Стимуляция ангио/миогенеза при сердечно-сосудистой патологии с использованием генной терапии и аутотрансплантации клеток-предшественников тема диссертации и автореферата по ВАК РФ 14.01.24, доктор биологических наук Еремеева, Марина Викторовна

  • Еремеева, Марина Викторовна
  • доктор биологических наукдоктор биологических наук
  • 2010, Москва
  • Специальность ВАК РФ14.01.24
  • Количество страниц 185
Еремеева, Марина Викторовна. Стимуляция ангио/миогенеза при сердечно-сосудистой патологии с использованием генной терапии и аутотрансплантации клеток-предшественников: дис. доктор биологических наук: 14.01.24 - Трансплантология и искусственные органы. Москва. 2010. 185 с.

Введение диссертации (часть автореферата) на тему «Стимуляция ангио/миогенеза при сердечно-сосудистой патологии с использованием генной терапии и аутотрансплантации клеток-предшественников»

ИНЛС - индекс нарушения локальной сократимости левого желудочка; иРНК - ингибирующая рибонуклеиновая кислота; КМК - костномозговые клетки; КМЦ - кардиомиоцит.

КП - клетки- предшественники (аутологичные); МСК - мезенхимальные стволовые клетки; ОФЭТ - однофотонная эмиссионная томография; ПИКВ(01М1) - прямое интрамиокардиальное введение; ПЭТ - позитронно-эмиссионная томография; РФП - радиофармпрепарат;

ТЛБАП - транслюминальная баллонная ангиопластика; УЗДГ - ультразвуковая допплерография сосудов; ХИНК- хроническая ишемия нижних конечностей; ЦЭК - циркулирующие эндотелиальные клетки; ЦЭП - циркулирующие эндотелиальные клетки-предшественники; ЭКП - эндотелиальные клетки предшественники; ЭСК - эмбриональные стволовые клетки;

ОГЛАВЛЕНИЕ

СПИСОК СОКРАЩЕНИИ

ОГЛАВЛЕНИЕ 3

ВВЕДЕНИЕ 7

Похожие диссертационные работы по специальности «Трансплантология и искусственные органы», 14.01.24 шифр ВАК

Заключение диссертации по теме «Трансплантология и искусственные органы», Еремеева, Марина Викторовна

Выводы

1. Активизация восстановительных процессов в ишемизированных тканях достигается путем индукции в них процессов ангио/миогенеза, которые могут быть усилены применением ангиогенезстимулирующих факторов.

2. Созданная плазмидная конструкция ангиогенного препарата - ангиостимулин -биосовместима, нетоксична, позволяет эффективно экспрессировать ген УЕСТ7165, и может быть использована для индукции репаративного ангиогенеза в ишемизированных тканях.

3. Высокоочищенная популяция СБ133+ стволовых клеток костного мозга состоит из двух субпопуляций: менее зрелых СВ133"7СВ347УЕОП1-2+ клеток и более дифференцированных СЭ1337СВ34+/УЕОР11-2+ клеток, причем субпопуляция С0133+/СВ347УЕ0РК-2+ клеток обладает более высоким потенциалом дифференцировки в направлении неоангиогенеза.

4. Клетки СВ133+ обладают более выраженной ангиогенной активностью по сравнению с СБ34+, и поэтому именно эти клетки должны использоваться для стимуляции ангиогенеза при лечении ишемической болезни сердца и хронической ишемии нижних конечностей.

5. Препарат «ангиостимулин» улучшает перфузию миокарда в наиболее пораженных ишемией сегментах и этот эффект сохраняется не менее года.

6. При сравнительной оценке эффективности способов введения аутологичных костномозговых клеток-предшественников С0133+ для стимуляции регенеративных процессов в миокарде, показано что при интрамиокардиальном введении отмечается достоверное улучшение перфузии в леченных сегментах с исходно умеренным и значительным снижением перфузии. При интракоронарном способе введения достоверных изменений показателей перфузии получено не было.

7. Как при артериальном, так и при внутримышечном введении аутологичных клеток-предшественников СБ133+ или гена УЕОРк,5 зарегистрировано образование новой сосудистой сети при лечении ХИНК.

8. После аутотрансплантации клеток-предшественников С1Э133+ достоверно улучшалось качество жизни больных ИБС и ХИНК.

Практические рекомендации

Исходя из результатов проведенных исследований представляется целесообразным применение внутримышечного введения УЕОР (ангиостимулина) при ишемии миокарда и хронической ишемии нижних конечностей (с учетом критериев включения и исключения пациентов).

Использование аутологичных костномозговых клеток-предшественников СБ133+ можно рекомендовать для лечения сердечной недостаточности в сочетании с хирургическими методами, при этом наиболее эффективным является метод изолированного интрамиокардиалыюго введения.

При лечении ХИНК можно рекомендовать как внутриартериальное, так и в/мышечное введение аутологичных клеток-предшественников СБ133+ или ангиостимулина (гена УЕОР^)

Список литературы диссертационного исследования доктор биологических наук Еремеева, Марина Викторовна, 2010 год

1. Бокерия Л.А., Еремеева М. В. Современное состояние и перспективы использования ангиогенеза в лечении ишемической болезни сердца. Грудная и сердечно-сосудистая хирургия №2, 57-61(2000).

2. Еремеева М. В., Голухова Е.З.Факторы ангиогенеза при ишемии. Стимуляция неоангиогенеза в миокарде. Лекции по кардиологии, в 3-х томах, под ред. Бокерия Л.А. и Голуховой Е.З., изд. НЦССХ им. А.Н.Бакулева, МоскваД61-170 (2001)

3. Казаков Ю.И., Бобков B.B. Изучение микроциркуляции у больных облитерирующими заболеваниями артерий нижних конечностей. Методология флоуметрии, 55-62(1997).

4. Парфенова Е. В, Ткачук В.А. Терапевтический ангиогенез: достижения, проблемы, перспективы. Кардологический вестник Том 02/N 2(2007).

5. Рубина К.А., Калинина Н.И., Семина Е.В., Потехина A.B., Ефименко А.Ю. Ратнер Е.И., Ткачук В.А., Парфенова Е.В. Роль Т-кадгерина в регуляции роста кровеносных сосудов Кардологический вестник Том 02/N 2(2007).

6. Савельев B.C., Кошкин В.М. Критическая ишемия нижних конечностей. М.: Медицина.; 160 (1997).

7. Шумаков В.И., Казаков Э.Н., Онищенко H.A. и соавт. Первый опыт клинического применения аутологичных мезенхимальных стволовых клетоккостного мозга для восстановления сократительной функции миокарда. Российский кардиологический журнал, №5,42-50 (2003).

8. Achen, M.G. et al. Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flkl) and VEGF receptor 3 (Flt4). Proc. Natl. Acad. Sci. USA. 95, 548-553 (1998).

9. Adams GB et al. Therapeutic targeting of a stem cell niche. Nat Biotechnol 25: 238243 . (2007).

10. Aicher A., Brenner W., Zuhayara M., et al. Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation 107,2134-2139(2003).

11. Airenne, K.J. et al. Baculovirus-mediated periadventitial gene transfer to rabbit carotid artery. Gene Ther. 7, 1499-1504 (2000).

12. Alitalo, K. & Ferrara, N. Clinical applications of angiogenic growth factors and their inhibitors. Nat. Med. 5, 1359-1364 (1999).

13. Andrews PW. From teratocarcinomas to embryonic stem cells. Philos Trans R Soc bond В Biol Sci 357,405-417(2002).

14. Angoulvant D, Fazel S, and Li RK. Neovascularization derived from cell transplantation in ischemic myocardium. Mol Cell Biochem264, 133-142 (2004).

