Статистическое исследование формирования цен на объекты офисной недвижимости на основе геоинформационной системы: на примере города Самары тема диссертации и автореферата по ВАК РФ 08.00.12, кандидат экономических наук Кривозубов, Сергей Павлович
- Специальность ВАК РФ08.00.12
- Количество страниц 208
Оглавление диссертации кандидат экономических наук Кривозубов, Сергей Павлович
Введение.
Глава 1 Теоретические основы статистического анализа и моделирования формирования цен на офисную недвижимость на основе геоинформационной системы.
1.1. Понятие рынка недвижимости и его состав как теоретическая база статистического исследования формирования цен на офисные объекты в коммерческом обороте.
1.2. Геоинформационное обеспечение статистического исследования закономерностей формирование цен на офисные объекты.
1.3. Статистический анализ «выживания» офисных объектов ] рыночной экспозиции как ценообразующего фактора.
Глава II Дискриминантный и канонический анализ в исследовании факторов формирования цен па объекты офисной недвижимости на базе пространственно-ориентированной информации.
2.1.Локальные рынки административных районов города как панель статистического исследования формирования цен на объекты офисной недвижимости.
2.2. Дискриминантный анализ распределения объектов офисной недвижимости по ценовым группам.
2.3. Канонический анализ как средство выявления обобщенных факторов ценообразования по группам объектов офисной недвижимости.
Глава III Эконометрическое моделирование ценообразования на городском рынке объектов офисной недвижимости
3.1. Кластерный анализ как основа формирования панели статистического исследования и эконометрического моделирования формирования цен на объекты офисной недвижимости.
3.2. Регрессионные модели цены 1 кв. м площади офисного объекта. Оценка системного влияния ценообразующих факторов по кластерам и группам объектов.
3.3. Моделирование структурными уравнениями и путевой анализ (SEPATH) формирования цен на локальном рынке офисной недвижимости.
Рекомендованный список диссертаций по специальности «Бухгалтерский учет, статистика», 08.00.12 шифр ВАК
Статистический анализ и прогнозирование развития рынка жилой недвижимости городского округа Самара2009 год, кандидат экономических наук Мамаева, Ольга Анатольевна
Математическая модель массовой оценки рынка жилой недвижимости2012 год, кандидат экономических наук Азнабаев, Артур Мидхатович
Информационное обеспечение оценки объектов рынка жилой недвижимости2003 год, кандидат экономических наук Грошак, Евгения Васильевна
Локальный рынок недвижимости: тенденции формирования, функционирования и регулирования2005 год, кандидат экономических наук Синицына, Надежда Моисеевна
Прогнозирование ценовой динамики рынка жилья на основе эконометрических моделей2006 год, кандидат экономических наук Ярушкина, Наталья Анатольевна
Введение диссертации (часть автореферата) на тему «Статистическое исследование формирования цен на объекты офисной недвижимости на основе геоинформационной системы: на примере города Самары»
Актуальность темы исследования. Один из наиболее интенсивно развивающихся сегментов российского рынка представляет собой рынок недвижимости, в его составе растущим и высокодоходным является рынок офисной недвижимости. Массовый характер этого рынка и необходимость адекватного регулирования происходящих на нем процессов обусловливают значимость исследования объективных закономерностей формирования цен на офисную недвижимость под влиянием комплекса ценообразующих факторов.
Статистический анализ и моделирование закономерностей формирования цен на объекты офисной недвижимости актуальны и в условиях стабильно развивающейся экономики, и в условиях глобального экономического кризиса. В последнем случае статистические методы позволяют выделить значение объективных факторов ценообразования и исключить элементы субъективизма и психологических спекуляций в оценках рыночной стоимости недвижимого имущества. Потребность в методологическом обеспечении статистических исследований тенденций и факторов ценообразования на рынке недвижимого имущества (в том числе офисного) испытывают как участники его рыночного оборота (инвесторы, риэлтеры, продавцы, покупатели и другие группы), так и органы, осуществляющие государственное регулирование рынка недвижимости, контроль в сфере налогообложения, страхование и другие финансовые операции с объектами недвижимости.
Решение данной проблемы на базе статистического инструментария требует учета основных принципов и методов индивидуальной оценки рыночной стоимости объектов, а также использования приемов исследования на основе массовых данных ценообразующего влияния экономической среды окружения оцениваемых объектов, пространственных особенностей их расположения, воздействия внешних и внутренних факторов на каждом уровне агрегирования рынка недвижимости, в том числе на уровне локального (городского) рынка.
Степень разработанности проблемы. Теоретические проблемы оценки рыночной стоимости различных типов объектов недвижимого имущества, в том числе офисных объектов, и методы их практического решения широко освещены в трудах отечественных авторов: И.Т. Балабанова, В. А. Боровикова и В.А. Боровиковой, В.А. Горемыкина, С.В. Грибовского, JI.A. Лейфера, В.Н. Мокиной, Е.С. Озерова, А.В. Севостьяновой, Н.Е. Симоновой, М.А. Федотовой, Д.А. Шевчука и др.
Экономические проблемы развития рынка жилой и нежилой недвижимости на различных административно-территориальных уровнях, в том числе в городах, исследованы в работах ряда отечественных и зарубежных ученых: И.Т. Балабановой, А.Г. Грязновой, B.C. Занадворова и А.В. Занадворовой, Е.И. Тарасевича, А.О. Селливана; Д. Фридмана и Н.Ордуэя, Ф.М. Шеррера, Д. Росса и др.
Методы статистического анализа и эконометрического моделирования закономерностей на рынке недвижимости, в том числе формирования цен и удовлетворения спроса на объекты недвижимого имущества, разработаны и апробированы в трудах ученых-статистиков: С.А. Айвазяна, В.Н. Афанасьева, B.C. Мхитаряна, Е.В. Кабаевой, Е.Е. Лаврищевой, О.А. Репина, О.И. Стебуновой и др.
Вместе с тем отсутствует научно обоснованная методика статистического исследования закономерностей ценообразования на локальном рынке офисной недвижимости (на уровне крупного города), учитывающая особенности их проявления в неоднородном геоэкономическом пространстве.
Необходимость разработки статистических методов анализа и моделирования закономерностей формирования цен на офисные объекты недвижимости с использованием геоориентированных исходных данных и выявления на основе этих методов пространственно-временных закономерностей ценообразования определила актуальность темы настоящего диссертационного исследования.
