Сорбционно-хроматографическое разделение жирорастворимых биологически активных веществ тема диссертации и автореферата по ВАК РФ 02.00.02, кандидат химических наук Бородина, Елена Валентиновна

  • Бородина, Елена Валентиновна
  • кандидат химических науккандидат химических наук
  • 2012, Воронеж
  • Специальность ВАК РФ02.00.02
  • Количество страниц 154
Бородина, Елена Валентиновна. Сорбционно-хроматографическое разделение жирорастворимых биологически активных веществ: дис. кандидат химических наук: 02.00.02 - Аналитическая химия. Воронеж. 2012. 154 с.

Введение диссертации (часть автореферата) на тему «Сорбционно-хроматографическое разделение жирорастворимых биологически активных веществ»

Список принятых сокращений.9

Глава 1 Обзор литературы.10

1.1. Характеристика изучаемых веществ.10

1.1.1 Строение и биологически активные свойства токоферолов и фитостеролов.10

1.1.2 Нахождение в природе.12

1.2. Методы выделения токоферолов и фитостеролов из растительных объектов.13

1.3. Сорбенты для извлечения биологически активных веществ.18

1.3.1 Полимерные сорбенты.19

1.3.2 Неорганические сорбенты.22

1.4. Материалы с упорядоченными мезопорами.27

1.4.1. Получение функционализированных упорядоченных материалов .29

1.4.2. Применение материалов с упорядоченными мезопорами в качестве сорбентов.42

Заключение по главе 1.46

Глава 2. Экспериментальная часть.47

2.1. Реактивы и их сокращения.47

2.2. Количественное определение а-токоферола и Р-ситостерола в гексановых растворах.47

2.2.1. УФ-спектроскопия.47

2.2.2. Тонкослойная хроматография.48

2.2.3. Газовая хроматография.49

2.3. Изучение сорбции а-токоферола и Р-ситостерола на мезопористых материалах.50

2.3.1. Кинетика сорбции а-токоферола и Р-ситостерола.50

2.3.2. Сорбция а-токоферола и Р-ситостерола в статических условиях.51

2.3.3. Сорбционно-хроматографическое разделение а-токоферола и р-ситостерола.51

2.4. Получения органо-неорганических мезопористых материалов на основе МСМ-41.53

2.4.1. Химическая модификация аминосиланом.53

2.4.2. Химическая модификация метилсиланом.53

2.5. Изучение свойств модифицированных мезопористых материалов.54

2.5.1. Низкотемпературная адсорбция/десорбция азота.54

2.5.2. ИК-спектроскопия.54

2.5.3. ЯМР -спектроскопия.55

2.5.4. Термогравиметрический анализ.55

2.3.5 Математическая обработка результатов эксперимента.55

Глава 3. Модификация МСМ-41.58

3.1. Аминирование мезопористого материала.58

3.2. Метилирование мезопористого материала.75

Заключение по главе 3.86

Глава 4. Определение а-токоферола и Р-ситостерола в гексановых растворах.87

4.1. УФ-спектроскопия.87

4.2. Хроматографические методы.89

4.2.1. Метод тонкослойной хроматографии.89

4.2.3. Газовая хроматография.93

Заключение по главе 4.96

Глава 5. Разделение а-токоферола и Р-ситостерола на исходном и модифицированных сорбентах МСМ-41.98

5.1. Сорбция а-токоферола и Р-ситостерола во времени.101

5.2. Сорбции а-токоферола и Р-ситостерола в равновесных условиях.102

5.3. Характеристика МСМ-41 после сорбции а-токоферола и Р-ситостерола по данным низкотемпературной адсорбции/десорбции азота и ИК-спектроскопии.108