15. Arras, M. et al. Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. J. Clin. Invest. 101, 40-50 (1998).

16. Arras, M. et al. The delivery of angiogenic factors to the heart by microsphere therapy. Nat. Biotechnol. 15, 159-162 (1998).

17. Arsic, N. et al. Induction of functional neovascularization by combined VEGF and angiopoietin-1 gene transfer using AAV vectors. Mol. Ther. 7, 450-459 (2003).

18. Asahara Т., Bauters C., Zheng L., et al. Synergistic effect of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in vivo. Circulation 92(9 Suppl), 11365-371 (1995). •

19. Asahara, T. et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ. Res. 85, 221-228(1999).

20. Asahara Т., Takahashi Т., Masuda H. Et al. VEGF contributes to postnatal neovascularization by mobilising bone marrow-derived endothelial progenitor cells. EMBO J. 18, 3964-3972 (1999).

21. Atwood J., Myers J., Colombo A., et al. The effect of complete and incomplete revascularization on exercise variables in patients undergoing coronary angioplasty. Clin. Cardiol. 13 (2), 89-93 (1990).

22. Awad HA, Butler DL, Boivin GP, Smith FN, Malaviya P, Huibregtse B, and Caplan AI. Autologous mesenchymal stem cell-mediated repair of tendon. Tissue Eng 5, 267-277(1999).

23. Baddoo M, Hill K, Wilkinson R. Gaupp D, Hughes C, Kopen GC, and Phinney DG. Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection. J Cell Biochem 89, 1235-1249 (2003).

24. Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, and Robbins RC. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428,668-673 (2004).

25. Barbash I., Chouraqui P., Baron J., et al. Systemic delivery of bone marrow-derived mesenchymal stem cells tj the infarcted myocardium: feasibility, cell migration and body distribution. Circulation 108 (7), 863-868 (2003).

26. Bao J., Naimark W., Palasis M., et al. Intramyocardial delivery of FGF-2 in combination with radio frequency transmyocardial revascularisation. Catheter Cardiovasc. Interv. 53(3), 429-434 (2001).

27. Ватту FP. Mesenchymal stem cells therapy in joint disease. NovartisFound Symp 249, 86-96 (2003).

28. Barton-Davis, E.R., Shoturma, D.I., Musaro, A. Rosenthal, N. & Sweeney, H.L. Viral mediated expression of insulin-like growth factor I blocks the aging-related loss of skeletal muscle function. Proc. Natl Acad. Sei. USA 95, 15603-15607 (1998).

29. Baumgartner I., Rauh G., Pieczek A., et al. Lower-extremity edema associated with gene transfer of naked DNA encoding vascular endothelial growth factor. Ann. Intern. Med. 132(11),880-884 (2000).

30. Bauters C. Growth factors as potential new treatment for ischemic heart disease. Clin. Cardiol. 20(11), 52-57 (1997).

31. Bauters C., Asahara T., Zheng L., et al. Physiological assesment of augmented vascularity induced by VEGF in ischemic rabbit hindlimb. Am. J. Physiol. 267,H1263-1271 (1994).

32. Battler A., Scheinowitz M., Bor A., et al. Intracoronary injection of basic fibroblast growth factor enchances angiogenesis in infarcted swine myocardium. J. Am. Coll. Cardiol. 22, 2001-2006 (1993).

33. Beddington RS and Robertson EJ. An assessment of the developmental potential of embryonic stem cells in the midgestation mouse embryo. Development 105, 733-737 (1989).

34. Behfar A, Zingman LY, Hodgson DM, Rauzier JM, Kane GC, Terzic A, and Puceat M. Stem cell differentiation requires a paracrine pathway in the heart. FASEB J 16, 1558-1566 (2002).

35. Bekeredjian R., Chen S., Frekel P., et al. Ultrasound-targeted microbubble destruction can repeatedly direct highly specific plasmid expression in the heart. Circulation 108, 1022-1026 (2003).

36. Bergelson, J.M. et aL Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5. Science 275, 1320-1323 (1997).

37. Beeri R., Guerrero J., Supple G., et al. New efficient catheter-based system for myocardial gene delivery. Circulation 106(14), 1756-1759 (2002).

38. Bhatia M. AC133 expression in human stem cells. Leukemia 15, 1685-1688 (2001).

39. Bhattacharya, V. et al. Enhanced endothelialization and microvessel formation in polyester grafts seeded with CD34+ bone marrow cells. Blood 95, 581-585 (2000).

40. Boekstegers P., von Degenfeld G., Giehrl W., et al. Myocardial gene transfer by selective pressure-regulated retroprfusion of coronary veins. Gene Ther. 7(3),232-240 (2000).

41. Boheler KR, Czyz J, Tweedie D, Yang HT, Anisimov SV, and Wobus AM. Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ Res 91,189-201(2002).

42. Borue X, Lee S, Grove J, Herzog EL, Harris R, Diflo T, Glusac E, Hyman K, Theise ND, and Krause DS. Bone marrow-derived cells contribute to epithelial engraftment during wound healing. Am J Pathol 165, 1767-1772 (2004).

43. Britten MB, Abolmaali ND, Assmus B, Lehmann R, Honold J, Schmitt J, VogI TJ, Martin H, Schachinger V, Dimmeier S, and Zeiher AM. Infarct remodeling after intracoronary progenitor cell treatment in patients with acute myocardial infarction

44. TOPCAREAMI): mechanistic insights from serial contrast-enhanced magnetic resonance imaging. Circulation 108, 2212-2218 (2003).

45. Brittan M, Braun KM, Reynolds LE, Conti FJ, Reynolds AR, Poulsom R, Alison MR, Wright NA, and Hodivala-Dilke KM. Bone mairow cells engraft within the epidermis and proliferate in vivo with no evidence of cell fusion. J Pathol 205, 1-13, (2005).

46. Bryant, M. et al. Tissue repair with a therapeutic transcription factor. Hum. Gene Ther. 11,2143-2158 (2000).

47. Cao, R. et al. Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nat. Med. 9, 604-613 (2003).

48. Castro-Malaspina H, Ebell W, and Wang S. Human bone marrow fibroblast colony-forming units (CFU-F). Prog Clin Biol Resl54, 209-236 (1984).

49. Caplan Al and Bruder SP. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Medl, 259-267 (2001).

50. Chae, J.K. et al. Coadministration of angiopoietin-1 and vascular endothelial growth factor enhances collateral vascularization. Arterioscler. Thromb. Vase. Biol. 20, 2573-2578 (2000).

51. Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, and Smith A. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113, 643-655 (2003).

52. Chambers I. and Smith A. Self-renewal of teratocarcinoma and embryonic stem cells. Oncogene 23, 7150-7160 (2004).

53. Chleboun J., Martins R., Mitchell C., et al. bFGF enhances the development of the collateral circulation after acute arterial occlusion. Biochem. Biophys. Res. Comm. 185,510-516 (1992).

54. Chien KR. Stem cells: lost in translation. Nature 428,607-608 (2004).

55. Colter DC, Class R, DiGirolamo CM, and Prockop DJ. Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc Natl AcadSci USA 97, 3213-3218 (2000).

56. Condorelli G, Borello U, De Angelis L., et al.Cardiomyocytes induce endothelialcells to trans-differentiate into cardiac muscle: implication for myocardium regeneration. Proc Nat I Acad Sci USA 98, 10733-10738 (2001).

57. Davis, S. et al. Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87, 1161-1169 (1996).

58. Davani S, Deschaseaux F, Chalmers D, Tiberghien P, and Kantelip JP. Can stem cells mend a broken heart? Cardiovasc Res65, 305-316 (2005).