Цель и задачи исследования. Цель исследования состоит в теоретическом обосновании, разработке и апробации методики статистического анализа и моделирования закономерностей формирования цен на объекты офисной недвижимости в геоинформационном рыночном пространстве. Для достижения цели поставлены следующие задачи:
1) уточнение понятия рынка недвижимости, особенностей его субъектно-объектного состава в части оборота офисной недвижимости, оценка количественных и качественных характеристик развития локального рынка офисной недвижимости на примере города Самары;
2) обоснование необходимости и возможности реализации геоинформационного подхода в статистическом исследовании закономерностей формирования цен на офисные объекты с учетом пространственно распределенного комплекса факторов;
3) исследование статистического взаимодействия уровней и динамики цен на офисные объекты и времени их экспозиции в сегментах локального рынка недвижимости, однородных по условиям ценообразования;
4) обоснование системы признаков, характеризующих факторы формирования цен на офисные объекты, подлежащих наблюдению, количественной оценке и обобщению в геоинформационной системе рынка недвижимости города;
5) разработка многоуровневой системы статистического анализа однородности офисных объектов по факторам и результатам рыночного ценообразования; формирование методики статистического моделирования закономерностей комплексного влияния пространственно определенных явных и латентных факторов на цены офисных объектов;
6) систематизация данных геоинформационной системы и апробирование предложенного автором методического комплекса с целью выявления и количественной характеристики закономерностей ценообразования на локальном рынке офисной недвижимости города Самары.
Предмет исследования. Предметом диссертационной работы являются статистические закономерности массового процесса формирования цен на объекты офисной недвижимости, имеющие особенности, обусловленные спецификой размещения объектов в геоэкономическом пространстве города.
Объект исследования. Объектом исследования выступает совокупность объектов офисной недвижимости (более 1400 ед.), наблюдаемых в процессе мониторинга рынка недвижимости города Самары в 2007 - 2008 гг. на базе пространственно-временной геоинформационной системы.
Область исследования. Содержание диссертационной работы соответствует пунктам 3.1 "Методы статистического измерения и наблюдения социально-экономических явлений, обработки статистической информации, оценка качества данных наблюдений; организация статистических работ"; 3.4 "Методология социального и экономического мониторинга, статистического обеспечения управления административно-территориальным образованием; измерение неравномерности развития территориальных образований";
3.8 "Прикладные статистические исследования воспроизводства населения, сфер общественной, экономической, финансовой жизни общества, направленные на выявление, измерение, анализ, прогнозирование, моделирование складывающейся конъюнктуры и разработки перспективных вариантов развития предприятий, организаций, отраслей экономики России и других стран" Паспорта специальности 08.00.12 "Бухгалтерский учет, статистика".
Теоретическая и методологическая основа исследования.
Теоретической и методологической основой диссертационного исследования послужили труды отечественных и зарубежных ученых по изучаемой проблеме, Гражданский, Земельный и Налоговый кодексы РФ, законодательные акты и нормативные документы федеральных и региональных органов власти по обороту недвижимого имущества. В качестве инструментария в диссертации использовались статистические методы: сводки и группировки, анализа временных рядов, анализа таблиц "дожития" и моделирования функций "выживания" объектов в совокупности, кластерный, дискриминантный и канонический анализ, корреляционно-регрессионный анализ, статистический путевой анализ и методы моделирования структурными уравнениями.
Информационное обеспечение диссертационной работы составили данные Федеральной службы государственной статистики, Территориального органа Федеральной службы государственной статистики по Самарской области, а также результаты мониторинга рынка недвижимости (конкретно сектора офисной недвижимости) за 2007 - 2008 гг., осуществляемого ОТ "Поволожский центр развития" при участии автора.
Обработка статистических данных проводилась с использованием прикладных программ STATISTIC А 6.0 и GRETL.
Научная новизна исследования. Научная новизна диссертационного исследования состоит в теоретическом обосновании и апробировании комплексной методики статистического анализа и моделирования закономерностей формирования цен на офисные объекты с учетом пространственно ориентированной информации о факторах и условиях ценообразования на локальном рынке офисной недвижимости.
Наиболее существенными результатами проведенной работы являются следующие:
1. На основе обобщения и критического анализа теоретических положений, представленных в экономической литературе, уточнено понятие локального рынка офисной недвижимости как системы экономических отношений, возникающих между субъектами рынка в операциях массового характера по обороту объектов офисной недвижимости в границах локального рынка (города Самары), по обороту прав на недвижимое имущество и государственному регулированию этого оборота.
2. Предложена система автоматизированного сбора статистических данных, отражающих в геоинформационной системе пространственно определенные характеристики результатов и факторов формирования цен на офисные объекты с учетом их физических свойств, особенностей бизнес-среды, транспортных и социальных условий в микрозонах размещения этих объектов на территории города.
3. Сформирована система статистических показателей по объектам офисной недвижимости, имеющая тройственную определенность: географическую (размещение на электронной карте города), временную (время "выживания" объекта в рыночной экспозиции), содержательную (показатели, характеризующие результаты и факторы формирования цен на офисные объекты).
4. Разработана и апробирована методика многоуровневого структурирования массива продаваемых офисных объектов на однородные группы по уровню и динамике цен с использованием дискриминантного, канонического и кластерного анализа. Впервые разработаны и проанализированы многофакторные регрессионные модели ценообразования по группам офисных объектов, выделенным на основе объединения результатов дискриминантного и канонического анализа.
5. Выполнен статистический анализ "выживаемости" объектов в рыночной экспозиции, установлены значения медианы ожидаемого времени экспозиции офисной недвижимости на локальном рынке города. С помощью модели Вейбулла и метода Каплана-Мейера даны оценки функций "выживаемости" офисных объектов в рыночной экспозиции. Установлена неоднозначность силы взаимного статистического влияния времени экспозиции офисных объектов на рынке и цен их продажи по субрынкам в составе городского рынка недвижимости.
6. Получены пространственно ориентированные на электронной карте города кластеры офисных объектов, однородных по факторам и условиям ценообразования. На основе многофакторного регрессионного моделирования дана оценка системного эффекта влияния ценообразующих факторов по кластерам и группам офисных объектов.
7. Выполнено эконометрическое моделирование с использованием системы структурных уравнений (метод SEPATH), на основе которого установлено взаимосвязанное влияние наблюдаемых в геоинформационной системе рынка недвижимости факторов и скрытых (латентных) факторов на цены продажи офисных объектов в городе Самаре.
Практическая значимость диссертационного исследования. Разработанная в диссертации методика и результаты статистического исследования могут быть использованы для принятия управленческих решений по рынку офисной недвижимости государственными и частными предприятиями, а также для повышения финансовой результативности работы риэлтерских компаний. Результаты моделирования формирования цен на офисную недвижимость могут быть полезны работникам организаций, осуществляющих операции с недвижимостью, а также занимающихся вопросами оценки коммерческой недвижимости и проводящих консультации в этом секторе рынка недвижимости.
Положения диссертации могут быть использованы в высших учебных заведениях при изучении дисциплин "Финансовая статистика", "Социально-экономическая статистика", "Эконометрическое моделирование".
