распределения и диффузия в пространстве энергии ридберговских состояний электрона в неидеальной ультрахолодной плазме // ЖЭТФ, - 2011. - Т. 139, - №. 4, - С. 822.
2. Зеленер Б.Б., Зеленер Б.В., Маныкин Э.А. Коэффициент трехчастичной рекомбинации слабонеидеальной ультрахолодной плазмы в сильном магнитном поле //Письма в Журнал экспериментальной и теоретической физики. - 2011. - Т. 94. - №. 7. - С. 565-569.
3. Зеленер Б.Б., Зеленер Б.В., Маныкин Э.А. Эффект магнитной
стабилизации ридберговских атомов и многочастичных комплексов в
9
ультрахолодной плазме //Письма в Журнал экспериментальной и теоретической физики. - 2012. - Т. 96. - №. 1. - С. 29-32.
4. Зеленер Б.Б., Зеленер Б.В., Маныкин Э.А. Эффект замедления рекомбинации неравновесных носителей заряда в полупроводнике в магнитном поле //Письма в Журнал экспериментальной и теоретической физики. - 2012. - Т. 95. - №. 3. - С. 164-167.
5. Бутлицкий М.А., Зеленер Б.Б., Зеленер Б.В., Хихлуха Д.Р. Функция распределения и кинетические процессы в ультрахолодном ридберговском веществе, //Ядерная физика и инжиниринг, - 2012. - Т. 3. - №. 2. - С.151.
6. Бобров А.А., Бронин С.Я., Зеленер Б.Б., Зеленер Б.В., Маныкин Э.А., Хихлуха Д.Р., Функция распределения электронов и коэффициент рекомбинации в ультрахолодной плазме в магнитном поле //ЖЭТФ. -2013. - Т. 144. . - №. 1. - С. 185.
7. Бобров А.А., Зеленер Б.Б., Хихлуха Д.Р., Зеленер Б.В. Влияние неидеальности на скорость столкновительной рекомбинации в неидеальной плазме //ТВТ, - 2013. - Т. 51. - №. 5. - С.685.
8. Зеленер Б.Б., Саакян С.А., Саутенков В.А., Акульшин А.М., Маныкин Э.А., Зеленер Б.В., Фортов В.Е. Лазерное охлаждение атомов Li7 в магнитооптической ловушке //Письма в ЖЭТФ. - 2013. - Т. 98. - №. 11-12. - С. 1096.
9. Зеленер Б. Б., Саакян С. А., Саутенков В. А., Маныкин Э.А., Зеленер Б.В., Фортов В.Е. О реализации высокой концентрации атомов лития-7 в магнитооптической ловушке //ЖЭТФ. - 2014. - Т. 146. - №. 5. - С. 11.
10. Зеленер Б. Б., Саакян С. А., Саутенков В. А., Маныкин Э.А., Зеленер Б.В., Фортов В.Е. Эффективное возбуждение ридберговских состояний ультрахолодных атомов лития-7 //Письма в ЖЭТФ. - 2014. - Т. 100. -№. 5-6. - С. 408.
11. Sautenkov V.A., Saakyan S.A., Vilshanskaya E.V., Zelener B.B., Zelener
B.V. Observation of Rydberg Transitions in Resonance Fluorescence of
10
Ultracold Lithium-7 Atoms //Journal of Russian Laser Research. - 2015. -Т. 36. - №. 2. - С. 193-199.
12. Саакян С.А., Саутенков В.А., Вильшанская Е.В., Васильев В.В., Зеленер Б.Б., Зеленер Б.В. Контроль частоты перестраиваемых лазеров с помощью частотно-калиброванного лямбда-метра в эксперименте по приготовлению ридберговских атомов в магнитооптической ловушке //Квантовая электроника. - 2015. - Т. 45. - №. 9. - С. 828-832
13. Зеленер Б.Б., Саакян С.А., Саутенков В.А., Маныкин Э.А., Зеленер Б.В., Фортов В.Е. Лазерная диагностика спектра энергии ридберговских состояний атома лития-7 //ЖЭТФ - 2015. - Т. 148. - №. 5. - С. 11
14. Sautenkov V.A., Saakyan S.A., Vilshanskaya E.V., Murashkin D.A., Zelener B.B., Zelener B.V. Quantum defects in Rydberg nD states of optically cooled 7Li atoms //Laser Physics. - 2016. - Т. 26. - №. 11. - С. 115701.
15. Бобров А.А., Бронин С.Я., Зеленер Б.Б., Зеленер Б.В., Маныкин Э.А., Хихлуха Д.Р. Некоторые особенности процесса охлаждения протонов и антипротонов в ультрахолодном электронном газе //ДАН. - 2016. - Т. 470. - №. 3. - С. 271.
16. Зеленер Б.Б., Саакян С.А., Саутенков В.А., Фортов В.Е. // Когерентные и некогерентные компоненты двухступенчатого возбуждения ридберговских состояний ультрахолодных атомов лития-7 // ДАН. -2016. - Т. 467. - №. 5. - С. 526.
17. Зеленер Б.Б., Саакян С.А., Саутенков В.А., Маныкин Э.А., Зеленер Б.В., Фортов В.Е. Запрещенные переходы 2P-nP и 2P-nF в спектре энергий ультрахолодных ридберговских атомов лития-7 // ЖЭТФ. -2016. - Т. 149. - №. 4. - С. 750.
18. Saakyan S.A., Sautenkov V.A., Vilshanskaya E.V., Zelener B.B., Zelener B.V. Two-photon excitation of ultracold atoms to Rydberg states //Journal of
Physics: Conference Series. - IOP Publishing, 2015. - Т. 653. - №. 1. - С. 012123.
19. Bobrov A.A., Bronin S.Y., Manykin E.A., Zelener B.B., Zelener B.V., Khikhlukha D.R. Proton cooling in ultracold low-density electron gas //Journal of Physics: Conference Series. - IOP Publishing, 2015. - Т. 653. -№. 1. - С. 012122.
20.Bobrov A.A., Bronin S.Y., Manykin E.A., Zelener B.B., Zelener B.V. On the temperature of antihydrogen formed in magnetic trap //Journal of Physics: Conference Series. - IOP Publishing, 2016. - Т. 774. - №. 1. - С. 012160.
21. Zelener B.B., Zelener B.V., Manykin E.A., Bronin S.Y., Bobrov A.A. On electron-proton energy exchange in strong magnetic field //Journal of Physics: Conference Series. - IOP Publishing, 2016. - Т. 774. - №. 1. - С. 012161.
22. Vilshanskaya E.V., Murashkin D.A., Saakyan S.A., Sautenkov V.A., Zelener B.B. Preparation of Rydberg states in ultracold Li-7 atoms by using coherent or non-coherent optical excitation //Journal of Physics: Conference Series. - IOP Publishing, 2016. - Т. 774. - №. 1. - С. 012164.
23. Saakyan S.A., Sautenkov V.A., Zelener B.B. Energy intervals between Rydberg states nD and nF in lithium-7 //Journal of Physics: Conference Series. - IOP Publishing, 2016. - Т. 774. - №. 1. - С. 012165.
24. Murashkin D.A., Saakyan S.A., Sautenkov V.A., Zelener B.B. Measurements of quantum defect in Rydberg D-states for lithium atoms //Journal of Physics: Conference Series. - IOP Publishing, 2016. - Т. 774. -№. 1. - С. 012166.
25. Зеленер Б.Б., Саакян С.А., Саутенков В.А., Фортов В.Е. -Двухфотонные ридберговские резонансы в литии-7, полученные методом падения резонансной флюоресценции // ДАН. - 2017. - Т. 473. - №. 1. - С. 24-27.
26. Бобров А.А., Бронин С.Я., Зеленер Б.Б., Зеленер Б.В., Маныкин Э.А., Хихлуха Д.Р. Релаксация энергии протонов в электронном газе в однородном магнитном поле // Физика плазмы. - 2017. - Т. 43. - №. 5. - С. 455.
Личный вклад. Все все выносимые на защиту экспериментальные и теоретические результаты и положения получены автором лично, либо при его непосредственном участии и под его руководством. Автор принимал участие в постановке, проведении и обработке результатов всех представленных в работе экспериментов. Также автор участвовал в создании теории кинетики ультрахолодной сильновзаимодействующей плазмы и ридберговского вещества в магнитном поле, постановке задач и обработке результатов численных экспериментов.
Объем и структура работы. Диссертация состоит из введения, четырех глав и заключения. Полный объем диссертации 265 страницы текста с 110 рисунками и 7 таблицами. Список литературы содержит 252 наименования.
Глава 1. Обзор литературы
В этой главе будут описаны самые современные экспериментальные методы создания, регистрации и манипулирования ридберговскими атомами в условиях низких и ультранизких температур, в том числе в экспериментах по созданию антиводорода. А также различные теоретические подходы для аналитического и численного расчета свойств физических систем частиц с сильным взаимодействием.