59. Dor, Y. et al. Conditional switching of VEGF provides new insights into adult neovascularization and pro-angiogenic therapy. EMBO J. 21, 1939-1947 (2002).

60. Doss MX, Koehler CI, Gissel C, Hescheler J, and Sachinidis A. Embryonic stem cells: a promising tool for cell replacement therapy. J Cell Mol Med 8, 465-473 (2004).

61. Draper JS, Pigott C, Thomson JA, and Andrews PW. Surface antigens of human embryonic stem cells: changes upon differentiation in culture. J Anat 200, 249-258 (2002).

62. Drukker M and Benvenisty N. The immunogenicity of human embryonic stem-derived cells. Trends Biotechnol 22,136-141 (2004).

63. Dvorak, H.F., Brown, L.F., Detmar, M. & Dvorak, A.M. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am. J. Pathol 146, 1029-1039 (1995).

64. Edelberg J., Lee S., Kaur M., et al. Platelet-derived growth factor-AB limits the extent of myocardial infarction in rabbit model: feasibility of restoring impaired angiogenic capacity in the aging heart. Circulation 105(5), 608-613 (2002).

65. Eisenberg LM and Eisenberg CA. Stem cell plasticity, cell fusion, and transdifferentiation. Birth Defects Res C Embryo Today 69, 209-218 (2003).

66. Eisenberg LM and Eisenberg CA. Adult stem cells and their cardiac potential. Anat Rec A Discov Mol Cell Evol Biol 276,103-112 (2004).

67. Epstein S., Fuchs S. et al. Therapeutic interventions for enhancing collateral development by administration of growth factors: basic, principles, early results and potential hazards. Cardiovasc. Res. 49(3), 532-542 (2001).

68. Epstein S., Kornowski R. et al. Angiogenesis therapy: amidst the hype, the neglected potential for serious side effects. Circulation 104,115-119 (2001).

69. Etzion S, Battler A, Barbash I., et al. Influence of embryonic cardiomyocytetransplantation on the progression of heart failure in a rat model of extensive myocardial infarction. J Mol Cell Cardiol 33,1321-1330 (2001).

70. Folkman J. Angiogenesis therapy of human heart. Circulation 97,628-629 (1998).76. de Feyter PJ. PTCA in patients with stable angina pectoris and multivessel disease: is incomplete revascularization acceptable ? Clin, Cardiol. 15(5), 317-322 (1992).

71. Friedenstein AJ. Osteogenetic activity of transplanted transitional epithelium. Acta Anat 45,31-59(1961).

72. Friedenstein AJ, Chailakhjan RK, and Lalykina KS. The development of fibroblast colonies in monolayer cultures of guineapig bone marrow and spleen cells. Cell Tissue Kinet 3, 393-403, (1970).

73. Fernandez-Aviles F, San Roman JA, Garcia-Frade J, Experimental and clinicalregenerative capability of human bone marrow cells after myocardial infarction. Circ Res 95, 742-748 (2004).

74. Fukumura, M. et al. Gene transfer to skeletal muscle and motor neurons by intramuscular injection of a novel minus strand RNA vector (Sendai virus vector). J. Gen. Med. 2 (suppl.), 24 (2000).

75. Fuchs S., Baffour R., Zhou YF., et al. Transendocardial. delivery of autologous bone marrow enchances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia. J. Am. Coll. Cardiol. 37, 1726-1732 (2001).

76. Fuchs S., Baffour R., Shou M., et al. Coud plasmid mediated gene transfer into the myocardium be augmented by left ventricular guided laser myocardial injury ? Catheter Cardiovasc. Interv. 54(4), 533-538 (2001).

77. Galinanes M, Loubani M, Davies J, Chin D, Pasi J, and Bell PR. Autotransplantation of unmanipulated bone marrow into scarred myocardium is safe and enhances cardiac function in humans. Cell Transplant 13,7-13 (2004).

78. Galzie, Z., Kinsella, A.R. & Smith, J.A. Fibroblast growth factors and their receptors. Biochem. Cell Biol. 75, 669-685 (1997).

79. Gill M., Dia S., Hattori K., et al. Vascular trauma induces rapid but trnsient mobilization of VEGFR2+AC133+ endothelial precursor cells. Circ. Res. 88,167174 (2001).

80. Giordano, F.J. et al. Intracoronary gene transfer of fibroblast growth factor-5 increases blood flow and contractile function in an ischaemic region of the heart. Nat. Med. 2, 534-539 (1996).

81. Gnecchi M, He H, Liang OD, Melo LG, Morello F, Mu H, Noiscux N, Zhang L, Pratt RE, Ingwall JS, and Dzau VJ. Paracrine action accounts for marked protection of ischemic heart by Akt-modifíed mesenchymal stem cells. Nat Med 11, 367-368 (2005).

82. Grant, M.B. et al. Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nat. Med. 8, 607-612 (2002).

83. Grines C., Watkins M., Helmer G., et al. Angiogenic gene therapy (AGENT) trial in patients with stable angina pectoris. Circulation 105, 1291-1297 (2002).

84. Giordano F., Pig P., McKiran D., et al. Intracoronary gene transfer of fibroblast growth factor -5 increases blood flow and contractile function in an ischemic region of the heart. Nat. Med. 2, 534-539 (1996).

85. Grossman P., Han Z., Palasis M., et al. Incomplete retention after direct myocardial injection. Catheter Cardiovasc. Interv. 55(3), 392-397 (2002).

86. Grove JE, Bruscia E, and Krause DS. Plasticity of bone marrow derived stem cells. Stem Cells 22, 487-500 (2004).

87. Grube E., Gerckens U., Altman PA., et al. The helical infusion catheter: first clinical evaluation for local intramyocardial therapeutics. Am. J. Cardiol. 90(Suppl 6A), 120H (2002).

88. Guo Y, Lubbert M, and Engelhardt M. CD34- hematopoietic stem cells: current concepts and controversies. Stem Cells 21,15-20 (2003).

89. Handgretinger R, Gordon PR, Leimig T, Chen X, Buhring HJ, Niethammer D, Kuci S. Biology and plasticity of CD 133+ hematopoietic stem cells. Ann N Y Acad Sei. 996,141-151 (2003).

90. Hariawala M., Florowitz J., Esakof D., et al. VEGF improves myocardial blood flow but produces EDRF- mediated hypotension in porcine hearts. J. Surg. Res. 63, 77-82 (1996).

91. Hatano SY, Tada M, Kimura H, Yamaguchi S, Kono T, Nakano T, Suemori I I, Nakatsuji N, and Tada T. Pluripotential competence of cells associated with Nanog activity. MechDev 122, 67-79 (2005).

92. Hattan N., Kawaguchi H., Ando K, et al. Purified cardiomyocytes from bone marrowmesenchymal stem cells produce stable intracardiac grafts in mice. Cardiovasc Res 65, 334-344 (2005).

93. Hattori, K. et al. Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1+ stem cells from bone-marrow microenvironment. Nat. Med. 8, 841-849 (2002).

94. Hardy K, Spanos S, Becker D, Iannelli P, Winston RM, and Stark J. From cell death to embryo arrest: mathematical models of human preimplantation embryo development. Proc Natl Acad SciUSA 98, 1655-1660 (2001).

95. Hart AH, Hartley L, Ibrahim M, and Robb L. Identification, cloning and expression analysis of the pluripotency promoting Nanog genes in mouse and human. DevDyn 230, 187-198 (2004).

96. He JQ, Ma Y, Lee Y, Thomson J A, and Kamp TJ. Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circ Res 93, 32-39 (2003).

97. Heil M, Ziegelhoeffer T, Mees B, and Schaper W. A different outlook on the role of bone marrow stem cells in vascular growth: bone marrow delivers software not hardware. Circ Res 94, 573-574 (2004).