5.4. Сорбционно-хроматографическое разделение а-токоферола и Рситостерола.115

Заключение по главе 5.127

ВЫВОДЫ.128

Список литературы.130

ПРИЛОЖЕНИЕ.149

Введение

Разделение биологически активных веществ (БАВ) как для аналитических целей (пробоподготовки), так и для технологических (выделения) является предметом постоянных исследований. Это связано с большим значением этих веществ в жизнедеятельности человека, и с тем, что биологическая активность природных веществ выше, чем синтетических. Определение жирорастворимых БАВ (а-токоферол, [3-ситостерол и эргокальцеферол) в растительных маслах и дистиллятах является непростой задачей из-за присутствия большого числа сопутствующих компонентов. После извлечения анапитов (щелочной гидролиз спиртовым раствором КОН, жидкостная экстракция) необходимо разделение компонентов неомыляемой части масла - токоферолов, стеролов, витаминов А, Д, К - при осуществлении определения УФ-спектроскопией и ТСХ. В последнее время отмечена перспективность использования метода сорбционного концентрирования при пробоподготовке сложных матриц для определения БАВ. Применение метода твердофазной экстракции позволяет сократить число стадий, а также уменьшить расход органических растворителей. Одним из наиболее часто используемых растворителей в нормально-фазовом варианте хроматографии, а также при извлечении и концентрировании неполярных веществ является гексан.

Поскольку сами по себе эти методы уже достаточно изучены, дальнейшее их совершенствование связано с разработкой эффективных сорбентов. Наиболее распространенными материалами в процессах разделения и выделения фракций веществ являются пористые сорбенты на основе оксида кремния (С8 и С18). Практически все используемые для данных целей кремнеземные пористые сорбенты имеют хаотичное расположение неидентичных по размерам и форме пор.

В конце XX века появилась возможность получения кремнеземных материалов с упорядоченным расположением идентичных гексагональных мезопор диаметром 2-10 нм (типа МСМ-41). В отличие от традиционных сорбентов на основе оксида кремния МСМ-41 обладает высокой удельной поверхностью (1000 м /г) и потенциально высокой сорбционной емкостью. Сорбенты на основе МСМ-41 с привитыми функциональными группами могут служить альтернативой силикагелям для хроматографии и твердофазной экстракции. При этом упорядоченность структуры и узкое распределение пор по размерам позволит снизить размывание фронта сорбции, что даст возможность разделять вещества, близкие по своей физико-химической природе, такие как а-токоферол и ß-ситостерол.

Работа выполнена при финансовой поддержке Министерства образования и науки РФ «Развитие научного потенциала высшей школы» (рег. номер: 2.2.2.3/16076 и 2.2.2.3/9005) и Германской службы академических обменов (DAAD) по программе «Михаил Ломоносов 2008/2009 и 2010/2011» (рег. номер: А/07/72494 и А/09/75717).

Целью данной диссертационной работы являлась разработка новых селективных сорбентов на основе оксида кремния с упорядоченными мезопорами для сорбционно-хроматографического разделения жирорастворимых Б AB.

Для достижения поставленной цели решались следующие задачи:

- провести оптимизацию условий получения сорбентов путем химической модификации МСМ-41 алкил- и аминосиланами. Определить характер изменения поверхностных свойств композитов, структуры поверхностного слоя, гидрофобности, термостабильности мезопористых материалов в зависимости от условий модификации;

- изучить особенности сорбции а-токоферола и ß-ситостерола в статических условиях для управления разделением;

- оптимизировать условия разделения а-токоферола и ß-ситостерола на органо-неорганических сорбентах на основе МСМ-41 в режиме фронтального хроматографирования;

- разработать способы количественного определения а-токоферола и ß-ситостерола в гексановых растворах при их совместном присутствии методами УФ-спектроскопии, тонкослойной и газовой хроматографии.

Научная новизна.

В результате химической модификации мезопористого кремнезема МСМ-41 амино- и метилсиланами в метаноле и толуоле получены сорбенты с узким распределением пор по размерам. Показано, что наличие упорядоченных мезопор и высокой площади поверхности приводит к росту сорбционной емкости по сравнению с традиционными силикагелями в 25-50 раз по отношению к а-токоферолу и Р-ситостеролу и увеличению эффективности разделения жирорастовримых БАВ.