1.1. Лазерное охлаждение газов в магнитооптической ловушке
Настоящим прорывом в физике 20 века стало появление лазеров [1.1] На сегодняшний день, одним из самых распространенных методов исследования газа атомов при температурах ниже 1 мК является лазерное охлаждение и захват атомов в магнитооптическую ловушку [1.2]. Только за 1 полугодие 2016 года по данной тематике вышло около 27 000 статей. Впервые лазерное охлаждение было предложено в 1975 году [1.3], также основоположниками лазерного охлаждения и селективной лазерной манипуляции атомов была группа под руководством В.С. Летохова [1.4], в 1987 году впервые реализована магнитооптическая ловушка (МОЛ) для нейтральных атомов натрия [1.5]. Методы лазерного охлаждения нашли широкое применение в современных технологиях и фундаментальных исследованиях. Важнейшей областью применения лазерного охлаждения является метрология [1.6-1.9]. Использование дипольных оптических и магнитных ловушек вместе с испарительным охлаждением позволило создать вырожденные бозе и ферми газы ультрахолодных атомов [1.10-1.12]. Также проводилось теоретическое исследование самоэволюции сильно неравновесного бозе-газа [1.13]. Отдельный интерес представляет захват вырожденного газа при помощи микрочипов [1.14]. Эта технология позволила начать эксперименты в условиях микрогравитации для
исследования принципа эквивалентности инерционной и гравитационной массы при помощи интерферометра Маха-Цендера с использованием бозе конденсата калия и рубидия [1.15]. Вырожденный газ можно получить также без помощи испарительного охлаждения, используя только особую геометрию скрещенных лучей в дипольной ловушке для увеличения плотности атомов, как было показано в [1.16]. На основе вырожденного газа можно моделировать различные физические процессы, например, создавать синтетические магнитные поля [1.17]. С появлением лазерного охлаждения и пленения атомов в МОЛ изучение высоковозбужденных атомов выделилось в отдельное направление, которое включает в себя широкий круг задач - от изучения ультрахолодной плазмы [1.18-21] до квантовой информатики [1.2224].
В данной главе рассматривается, каким образом свет может воздействовать на импульс и положение атома в пространстве. Стоит отметить, что описанные ниже принципы применимы только к двухуровневым системам. На практике атомы чаще всего не являются двухуровневыми, и атом из возбужденного состояния может перейти не в то состояние, с которого произошло возбуждение. Когда система не двухуровневая, применяются некоторые ухищрения, описанные в главах 2.1.3, 2.1.5, 2.1.6.
1.1.1. Оптическое охлаждение за счет фотонной отдачи
Рассмотрим атомный пучок, движущийся в определенном направлении и лазерный луч, который распространяется ему навстречу. Пусть частота лазерного излучения отстроена от частоты атомного перехода в красную сторону. При этом за счет эффекта Доплера для некоторых атомов пучка частота излучения сравнивается с резонансной. Взаимодействие лазерного
излучения происходит с той скоростной группой атомов, резонансная частота которых наиболее близка к частоте лазерного излучения.
Скорость атома, летящего навстречу пучку фотонов, изменяется на величину Ау = Ьк/Ы при каждом поглощении, где Ь - постоянная Планка, к = 2п/Л, М - масса атома. При каждом поглощении встречного фотона, например, атомом лития-7 на переходе 2281/2-22Рз/2(Р=3) скорость будет уменьшаться на 8.5 см/с. Для того чтобы существенно изменить скорость атома, необходимо совершить ц циклов поглощения-испускания:
Ьк (1.1)
^ М
Если двухуровневый атом находится в резонансе с излучением достаточно долго, то он может совершить много циклов поглощение-испускание. И хотя эффект при взаимодействии с одиночным фотоном очень мал, но за счет многократного повторения циклов появляется возможность существенно уменьшить скорость атома.
После поглощения фотона атом переходит в возбуждённое состояние, с которого атом спонтанно переходит обратно в основное состояние, испуская при этом фотон. Флюоресценция за счет испускания фотонов изотропна, испущенные фотоны распределены случайным образом по всем направлениям. При переизлучении атом испытывает отдачу в случайном направлении, а усредненный во времени переданный спонтанным излучением импульс стремится к нулю. Т.к. направление поглощенных фотонов фиксировано, а испускаемые в ц актах поглощение-испускание фотоны не дают вклад в изменение импульса, то коллимированный атомный пучок можно замедлить при помощи встречного лазерного излучения.
Запишем выражение для действующей на атом "охлаждающей силы":
Атэ Ьк
(1.2)
где Г5 с:
50 (Г/2 )
(1.3)
1 + 50 + ( 2 Л '/Г) 2 '
где - интенсивность лазерного излучения, / - параметр насыщения,
/ - интенсивность насыщения, - естественная ширина охлаждающего перехода, - отстройка частоты охлаждающего лазера от резонансной частоты атомного перехода, в которой при рассмотрении движущегося атома необходимо учесть частотный сдвиг за счет эффекта Доплера:
Для успешной реализации лазерного охлаждения необходимо наличие циклического перехода. Охлаждающий переход должен быть замкнут: это означает, что атом должен распадаться из возбужденного состояния в то, с которого он был возбужден. Также существенным является тот факт, что после нескольких циклов поглощения-испускания у атома меняется скорость, и, как следствие этого, за счет эффекта Доплера изменяется резонансная частота атомного перехода. При этом для обеспечения непрерывного охлаждения атомов можно менять частоту лазера или энергетические уровни в атоме можно сдвигать при помощи магнитного поля, используя эффект Зеемана.
Л ' =Л-ку.
(1.4)
1.1.2 Оптическая патока
Рассмотрим теперь двухуровневый атом в поле двух встречных бегущих волн. Если атом движется вдоль одного из пучков, то частота лазера в системе координат покоящегося атома равна:
(л)
(1.5)
Лазер отстроен от резонанса из основного состояния 1^) в возбужденное |е) на величину А в красную сторону (рисунок 1.1 (а)).
(а)
(б)
Рисунок 1.1: (а) Двухуровневый атом в системе отсчета связанной с атомом, движущийся со скоростью у навстречу одному из лазерных пучков частоты ш. (б) На атом в поле двух встречных бегущих волны действует сила, которая зависит от скорости атома.
На атом, находящийся в поле двух встречных лазерных пучков,
действуют силы, описываемые выражением (1.2): F ( к ) и F (—к) . На рисунке
1.2 показана результирующая сила, действующая на атом в поле двух
встречных волн в зависимости от скорости. Для движущегося атома эти силы
не равны. Сила противоположная движению атома больше, чем
сонаправленная, в некотором интервале скоростей она пропорциональна
скорости атомов и похожа на силу вязкого трения. На атом оказывается
воздействие, зависящее от скорости; именно из-за сходства с силой вязкого
18
трения такую систему пучков и называют оптической патокой или оптической мелассой.
40
0
О
-20
-40
-40
-30 -20 -10 0 10 20
Скорость вдоль пучков, м/с
30
40
Рисунок 1.2: Результирующая сила, действующая на атом в поле двух встречных волн в
зависимости от скорости.
Для охлаждения по всем направлениям используется комбинация из трех ортогональных пар пучков. В такой оптической патоке атом взаимодействует со встречным лазерным излучением вне зависимости от направления своего движения. Таким образом, в оптической патоке можно замедлить атомы до малых скоростей.
1.1.3 Доплеровский предел
Существует предел, до которого атомы замедляются в оптической патоке, т.к. даже неподвижные атомы испускают и поглощают фотоны. Нагревание атомов в оптической патоке происходит за счет спонтанного испускания фотонов атомами, но одновременно с этим процессом идет охлаждение атомов за счет силы, действующей на них. Существует равновесная температура атомов в оптической патоке, определяемая этими двумя процессами. Таким образом, для равновесной температуры имеем [1.2,1.25-27]:
квТ =
ПГ1 + ( 2 Л/Г) < 1 -2Л/Г
(1.6)
5 20
Данное выражение достигает минимума при красной отстройке лазерного излучения, когда А = — Г/ 2:
ПГ
Т° = 2ГВ (17)
Доплеровский предел охлаждения дает самую низкую температуру, которая может быть достигнута в оптической патоке для простого двухуровневого атома. Нагрев вызван спонтанным излучением, которое является неотъемлемой частью процесса доплеровского охлаждения. Однако даже в первых экспериментах по захвату атомов в магнитооптическую ловушку, были получены температуры существенно ниже доплеровского предела [1.2]. В реальности атом не является идеальной двухуровневой системой, что открывает возможности для реализации других механизмов охлаждения [1.27].
1.1.4 Локализация облака холодных атомов
Для комфортного изучения "медленных" атомов, их необходимо локализовать в небольшой области пространства. В оптической патоке нельзя захватить и локализовать атомы - они будут просто диффундировать из области охлаждения с течением времени. Атомы не локализуются в оптической патоке, т.к. сила, действующая на атомы, не имеет пространственной зависимости.
Идея локализации облака холодных атомов основывается на использовании комбинации оптической патоки и неоднородного квадрупольного магнитного поля (рисунок 1.3). Для наглядности рассмотрим движение атома вдоль оси . Лазерные пучки, направленные вдоль оси, имеют поляризацию о+, а против оси - о~. Магнитное поле в центре ловушки равняется нулю. На атомы находящиеся в центре ловушки (рисунок 1.3 б) не действует никаких сил и для лазерного излучения облако атомов
является прозрачным. При г > 0 (г < 0) магнитное поле В2 > 0 (В2 < 0) и на атом действует сила, направленная в центр ловушки.