98. Hendel R., Henry T., Rocha-Singh K., Isner J., et al. Effect of intracoronary recombinant human vascular endothelial growth factor on myocardial perfusion: evidence for dose-dependent effect. Circulation 101, 118-121 (2000).

99. Heng BC, Haider HK, Sim EK, Cao T, Tong GQ, and Ng SC. Comments about possible use of human embryonic stem cellderived cardiomyocytes to direct autologous adult stem cells into the cardiomyogenic lineage. Acta Cardiol 60, 7-12, (2005).

100. Henry Т., Annex В., MeKendall G., et al. (for the VIVA Investigators). Vascular endothelial growth factor in ischemia for vascular angiogenesis (the VIVA trial). Circulation 107, 1359-1365 (2003).

101. Hill JM., Dick AJ., Raham VK., et al. Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells. Circulation 108, 1009-1014 (2003),

102. Hodgson DM, Behar A, Zingman LV, Kane GC, Perez-Terzic C, Alekseev AE, Puceat M, and Terzic A. Stable benefit of embryonic stem cell therapy in myocardial infarction. Am J Physiol Heart Circ Physiol 287, H471-H479 (2004).

103. Horwitz EM. Stem cell plasticity: the growing potential of cellular therapy. Arch Med Res 34, 600-606 (2003).

104. Isner J.M. Myocardial gene therapy. Nature 415, 234-239 (2002).

105. Isner J.M. Angiogenesis for revascularization of ischaemic tissues. Eur. Heart J. 18(1), 1-2(1997).

106. Isner J.M., Asahara T. Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J. Clin. Invest. 103(9),1231-1236 (1999).

107. Isner JM. Therapeutic angiogenesis : a new frontier for vascular therapy. Vase. Med. 1(1), 79-87(1996).

108. Isner JM., Feldman LJ. Gene therapy for arterial disease. Lancet 344,1653-1654 (1994).

109. Isner J.M., Pieczek A., Schainfeld R., et al. Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb. Lancet 348, 370-374 (1996).

110. Ito W.D., et al. Monocyte chemotactic protein-1 increases collateral and peripheral conductance after femoral artery occlusion. Circ. Res. 80, 829-837 (1997).

111. Jackson K.A., et al. Regeneration of ischaemic cardiac muscle and vascular endothelium by adult stem cells. J. Clin. Invest. 107, 1395-1402 (2001).

112. Jackson KA, Snyder DS, and Goodell MA. Skeletal muscle fiber-specific green autofluorescence: potential for stem cell engraftment artifacts. Stem Cells 22, 180187 (2004).

113. Javerzat, S., Auguste, P. & Bikfalvi, A. The role of fibroblast growth factors in vascular development. Trends Mol. Med. 10, 483-489 (2002).

114. Jiang Z., Padua R., Ju H., et al. Acute protection of ischemic heart by FGF-2: involvement of FGF-2 receptors and protein kinase C. Am. J. Physiol. Heart Circ Physiol. 282(3), H1071-H1080 (2002).

115. Jones E., Craver J., Guyton R., et al. Impotance of complete revascularization in perfomance of the coronary bypass operation. Am. J. Cardiol. 51(1), 7-12 (1983)

116. Joukov, V. et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J. 15, 290-298 (1996).

117. Kajstura J, Rota M, Whang B, et al.Bone marrow cells differentiate in cardiac cell leneages after infarction independently of cell fusion. Circ Res 96,127-137(2005).

118. Kaushal, S. et al. Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat. Med. 7, 1035-1040 (2001).

119. Kar S., Nordlander R. Coronary veins: an alternate route to ischemic myocardium. Heart Lung 21(2), 148-157 (1992).

120. Kawada H, Fujita J, Kinjo K., et al. Nonhematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction.

121. Blood 104, 3581-3587(2004).

122. Khurana, R. & Simons, M. Insights from angiogenesis trials using fibroblast growth factor for advanced arteriosclerotic disease. Trends Cardiovasc. Med. 13, 116-122 (2003).

123. Kinnaird T, Stabile E, Burnett MS, and Epstein SE. Bone marrow-derived cells for enhancing collateral development: mechanisms, animal data, and initial clinical experiences. Circ Res 95, 354-363 (2004).

124. Kehat I and Gepstein L. Human embryonic stem cells for myocardial regeneration. Heart Fail Rev 8, 229-236 (2003).

125. Kehat I, Khimovich L, Caspi O, Gepstein A, Shofti R, Arbel G,Huber I, Satin J, Itskovitz-Eldor J, and Gepstein L. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat Biotech 10, 1-8 (2004).

126. Kellar R., Landeen L., Shepherd B., et al. Scaffold-based three-dimensional human fibroblast culture provides a structural matrix that supports angiogenesis in infarcted heart tissue. Circulation 104, 2063-2068(2001).

127. Kleiman NS, Califf RM. Results from late-breaking clinical trials sessions at ACCIS 2000 and ACC 2000. J. Am. Coll. Cardiol. 36,310-311 (2000).

128. Ko YT, Hartner WC, A Kale A and Torchilin VP. Gene delivery into ischemic myocardium by double-targeted lipoplexes with anti-myosin antibody and

129. TAT peptide. Gene Therapy, 16, 52-59 (2009).

130. Kocher, A.A. et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat. Med. 7, 430-436 (2001).

131. Koh CJ and Atala A. Tissue engineering, stem cells, and cloning: opportunities for regenerative medicine. J Am Soc Nephrol 15, 1113-1125 (2004).

132. Kootstra, N.A. & Verma, I.M. Gene therapy with viral vectors. Annu. Rev. Pharmacol. Toxicol. 43, 413-439 (2002).

133. Koponen, J.K. et al. Doxycycline-regulated lentiviral vector system with a noveloreverse transactivator rtTA2 -M2 shows a tight control of gene expression in vitro and in vivo. Gene Ther. 10,459-466 (2003).

134. Koransky M. et al. VEGF gene delivery for treatment of ischemic cardiovascular disease. Trends Cardiovasc. Med. 2(3), 108-114 (2002).

135. Korbling M and Estrov Z. Adult stem cells and tissue repair. BoneMarrow Transplant 32, S23-S24 (2003).

136. Kornowski R., Fuchs S., Tio F.,et al. Evaluation of the acute and chronic safety of the Biosence injection catheter system in porcine hearts. Catheter Cardiovasc. Interv. 48(4), 447-455(1999).

137. Kornowski R., Fuchs S., Leon M., Epstein S. Delivery strategies to achieve therapeutic myocardial angiogenesis. Circulation 101(4), 454-458 (2000).

138. Kubo, H. et al. Blockade of vascular endothelial growth factor receptor-3 signaling inhibits fibroblast growth factor-2-induced lymphangiogenesis in mouse cornea. Proc. Natl. Acad. Sci. USA 99, 8868-8873 (2002).

139. Laham R., Hug D., Simons M., et al. Therapeutic myocardial angiogenesis using percutanous intrapericardial drug delivery. Clin. Cardiol. 22(1 Suppl l),6-9 (1999).

140. Laham R., Simons M. Growth factor therapy in ischemic heart disease. In: Rubanyi G.,ed. Angiogenesis in Health and Disease. New York: Marcel Decker, 451-475 (2000).

141. Laham R. Chronos N., Pike M., et al. Intracoronary basic fibroblast growth factor (FGF-2) in patients with severe ischemic heart disease: results of a phase I open-label dose esculation study. Am. J. Coll. Cardiol. 36(7),2132-2139 (2000).

142. Laham R„ Simons M., Sellke F. Gene transfer for angiogenesis in coronary artery disease. Annu. Rev. Med. 52, 485-502 (2001).