В первой главе "Теоретические основы статистического анализа и моделирования формирования цен на офисную недвижимость на основе геоинформационной системы" исследовано понятие "рынок недвижимости", уточнен его состав с выделением сегмента офисной недвижимости и конкретизацией содержания процессов ценообразования в этом рыночном сегменте, предложена многоуровневая методика статистического моделирования влияния факторов на цены офисных объектов, основанная на геоинформационной системе мониторинга локального рынка недвижимости (на примере города Самары).
Во второй главе "Дискриминантный и канонический анализ в исследовании факторов формирования цен на объекты офисной недвижимости на базе пространственно ориентированной информации" изучены локальные рынки административных районов города как панель статистического исследования уровней и динамики цен на объекты офисной недвижимости, выполнен дискриминантный анализ распределения объектов офисной недвижимости по ценовым группам, на основе канонического анализа дана оценка обобщенных факторов формирования цен по группам объектов офисной недвижимости.
В третьей главе "Эконометрическое моделирование ценообразования на городском рынке объектов офисной недвижимости" обоснована и апробирована методика многофакторного комплексного моделирования формирования цен с учетом пространственной неоднородности рынка, влияния на цену комплекса явных и латентных факторов.
Похожие диссертационные работы по специальности «Бухгалтерский учет, статистика», 08.00.12 шифр ВАК
Статистический анализ пространственно варьирующих данных методом географически взвешенной регрессии на примере рынка жилья г. Саратова2012 год, кандидат экономических наук Харламов, Александр Владимирович
Совершенствование механизма функционирования городского рынка недвижимости на основе индикативных оценок2011 год, кандидат экономических наук Жигулина, Татьяна Николаевна
Экономико-математическое моделирование массовой оценки объектов недвижимости2002 год, кандидат экономических наук Румянцев, Сергей Игоревич
Развитие аренды недвижимости в сфере платных услуг2008 год, кандидат экономических наук Семенец, Сергей Сергеевич
Статистическое исследование регистрационной деятельности на региональном рынке недвижимости: на примере Самарской области2007 год, кандидат экономических наук Генгут, Юлия Леонидовна
Заключение диссертации по теме «Бухгалтерский учет, статистика», Кривозубов, Сергей Павлович
Выводы по главе III.
1. Моделирование линейными структурными уравнениями и путевой анализ по методу С. Райта (SEPATH-анализ) позволили разработать и оценить систему регрессионных уравнений, выражающих статистические закономерности формирования цены 1 кв. м площади офисного объекта в городе Самаре с учетом причинно-следственных взаимосвязей исходных эмпирических данных, а также латентных ценообразующих факторов.
2. Дана оценка влияния системного эффекта взаимодействия внутренних по отношению к локальному рынку недвижимости факторов ценообразования, а также и комплекса внешних ценообразующих факторов.
3. Использование в практике регулирования оборота недвижимости многоуровневой модели (на основе методов SEPATH) формирования цен на офисные объекты может существенно повысить эффективность мер регулирующего воздействия, являясь необходимым инструментом прогноза развития ценовой ситуации на локальном рынке недвижимости.
169
ЗАКЛЮЧЕНИЕ
1 Обобщение и критический анализ представленных в экономической литературе толкований понятия «рынок недвижимости» приводит к выводу, о том, что статистическое исследование ценообразования на объекты недвижимого имущества должно основываться на конкретизации всех аспектов этого понятия: субъектно-объектного состава, охватываемых операций, реализуемых экономических отношений, а также механизмов государственного административного и экономического регулирования.
2. В докризисный период (2000-2008гг.) Самарский рынок офисной недвижимости характеризовался как ненасыщенный, высокодоходный, динамично развивающийся сектор экономики.
В условиях экономической рецессии — следствия мирового финансового кризиса - возрастает потребность в объективизации оценки рыночной стоимости недвижимого имущества для уравновешивания интересов покупателей и продавцов. Методической основой для этого должен быть учет устойчивых закономерностей ценообразования как массового процесса.
3. Систематизация факторов формирования цен на объекты офисной недвижимости позволила распределить их на глобальные и индивидуальные, внешние и внутренние, непосредственно наблюдаемые и латентные.
Запатентованный автором программный комплекс «АДОН» позволяет накапливать и структурировать геоопределенную (в системе координат электронной карты города, ГИС) информацию от объектах реализуемой офисной недвижимости.
Сформированный с использованием ПК «АДОН» исходный информационный массив данного исследования включает 1411 офисных объектов, каждый из которых характеризуется комплексом индивидуальных признаков, отражающих результаты и факторы ценообразования.
Источниками наблюдения выделенных и систематизированных признаков являются риэлторские компании, Интернет, СМИ. В ПК «АДОН» решены проблемы накопления, уточнения и комбинирования пространственно ориентированных данных об экономических, физических и экологических свойствах офисных объектов, продаваемых на территории города.
4. Разработана концептуальная схема и последовательность этапов алгоритма многоуровневого статистического анализа и моделирования закономерностей ценообразования на объекты офисной недвижимости.
Основная идея концепции состоит в том, чго моделирование количественных закономерностей ценообразования на объекты недвижимости требует реализации основного научного принципа перехода от анализа к синтезу и обратно. В разрабатываемой методике это должно воплощаться в переходе от одномерных группировок объектов - к многомерным, от групповых многофакторных моделей, сформированных по однородным кластерам объектов, к интегральным структурным моделям рынка в целом, от учета в моделях непосредственно наблюдаемых факторов ценообразования к выявлению их системного эффекта и латентной составляющей ценообразования, обусловленной воздействием неучтенных внутренних и внутренних и внешних ценообразующих факторов.
5. Время экспозиции объектов на рынке недвижимости и изменение их цены в период экспозиции - взаимозависимые рыночные характеристики, причинно-следственная связь которых потребовала специального этапа статистического исследования. Анализ «выживаемости» объектов в экспозиции на основе таблиц дожития и методов Каплана-Мейера явился основой моделирования распределения вероятности продажи объектов по срокам экспозиции. Выявлена неоднозначность изменения этой вероятности при увеличении сроков экспозиции объектов, неравномерность взаимного распределения ценовых и временных характеристик экспозиции продаваемых офисных объектов.
В итоге сделан вывод о необходимости многоуровневого структурирования объектов исходной совокупности с целью выделения их однородных групп, ориентация на начальных этапах исследования на непараметрические методы оценки тесноты статистических взаимосвязей.
6. Распределение объектов офисной недвижимости по административным районам города Самары было оценено как равномерное, что подтверждено коэффициентом вариации долей, равным 29,7%. Однако при этом выявлена существенная неоднородное гь офисных объектов в пределах границ административных районов по результативным и факторным показателям ценообразования.