(а)
(б)
Рисунок 1.3: Схема работы магнитооптической ловушки: (а) трехмерная схема МОЛ, показано направление тока I в катушках создающих градиент магнитного поля и поляризация пучков, формирующих оптическую патоку, (б) сдвиг магнитных подуровней в градиентном магнитном поле и зависящая от координаты атомов сила.
Энергетические уровни атома в магнитном поле испытывают сдвиг:
ДЕ; = 1вдРтВ,
(1.8)
где gF - фактор Ланде, - магнетон Бора, т - проекция полного углового момента Б на направление поля, В - магнитное поле.
Из (1.2) результирующая сила, действующая на атомы в оптической патоке вдоль оси 7:
F(z) = Пка+Г5С+ + Пка-Г5С_,
(1.9)
где Г5
ЗС +
г =_Я(Г/2)_
" ± = 1+50 + (2 ^к^М^т^ (110)
Таким образом, получаем возвращающую силу, зависящую от г. Под действием этой силы атомы будут совершать затухающие гармонические колебания относительно точки и будут пространственно
стабилизированы [1.28].
1.2. Методы создания и диагностики ридберговских атомов и плазмы
Первые эксперименты с высоковозбужденными атомами были реализованы ещё в конце 19 века. Спектры высоковозбужденных атомов были получены в результате обобщения астрономических наблюдений. В 1890 году Ридберг опубликовал свою работу о структуре спектров химических элементов [1.29]. Одно из первых подробных измерений спектров высоковозбужденных ридберговских состояний для атомов лития можно найти в работе 1930 года [1.30], в которой исследовались ридберговские состояния в парах лития с главными квантовыми числами до п = 3 1 .
Высоковозбужденные атомы имеют большое время жизни, огромный дипольный момент, и очень чувствительны к электрическим и магнитным полям. Благодаря своим уникальным особенностям Ридберговские состояния атомов представляют большой интерес для физики и химии. Отсутствие удобного экспериментального способа возбуждать атомы в заданное квантовое состояние мешало систематическому изучению ридберговских атомов. В 1950-х и 1960-х одним из распространенных способов получения ридберговских атомов было возбуждение электронным ударом [1.31]. Данный способ не позволял возбуждать атомы в определенном состоянии. Новым толчком к изучению ридберговских атомов стало появление в 70-х
Похожие диссертационные работы по специальности «Лазерная физика», 01.04.21 шифр ВАК
Рекомбинация в ультрахолодной неравновесной ридберговской плазме2010 год, кандидат физико-математических наук Бобров, Андрей Александрович
Глубокое лазерное охлаждение атомов тулия в оптической дипольной ловушке2021 год, кандидат наук Цыганок Владислав Викторович
Кинетика и термодинамика неидеального ридберговского вещества, полученного при помощи лазера на красителях2005 год, кандидат физико-математических наук Зеленер, Борис Борисович
Приготовление и диагностика двумерного ферми-газа атомов2015 год, кандидат наук Махалов Василий Борисович
Когерентное взаимодействие света с одиночными атомами и атомными ансамблями в условиях квантового вырождения2020 год, кандидат наук Порозова Виктория Михайловна
Список литературы диссертационного исследования кандидат наук Зеленер, Борис Борисович, 2017 год
Список литературы
1.1. Басов Н. Г., Крохин О. Н., Попов Ю. М. Генерация, усиление и индикация инфракрасного и оптического излучений с помощью квантовых систем //Успехи физических наук. - 1960. - Т. 72. - №. 10. - С. 161-209.
1.2. Филипс У. Д. Лазерное охлаждение и пленение нейтральных атомов //Успехи физических наук. - 1999. - Т. 169. - №. 3. - С. 305-322.
1.3. Hansch T. W., Schawlow A. L. Cooling of gases by laser radiation //Optics Communications. - 1975. - Т. 13. - №. 1. - С. 68-69.
1.4. Balykin V. I. et al. Quantum-state-selective mirror reflection of atoms by laser light //Physical review letters. - 1988. - Т. 60. - №. 21. - С. 2137.
1.5. Raab E. L. et al. Trapping of neutral sodium atoms with radiation pressure //Physical Review Letters. - 1987. - Т. 59. - №. 23. - С. 2631.
1.6. Hinkley N. et al. An atomic clock with 10A-18 instability //Science. - 2013. - Т. 341. - №. 6151. - С. 1215-1218.
1.7. Hagemann C. et al. Ultrastable laser with average fractional frequency drift rate below 5x 10- 19/s //Optics letters. - 2014. - Т. 39. - №. 17. - С. 5102-5105.
1.8. Strelkin S. A. et al. Secondary laser cooling of strontium-88 atoms //Journal of Experimental and Theoretical Physics. - 2015. - Т. 121. - №. 1. - С. 19-26.
1.9. Prudnikov O. N. et al. Quantum treatment of two-stage sub-Doppler laser cooling of magnesium atoms //Physical Review A. - 2015. - Т. 92. - №. 6. - С. 063413.
1.10. Ketterle W. Happy birthday BEC //Nature Physics. - 2015. - Т. 11. - №. 12. - С. 982-983.
1.11. Чаповский П. Л. Бозе-эйнштейновская конденсация атомов рубидия //Письма в журнал экспериментальной и теоретической физики. - 2012. - Т. 95. - №. 3. - С. 148-152.
1.12. Makhalov V., Martiyanov K., Turlapov A. Ground-state pressure of quasi-2D Fermi and Bose gases //Physical review letters. - 2014. - Т. 112. - №. 4. - С. 045301.
1.13. Kagan Y., Svistunov B. V. Evolution of correlation properties and appearance of broken symmetry in the process of Bose-Einstein condensation //Physical review letters. - 1997. - Т. 79. - №. 18. - С. 3331.
1.14. Egorov M. et al. Measurement of s-wave scattering lengths in a two-component Bose-Einstein condensate //Physical Review A. - 2013. - Т. 87. - №. 5. - С. 053614.
1.15. Müntinga H. et al. Interferometry with Bose-Einstein condensates in microgravity //Physical review letters. - 2013. - Т. 110. - №. 9. - С. 093602.
1.16. Stellmer S. et al. Laser cooling to quantum degeneracy //Physical review letters. -2013. - Т. 110. - №. 26. - С. 263003.
1.17. Kennedy C. J. et al. Observation of Bose-Einstein condensation in a strong synthetic magnetic field //Nature Physics. - 2015. - Т. 11. - №. 10. - С. 859-864.
1.18. Killian T. C. et al. Creation of an ultracold neutral plasma //Physical Review Letters. - 1999. - Т. 83. - №. 23. - С. 4776.
1.19. Killian T. C. et al. Formation of Rydberg atoms in an expanding ultracold neutral plasma //Physical review letters. - 2001. - Т. 86. - №. 17. - С. 3759.
1.20. Robinson M. P. et al. Spontaneous evolution of Rydberg atoms into an ultracold plasma //Physical review letters. - 2000. - Т. 85. - №. 21. - С. 4466.
1.21. Dunning F.B. et al., Recent advances in Rydberg physics using alkaline-earth atoms //Journal of Physics B: Atomic, Molecular and Optical Physics, -2016, -T. 49., -№ 11.С 112003
1.22. Jaksch D. et al. Fast quantum gates for neutral atoms //Physical Review Letters. -2000. - Т. 85. - №. 10. - С. 2208.
1.23. Lukin M. D. et al. Dipole blockade and quantum information processing in mesoscopic atomic ensembles //Physical Review Letters. - 2001. - Т. 87. - №. 3. -С. 037901.
1.24. Рябцев И. И. и др. Спектроскопия холодных ридберговских атомов рубидия для применений в квантовой информатике //Успехи физических наук. - 2016.
- Т. 186. - №. 2. - С. 206-219.
1.25. Летохов В. С., Миногин В. Г., Павлик Б. Д. Охлаждение и пленение атомов и молекул резонансным световым полем //Журнал экспериментальной и теоретической физики. - 1977. - Т. 72. - №. 4. - С. 1328.
1.26. Lett P. D. et al. Optical molasses //JOSA B. - 1989. - Т. 6. - №. 11. - С. 20842107.
1.27. Stenholm S. The semiclassical theory of laser cooling //Reviews of modern physics.
- 1986. - Т. 58. - №. 3. - С. 699.
1.28. Демтрёдер В. Современная лазерная спектроскопия: пер. с англ //М.: Интеллект. - 2014.
1.29. Rydberg J. R. On the structure of the line-spectra of the chemical elements //The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. -1890. - Т. 29. - №. 179. - С. 331-337.
1.30. France R. W. The absorption spectrum of lithium vapour //Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. - 1930. - С. 354-360.
1.31. Moiseiwitsch B. L., Smith S. J. Electron impact excitation of atoms //Reviews of Modern Physics. - 1968. - Т. 40. - №. 2. - С. 238.