143. Laham R., Rezaee M., et al. Intracoronary and intravenous administration of basic fibroblast factor: myocardial and tissue distribution. Drug. Metab. Dispos. 27(7), 821-826(1999).

144. Laitinen, M. et al. Adenovirus-mediated gene transfer to lower limb artery of patients with chronic critical leg ischaemia. Hum. Gene Ther. 9, 1481-1486 (1998).

145. Laitinen, M. et al. Gene transfer into the carotid artery using an adventitial collai-. Comparison of the effectiveness of plasmid-liposome complexes, retroviruses, pseudotyped retroviruses and adenoviruses. Hum. Gene Ther. 8, 1645-1650 (1997).

146. Landry DW and Zucker HA. Embryonic death and the creation of human embryonic stem cells. J Clin Invest 114, 1184-1186(2004).

147. Lars Ahrlund-Richter,l Michèle De Luca,2 Daniel R. Marsliak,3 Megan Munsie,4 Anna Veiga,5 and Mahendra Rao6. Isolation and Production of Cells Suitable for Human Therapy: Challenges Ahead. Cell Stem Cell 4, January 9, pp. 20-26 (2009).

148. Laverge H, Van der Elst J, De Sutter P, Verschraegen-Spae MR, De Paepe A; and Dhont M. Fluorescent in-situ hybridization on human embryos showing cleavage arrest after freezing and thawing. Hum Reprod 13, 425-429 (1998).

149. Lawrie A., Brisken A., Francis S., et al. Microbubble-enhanced ultrasound for vascular gene delivery to myocardium. Gene Ther. 7(23), 2023-2027 (2000).

150. Lazarous D., Shou M., Scheibowitz M. Comparative effects of basic fibroblast growth factor and vascular endothelial growth factor on coronary collateral development and the arterial response to injury. Circulation 94,1074-1082(1996).

151. Lazarous D., Sheinowitz M., Shou M., et al. Effects of chronic systemic administration of basic fibroblast growth factor on collateral development in the canine heart. Circulation 91, 145-153 (1995).

152. Lazarous D., Shou M., Stiber J., et al. Pharmacodynamics of basic fibroblast growth factor: route of administration letermines myocardial systemic distribution. Cardiovasc. Res. 36(1),78-85 (1997).

153. Lazarous D., Shou M., Stiber J., et al. Adenoviral-mediated gene transfer induces sustained pericardial VEGF expression in dogs: effect on myocardial angiogenesis. Cardiovasc. Res. 44(2), 294-302 (1999).

154. Lehrman, S. Virus treatment questioned after gene therapy death. Nature 401, 517-518 (1999).

155. Leong FT and Freeman LJ. Acute renal infarction. J R Soc Med 98, 121-122 (2005).

156. Leor J, Patterson M, Quinones MJ, Kedes LH, and Kloner RA.Transplantation of fetal myocardial tissue into the infarcted myocardium of rat. A potential method for repair of infarcted myocardium? Circulation 94: II332-II336, 1996.

157. Leung D., Cachianes G., Kuang, W., Goeddel D. & Ferrara, N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246, 1306-1309 (1989).

158. Levenberg S, Golub J., Amit M., Itskovitz-Eldor J. and Langer R. Endothelial cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 99,43914396 (2002).

159. Li TS, Hamano K, Hirata K, Kobayashi T, and Nishida M. The safety and feasibility of the local implantation of autologous bone marrow cells for ischemic heart disease. J Card Surg 18: S69-S75 (2003).

160. Lin F, Cordes K, Li L, Hood L, Couser WG, Shankland SJ, and Igarashi P. Bone marrow stem cells contribute to healing of the kidney. J Am Soc Nephrol 14, S48-S54 (2003).

161. Li RK, Jia ZQ, Weisel RD, Merante F, and Mickle DA. Smooth muscle cell transplantation into myocardial scar tissue improves heart function. J Mol Cell Cardiol 31: 513-522 (1999).

162. Losordo D., Vale P., Symes J., et al. Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation 98(25), 2800-2804 (1998).

163. Lopez J., Laham R., Carrozza J., et al. Hemodynamic effects of intracoronary VEGF delivery: evidence of tachyphylaxis and NO dependence of responce. Am. J. Physiol. 273, H1317-1323 (1997).

164. Lopez J., Laham R., Stamler A., et al. VEGF administration in chronic myocardial ischemia in pigs. Cardiovasc. Res. 40(2), 272-281(1998).

165. Lowe H. et al. Beyond angioplasty: novel developments in interventional cardiology. Intern. Med. J. 32, 470-474 (2002).

166. Lu Y., Shasky J., DelTatto M., et al. Recomdinant vascular endothelial growth factor secreted from tissue engineered bioartificial muscles promotes localized angiogenesis. Circulation 104, 594-599(2001).

167. Lucchese F. et al. Partial left ventriculectomy: overall and late results in 44 class IV patients with 4-year follow-up. J. Card. Surg. 15, 179-185 (2000).

168. Lum LG, Padbury JF, Davol PA, and Lee RJ. Virtual reality of stem cell transplantation to repair injured myocardium. J Cell Biochem. In press.

169. Luttun, A. et al. Revascularization of ischemic tissues by P1GF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Fit 1. Nat. Med. 8, 831-840 (2002).

170. Lyden, D. et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat. Med. 7, 1194-1201 (2001).

171. Maisonpierre, P.C. et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277, 55-60 (1997).

172. Majka, S.M. et al. Distinct progenitor populations in skeletal muscle are bone marrow derived and exhibit different cell fates during vascular regeneration. J. Clin. Invest. Ill, 71-79(2003).

173. Mangi AA, Noiseux N, Kong D, He H, Rezvani M, Ingwall JS, and Dzau VJ. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med 9,1195-1201 (2003).

174. Marshall, E. Second child in French trial is found to have leukemia. Science 299, 320 (2003).

175. Martin MJ, Muotri A, Gage F, and Varki A. Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Medl 1, 228-232 (2005).

176. Mathur A and Martin JF. Stem cells and repair of the heart. Lancet 364,183-192 (2004).

177. McNeer JF, Conley MJ, Starmer CF, et al. Complete and incomplite revascularization at aortocoronary bypass surgery; experiance with 392 consecutive patients. Am. Heart J. 88, 176-182 (1974).

178. Mesisel E., Pfeiffer D., Engelmann L., et al. Investigation of coronary venous anatomy by retrograde venography in patients with malignant ventricular tathycardia. Circulation 104, 442-447 (2001).

179. Menasche P, Iiagege AA, Scorsin M, Pouzet B, Desnos M, Duboc D, Schwartz K, Vilquin JT, and Marolleau JP. Myoblast transplantation for heart failure. Lancet 347, 279-280(2001).

180. Menasche P. Skeletal muscle satellite cell transplantation. Cardiovasc. Res. 58, 351-357(2003).

181. Menasche P., Piwnica A. Cardioplegia by way of the coronary sinus for valvular and coronary surgery. J. Am. Coll. Cardiol. 18(2), 628-236 (1991).

182. Mesri, E.A., Federoff, H.J. & Brownlee, M. Expression of vascular endothelial growth factor from a defective herpes simplex virus type 1 amplicon vector induces angiogenesis in mice. Circ Res. 76, 161-167 (1995).

183. Mezey E. Commentary: on bone marrow stem cells and openmindedness. Stem Cells Dev 13,147-152 (2004).

184. Miller, D.L. et al. Compensation by fibroblast growth factor 1 (FGF1) does not account for the mild phenotypic defects observed in FGF2-null mice. Mol. Cell Biol. 20, 2260-2268 (2000).