7. Доказано, что нахождение объекта на территории определенного административного района города Самары само по себе оказывает значимое ценообразующее воздействие вследствие влияния факторов объектного и субъектного характера (неучтенных в исходной системе показателей), обуславливающих специфики условий формирования цен на офисные объекты в каждом из районов.
8. Вариация по административным районам показателей исходной системы, отражающих наблюдаемые признаки продаваемых офисных объектов, весьма существенна — от 50 до 1600%.
Из этого сделан вывод о невозможности использования группировки объектов офисной недвижимости по признаку размещения в определенном административном районе городе для выявления надежных статистических закономерностей ценообразования на эт объекты.
9. В результате проведения восьми последовательных шагов дискриминантного анализа установлено, что 61,5% офисных объектов в исходной совокупности корректно отнесены к ценовым классификационным группам: «Очень низкая цена», «Низкая цена», «Высокая цена», «Очень высокая цена».
Оценены параметры классификационных функций, позволившие произвести классификацию объектов, не вошедших в итоговую дискриминацию и вычислить классификационные значения для вновь экспонируемых на рынке объектов.
10. Разработаны регрессионные модели по ценовым классификационным группам. Сравнительный анализ стандартизованных коэффициентов регрессии показал следующее: а) по группе офисных объектов, относимых к категории самых дешевых, цена за 1 кв. м статистически значимо напрямую зависит от благоустройства и престижности района и находится в существенной обратной зависимости от конкуренции покупателей на локальном рынке. б) цена 1 кв. м самых дорогостоящих объектов офисной недвижимости' в наибольшей степени прямо зависит от цены 1 кв. м объектов жилой недвижимости, находящихся в соответствующем микрорайоне, и несколько в меньшей степени, но также напрямую зависит от плотности застройки кадастрового квартала, в котором этот район расположен. в) по промежуточным ценовым группам «офисных объектов (цена «Низкая» и цена «Высокая» выявлена незначимость корреляционных связей результативных и факторных показателей ценообразования, что потребовало углубления данного этапа анализа путем перехода к каноническому анализу.
11. При выполнении канонического анализа получена матрица факторной структуры распределения объектов офисной недвижимости города Самары по ценовым классам. Установлено, что обобщенный фактор, обуславливающий первую каноническую функцию (77,9% объясненной вариации), которая определяет выделение объектов категории цена «Высокая», обусловлен тремя факторными переменными, общая интерпретация которых может быть дана как «Престижность городской микрозоны, в которой расположен объект». Дискриминирующая мощность этой функции составила 11,9% объясненной вариации.
12. Обобщенный фактор второй канонический функции (+18,7%' объясненной вариации), отделяющей объекты «Очень низкой» цены от других ценовых групп, определяется влиянием совокупности факторов, общая интерпретация которых дана как «маркетинговые усилия риэлторов, уровень спроса».
Обобщенный фактор третьей канонической функции (+3,4% дискриминирующей мощности) отделяет объекты «Очень высокой» цены от других категорий. Через систему значимых факторных показателей он интерпретируется как «Транспортные условия городской микрозоны, в которой расположен офисный объект».
13. Объединение результатов дискриминантного, канонического анализа и многофакторного регрессионного моделирования позволило получить статистически надежные адекватные модели формирования цены 1 кв. м офисных объектов по типическим группам однородных по качественным условиям ценообразования объектов — аналогов.
14. С целью усиления аппроксимирующих свойств моделей ценообразования статический аспект исследования дополнен динамическим. Для этого исходная совокупность офисных объектов на
I, следующем этапе структурирования подразделена на три группы: «Цена ' возросла», «Цена возросла», «Цена не изменилась», «Цена снизилась» за время экспозиции объектов на рынке недвижимости.
15. В результате применения процедур кластерного анализа (методы Уорда и к - средних) с использованием функций расстояния «Евклидова метрика» и «1-г Пирсон» для каждой группы получены дендрограммы распределения объектов, а также кластеры переменных, характеризующих результаты и факторы ценообразования.
16. Наличие данных о координатах размещения объектов на электронной карте города в ГИС позволило построить картограммы распределения объектов, относящихся к однородным кластерам в составе выделенных групп по характеру изменения цены.
В результате установлено, что однородные по факторным и результативным признакам ценообразования объекты (однотипные по характеру изменения цены за время экспозиции на рынке) не составляют компактно расположенные «сгустки» на территории города, а равномерно расположены по всей его площади. Это подтвердило выводы дескриптивного анализа о том, что сходство объектов офисной недвижимости по территориальному расположению и принадлежности к определенному административному району само по себе не является определяющим в формировании цен на эти объекты и их динамики за время экспозиции объектов на рынке недвижимости.
Детерминирующим условием однородности закономерностей ценообразования является сочетаемость факторов, включающих физические и экономические характеристики офисных объектов, особенности их расположения, конъюнктурные изменения на рынке жилой недвижимости в соответствующей микрозоне и ряд других ценообразующих факторов.
17. Кластеризация переменных по каждой группе объектов, однородных по характеру изменения цены за время экспозиции, показала устойчивую закономерность: неценовые факторы являются однородными и статистически взаимосвязанными с показателем цены офисного объекта за 1 кв. м.
Стоимость объекта в целом является производной от цены за единицу площади.
Это определило необходимость построения многофакторных регрессионных моделей ценообразования по группам типических в статическом и динамическом аспектах объектов с использованием результативного показателя - «Цена реализации 1 кв. м площади объекта».
Показатель стоимости объекта в целом зависит от закономерностей ценообразования на единицу площади объекта.
18. Полученные многофакторные модели ценообразования по группам объектов и их оценочные характеристики позволили количественно оценить системный эффект, значимость статистического влияния которого по разным группам объектов колеблется от 10 до 40% объясненной вариации цены.
19. Моделирование линейными структурными уравнениями и путевой анализ по методу С. Райта (SEPATH - анализ) позволили разработать и оценить систему логически и количественно взаимосвязанных статистических закономерностей формирования цены 1 кв. м площади офисного объекта в городе Самаре с учетом причиппо-следственных взаимосвязей исходных эмпирических данных, а также латентных ценообразующих факторв. В результате построения и анализа экономической модели дана оценка влияния системного эффекта взаимодействия внутренних и внешних по отношению к локальному рынку недвижимости факторов ценообразования.
20. Использование в практике оценки офисных объектов недвижимости методов многомерного статистического анализа на основе предложенного иерархического подхода и геоинформиционного обеспечения позволит существенно повысить обоснованность выделения однородных групп объектов для выработки количественных закономерностей ценообразования. Последние представляют собой* ;единую систему, объединяющую закономерности формирования цены 1 кв. м эталонных объектов по каждой группе, а также закономерности более высокого уровня 7 экономической абстракции, учитывающие влияние латентных (непосредственно ненаблюдаемых) факторов как внутреннего, так и внешнего по отношению к нему характера.