1.32. Gallagher T. F. Rydberg atoms. - Cambridge University Press, 2005. - Т. 3.
1.33. Bushaw B. A. et al. Ionization energy of Li 6, 7 determined by triple-resonance laser spectroscopy //Physical Review A. - 2007. - Т. 75. - №. 5. - С. 052503.
1.34. Deiglmayr J. et al. Coherent excitation of Rydberg atoms in an ultracold gas //Optics communications. - 2006. - Т. 264. - №. 2. - С. 293-298.
1.35. Kis Z., Stenholm S. Optimal control approach for a degenerate STIRAP //Journal of Modern Optics. - 2002. - Т. 49. - №. 1-2. - С. 111-124.
1.36. Snigirev S. A. et al. Coherent excitation of the 5D5/2 level of ultra-cold rubidium atoms with short laser pulses //Quantum Electronics. - 2012. - Т. 42. - №. 8. - С. 714.
1.37. Tregubov D. et al. Measurement of the 5D level polarizabilities in laser cooled Rb atoms //Journal of Physics: Conference Series. - IOP Publishing, 2015. - Т. 635. -№. 9. - С. 092121.
1.38. Mohapatra A. K., Jackson T. R., Adams C. S. Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency //Physical review letters. - 2007. - Т. 98. - №. 11. - С. 113003.
1.39. Brekke E., Stimulated Emission Studies of Ultracold Rydberg Atoms, Ph.D.// University of Wisconsin-Madison. - 2009.
1.40. Снигирев С. А. Спектроскопия 5D уровней рубидия в магнитооптической ловушке //Москва. - 2014.
1.41. Shore B. W. The theory of coherent atomic excitation //The Theory of Coherent Atomic Excitation, Volume 2, Multilevel Atoms and Incoherence, by Bruce W. Shore, pp. 1736. ISBN 0-471-52416-6. Wiley-VCH, July 1990. - 1990. - С. 1736.
1.42. Fewell M. P., Shore B. W., Bergmann K. Coherent population transfer among three states: Full algebraic solutions and the relevance of non adiabatic processes to transfer by delayed pulses //Australian journal of physics. - 1997. - Т. 50. - №. 2. -С. 281-308.
1.43. Frey M. T. et al. Use of the Stark effect to minimize residual electric fields in an experimental volume //Review of scientific instruments. - 1993. - Т. 64. - №. 12. -С. 3649-3650.
1.44. Osterwalder A., Merkt F. Using high Rydberg states as electric field sensors //Physical review letters. - 1999. - Т. 82. - №. 9. - С. 1831.
1.45. Клеппнер Д., Литтман М., Циммерман М. Сильно возбужденные атомы //Успехи физических наук. - 1982. - Т. 137. - №. 6. - С. 339-360.
1.46. Бетеров И. И. и др. Ионизация ридберговских nS-, nP- и nD- атомов лития, калия и цезия тепловым излучением //Журнал экспериментальной и теоретической физики. - 2008. - Т. 134. - №. 1.
1.47. Bekov G. I. et al. Single-atom detection of ytterbium by selective laser excitation and field ionization from Rydberg states //Optics letters. - 1978. - Т. 3. - №. 5. -С. 159-161.
1.48. Gallagher T. F. et al. Field ionization of highly excited states of sodium //Physical Review A. - 1977. - Т. 16. - №. 3. - С. 1098.
1.49. Afrousheh K. et al. Spectroscopic observation of resonant electric dipole-dipole interactions between cold Rydberg atoms //Physical review letters. - 2004. - Т. 93. - №. 23. - С. 233001.
1.50. Goy P. et al. Quantum defects and specific-isotopic-shift measurements in ns and np highly excited states of lithium: Exchange effects between Rydberg and core electrons //Physical Review A. - 1986. - Т. 34. - №. 4. - С. 2889.
1.51. Brekke E., Day J. O., Walker T. G. Four-wave mixing in ultracold atoms using intermediate Rydberg states //Physical Review A. - 2008. - Т. 78. - №. 6. - С. 063830.
1.52. Day J. O., Brekke E., Walker T. G. Dynamics of low-density ultracold Rydberg gases //Physical Review A. - 2008. - Т. 77. - №. 5. - С. 052712.
1.53. Берестецкий В. Б., Лифшиц Е. М., Питаевский Л. П. Релятивистская квантовая теория. - Наука, Глав. ред. физико-математической лит-ры, 1968. -Т. 4.
1.54. Li С. H. et al. Unusually large polarizabilities and previously unidentified atomic states in Ba //Physical Review A. - 2004. - Т. 69. - №. 4. - С. 042507.
1.55. Singer K. et al. Long-range interactions between alkali Rydberg atom pairs correlated to the ns-ns, np-np and nd-nd asymptotes //Journal of Physics B: Atomic, Molecular and Optical Physics. - 2005. - Т. 38. - №. 2. - С. S295.
1.56. Tretyakov D. B. et al. Effect of photoions on the line shape of the Förster resonance lines and microwave transitions in cold rubidium Rydberg atoms //Journal of Experimental and Theoretical Physics. - 2012. - Т. 114. - №. 1. - С. 14-24.
1.57. Tong D. et al. Observation of electric quadrupole transitions to Rydberg n d states of ultracold rubidium atoms //Physical Review A. - 2009. - Т. 79. - №. 5. - С. 052509.
1.58. M. Bhattacharya, C. Haimberger, N. P. Bigelow, Phys. Rev. Lett. 91(21), 213004 (2003).
1.59. Pillet P., Gallagher T. F. Rydberg atom interactions from 300 K to 300 K //Journal of Physics B: Atomic, Molecular and Optical Physics. - 2016. - Т. 49. - №. 17. -С.174003.
1.60. Firstenberg O., Adams C. S., Hofferberth S. Nonlinear quantum optics mediated by Rydberg interactions //Journal of Physics B: Atomic, Molecular and Optical Physics. - 2016. - Т. 49. - №. 15. - С. 152003.
1.61. Balewski J. B. et al. Rydberg dressing: understanding of collective many-body effects and implications for experiments //New Journal of Physics. - 2014. - Т. 16. - №. 6. - С. 063012.
1.62. Löw R. et al. An experimental and theoretical guide to strongly interacting Rydberg gases //Journal of Physics B: Atomic, Molecular and Optical Physics. - 2012. - Т. 45. - №. 11. - С. 113001.
1.63. Schauss P. et al. Observation of spatially ordered structures in a two-dimensional Rydberg gas //Nature. - 2012. - Т. 491. - №. 7422. - С. 87-91.
1.64. Бетеров И. М., Лернер П. Б., Спонтанное и вынужденное излучение ридберговского атома в резонаторе. УФН, Том 139, вып. 4. - 1989.
1.65. Anderson D. A. et al. Production and trapping of cold circular Rydberg atoms //Physical Review A. - 2013. - Т. 88. - №. 3. - С. 031401.
1.66. Chen Y. J., Zigo S., Raithel G. Atom trapping and spectroscopy in cavity-generated optical potentials //Physical Review A. - 2014. - Т. 89. - №. 6. - С. 063409.
1.67. Niederprüm T. et al. Observation of pendular butterfly Rydberg molecules //Nature communications. - 2016. - Т. 7.
1.68. Endres M. et al. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays //Science. - 2016. - С. aah3752.
1.69. Tyndall A. M., Pearce A. F. The variation of the mobility of gaseous ions with temperature. I. Positive ions in their own gas //Proceedings of the Royal Society of
London. Series A, Mathematical and Physical Sciences. - 1935. - Т. 149. - №. 868. - С. 426-434.
1.70. Асиновский Э. И., Кириллин А. В., Раковец А. А. Криогенные разряды. -Наука, 1988.
1.71. Антипов С. Н., Кириллин А. В., Низовский В. Л. Криогенная плазма газового разряда //Москва: Янус-К. - 2011.
1.72. Фортов В.Е., Храпак А. Г., Якубов И. Т. Физика неидеальной плазмы. - М, : ФИЗМАТЛИТ, 2004.
1.73. Kulin S. et al. Plasma oscillations and expansion of an ultracold neutral plasma //Physical review letters. - 2000. - Т. 85. - №. 2. - С. 318.
1.74. Morrison J. P. et al. Evolution from a molecular Rydberg gas to an ultracold plasma in a seeded supersonic expansion of NO //Physical review letters. - 2008. - Т. 101.
- №. 20. - С. 205005.
1.75. Morrison J. P., Rennick C. J., Grant E. R. Very slow expansion of an ultracold plasma formed in a seeded supersonic molecular beam of NO //Physical Review A.
- 2009. - Т. 79. - №. 6. - С. 062706.
1.76. Morrison J. P., Rennick C. J., Grant E. R. Very slow expansion of an ultracold plasma formed in a seeded supersonic molecular beam of NO //Physical Review A.
- 2009. - Т. 79. - №. 6. - С. 062706.
1.77. Sadeghi H. et al. Molecular ion-electron recombination in an expanding ultracold neutral plasma of NO+ //Physical Chemistry Chemical Physics. - 2011. - Т. 13. -№. 42. - С. 18872-18879.