185. Min JY, Yang Y, Converso KL, Liu L, Huang Q, Morgan JP, and Xiao YF. Transplantation of embryonic stem cells improves cardiac function in post-infarcted rats. JAppl Physiol 92, 288-296 (2002).

186. Min JY, Yang Y, Sullivan MF, Ke Q, Converso KL, Chen Y, Morgan JP, and Xiao YF. Long-term improvement of cardiac function in rats after infarction bytransplantation of embryonic stem cells. J Thorac Cardiovasc Surg 125,361-3692003).

187. Monahan, P.E. & Samulski, RJ. AAV vectors: is clinical success on the horizon? Gene Ther. 7, 24-30 (2000).

188. Morishita, R. et al. Therapeutic angiogenesis induced by human recombinant hepatocyte growth factor in rabbit hind limb ischemia model as cytokine supplement therapy. Hypertension 33, 1379-1384 (1999).

189. Morrison SJ, Uchida N, and Weissman IL. The biology of hematopoietic stem cells. Annu Rev Cell Dev Biol 11, 35-71(1995).

190. Morrison SJ and Weissman IL. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1, 661-673 (1994).

191. Mukherjee D., et al. Direct myocardial revascularization and angiogenesis how many patients might be eligibl? Am. J. Cardiol. 84, 598-600(1999).

192. Murry CE, Soonpaa MH, Reinecke H, et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428, 664-6682004).

193. Murry CE, Wiseman RW, Schwartz SM, and Hauschka SD. Skeletal myoblast transplantation for repair of myocardial necrosis. J Clin Invest 98: 2512-2523(1996).

194. Naldini, L. et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263-267 (1996).

195. Naimark WA., Lepore JJ., Klugherz BD., et al. Adenovirus-catheter compatibility increases gene expression after delivery to porcine myocardium. Hum. Gene Ther 14(2),161-166 (2003).

196. Negrin RS, Atkinson K, Leemhuis T, et al. Transplantation of highly purified CD34+Thy-1+ hematopoietic stem cells in patients with metastatic breast cancer. Biol Blood Marrow Transplant 6, 262-271 (2000).

197. Neufeld, G., Cohen, T., Gengrinovitch, S. & Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 13, 9-22 (1999).

198. Nugent H., Edelman E. Tissue engineering therapy for cardiovascular disease. Circ. Res. 92(10),1068-1078 (2003).

199. Odorico JS, Kaufman DS, and Thomson JA. Multilineage differentiation from human embryonic stem cell lines. Stem Cells 19, 193-204 (2001).

200. Oesterle SN., Reifart N., Hayase M., et al. Catheter-based coronary bypass: : a devalopment update. Catheter Cardiovasc. Interv. 58, 212-218 (2003).

201. Ogawa, S. et al. A novel type of vascular endothelial growth factor, VEGF-E (NZ-7 VEGF), preferentially utilizes KDR/Flk-1 receptor and carries a potent mitotic activity without heparin-binding domain. J. Biol Chem. 273, 31273-31282 (1998).

202. Okumura-Nakanishi S, Saito M, Niwa H, and Ishikawa F. Oct-3/4 and Sox2 regulate Oct-3/4 gene in embryonic stem cells. J Biol Chem 280, 5307-5317 (2005).

203. Olofsson, B. et al. Vascular endothelial growth factor B, a novel growth factor for endothelial cells. Proc. Natl. Acad. Sci. USA. 93, 2576-2581 (1996).

204. Orlic, D. et al. Bone marrow cells regenerate infarcted myocardium. Nature 410, 701-705 (2001).

205. Orlic D, Kajstura J, Chimenti S, et al. Mobilized bone marrow cells repair in infarcted heart, improving function and survival. Proc Natl Acad Sci USA 98, 10344-10349 (2001).

206. Osawa M, Nakamura K, Nishi N, Takahasi N, Tokuomoto Y, Inoue H, and Nakauchi H. In vivo self-renewal of c Kit+ Sca-l+Lin(low/-) hematopoietic stem cells. J Immunol 156, 3207-3214 (1996).

207. Otani, A. et al. Bone marrow derived stem cells target retinal astrocytes and can promote or inhibit retinal angiogenesis. Nat. Med. 8, 1004-1010 (2002).

208. Pakalska E., Kolff W. Anatomical basis for retrograde coronary vein perfusion. Venous anatomy and veno-venous anastomoses in the hearts of human and some animals. Minn.Med. 63(11), 795-801(1989).

209. Palermo AT, Labarge MA, Doyonnas R, Pomerantz J, and Blau HM. Bone marrow contribution to skeletal muscle: a physiological response to stress. Dev Biol 279, 336-344 (2005).

210. Pan GJ, Chang ZY, Scholer HR, and Pei D. Stem cell pluripotency and transcription factor Oct 4. Cell Res 12, 321-329 (2002).

211. Peher P., Schumacher B. Angiogenesis in ischemic human myocardium: clinical results after 3 years. Ann. Thorac. Surg. 69, 1414-1419 (2000).

212. Pera MF, Reubinoff B, and Trounson A. Human embryonic stem cells. J Cell Sci 113,5-10 (2000).

213. Pera MF and Trounson AO. Human embryonic stem cells: prospects for development. Development 131, 5515-5525 (2004).

214. Perin EC, Dohmann HF, Borojevic R., et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 107, 2294-2302 (2003).

215. Perin EC, Dohmann HF, Borojevic R, et al. Improved exercise capacity and ischemia 6 and 12 mo after transendocardial injection of autologous bone marrow mononuclear cells for ischemic cardiomyopathy. Circulation 110, 213-218 (2004).

216. Petrova, T.V. et al. Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. EMBOJ. 21, 4593-4599 (2002).

217. Pittenger MF and Martin BJ. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 95, 9-20 (2004).

218. Post M., Laham R., Sellke F., Simons M. Therapeutic angiogenesis in cardiology using protein formulations. Cardiovasc. Res. 49, 522-531 (2001).

219. Reinecke H, Zhang M, Bartosek T, and Murry CE. Survival, integration, anddifferentiation of cardiomyocyte grafts: a study in normal and injured rat hearts.

220. Circulation 100: 193-202 (1999).

221. Rajanayagam M., Shou M., Thirumurti V., et al. Intracoronary basic fibroblast growth factor enhances myocardial collateral perfusion in dogs. J. Am. Coll. Cardiol. 35(2), 519-526 (2000).

222. Reubinoff BE, Pera M, Fong CY, Trounson A, and Bongso A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotech 18, 399-404 (2000).

223. Reyes, M. et al. Origin of endothelial progenitors in human postnatal bone marrow. J. Clin. Invest. 109, 337-346 (2002).

224. Rezaee M., Herity N., Lo S., et al. Therapeutic angiogenesis by selective delivery of bFGF in the anterior interventricular vein. J. Am. Coll. Cardiol. 37(2), 47A(abstr.) (2001).

225. Risau, W. Mechanisms of angiogenesis. Nature 386, 671-674 (1997).

226. Rissanen, T.T. et al. Expression of VEGF and VEGFR-2 (KDR/Flk-1) in ischemic skeletal muscle and its regeneration. Am. J. Pathol. 160, 1-11 (2002).

227. Rissanen, T.T. et al. Fibroblast growth factor-4 induces vascular permeability, angiogenesis and arteriogenesis in a rabbit hindlimb ischemia model. FASEB J. 17, 100-102(2003).

228. Rissanen, T.T., Vajanto, I. & Yla-Herttuala, S. Gene therapy for therapeutic angiogenesis in critically ischaemic lower limb on the way to the clinic. Eur. J. Clin. Invest. 31, 651-666 (2001).