Установлено увеличение степени прививки и негомогенности распределения аминогрупп в объеме пор МСМ-41 с уменьшением сольватирующей способности применяемого при модификации растворителя, что приводит к блокировке пор сорбентов.

Методами низкотемпературной адсорбции/десорбции азота, термогравиметрии и ИК-спектроскопии определены поверхностные и объемные свойства сорбентов (площадь поверхности, объем и диаметр пор, распределение пор по размерам), гидрофобность, структура слоя модификатора, сорбционные свойства мезопористого материала МСМ-41, его аминированного и метилированного композитов.

На основе данных о гидрофобности, пористой структуре модифицированного МСМ-41 и его сорбционных свойствах предложены оптимальные условия разделения а-токоферола и Р-ситостерола в режиме фронтальной хроматографии и концентрирования гидрофобных БАВ при твердофазной экстракции.

Установлено, что эффективность разделения при определении жирорастворимых БАВ в растительных маслах методом хроматографии в тонком слое сорбента повышается при уменьшении полярности состава подвижной фазы.

Практическая значимость.

Разработанный способ модификации МСМ-41 позволяет существенно улучшить хроматографическое и твердофазно-экстракционное разделение жирорастворимых БАВ, а также дает возможность применения кремнезема с упорядоченными мезопорами в качестве матриц для химических сенсоров и носителей в гетерогенном катализе. Разработаны способы разделения а-токоферола и ß-ситостерола на исходном и модифицированных сорбентах на основе МСМ-41 в динамических условиях; газохроматографического определения а-токоферола и ß-ситостерола в смеси с предварительной дериватизацией пробы органосиланами. Новизна способа получения органо-неорганических материалов с привитыми функциональными группами и способа определения а-токоферола в растительных маслах подтверждена патентами РФ.

На защиту выносятся следующие положения:

1. Способ получения сорбентов с высокой площадью поверхности, узким распределением пор по размерам и различной гидрофобностью, основанный на силилировании амино- и метилсиланами поверхностных силанольных групп оксида кремния с упорядоченными мезопорами типа МСМ-41.

2. Сорбционная способность мезопористых материалов типа МСМ-41 по отношению к а-токоферолу и ß-ситостеролу зависит от пористости сорбента, а также полярности привитых функциональных групп.

3. Селективность разделения а-токоферола и ß-ситостерола в режиме фронтального хроматографирования на органо-неорганических сорбентах с упорядоченными мезопорами зависит от условий химической модификации МСМ-41.

4. Способы определения жирорастворимых БАВ в гексановом растворе при совместном присутствии методом ТСХ, основанном на элюировании смесью октан - диэтиловый эфир и тетрахлорметан -диэтиловый эфир, и методом ГХ с предварительной дериватизацией.

Результаты работы были доложены и обсуждены на Всероссийском симпозиуме Хроматография и хромато-масс-спектрометрия (г. Клязьма, 2008), 22. Deutsche Zeolith Tagung (Munich, Germany, 2010), Всероссийской конференции Хроматография - народному хозяйству (г. Дзержинск 2010), XIV Всероссийском симпозиуме с участием иностранных ученых Актуальные проблемы теории адсорбции, пористости и адсорбционной селективности (г.Клязьма, 2010), 16th International Zeolite Conference joint with the 7th International Mesostructured Materials Symposium Engineering of new micro- and meso-structured materials (Sorrento, Italy, 2010), 23. Deutsche Zeolith Tagung (Erlangen-Nurnberg, Germany, 2011), 5 International Conference of Federal European Zeolite Associations 2011 (Valencia, Spain, 2011), III Всероссийском симпозиуме Разделение и концентрирование в аналитической химии и радиохимии (г. Краснодар, 2011), XIII Международной конференции Физико-химические основы ионообменых и хроматографических процессов (г. Воронеж, 2011).

Структура и объем работы.

Диссертация состоит из введения, пяти глав, выводов, списка цитируемой литературы, включающего 169 наименований, и приложения. Работа изложена на 154 страницах, содержит 50 рисунков и 13 таблиц.