1.78. Simien C. E. et al. Using absorption imaging to study ion dynamics in an ultracold neutral plasma //Physical review letters. - 2004. - Т. 92. - №. 14. - С. 143001.
1.79. Castro J., Gao H., Killian T. C. Using sheet fluorescence to probe ion dynamics in an ultracold neutral plasma //Plasma Physics and Controlled Fusion. - 2008. - Т. 50. - №. 12. - С. 124011.
1.80. Denning A., Bergeson S. D., Robicheaux F. Measurement and simulation of laser-induced fluorescence from nonequilibrium ultracold neutral plasmas //Physical Review A. - 2009. - Т. 80. - №. 3. - С. 033415.
1.81. Gupta P. et al. Electron-temperature evolution in expanding ultracold neutral plasmas //Physical review letters. - 2007. - Т. 99. - №. 7. - С. 075005.
1.82. Roberts J. L. et al. Electron temperature of ultracold plasmas //Physical review letters. - 2004. - Т. 92. - №. 25. - С. 253003.
1.83. Fletcher R. S., Zhang X. L., Rolston S. L. Using three-body recombination to extract electron temperatures of ultracold plasmas //Physical review letters. - 2007.
- Т. 99. - №. 14. - С. 145001.
1.84. Amoretti M. et al. ATHENA collaboration et al //Nature. - 2002. - Т. 419. - С. 456.
1.85. Amoretti M. et al. High rate production of antihydrogen //Physics Letters B. -2004. - Т. 578. - №. 1. - С. 23-32.
1.86. Gabrielse G. et al. Background-free observation of cold antihydrogen with field-ionization analysis of its states //Physical Review Letters. - 2002. - Т. 89. - №. 21.
- С. 213401.
1.87. Gabrielse G. et al. Trapped antihydrogen in its ground state //Physical review letters. - 2012. - Т. 108. - №. 11. - С. 113002.
1.88. Alpha Collaboration et al. Confinement of antihydrogen for 1,000 seconds //Nature Physics. - 2011. - Т. 7. - №. 7. - С. 558-564.
1.89. Ahmadi M. et al. Observation of the 1S-2S transition in trapped antihydrogen //Nature. - 2016.
1.90. Kuroda N. et al. A source of antihydrogen for in-flight hyperfine spectroscopy //Nature communications. - 2014. - Т. 5.
1.91. Murillo M. S. Using Fermi statistics to create strongly coupled ion plasmas in atom traps //Physical review letters. - 2001. - Т. 87. - №. 11. - С. 115003.
1.92. Kuzmin S. G., O'Neil T. M. Numerical simulation of ultracold plasmas: How rapid intrinsic heating limits the development of correlation //Physical review letters. -2002. - Т. 88. - №. 6. - С. 065003.
1.93. Robicheaux F., Hanson J. D. Simulation of the expansion of an ultracold neutral plasma //Physical review letters. - 2002. - Т. 88. - №. 5. - С. 055002.
1.94. Ткачев A. Н., Яковленко С. И. Релаксация ридберговских состояний в ультрахолодной лазерной плазме //Квантовая электроника. - 2001. - Т. 31. -№. 12. - С. 1084-1088.
1.95. Tkachev A. N., Yakovlenko S. I. On the recombination heating of ultracold laser-produced plasmas //Laser physics. - 2001. - Т. 11. - №. 9. - С. 977-981.
1.96. Pohl T., Pattard T., Rost J. M. Kinetic modeling and molecular dynamics simulation of ultracold neutral plasmas including ionic correlations //Physical Review A. - 2004. - Т. 70. - №. 3. - С. 033416.
1.97. Hahn Y. Relaxation of cold plasmas and threshold lowering effect //Physical Review E. - 2001. - Т. 64. - №. 4. - С. 046409.
253
1.98. Hahn Y. Threshold lowering effects on an expanding cold plasma //Physics Letters A. - 2002. - Т. 293. - №. 5. - С. 266-271.
1.99. Dharma-Wardana M. W. C., Perrot F. Energy relaxation and the quasiequation of state of a dense two-temperature nonequilibrium plasma //Physical Review E. -1998. - Т. 58. - №. 3. - С. 3705.
1.100. Ashcroft N. W., Stroud D. Theory of the thermodynamics of simple liquid metals //Solid State Physics. - 1978. - Т. 33. - С. 1-81.
1.101. Майоров С.А., Ткачев А.Н., Яковленко С.Н. Исследование фундаментальных свойств кулоновской плазмы методом динамики многих частиц //Изв. Вузов. Физика. - 1991. - Т. 11. -С. 3.
1.102. Коптев Ю.В., Латуш Е.Л., Сэм М.Ф., Чеботарев Г.Д. Генерация на переходе 2P1-1S2 585,3 нм NeI при разряде в полом катоде и в продольном разряде // Труды Всесоюзного совещания "Инверсная заселенность и генерация на переходах в атомах и молекулах". Томск. Изд. ТГУ. - 1986. - С. 7-8.
1.103. Бониц М. и др. Термодинамика и корреляционные функции ультрахолод ной неидеальной ридберговской плазмы //ЖЭТФ. - 2004. - Т. 125. - №. 4. - С. 821-830.
1.104. Биберман Л. М., Воробьев В. С., Якубов И. Т. Кинетика неравновесной низкотемпературной плазмы. - 1982.
1.105. Ecker G., Kröll W. Degree of Ionization of a Plasma in Equilibrium //Zeitschrift für Naturforschung A. - 1966. - Т. 21. - №. 12. - С. 2023-2027.
1.106. Gündel H. Zustandssumme und effektive Ionisierungsspannung eines Atoms im Plasma und Möglichkeiten ihrer experimentellen Überprüfung. Teil I //Contributions to Plasma Physics. - 1970. - Т. 10. - №. 6. - С. 455-467.
1.107. Воробьев В. С. , О распределении электронов по энергиям и уравнение ионизационного равновесия в частично ионизованной плазме //ТВТ. - 1975. -Т. 13. - №. 2. - С. 245-250.
1.108. Каклюгин А. С., Норман Г. Э. Уравнения состояния и ионизационного равновесия недебаевской плазмы //Теплофизика высоких температур. - 1987. - Т. 25. - №. 2. - С. 209-217.
1.109. Shimamura I., Fujimoto T. State densities and ionization equilibrium of atoms in dense plasmas //Physical Review A. - 1990. - Т. 42. - №. 4. - С. 2346.
1.110. Воробьев В. С., Хомкин А. Л. Приближение ближайшего соседа в термодинамике кулоновских систем и плазмы //Теоретическая и математическая физика. - 1976. - Т. 26. - №. 3. - С. 364-375.
254
1.111. Воробьев В. С., Хомкин А. Л. Столкновительные комплексы в плазме и их влияние на электропроводность //Физика плазмы. - 1977. - Т. 3. - С. 885.
1.112. Лифшиц Е. М., Питаевский Л. П. Физическая кинетика //Наука, Глав. ред. физико-математической лит-ры. -1979. - Т. 10.
1.113. Биберман Л. М., Воробьев В. С., Якубов И. Т. Коэффициенты рекомбинации в неидеальной плазме // ДАН. - 1987. - Т. 296. - С. 577.
1.114. Якубов И. Т. Рекомбинация многозарядных ионов и ступенчатая ионизация в сверхплотной плазме //Теплофизика высоких температур. - 1992. - Т. 30. - №. 5. - С. 862-868.
1.115. Яковленко С.И. Релаксационные процессы и коллективные колебания в системе классических кулоновских частиц // Электронный журнал «Исследовано в России». -2000. - Т. 23. -С. 304.
1.116. Ланкин А.В., Норман Г.Э. Самосогласованное описание свободных и связанных состояний в неидеальной плазме. Флуктуационный подход. // ДАН. - 2008. - Т. 418. - №. 4. - С. 466-472.
2.1. Собельман И. И. Введение в теорию атомных спектров. //Рипол Классик. -2013.
2.2. Махалов В.Б. Приготовление и диагностика двумерного ферми-газа атомов //Нижний Новгород. - 2014.
2.3. Schunemann U. et al. Magneto-optic trapping of lithium using semiconductor lasers //Optics Communications. - 1998. - Т. 158. - №. 1. - С. 263-272.
2.4. Corwin K. L. et al. Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor //Applied Optics. - 1998. - Т. 37. - №. 15. - С. 3295-3298
2.5. Haring R. et al. 670 nm semiconductor lasers for Lithium spectroscopy with 1 W //Integrated Optoelectronic Devices 2007. - International Society for Optics and Photonics, 2007. - С. 648516-648516-6.
2.6. Зибров А. С. и др. Стабилизация частоты инжекционного лазера с внешним резонатором //Квантовая электроника. - 1982. - Т. 9. - №. 4. - С. 804-806.
2.7. Саакян С. А., Саутенков В. А., Вильшанская Е. В., Васильев В. В., Зеленер Б. Б., Зеленер Б. В. Контроль частоты перестраиваемых лазеров с помощью частотно-калиброванного лямбда-метра в эксперименте по приготовлению ридберговских атомов в магнитооптической ловушке //Квантовая электроника. - 2015. - Т. 45. - №. 9. - С. 828-832
255
2.8. Steck D.A. Rubidium 85 D Line Data (available online at http://steck.us/alkalidata, revision 2.1.6, 20 September 2013).