229. Rezaee M., Yeung AC., Altman P., et al. Evalution of the percutanous intramyocardial injection for local myocardial treatment. Catheter Cardiovasc. Interv. 53(2), 271-276 (2001).

230. Ruel M., Laham R., Parker J., et al. Long-term effects of surgical angiogenic therapy with FGF-2 protein. J. Thorac Cardiovasc. Surg. 124, 28-34 (2002).

231. Ruoslahti, E. Specialization of tumour vasculature. Nat. Rev. Cancer 21, 83-90 (2002).

232. Saaristo, A., Karkkainen, M.J. & Alitalo, K. Insights into the molecular pathogenesis and targeted treatment of lymphedema. Ann. NY Acad. Sci. 979, 94-110 (2002).

233. Saegusa M, Takano Y, and Okudaira M. Human hepatic infarction: histopathological and postmortem angiological studies. Liver\3. 239-245 (1993).

234. Sakakibara Y., et al. Toward surgical angiogenesis using slow-released basic fibroblast growth factor. Eur. J. Cardiovasc. Surg. 24(1),105-112 (2003).

235. Sata, M. et al. Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nat. Med. 8, 403-409 (2002).

236. Sato K., Laham R., et al. Efficacy of intracoronary or intravenous VEGF165 in pig model of chronic myocardial ischeia. J. Am. Coll. Cardiol. 37(2), 616-623 (2001).

237. Sayeed -Shah U., Mann M., Martin J., et al. Complete reversal of ischemic wall motion abnormalities by combined use of gene therapy with transmyocardial laser revascularization. J. Thorac. Cardiovasc. Surg., 116,763-769 (1998).

238. Schulinder M, Yanuka O, Itskovitz-Elder J, Melton D, and Benvenisty N. Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc NatlAcadSci USA 97, 11307-11312 (2000).

239. Schumacher B., Pecher P., von Specht B., et al. Induction of neoangiogenesis in ischemic myocardium by human growth factors: first clinical results of a new treatment of coronary heart disease. Circulation 97, 645-650 (1998).

240. Seiler C, Pohl T, Wustmann K, Hutter D, et al. Promotion of collateral growth by GM-CSF in patients with coronary artery disease: a randomised double blind placebo-controlled study. Circulation\04, 2012-2015 (2001).

241. Sekiya I, Larson BL, Smith JR, Pochampally R, Cui JG, and Prockop DJ. Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality. Stem Cells 20,530-541 (2002).

242. Sellke F., Ruel M. Vascular growth factors and angiogenesis in cardiac surgery. Ann. Thorac. Surg. 75(2), S685-690 (2003).

243. Shintani S., Murohara T., Ikeda H., et al. Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation 103, 2776-2779 (2001).

244. Strauer B.,- Kornowski R. Stem cell therapies in perspective. Circulation 107, 929934 (2003).

245. Shizuru JA, Negrin RS, and Weissman IL. Hematopoietic stem and progenitor cells: clinical and preclinical regeneration of the hematolymphoid system. Annu Rev Med 56, 509-538 (2005).

246. Simons M., Annex BH, Laham RJ, et al. Pharmacological ttreatment of coronary artery disease with recombinant fibroblast growth factor-2: double-blind, randomized, controlled clinical trial. Circulation 105(7), 788-793 (2002).

247. Simons, M., Bonow R., Chronos N., et al. Clinical trials in coronary angiogenesis: issues, problems, consensus. An expert panel summary. Circulation 102(11), e73-e86 (2000).

248. Smith, R.S. Jr., Lin, K-F., Agata, J., Chao, L. & Chao, J. Human endothelial nitric oxide synthase gene delivery promotes angiogenesis in a rat model of hindlimb ischemia. Arterioscler. Thromb. Vase. Biol. 22, 1279-1285 (2002).

249. Smith JR, Pochampally R, Perry A, Hsu SC, and Prockop DJ.Isolation of a highly clonogenic and multipotential subtraction of adult stem cells from bone marrow stroma. Stem Cells 22, 823-831 (2004).

250. Szmitko P., Fedak P., Weisel R., et al. Endothelial progenitor cells: new hope for a broken heart. Circulation 107, 3093-3100 (2003).

251. Soonpaa MH, Koh GY, Klug MG, and Field LJ. Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium. Science 264: 98- 101 (1994).

252. Spangrude GJ, Heimfeld S, and Weissman IL. Purification and characterization of mouse hematopoietic stem cells. Science 241, 58-62 (1988).

253. Springer, M.L., Chen, A.S., Kraft, P.E., Bednarski, M. & Blau, H.M. VEGF gene delivery to muscle: potential role for vasculogenesis in adults. Mol. Cell. 2, 549-558 (1998).

254. Stamm C, Kleine HD, Westphal B, Petzsch M, Kittner C, Nienaber CA, Freund M, and Steinhoff G. CABG and bone marrow stem cell transplantation after myocardial infarction. J Thorac Cardiovasc Surg 52, 152-158 (2004).

255. Stamm C, Westphal B, Kleine HD, Petsch M, Kittner C, Klinge H, Schumichen C, Nienaber CA, Freund M, and Steinhoff G. Autologous bone marrow stem cell transplantation for myocardial regeneration. Lancet 361,45-46 (2003).

256. Strauer BE, Brehm M, Zeus T, Kostering M, Hernandez A, Sorg RV, Kogler G, and Wernet P. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106, 1913— 1918(2002).

257. Strobel ES, Gay RE, and Greenberg PL. Characterization of the in vitro stromal microenvironment of human bone marrow. IntJ Cell Cloning 4, 341-356(1986).

258. Sun S, Guo Z, Xiao X, Liu B, Liu X, Tang PH, and Mao N.Isolation of mouse marrow mesenchymal progenitors by a novel and reliable method. Stem Cells 21, 527-535 (2003).

259. Suzuki K., Murtuza B., Suzuki N, et al. Intracoronary infusion of skeletal myoblasts improves cardiac function in doxorubizin-induced heart failure. Circulation 104(12 Suppl 1), 1213-1217 (2001).

260. Suva D, Garavaglia G, Menetrey J, Chapuis B, Hoffmeyer P, Bemheim L, and Kindler V. Non-haematopoietic human bone marrow contains long-lasting pluripotential mesenchymal stem cells. J Cell Physiol 198, 110-118 (2004).

261. Svensson, E.C. et al. Efficient and stable transduction of cardiomyocytes after intramyocardial injection or intracoronary perfusion with recombinant adeno-associated virus vectors. Circulation 99, 201-205 (1999).

262. Symes J., Losordo D., Vale P., et al. Gene therapy with vascular endothelial growth factjr for inoperable coronary artery disease. Ann. Thorac. Surg. 68,830-837 (1999).

263. Tai MH, Chang CC, Olson LK, and Trosko JE. Oct4 expression in adult human stem cells: evidence in support of the stem cell theory of carcinogenesis. Carcinogenesis 26, 495-502 (2005).

264. Takada T, Suzuki Y, Kondo Y, Kadota N, Kobayashi K, Nito S, Kimura H, and Torii R. Monkey embryonic stem cell lines expressing green fluorescent protein. Cell Transplant 11, 631-635 (2002).

265. Takahashi, T. et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat. Med. 5, 434-438 (1999).

266. Takeda Y, Mori T, Imabayashi H, Kiyono T, et al. Can the life span of human marrow stromal cells be prolonged by bmi-1, E6, E7, and/or telomerase without affecting cardiomyogenic differentiation? J Gene Med 6, 833-845 (2004).

267. Tavassoli M and Takahashi K. Morphological studies on longterm culture of marrow cells: characterization of the adherent stromal cells and their interactions inmaintaining the proliferation of hemopoietic stem cells. Am J Anat 164, 91-111 (1982).