21. Разработанная методика на практике может использоваться: 1 - для получения расчетной цены на поступающий в оборот офисный объект исходя из его индивидуальных характеристик, учитываемых в системе АДОН; 2 - для количественной иммитации реально сложившейся многоуровневой системы ценообразования на офисную недвижимость, включающей множество факторов гипотетически предполагаемых, по непосредственно ненаблюдаемых (государственное регулирование рынка недвижимости, системное взаимодействие факторов, субъективные и объективные обличил условий ценообразований в микрозонах и административных районах расположения объектов и ряда других).
Использование в практике регулирования оборота недвижимости многоуровневой модели ценообразования на офисные объекты существенно повысит эффективность мер регулирующего воздействия, является необходимым инструментом прогноза развития ценовой ситуации на локальном рынке недвижимости.
Список литературы диссертационного исследования кандидат экономических наук Кривозубов, Сергей Павлович, 2009 год
1. Гражданский кодекс Российской Федерации. Часть первая от 30 ноября 1994 г. № 51-ФЗ, часть вторая от 26 января 1996 г. № 14-ФЗ, часть третья от 26 ноября 2001 г. № 146-ФЗ (с изм. и доп.)
2. Налоговый кодекс Российской Федерации. Часть первая от 31 июля 1998 г. № 146-ФЗ, часть вторая от 5 августа 2002 г. № 117-ФЗ.
3. Земельный кодекс Российской Федерации от 25 октября 2001 г. № 136-ФЗ (с изм. и доп.)
4. Градостроительный кодекс Российской Федерации от 29 декабря 2004 г. № 190-ФЗ (с изм. и доп.)
5. Федеральный закон от 21 июля 1997 г. № 122-ФЗ «О государственной регистрации прав на недвижимое имущество и сделок с ним»
6. Федеральный закон от 28 июля 1998 г. 135-Ф3 «Об оценочной деятельности в Российской Федерации»
7. Постановление Правительства РФ от 6 июля 2001 г. № 519 «Стандарты оценки, обязательные к применению субъектами оценочной деятельности»
8. Методические рекомендации по оценке эффективности инвестиционных проектов. Утв. Минэкономики России, Минфином России, Государственным комитетом России по строительной, архитектурной и жилищной политике от 21 июня 1999 г. № ВК 477
9. Методические рекомендации по определению рыночной стоимости земельных участков. Утв. распоряжением Минимущества России от 06 марта 2002 г. № 568-р
10. Методические рекомендации по определению рыночной стоимости права аренды земельных участков. Утв. распоряжением Минимущества России от 10 апреля 2003 г. № 1102-р
11. Абрютина М.С. Ценообразование в рыночной экономике. — М.: «Дело и сервис», 2002. — 256 с.
12. Асаул А.Н., Ерофеев П.Ю. Экономика недвижимости. СПб.: «Питер», 2008. - 240 с.
13. Бабешко М.О. Основы эконометрического моделирования: Учебное пособие. Изд. 2-е, испр. М.: КомКнига, 2006. - 432 с.
14. Баланов И. Операции с недвижимость, в России. — М.: Финансы и-статистика, 1996. — 210 с.
15. Белокрыс A.M., Болдырев B.C., Олейник Т.Л. и другие. Основы оценки стоимости недвижимости: Учебное и практическое пособие. 2-е изд., испр. и доп. М.': Международная академия оценки и консалтинга, 2004. - 263- с.
16. Берндт Э.Р. Практика эконометрики: классика и современность/Пер. с англ. под ред. проф. С.А. Айвазяна М.: ЮНИТИ^ЦАНА, 2005. - 863 с.
17. Боровиков В. STATISTICA. Искусство анализа данных на компьютере: Для профессионалов. 2-е изд. СПб: Питер, 2003.-688 с.
18. Боровиков Вал., Боровикова Вик., Мокин В., Пирогова О. Экономика недвижимости. СПб.: Питер, 2007. — 416 е.: ил. (Серия «Учебник для вузов»)
19. Валентинов В.А. Эконометрика. 2-е изд. — М.: Изд-во «Дашков и к0», 2009. - 448 с.
20. Васильева Л.С. Экономика недвижимости: учебник/Л.С. Васильева. — М.: Эксмо 2008. 2008. - 480 с.
21. Ветров Г.Ю. Индикаторы социально-экономического развития муниципальных образований. М.: Фонд «Институт экономики города», 2001. - 69 с.
22. Вознесенский В.А., Ковальчук А.Ф. Принятие решений по статистическим моделям. — М.: Статистика, 1978.— 192 с.
23. Волков Д.Л. Экономика недвижимости. — СПб.: Изд-во Санкт-Петербургского университета. 199. — 32 с.
24. Генгут Ю. Государственная регистрация прав собственности на недвижимое имущество на региональном рынке недвижимости: статистический анализ и моделирование. Самара: Изд-во Самар. гос. экон. ун-та, 2008. — 162 с.
25. Голосов О.В., Лаптев О.В. Регион: модельное отображение. М.: ЗАО «Издательство «Экономика», 2007. - 350 с.
26. Горемыкин В.А. Экономика недвижимости: учеб. 3-е изд., перераб. и доп. - М.: ТК Велби, Изд-во Проспект, 2006. - 848 с.
27. Гранберг А.Г. Основы региональной экономики: Учебник для вузов. -2-е изд.-М.: ГУ ВШЭ, 2001.-495 с.
28. Грибовский С.В. Оценка доходной недвижимости. — СПб.: «Питер», 2001.- 148 с.
29. Дайитбегов Д.М. Компьютерные технологии анализа данных в экономике. М.: ИНФРА-М, 2008. - 578 с.
30. Дубров A.M., Мхитарян B.C., Трошин Л.И. Многомерные статистические методы. М.: Финансы и статистика, 2003. - 352 с.
31. Дуброва Т.А., Бажин А.Г., Бакуменко Л.П. Дискриминантный анализ в системе "STATISSTICA"/y4e6Hoe пособие. М.: Москвоский государственный университет экономики, статистики и нформатики, 2000 г. - 57 с.
32. Дюран Б., Оделл П. Кластерный анализ /Пер. с англ. Е.З. Демиденко. Под ред. А .Я. Боярского. — М.: «Статистика», 1977. — 128 с.
33. Елисеева И.И., Рукавишников В.О. Логика прикладного статистического анализа. — М.: Финансы и статистика, 1982. 192с.
34. Елисеева И.И., Юзбашев М.М. Общая теория статистики: Учебник / Под ред. И.И. Елисеевой. 5-е изд., перераб. и доп. — М.: Финансы и статистика, 2004. — 656 с.
35. Желтякова И.А., Михалкова F.A., Пузыня I 1.Ю. Цены и ценообразование. Краткий курс / Учебное пособие. СПб. Издательство «Питер», 1999. - 112 с.