2.9. Бармашова Т.В. Лазерное охлаждение и пленение ферми-атомов лития-6 //Нижний Новгород. -2008.
2.10. Зеленер Б. Б., Саакян С. А., Саутенков В. А. и др. Лазерное охлаждение атомов Li7 в магнитооптической ловушке //Письма в ЖЭТФ. - 2013. - Т. 98. -№. 11-12.
2.11. Маныкин Э. А., Ожован М. И., Полуэктов П. П. О коллективном электронном состоянии в системе сильновозбужденных атомов //ДАН СССР. - 1981. - Т. 250. - №. 5. - С. 1096.
2.12. Маныкин Э. А., Ожован М. И., Полуэктов П. П. Теория конденсированного состояния в системе возбужденных атомов //ЖЭТФ. - 1983. - Т. 84. - С. 442.
2.13. Маныкин Э. А., Ожован М. И., Полуэктов П. П. //ЖЭТФ. - 1992. - Т. 102. - С. 804.
2.14. Grimm R., Weidemuller M., Ovchinnikov Y. N. Optical dipole traps for neutral atoms //Adv. At. Mol. Opt. Phys. - 2000. - Т. 42. - №. physics/9902072. - С. 170.
2.15. Barrett M. D., Sauer J. A., Chapman M. S. All-optical formation of an atomic Bose-Einstein condensate //Physical Review Letters. - 2001. - Т. 87. - №. 1. - С. 010404.
2.16. Vuletic V. et al. Optical pumping saturation effect in selective reflection //Optics communications. - 1994. - Т. 108. - №. 1. - С. 77-83.
2.17. Зеленер Б. Б., Саакян С. А., Саутенков В. А. и др. О реализации высокой концентрации атомов лития-7 в магнитооптической ловушке //ЖЭТФ. - 2014. - Т. 146. - №. 5.
2.18. Ketterle W. et al. High densities of cold atoms in a dark spontaneous-force optical trap //Physical review letters. - 1993. - Т. 70. - №. 15. - С. 2253.
2.19. Grego S. et al. A cesium magneto-optical trap for cold collisions studies //Optics communications. - 1996. - Т. 132. - №. 5. - С. 519-526.
2.20. Dalibard J., Cohen-Tannoudji C. Laser cooling below the Doppler limit by polarization gradients: simple theoretical models //JOSA B. - 1989. - Т. 6. - №. 11. - С. 2023-2045.
2.21. Grier A. T. et al. Л-enhanced sub-Doppler cooling of lithium atoms in D 1 gray molasses //Physical Review A. - 2013. - Т. 87. - №. 6. - С. 063411.
2.22. Д.Д. Сукачев, А.В. Соколов, Н.Н. Колачевский, Е.С. Калганова, А.В. Акимов,
B.Н. Сорокин // Письма в Журнал Экспериментальной и Теоретической Физики. - 2010. - Т. 92, вып. 10. - С. 772-776.
2.23. D. Sukachev, A. Sokolov, K. Chebakov, A. Akimov, S. Kanorsky, N. Kolachevsky, and V. Sorokin // Physical Review A. - 2010. - Vol. 82. - P. 011405-011408 (R).
2.24. Маныкин Э. А., Зеленер Б. Б., Зеленер Б. В. Термодинамические и кинетические свойства неидеального ридберговского вещества //Письма в Журнал экспериментальной и теоретической физики. - 2010. - Т. 92. - №. 9. -
C. 696-712.
2.25. Weiner J. et al. Experiments and theory in cold and ultracold collisions //Reviews of Modern Physics. - 1999. - Т. 71. - №. 1. - С. 1.
2.26. Sautenkov V. A., Saakyan S.A., Vilshanskaya E.V., Zelener B.B. et al. Observation of Rydberg Transitions in Resonance Fluorescence of Ultracold Lithium-7 Atoms //Journal of Russian Laser Research. - 2015. - Т. 36. - №. 2. - С. 193-199.
2.27. Arpornthip T., Sackett C. A., Hughes K. J. Vacuum-pressure measurement using a magneto-optical trap //Physical Review A. - 2012. - Т. 85. - №. 3. - С. 033420.
2.28. Bali S. et al. Quantum-diffractive background gas collisions in atom-trap heating and loss //Physical Review A. - 1999. - Т. 60. - №. 1. - С. R29.
2.29. Стенхольм С. Основы лазерной спектроскопии // Пер. с англ. - Мир. - 1987.
2.30. Зеленер Б. Б., Саакян С. А., Саутенков В. А. и др. Эффективное возбуждение ридберговских состояний ультрахолодных атомов лития-7 //Письма в ЖЭТФ. - 2014. - Т. 100. - №. 5-6.
2.31. Sansonetti C. J. et al. Absolute Transition Frequencies and Quantum Interference in a Frequency Comb Based Measurement of the Li 6, 7 D Lines //Physical review letters. - 2011. - Т. 107. - №. 2. - С. 023001.
2.32. Зеленер Б. Б., Саакян С. А., Саутенков В. А. и др. Лазерная диагностика спектра энергии ридберговских состояний атома лития-7 //ЖЭТФ - 2015. - Т. 148. -№. 6.
2.33. Puchalski M., K^dziera D., Pachucki K. Ionization potential for excited S states of the lithium atom //Physical Review A. - 2010. - Т. 82. - №. 6. - С. 062509.
2.34. Yan Z. C., Drake G. W. F. Bethe logarithm and QED shift for Lithium //Physical review letters. - 2003. - Т. 91. - №. 11. - С. 113004.
2.35. Kramida, A., Ralchenko, Yu., Reader, J., and NIST ASD Team (2013). NIST Atomic Spectra Database (ver. 5.1), [Online]. Available: http://physics.nist.gov/asd [2014, July 17]. National Institute of Standards and Technology, Gaithersburg, MD.
257
2.36. Yan Z. C., Drake G. W. F. Eigenvalues and expectation values for the 1 s 2 2s 2 S, 1 s 2 2p 2 P, and 1 s 2 3d 2 D states of lithium //Physical Review A. - 1995. - Т. 52. - №. 5. - С. 3711.
2.37. Kelly R. L. Atomic and ionic spectrum lines below 2000 Angstroms. hydrogen through krypton //Journal of Physical and Chemical Reference Data. - 1987. - Т. 16.
2.38. Anwar-ul-Haq M. et al. On the first ionization potential of lithium //Journal of Physics B: Atomic, Molecular and Optical Physics. - 2005. - Т. 38. - №. 2. - С. S77.
2.39. Зеленер Б. Б., Саакян С. А., Саутенков В. А., Маныкин Э. А., Зеленер Б. В., Фортов В. Е. Запрещенные переходы 2P-nP и 2P-nF в спектре энергий ультрахолодных ридберговских атомов лития-7 // ЖЭТФ. - 2016. - Т. 149. -№. 4. - С. 750.
2.40. Chen C. Term energies of 1s2nf high Rydberg states for the lithium atom //Physica Scripta. - 2013. - Т. 88. - №. 4. - С. 045303.
2.41. Chao C. Ionization Potentials and Quantum Defects of 1s2np2P Rydberg States of Lithium Atom //Communications in Theoretical Physics. - 2008. - Т. 50. - №. 3. -С.733.
2.42. Зеленер Б.Б., Саакян С.А., Саутенков В.А., Фортов В.Е. - Двухфотонные ридберговские резонансы в литии-7, полученные методом падения резонансной флюоресценции // ДАН. - 2017. - Т. 473. - №. 1. - С. 24-27.
2.43. Johnson T. A. et al. Rabi oscillations between ground and Rydberg states with dipole-dipole atomic interactions //Physical Review Letters. - 2008. - Т. 100. - №. 11. - С. 113003.
2.44. D'yachkov L. G., Pankratov P. M. On the use of the semiclassical approximation for the calculation of oscillator strengths and photoionization cross sections //Journal of Physics B: Atomic, Molecular and Optical Physics. - 1994. - Т. 27. -№. 3. - С. 461.
2.45. Beterov I. I. et al. Quasiclassical calculations of blackbody-radiation-induced depopulation rates and effective lifetimes of Rydberg n S, n P, and n D alkali-metal atoms with n< 80 //Physical Review A. - 2009. - Т. 79. - №. 5. - С. 052504.
2.46. Sautenkov V. A., Saakyan S. A., Vilshanskaya E. V., Murashkin D. A., Zelener B. B., Zelener B. V. Quantum defects in Rydberg nD states of optically cooled 7Li atoms //Laser Physics. - 2016. - Т. 26. - №. 11. - С. 115701.
2.47. Зеленер Б.Б., Саакян С.А., Саутенков В.А., Фортов В.Е. // Когерентные и некогерентные компоненты двухступенчатого возбуждения ридберговских состояний ультрахолодных атомов лития-7 // ДАН. - 2016. - Т. 467. - №. 5. -С. 526.