268. Taylor DA, Atkins BZ, Hungspreugs P, Jones TR, Reedy MC, Hutcheson KA, Glower DD, and Kraus WE. Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat Med 4: 929-933 (1998).

269. Thirumirti V., Shou M„ et al. Lack of efficacy of intravenous basic fibroblast growth factor in promoting myocardial angiognesis. J. Am. Coll. Cardiol. 31(Suppl 1), 54 (1998).

270. Theise ND, Nimmakayalu M, Gardner R, Illei PB, Morgan G, Teperman L, Henegariu O, and Krause DS. Liver from bone marrow in humans. Hepatology 32, 11-16(2000).

271. Thompson C., Nasseri B., Makower J., et al. Percutaneus transvenous cellular cardiomyoplasty. A novel nonsurgical approach for myocardial cell transplantation. J. Am. Coll. Cardiol. 41(11), 1964-1971 (2003).

272. Toma C., Pittenger M., Cahill K., et al. Human mesenchymal stem cells differentiate to a cardiomyocytes phenotype in the adult murine heart. Circulation 105, 93-98 (2002).

273. Thomson JA, Eldor JI, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, and Jones JM. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145-1147(1998).

274. Tripathy, S.K. et al. Long-term expression of erythropoietin in the systemic circulation of mice after intramuscular injection of a plasmid DNA vector. Proc. Natl. Acad. Sci. USA 93, 10876-10880 (1996).

275. Trono, D. Lentiviral vectors: turning a deadly foe into a therapeutic agent. Gene Ther. 1, 20-23 (2000).

276. Uchida N and Weissman IL. Searching for hematopoietic stem cells: evidence that Thy-l.llo Lin-Sca-1 cells are the only stem cells in C57BL/Ka-Thy-11 bone marrow. J Exp Med 175, 175-184 (1992).

277. Unger E., Banai S., Shou M. et al. Basic fibroblast growth factor enhances myocardial collateral flow in a canine model. Am. J. Physiol. 266, H1588-1595 (1994).

278. Vasa M., Fichtcherer S., Adler K., et al. Increase in circulating endothelial progenitor cells by ststin therapy in patients with stable coronary artery disease. Circulation 103,2885-2890 (2001).

279. Villanueva, F.S. et al. Microbubbles targeted to intercellular adhesion molecule-1 bind to activated coronary artery endothelial cells. Circulation 98, 1-5 (1998).

280. Vincent, K.A. et al. Angiogenesis is induced in a rabbit model of hindlimb ischemia by naked DNA encoding an HIF-1 ex/VP 16 hybrid transcription factor. Circulation 102, 2255-2261 (2000).

281. Wagers AJ and Weissman IL. Plasticity of adult stem cells. Cell 116, 639-648 (2004).

282. Walder C., Errett C., Bunting S., et al. Vascular endothelial grjwth factor augments muscle blood flow and function in rabbit model of hindlimb ischemia. J. Cardiovasc. Pharmacol. 27, 91-98 (1996).

283. Wang JF, Yang Y, Wang G, Min J, Sullivan MF, Ping P, Xiao YF, and Morgan JP. Embryonic stem cells attenuate viral myocarditis in murine models. Cell Transplant 11, 753-758 (2002).

284. Wang JS., Shum-Tim D., Chedrawy E., et al. The coronary delivery of marrow stromal cells for myocardial regeneration: pathophysiological and therapeutic implications. J. Thorac. Cardiovasc. Surg. 122(4), 699-705 (2001).

285. Watanabe E., Smith D., Sun J., et al. Effect of basic fibroblast growth factor on angiogenesis in the infarcted porcine heart. Basic Res. Cardiol. 93(1), 30-37 (1998).

286. Watanabe K, Abe H, Mishima T, Ogura G, and Suzuki T. Polyangitis overlap syndrome: a fatal case combined with adult Henoch-Schonlein purpura and polyarteritis nodosa. Pathol Int 53: 569-573 (2003).

287. Wickham, T.J. et al. Integrins and otyP5 promote adenovirus internalisation but not virus attachment. Cell 73, 309-319 (1993).

288. Weissman IL, Anderson DJ, and Gage F. Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu Rev Cell Dev Biol 17, 387-403 (2001).

289. Weissman IL. The road ended up at stem cells. Immunol Rev 185,159-174 (2002).

290. Wenzel F, Dittrich M, Hescheler J, and Grote J. Hypoxia influences generation and propagation of electrical activity in embryonic cardiomyocyte clusters. Comp Biochem Physiol A Mol Integr Physiol 132,111-115 (2002).

291. Wobus AM, Guan K, and Pich U. In vitro differentiation of embryonic stem cells and analysis of cellular phenotypes. MethodsMol Biol 158, 263-286 (2002).

292. Wright M., Wightman L., Lilley C., et al. In vivo myocardial gene transfer: optimization, evaluation and direct comparison of gene transfer vectors. Basic Res. Cardiol. 96(3), 227-236 (2001).

293. Xu, X., Weinstein, M., Li, C. & Deng, C. Fibroblast growth factor receptors (FGFRs) and their roles in limb development. Cell Tissue Res. 296, 33-43 (1999).

294. Yamada S, Nelson TJ, Crespo-Diaz RJ, Perez-Terzic C, Liu XK, Miki T, Seino S, Behfar A, Terzic A. Embryonic stem cell therapy of heart failure in genetic cardiomyopathy. Stem Cells. Oct; 26(10):2644-53 (2008).

295. Yamamoto N., Kohmoto T., Roethy W., et al. Histological evidence that basic fibroblast growth factor enhances the angiogenic effects of transmyocardial laser revascularization. Basic Res. Cardiol. 95,55-63 (2000).

296. Yang Y, Min JY, Rana JS, Ke Q, Cai J, Chen Y, Morgan JP, and Xiao YF. VEGF enhances functional improvement of post-infarcted hearts by transplantation of ESC-differentiated cells. JApplPhysiol 93, 1140-1151 (2002).

297. Yang R., Thomas G., Bunting S., et al. Effects of vascular endothelial growht factor on hemodynamics and cardiac performance. J. Cardiovasc. Pharmacol. 27, 838-844(1996).

298. Yang, Y. et al. Cellular immunity to viral antigens limits El-deleted adenoviruses for gene therapy. Proc. Natl. Acad. Sci. USA 91, 4407-4411 (1994).

299. Yla-Hertuala, S. & Martin, J.F. Cardiovascular gene therapy. Lancet 355, 213-222 (2000).

300. Yokoyama SI., Fukuda N., Li Y., et al. A strategy injection of bone marrow mononuclear cells into the myocardium for the treatment of ischemic heart disease. 40(1), 24-34(2006).

301. Young, P.P., Hofling, A.A. & Sands, M.S. VEGF increases engraftment of bone marrow-derived endothelial progenitor cells (EPCs) into vasculature of newborn murine recipients. Proc. Natl. Acad. Sci. USA 99, 11951-11956 (2002).

302. Zhou X, Quann E, and Gallicano GI. Differentiation of nonbeating embryonic stem cells into beating cardiomyocytes is dependent on downregulation of PKC beta and zeta in concert with upregulation of PKC epsilon. Dev Biol 255, 407^122 (2003).

303. Zhang S, Wang D, Estrov Z, Raj S, Willerson JT, and Yeh ETH. Both cell fusion and transdifferentiation account for the transformation of human peripheral blood CD34-positive cells into cardiomyocytes in vivo. Circulation 110, 3803-3807(2004).

304. Zhang M, Methot D, Poppa V, Fujio Y, Walsh K, and Murry CE.Cardiomyocytegrafting for cardiac repair: graft cell death and anti-death strategies. JMol Cell Cardiol 33, 907-921(2001).