36. Завари на E.G. Основы региональной статистики: учебник / E1G. Заварина, K.F. Чобану; под ред. E.G. Завариной. М.: Финансы- и статистика, 2006. — 416 с.
37. Зарова Е.В. Региональное ценообразование в агропромышленной сфере экономики: методология статистического исследования. — М.: РЭФ им. Г.В. Плеханова, 1997г.-339с.
38. Зарова Е.В' Эконометрическое моделирование и прогнозирование развития региона в краткосрочном периоде / Е.В. Зарова, Г.Р. Хасаев.-М.: Экономика, 2004. 149с.
39. Кобзарь А.И. Прикладная; математическая статистика; М.: ФИЗМАТЛИТ, 2006. - 816с.41"'. Кремер Н.Ш., Путко Б.А. Эконометрика: Учебник для вузов / Под ред; проф. Н.Ш. Кремера. М.: ЮНИТИ-ДАНА, 2002. - 311с.
40. Кривозубов, С.П. Дискриминантный анализ- распределения объектов офисной недвижимости по ценовым группам (на примере г. Самары)/С.П. Кривозубов, Е.В. Зарова // Вестн. Самар. гос. экон. ун-та. Самара, 2009. - № 1(51).- С. 26-34.
41. Кривозубов, С.П. Оценка земельного участка для определения величины арендных платежей при наличии права собственности на улучшения у арендатора земельного участка // Вопр. оценки. М., 2008. -№3. - С. 15-22.
42. Кривозубов, С.П. Оценка земельного участка для определения величины арендных платежей при наличии права собственности на улучшения у арендатора земельного участка // Имущественные отношения в Российской Федерации. М., 2008. - № 11. - С. 39-48.
43. Кривозубов, С.П. Регрессионное моделирование цены объекта жилой недвижимости в иерархической системе методов многомерного статистического анализа // Вестн. Самар. гос. экон. ун-та. Самара, 2007.-№5(31).-С. 107-110.
44. Кривозубов, С.П. Статистический анализ однородности совокупности объектов офисной недвижимости по административным районам г. Самары// Вестн. Самар. гос. экон. ун-та. Самара, 2009. - № 1 (51). - С. 3539.
45. Кургузов В.В. Корпоративная статистика: экономико-статистическое моделирование материально-технического снабжения' и сбыта: М.:. Финансы и статистка, 2006. - 208с.
46. Курс социально-экономической статистики: Учебник для вузов / Под ред. проф. М.Г.назарова. М.: Финстатинформ, ЮНИТИ — ДАНА', 2002.-771с.
47. Липсиц И.В: Коммерческое ценообразование: Учебник для вузов. — М.: Изд-во БЕК, 1997. 368с.
48. Магнус Я.Р., Катышев П.К., Пересецкий А.А. Эконометрика. Начальный курс: Учебник. 8-е изд. - М.: Дело, 2007. - 504с.
49. Малин, А.С. Исследование систем управления: Учебник для вузов /А.С. Малин, В.И. Мухин. М.: ГУ ВШЭ - 3-е изд., 2005. - 399с.
50. Мамаева О.А. О применении критерия' Граббса к нормально распределенным выборкам рынка жилой недвижимости* г. Самары /О.А. Мамаева // Вестник ОГУ, № 84 / март 2008. 30-37с.
51. Маренков Н.Л. Цены и ценообразование в рыночной' экономике России, курс лекций по специальности «Финансы и кредит» и «Бухгалтерский учет и аудит». — М.: Эдитория УРСС, 200. — 216с.
52. Марченко А.В. Экономика, и управление недвижимостью: Учебное пособие / А.В. Марченко. Ростов Н:Д: Феникс, 2007. - 448с.60: Маховикова F.A. Экономика недвижимости: учебноё пособие / Г.А. Маховикова, Т.Г. Касьяненко. М.: КНОРУС, 2009. - 304с.
53. Ниворожкина Л.И. Многомерные' статистические методы в экономике: Учебник / Л.И. Ниворожкина, С.В.Арженовский. М.: Издательско-торговая корпорация «Дашков и К0»; Ростов-н/д: Наука-Сектр, 2008. — 224с.
54. Новиков A.M., Новиков Д.А. Методология. М.: СИНТЕГ, 2007. -668с.
55. Орешин В.П., Потапов ЛЛЗ. Упраление региональной экономикой: Учебное пособие. М.ТЕИС, 2003. - 330с.
56. Орлов А.И. Прикладная статистика: учебник. М.: Изд-во «Экзамен», ■ 206.-671с.
57. О'Салливан А. Экономика города. — 4-е изд.: Пер. с англ. — М.: ИНФРА-М, 2002. 706с.
58. Оценка недвижимости: Учебник / Под ред. А.Г. Грязновой, М.А.Федотовой. -М.: Финансы и статистика, 2006. -496с.
59. Прикладная статистика!. Основы эконометрики: Учебник для вузов: В 2т. 2-е изд., испр. — Т.2. Айвазян G.A. Основы эконометрики.; М.: ЮНИТН-ДАНА, 2001. - 433с.
60. Региональная статистика: учебник; / Под ред. , Е.В.Заровой, Г.И.Чудилина. М.: Финансы и статистика, 2006. - 624 с.
61. Региональная экономика: Учебник / Под; ред. В.И.Видяппна и М.В.Степанова. М.: ИНФРА М., 2005. - 666 с.
62. Репин-. О.А., Мамаева; О.А. Эконометрическое моделирование стоимости квартир первичного и вторичного рынков жилой недвижимости; ( на примере г.о.Самара). Известия; Кабардино-Балкарского Научного Центра РАН, № 6 (26). — Нальчик, 2008, с.88 -95.
63. Сажин Ю.В., Басова В.А. Многомерные методы анализа: Учеб. Пособие. -М.: Компания Спутник, 2002. 163 с.
64. Севосгьянова А.В. Экономическая оценка недвижимости и инвестиции; М.: Издательский цен гр «Академия», 2008;.- 304 с. ь
65. Симонова; 11.Е. Методы оценки .имущества: бизнес, недвижимость, земля, машины, оборудование и транспортные средства. — Ростов Н/Д: <;; Феникс, 2006.-315 с.
66. Синявский; Н.Г. Оценка, бизнеса: гипотезы, инструментарий;, практические решения в различных областях деятельности; М;: Финансы и статистика, 2004;— 240 с.
67. Система муниципального управления: Учебник для; вузов. 3-е изд. / Под ред. В.Б.Зотова. СПб.: «Питер», 2007. — 560 с.
68. Сошникова JI.A., Тамашевич В.Н., Уебе Г., Шеффер М. Многомерный статистический анализ' в экономике: Учебное пособие для вузов / Под ред. Проф. В.Н.Тамашевича. М.: ЮНИТИ-ДАНА, 1999; -598 с.