2.48. Saakyan S. A. et al. Two-photon excitation of ultracold atoms to Rydberg states //Journal of Physics: Conference Series. - IOP Publishing, 2015. - Т. 653. - №. 1.
- С. 012123.
2.49. Vilshanskaya E. V., Murashkin D. A., Saakyan S. A., Sautenkov V. A., Zelener B.
B. Preparation of Rydberg states in ultracold Li-7 atoms by using coherent or noncoherent optical excitation //Journal of Physics: Conference Series. - IOP Publishing, 2016. - Т. 774. - №. 1. - С. 012164.
2.50. Saakyan S. A., Sautenkov V. A., Zelener B. B. Energy intervals between Rydberg states nD and nF in lithium-7 //Journal of Physics: Conference Series. - IOP Publishing, 2016. - Т. 774. - №. 1. - С. 012165.
2.51. Murashkin D. A., Saakyan S. A., Sautenkov V. A., Zelener B. B. Measurements of quantum defect in Rydberg D-states for lithium atoms //Journal of Physics: Conference Series. - IOP Publishing, 2016. - Т. 774. - №. 1. - С. 012166.
3.1. Бобров А.А., Бронин С.Я., Зеленер Б.Б., Зеленер Б.В., Маныкин Э.А., Хихлуха Д.Р. Коэффициент столкновительной рекомбинации в ультрахолодной плазме. Расчет методом молекулярной динамики, // ЖЭТФ, - 2011. - Т. 139, -№. 3, - С. 605.
3.2. Tuckerman M. E., Martyna G. J. Understanding modern molecular dynamics: techniques and applications. // J. Phys. Chem. B - 2000. - Т. 104, - С. 159.
3.3. Зеленер Б.В., Норман Г.Э., Филинов В.С. Теория возмущений и псевдопотенциал в статистической термодинамике, - Наука, Москва, 1981. -
C. 101.
3.4. Verlet L. Computer" experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules //Physical review. - 1967. - Т. 159. - №. 1.
- С. 98.
3.5. Tuckerman M., Berne B. J., Martyna G. J. Reversible multiple time scale molecular dynamics //The Journal of chemical physics. - 1992. - Т. 97. - №. 3. - С. 19902001.
3.6. Бронин С.Я., Зеленер Б.Б., Зеленер Б.В., Маныкин Э.А., Хихлуха Д.Р. "Функция распределения и диффузия в пространстве энергии ридберговских состояний электрона в неидеальной ультрахолодной плазме // ЖЭТФ, - 2011. - Т. 139, - №. 4, - С. 822.
3.7. Bobrov A. A. et al. Distribution function and electron state density in nonequilibrium plasma created by dye laser //Laser physics. - 2007. - Т. 17. - №. 4. - С. 415-418.
3.8. Бобров А. А. и др. Электронная плотность состояний и коэффициент диффузии электронов в пространстве энергий в неидеальной неравновесной плазме //ЖЭТФ. - 2008. - Т. 134. - №. 1. - С. 179-188.
3.9. Bates D. R., Kingston A. E. Properties of recombining hydrogen plasma //Planet Space Sci. - 1965. - Т. 2. - С. 1.
3.10. Gryzinski M. Classical theory of atomic collisions. I. Theory of inelastic collisions //Physical Review. - 1965. - Т. 138. - №. 2A. - С. A336.
3.11. Drawin H. W. Influence of Radiative Absorption on the Establishment of Local Thermodynamic Equilibrium, //Z. Naturforsh. - 1969 - Т. A. - №. 24. - С. 1492
3.12. Johnson L. C., Hinnov E. Ionization, recombination, and population of excited levels in hydrogen plasmas //Journal of Quantitative Spectroscopy and Radiative Transfer. - 1973. - Т. 13. - №. 4. - С. 333-358.
3.13. Pohl T., Pattard T., Rost J. M. Plasma formation from ultracold Rydberg gases //Physical Review A. - 2003. - Т. 68. - №. 1. - С. 010703.
3.14. Mansbach P., Keck J. Monte Carlo trajectory calculations of atomic excitation and ionization by thermal electrons //Physical Review. - 1969. - Т. 181. - №. 1. - С. 275.
3.15. Wigner E. Calculation of the Rate of Elementary Association Reactions //The Journal of Chemical Physics. - 1937. - Т. 5. - №. 9. - С. 720-725.
3.16. Pohl T., Vrinceanu D., Sadeghpour H. R. Rydberg atom formation in ultracold plasmas: Small energy transfer with large consequences //Physical review letters. -2008. - Т. 100. - №. 22. - С. 223201.
3.17. Майоров С. А., Ткачев A. Н., Яковленко С. И. Метастабильная переохлажденная плазма //Успехи физических наук. - 1994. - Т. 164. - №. 3. -С. 297-307.
3.18. Lankin A. V., Norman G. E. Crossover from bound to free states in plasmas //Journal of Physics A: Mathematical and Theoretical. - 2009. - Т. 42. - №. 21. -С.214032.
3.19. Зельдович Я.Б., Райзер Ю.П. Физика ударных волн //М.: Наука. - 1966. - С. 656.
3.20. Гуревич А. В., Питаевский Л. П. Коэффициент рекомбинации в плотной низкотемпературной плазме //Журнал экспериментальной и теоретической физики. - 1964. - Т. 46. - №. 4. - С. 1281.
3.21. Гуревич А. В. Структура возмущенной зоны в окрестности малого заряженного тела в плазме //Геомагнетизм и аэрономия. - 1964. - Т. 4. - №. 1.
- С. 3-16.
3.22. Robicheaux F. Simulations of antihydrogen formation //Physical Review A. - 2004.
- Т. 70. - №. 2. - С. 022510.
3.23. Smirnov B.M. Physics of Ionized Gases //Wiley-Interscience Publication, New York. - 2001.
3.24. Смирнов Б.М. Свойства газоразрядной плазмы //СПб: Изд. Политехнического университета. - 2010
3.25. Smirnov B.M. Fundamentals of Ionized Gases //Wiley-VCH Verlag GmbH. -2011.
3.26. Куриленков Ю. К. О влиянии неидеальности на коэффициент рекомбинации плотной плазмы //ТВТ. - 1980. - Т. 18. - С. 1312-1314.
3.27. Кобзев Г. А., Куриленков Ю. К. Влияние неидеальности на фоторекомбинационные спектры плазмы //Теплофизика высоких температур.
- 1978. - Т. 16. - №. 3. - С. 458-463.
3.28. Lankin A., Norman G. Density and nonideality effects in plasmas //Contributions to Plasma Physics. - 2009. - Т. 49. - №. 10. - С. 723-731.
3.29. Bannasch G., Pohl T. Rydberg-atom formation in strongly correlated ultracold plasmas //Physical Review A. - 2011. - Т. 84. - №. 5. - С. 052710.
3.30. Бобров А.А., Зеленер Б.Б., Хихлуха Д.Р., Зеленер Б.В. Влияние неидеальности на скорость столкновительной рекомбинации в неидеальной плазме //ТВТ, -2013. - Т. 51. - №. 5. - С.685.
3.31. Бутлицкий М.А., Зеленер Б.Б., Зеленер Б.В., Хихлуха Д.Р. Функция распределения и кинетические процессы в ультрахолодном ридберговском веществе, //Ядерная физика и инжиниринг, - 2012. - Т. 3. - №. 2. - С.151.
3.32. Hinnov E., Hirschberg J. G. Electron-ion recombination in dense plasmas //Physical Review. - 1962. - Т. 125. - №. 3. - С. 795.
3.33. Kuckes A. F. et al. Recombination in a helium plasma //Physical Review Letters. -1961. - Т. 6. - №. 7. - С. 337.
3.34. Bergeson S. D., Robicheaux F. Recombination fluorescence in ultracold neutral plasmas //Physical review letters. - 2008. - Т. 101. - №. 7. - С. 073202.
3.35. Воробьев В. С. К теории электропроводности полностью ионизованной неидеальной плазмы //Теплофизика высоких температур. - 1987. - Т. 25. - №. 3. - С. 430-434.
4.1. Силин В.П. Введение в кинетическую теорию газов // М., Наука. - 1971.
4.2. Malmberg J.H., deGrassie J.S. Properties of Nonneutral Plasma // Phys.Rev.Lett. -1975. - Т. 35.- С. 577.
4.3. Корягин С. А. Интеграл электрон-ионных столкновений в сильном магнитном поле //ЖЭТФ. - 2000. - Т. 117. - №. 5-6. - С. 853.
4.4. Корягин С. А. Рассеяние низкоэнергичных электронов на положительных ионах в магнитном поле. I. Квантовый расчёт вероятностей перехода //Известия высших учебных заведений. - 2008. - Т. 51. - №. 6. - С. 512-525.
4.5. O'Neil T. M. Collision operator for a strongly magnetized pure electron plasma //The Physics of Fluids. - 1983. - Т. 26. - №. 8. - С. 2128-2135.
4.6. Robicheaux F. Three-body recombination for electrons in a strong magnetic field: Magnetic moment //Physical Review A. - 2006. - Т. 73. - №. 3. - С. 033401.