69. Стебунова; 0;И. Статистическое исследование вторичного рынка жилья; Автореферат дисс. на- соискание ученой: степени канд. Экон;наук по специальности 08.00.12. — бухгалтерский учет, статистика. — Оренбург, Оренбургский гос. Ун-т, 2006. 23 с.
70. Тарасевич Е.И. Анализ инвестиций в недвижимость МКС, СПб., 2000. 160с.
71. Теория статистики: учебник / Р.А.Шмойлова, В.Г.Минашкин, Н.А.Садовникова, Е.Б.Шувалова; под. ред. Р.А.Шмойловой. 5-е изд. -М.: Финансы и статистика, 2008. - 656с.
72. Тихомиров Н.П., Дорохина Е.Ю. Эконометрика: Учебник / Н.П.Тихомиров, Е.Ю.Дорохина, М.: Издательство «Экзамен», 2003. — 512с.
73. Трофимов В.П. Логическая структура статистических моделей. М.: Финансы и статистика, 1985. — 191с.
74. Уотшем Т.Дж., Паррамоу К. Количественные методы в финансах: Учеб. пособие для вузов / Пер. с англ. под. ред. М.Р.Ефимовой. М.: ' Финансы, ЮНИТИ, 1999. - 527с.
75. Фрезе В.И., Фрезе А.В. Оценка недвижимости: учеб. пособие: в 2 ч. 4.1. Самара: Изд-во Самар. гос. экон. ун-та, 2006. — 176с.
76. Фридман Дж., Ордуэй Н. Анализ и оценка приносящей доход" недвижимости. М., 1995. — 629с.
77. Халафян A. A. STATISTIC А 6 Статистический анализ данных 3-е изд. Учебник. -М.: ООО «Бином-Пресс», 2008г. 512с.
78. Хили Дж. Статистика. Социологические и маркетинговые исследования. 6-е изд./Пер. с англ. Под общ. ред. к.ф.-м.н. А.А.Руденко. Киев: ООО «ДиаСофтЮП». - СПб.: Изд-во «Питер»,2005.-638с.
79. Хорин А.Н. Стратегический анализ: учебное пособие. М.: Эксмо,2006.-288с.
80. Цены и ценообразование, под ред. В.Е.Есинова: Учебник для вузов. -3-е изд. СПб.: Изд-во «Питер», 1999. - 464с.
81. Цены и ценообразование: Учебник для вузов / Под ред. И.К.Салимджанова. М.: ЗАО «Финстатинформ», 1999. - 304с.
82. Чечин Н.А., Макаров С.В. Оценка стоимости недвижимости: методология и управление Текст.: учебное пособие. — Самара: изд-во Самар. гос. экон. ун-та, 2006. — 96с.
83. Шевчук Л.А. Оценка недвижимости и управление собственностью. — Ростов н/Д: Феникс, 2007. 155с.
84. Шерер Ф., Росс Д. Структура отраслевых рынков: Пер. с англ. М.: ИНФРА - М., 1997. - 698с.
85. Эконометрика: Учебник / И.И. Елисеева, С.В.Курышева, Т.В.Костеева. Под ред. И.И.Елисеевой. 2-е изд., перераб. и доп. - М.: Финансы и статистика, 2005. — 576с.
86. Эконометрика: учеб. / Под ред. И.И.Елисеевой. М.: Проспект, 2009. -288с.
87. Экономико-математические методы и прикладные модели: Учебное пособие для вузов / В.В.Федосеев, А.Н.Гармаш, Д.М.Дайитбегов. М.: ЮНИТИ, 2002.-319с.
88. Экономические стратегии активных городов / Под ред. Б.М.Гринчеля, К.Шуссмана, Н.Е.Костылевой. СПб: Изд-во «Наука», 2002. - 500с.
89. Юзбашев М., Агапова Т. О показателях вариации долей отдельных групп в совокупности. -М.: Вестник статистики, 1988, №3, с.68-71
90. Famma E.F. Efficient Capital Market: A Review of Theory and Empirical Work., Journal of Finance, №25, 1970. p.63-74
91. Grund, Christian, Oliver Gurtler, The Effect of Reputation on Selling Prices in Auctions. Journal of Economics and Statistics / Redaktion: Prof. Dr. Peter Winker, Justus - Liebig - Universitat Giessen, 2008, p.345-356.
92. Gujarati Damodar N. Basic econometrics. — United States Military Academy, West Point, Mc. Graw H.:U., 2009. 1003p.1871. Использованы сайты:
93. Асаул А.Н., Карасев А.В. Экономика недвижимости. Учебное пособие. http://wvyw.aup.ni/books/m76/2 1 .htm, 28.02.2009.
94. Дискриминантный анализ. http://www.usau.edu.m/spravki/textbook/modules/stdiscan.html, 2008.
95. Моделирование структурными уравнениями. — http.V/www.iki.rssi.ni/magbase/REFMAN/STATTEXT/modules/stsepath.ht ml, 2009.
96. Недвижимость на портале Домком. http://www.domkom.ru/artic 1 е288.html, 2009.
97. Офисная недвижимость Москвы, Петербурга и регионов http://kn.becar.ru/abc2.php7mes, 2009
98. Офисный оптимизм. http://www.bpn.ru/publications/22998, 2009.
99. Прогнозирование и ценообразование на рынке недвижимости. -http://www.inventech.ru/lib/cost/cost-0025, 2009.
100. Рождественский саммит 2008: итоги развития рынка недвижимости. Дмитрий Золин. www.samru.ru/riet/obzor/43305.html, 2009г.
101. Рынок офисной недвижимости Самары. http -.//www, vzt.ru/perl-bin/vizit/index.cgi?newsid=78186, 2009.
102. Самара офисная: вторая волна («Новости рынка недвижимости») -http://www.skportal.ru/press/pressabout, 2008.
103. Современные методы оценки стоимости недвижимости http://www.biogrouplabs.ru/Rech/nedvizh/nedv.html, 2009.
104. Что происходит на рынке офисной недвижимости::РБК -Недвижимость.http://realty.rbc.ru/msk/articles/27/02/2009/562949955109656.shtml, 2009.
105. Исходный массив данных (фрагмент, всего 141<Г наблюдений офисных объектов) обобщенных,в геоинформационной системе гор; Самары на базе ПК «АДОН» за2006-2008гг.