4.7. Зеленер Б. Б., Зеленер Б. В., Маныкин Э. А. Коэффициент трехчастичной рекомбинации слабонеидеальной ультрахолодной плазмы в сильном магнитном поле //Письма в Журнал экспериментальной и теоретической физики. - 2011. - Т. 94. - №. 7. - С. 565-569.
4.8. Абакумов В.Н., Перель В.И., Яссиевич И.Н., Безызлучательная рекомбинация в полупроводниках // С.-Петербург. - 1997.
4.9. Шалимова К.В., Физика полупроводников // М., Наука. - 1982.
4.10. Зеленер Б. Б., Зеленер Б. В., Маныкин Э. А. Эффект замедления рекомбинации неравновесных носителей заряда в полупроводнике в магнитном поле //Письма в Журнал экспериментальной и теоретической физики. - 2012. - Т. 95. - №. 3. - С. 164-167.
4.11. Сейсян Р.П., Спектроскопия диамагнитных экситонов // М., Наука. - 1984.
4.12. Yafet Y., Keyes R. W., Adams E. N. Hydrogen atom in a strong magnetic field //Journal of Physics and Chemistry of Solids. - 1956. - Т. 1. - №. 3. - С. 137-142.
4.13. Larsen D. M. Shallow donor levels of InSb in a magnetic field //Journal of Physics and Chemistry of Solids. - 1968. - Т. 29. - №. 2. - С. 271-280.
262
4.14. Raymond A. et al. Ionisation energy of magnetodonors in InSb //Journal of Physics C: Solid State Physics. - 1984. - Т. 17. - №. 13. - С. 2381.
4.15. Elliott R. J., Loudon R. Theory of fine structure on the absorption edge in semiconductors //Journal of Physics and Chemistry of Solids. - 1959. - Т. 8. - С. 382-388.
4.16. Elliott R. J., Loudon R. Theory of the absorption edge in semiconductors in a high magnetic field //Journal of Physics and Chemistry of Solids. - 1960. - Т. 15. - №. 3-4. - С. 196-207.
4.17. Горьков Л.П., Дзялошинский И.Е. К теории экситона Мотта в сильном магнитном поле // ЖЭТФ. - 1967. - Т. 53. - №. 2. - С. 717-722.
4.18. Зеленер Б. Б., Зеленер Б. В., Маныкин Э. А. Эффект магнитной стабилизации ридберговских атомов и многочастичных комплексов в ультрахолодной плазме //Письма в Журнал экспериментальной и теоретической физики. -2012. - Т. 96. - №. 1. - С. 29-32.
4.19. Кавецкая И. В., Сибельдин Н. Н., Цветков В. А. Экситонно-примесные комплексы, стабилизированные магнитным полем, в антимониде индия //ЖЭТФ. - 1994. - Т. 105. - №. 6. - С. 1714.
4.20. Kavetskaya I. V., Sibeldin N. N., Tsvetkov V. A. Density and binding energy of magnetically stabilized electron-hole liquid in indium antimonide //Solid state communications. - 1996. - Т. 97. - №. 3. - С. 157-161.
4.21. Кавецкая И.В. и др. Магнитостабилизированная электронно-дырочная жидкость в антимониде индия //ЖЭТФ. - 1997. - Т. 111. - №. 2. - С. 737-758.
4.22. Glinsky M. E., O'Neil T. M. Guiding center atoms: Three-body recombination in a strongly magnetized plasma //Physics of Fluids B: Plasma Physics. - 1991. - Т. 3. - №. 5. - С. 1279-1293.
4.23. Zubarev D. N., Morozov V., Röpke G. Statistical mechanics of nonequilibrium processes. - Berlin : Akademie Verlag, 1996. - Т. 1.
4.24. Меньшиков Л.И., Федичев П.О. Теория элементарных атомных процессов в ультрахолодной плазмы //ЖЭТФ. - 1995. - Т. 108. - №. 1. - С. 144.
4.25. Бобров А.А., Бронин С.Я., Зеленер Б.Б., Зеленер Б.В., Маныкин Э.А., Хихлуха Д.Р. Функция распределения электронов и коэффициент рекомбинации в ультрахолодной плазме в магнитном поле //ЖЭТФ. - 2013. - Т. 144. . - №. 1. -С.185.
4.26. Тамм И.Е., Основы теории электричества // М., Наука. - 1989.
4.27. Ландау Л.Д., Лифшиц Е.М. Квантовая механика // Физматлит - 1963.
263
4.28. Jenkins F. A., Segre E. The quadratic Zeeman effect //Physical Review. - 1939. -Т. 55. - №. 1. - С. 52.
4.29. Захарченя Б. П., Сейсян Р. П. Диамагнитные экситоны в полупроводниках //Успехи физических наук. - 1969. - Т. 97. - №. 2. - С. 193-210.
4.30. Будкер Г.И. Эффективный метод демпфирования колебаний частиц в протонных и антипротонных накопителях //Атомная энергия. - 1967. - Т. 22. - №. 5. - С. 346-348.
4.31. Derbenev Y. S., Skrinsky A. N. The effect of an accompanying magnetic field on electron cooling //Particle Accelerators. - 1978. - Т. 8. - №. 4. - С. 235-243.
4.32. Дербенев Я.С., Скринский А.Н. Эффекты замагниченности в электронном охлаждении // Физика плазмы, - 1978. - Т. 4.- С. 492.
4.33. S0rensen A. H., Bonderup E. Electron cooling //Nuclear Instruments and Methods in Physics Research. - 1983. - Т. 215. - №. 1-2. - С. 27-54.
4.34. Меньшиков Л. И., Ландуа Р. Состояние исследований по «холодному» антиводороду //Успехи физических наук. Обзоры актуальных проблем. -2003. - Т. 173. - №. 3. - С. 233-263.
4.35. Пархомчук В.В., Скринский А.Н. Электронное охлаждение — 35 лет развития // УФН. - Т. 170. - №. 5. - С. 473-493.
4.36. Бобров А.А., Бронин С.Я., Зеленер Б.Б., Зеленер Б.В., Маныкин Э.А., Хихлуха Д.Р. Некоторые особенности процесса охлаждения протонов и антипротонов в ультрахолодном электронном газе, //ДАН. - 2016. - Т. 470. - №. 3. - С. 271.
4.37. Bobrov A. A. et al. Proton cooling in ultracold low-density electron gas //Journal of Physics: Conference Series. - IOP Publishing, 2015. - Т. 653. - №. 1. - С. 012122.
4.38. Bobrov A. A., Bronin S. Y., Manykin E. A., Zelener B. B., Zelener B. V. On the temperature of antihydrogen formed in magnetic trap //Journal of Physics: Conference Series. - IOP Publishing, 2016. - Т. 774. - №. 1. - С. 012160.
4.39. Zelener B. B., Zelener B. V., Manykin E. A., Bronin S. Y., Bobrov A. A. On electron-proton energy exchange in strong magnetic field //Journal of Physics: Conference Series. - IOP Publishing, 2016. - Т. 774. - №. 1. - С. 012161.
4.40. Бобров А.А., Бронин С.Я., Зеленер Б.Б., Зеленер Б.В., Маныкин Э.А., Хихлуха Д.Р. Релаксация энергии протонов в электронном газе в однородном магнитном поле // Физика плазмы. - 2017. - Т. 43. - №. 5. - С. 455.
4.41. Spitzer L., Physics of fully ionized gases // N.-Y., Wiley - 1962.
4.42. Rolston S. L., Gabrielse G. Cooling antiprotons in an ion trap //Hyperfine Interactions. - 1989. - Т. 44. - №. 1. - С. 233-245.
264
4.43. Lodi-Rizzini E. et al. Modelling the behavior of the positron plasma temperature in antihydrogen experimentation //Hyperfine Interactions. - 2014. - Т. 228. - №. 1-3. - С. 53 -60.
4.44. Landau L. D. Die kinetische gleichung für den fall Coulombscher vechselwirkung //Phis. Z. Sowietunion. - 1936. - Т. 10. - С. 154-164.
4.45. Беляев С.Т., Будкер Г.И. В кн. Физика плазмы и проблема УТР //под ред. М.А.Леонтовича, М.: Изд. АН СССР. - 1958. - Т. 3. - С. 66.
4.46. Бэдсел Ч., Ленгдон А. Физика плазмы и численное моделирование //М., Энергоатомиздат. - 1989.
4.47. Ashley J. C., Ritchie R. H., Brandt W. Z 1 3 effect in the stopping power of matter for charged particles //Physical Review B. - 1972. - Т. 5. - №. 7. - С. 2393.
4.48. Basko M. M. On the low-velocity limit of the Bohr stopping formula //The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics. -2005. - Т. 32. - №. 1. - С. 9-17.
4.49. Dikanskii N. S. et al. Influence of the sign of the charge of an ion on the friction force in electron cooling //Zh. Eksp. Teor. Fiz. - 1988. - Т. 37. - С. 65-73.
4.50. Möllers B. et al. Cooling of ions and antiprotons with magnetized electrons //Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. - 2004. - Т. 532. - №. 1. - С. 279-284.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.