106. Наименования переменных приведены в таблице 1.2.1
107. V20 V21 V22 V23 V24 V25 V26 V27 | V28 V29
108. Октябрьский Ц-4 1 95 0 0 4572 47 6677 0
109. Октябрьский Ц-4 1 95 0 0 4572 47 6677 0
110. Октябрьский Ц-4 1 95 0 0 4572 47 6677 0
111. Октябрьский Ц-4 1 95 0 0 4572 47 6677 0
112. Самарский Ц-1 1 92 13 2559 0 37 5520 1
113. Октябрьский Ц-4 1 95 0 0 4572 47 6677 0
114. Октябрьский Ц-4 1 95 0 0 4572 47 6677 0
115. Кировский Ц-3 1 37 0 1044 3156 27 2484 1
116. Кировский ц-з 1 37 0 1044 3156 27 2484 1
117. Советский Ц-з 1 48 0 0 1932 41 3666 1
118. Советский Ц-З 1 48 0 0 1932 41 3666 1
119. Советский Ц-З 1 48 0 0 1932 41 3666 1
120. Советский Ц-З 1 48 0 0 1932 41 3666 1
121. Советский Ц-З 1 48 0 0 1932 41 3666 1
122. Советский Ж-4 1 91 0 0 1644 28 3556 0
123. Советский Ж-4 1 91 0 0 1644 28 3556 0
124. Советский Ж-4 1 91 0 0 1644 28 3556 0
125. Советский Ж-4 1 91 0 0 1644 28 3556 0
126. Советский Ж-4 1 91 0 0 1644 28 3556 0
127. Советский Ж-4 1 91 0 0 1644 28 3556 0
128. Советский Ж-4 1 91 0 0 1644 28 3556 0
129. Советский Ж-4 I 91 0 0 1644 28 3556 0
130. Советский Ж-4 . 91 0 0 1644 28 3556 0
131. Советский Ж-4 1 91 0 0 1644 28 3556 0
132. Советский Ж-3 1 182 0 0 732 19 2586 1
133. Советский Ж-4 I 91 0 0 1644 28 3556 0
134. Советский Ж-3 . 182 0 0 732 19 2586 1
135. Советский ж-з 1 182 0 0 732 19 2586 1
136. Октябрьский Ц-4 1 95 0 0 4572 47 6677 0
137. Октябрьский Ц-4 1 95 0 0 4572 47 6677 0
138. Октябрьский Ц-2 1 273 0 0 2964 28 4807 0
139. Октябрьский ПК-3 416 0 434 1626 6 893 0
140. Октябрьский Ц-2 I 273 0 0 2964 28 4807 0
141. Советский Ж-3 1 182 0 0 732 19 2586 1
142. Октябрьский пк-з 416 0 434 1626 6 893 0
143. Советский Ж-3 1 182 0 0 732 19 2586 1
144. Советский ж-з 1 182 0 0 732 19 2586 1
145. Октябрьский Ц-2 1 285 0 2 4008 14 1991 0
146. Советский Ж-4 I 91 0 0 1644 28 3556 0
147. Советский Ж-4 1 91 0 0 1644 28 3556 0
148. Октябрьский Ц-2 1 285 0 2 4008 14 1991 0
149. Ленинский ц-1 0 360 0 1340 0 3 272 0
150. Октябрьский ПК-3 0 416 0 434 1626 6 893 0
151. Октябрьский пк-з 0 416 0 434 1626 6 893 0
152. Советский ц-з 1 48 0 0 1932 41 3666 1
153. Советский Ц-з I 48 0 0 1932 41 3666 1
154. Советский Ц-з 1 48 0 0 1932 41 3666 1
155. Советский ц-з 1 48 0 0 1932 41 3666 1
156. Советский ц-з 1 48 0 0 1932 41 3666 1
157. Советский Ц-з 1 48 0 0 1932 41 3666 1
158. Октябрьский ц-2 1 285 0 2 4008 14 1991 0
159. Октябрьский Ц-2 1 285 0 2 4008 14 1991 0
160. V20 V21 | V22 V23 V24 V25 V26 V27 V28 V29
161. Самарский Ц-1 1 31 0 2291 0 17 1592 0
162. Ленинский Ц-1 1 130 0 677 0 14 1953 0
163. Самарский Ц-1 1 31 0 2291 0 17 1592 0
164. Железнодоро жный Ж-4 1 176 0 366 1956 б 485 0
165. Железнодоро жный Ж-4 1 176 0 366 1956 6 485 0
166. Советский ц-з 1 151 13 168 1932 41 3666 1
167. Октябрьский Ц-2 301 0 238 2106 13 1855 1
168. Октябрьский ПК-3 416 0 434 1626 6 893 0
169. Октябрьский Ц-2 I 273 0 0 2964 28 4807 0
170. Ленинский ж-з 1 151 0 1280 0 25 3351 0
171. Октябрьский Ц-4 1 95 0 0 4572 47 6677 0
172. Октябрьский Ц-4 1 95 0 0 4572 47 6677 0
173. Октябрьский Ц-4 1 95 0 0 4572 47 6677 0
174. Ленинский Ж-З 1 151 0 1280 0 25 3351 0
175. Ленинский ж-з 1 151 0 1280 0 25 3351 0
176. Ленинский Ж-З 1 151 0 1280 0 25 3351 0
177. Ленинский ж-з 1 151 0 1280 0 25 3351 0
178. Кировский ж-з 1 200 0 2030 996 16 2017 0
179. Кировский ж-з 1 32 0 1828 1752 18 2267 1
180. Самарский ц-1 1 154 0 2558 0 27 3934 1
181. Кировский ц-з 1 86 0 573 1950 18 1847 1
182. Кировский Ц-з 1 86 0 573 1950 18 1847 1
183. Промышленный Ж-4 1 37 0 393 792 4 407 1
184. Октябрьский ц-з 1 2 0 0 1908 22 3614 1
185. Самарский ж-з 1 220 13 2734 0 5 413 0
186. Самарский ж-з 1 185 0 2740 0 14 1266 0
187. Промышленный ж-з 1 129 0 1088 1884 11 1148 0
188. Промышленный ж-з 1 225 0 699 876 2 196 1
189. Промышленный ж-з 1 225 0 699 876 2 196 1
190. Промышленный ж-з 1 225 0 699 876 2 196 1
191. Промышленный ж-з 1 225 0 699 876 2 196 1
192. Промышленный ж-з 1 225 0 699 876 2 196 1
193. Промышленный ж-з 1 225 0 699 876 2 196 1
194. Промышленный ж-з 1 225 0 699 876 2 196 1
195. Промышленный ж-з 1 225 0 699 876 2 196 1
196. Промышленный ж-з 1 129 0 1088 1884 11 1148 0
197. Промышленный ж-з 1 129 0 1088 1884 11 1148 0
198. Оценка<статистической функции «выживания» объектов.офисной недвижимости в рыночной»экспозиции, по г.Самаре за 2006-2008гг. (фрагмент)
199. Анализ множит, оценок Каплана-МеПера (Продажа-2) Замечание: цензурированные отмечены +
200. Результаты этапов дискриминатного анализа
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.