Похожие диссертационные работы по специальности «Аналитическая химия», 02.00.02 шифр ВАК

Заключение диссертации по теме «Аналитическая химия», Бородина, Елена Валентиновна

выводы

1. Методом низкотемпературной адсорбции/десорбции азота показано, что при обработке поверхности мезопор МСМ-41 метил- и аминосиланом получаемые сорбенты отличаются высокой удельной поверхностью, равной 1190 и 990 м2/г соответственно и узким распределением пор по размерам. Такие характеристики композитов позволяют добиваться высокой сорбционной емкости по отношению к а-токоферолу и (3-ситостеролу.

2. Методами ИК-спектроскопии и термогравиметрии установлено, что по сравнению с исходным МСМ-41 метилирование позволяет получить более гидрофобные сорбенты, аминирование - более гидрофильные, содержание воды в образцах составляет 0,6 и 6,7% соответственно. Степень прививки для MCI и MN равна (0,34-0,68) и (0,34-1,16) ммоль/г соответственно. Это дает возможность регулировать селективность материала по отношению к разделяемым веществам.

3. Показано, что хроматографическое разделение а-токоферола и [3-ситостерола зависит от удерживания веществ на исходном и модифицированном МСМ-41. Прививка метальных и аминогрупп к поверхности мезопористого сорбента приводит к изменению механизма сорбции; коэффициент селективности при этом достигает 1,8 и 2,5 соответственно.

4. Методами низкотемпературной адсорбции/десорбции азота показано, что на исходном и с привитыми Cl группами МСМ-41 жирорасторимые БАВ удерживаются внутри пор, что приводит к высокой сорбционной емкости - 0,80-0,90 и 0,17-0,20 ммоль/г соответственно. Адсорбция (3-ситостерола на аминированном МСМ-41 происходит на поверхности, что сопровождается частичной блокировкой пор, падением сорбционной емкости (0,06 ммоль/г) и меньшими объемами удерживания веществ на выходных кривых сорбции.

5. Модифицированный метилсиланом сорбент обладает максимальной селективностью по отношению к паре а-токоферол и Р-ситостерол по сравнению с исходным МСМ-41. Применение метилированного МСМ-41 в качестве сорбента позволяет в режиме фронтального хроматографирования добиться 90% обогащения смеси БАВ а-токоферолом при исходном соотношении компонентов смеси (1:1). Введение аминогрупп в матрицу МСМ-41 приводит к изменению порядка элюирования разделяемой смеси по сравнению с исходным МСМ-41 и позволяет выделить фракцию (3-ситостерола с 80% степенью обогащения.

6. Разработан способ определения а-токоферола и эргокальцеферола в растительных маслах методом ТСХ в диапазонах

1 л определяемых концентраций для 2,50-50,00 мг/см и 0,08-0,13 мг/см соответственно. При элюировании а-токоферола смесью (7:1) октан -диэтиловый эфир и эргокальцеферола - смесью (4:1) тетрахлорметан -диэтиловый эфир отмечена наибольшая эффективность разделения. Методом ГХ-ПИД проведено определение а-токоферола и Р-ситостерола в гексановых л растворах в диапазонах концентраций 25-6000 мкг/см при совместном присутствии с пределами обнаружения 2,5 и 3,0 мкг/см3 соответственно. Относительная погрешность определения не превышает 10%.

Автор выражает искреннюю благодарность проф., д.х.н. Ф. Ресснеру за предоставленную возможность проведения научных исследований в Олъденбургском университете им. Карл фон Оссиетцки (Германия), за сотрудничество в работе и помощь в обсуждении результатов.

Список литературы диссертационного исследования кандидат химических наук Бородина, Елена Валентиновна, 2012 год

1. Надиров Н.К. Токоферолы и их использование в медицине и сельском хозяйстве. / Надиров Н.К. М.: Наука, 1991. - 336 с.

2. Колотилова А. И. Витамины. Химия, биохимия и физиологическая роль. / А.И. Колотилова, Е. П. Глушанков. Д.: Издательство Ленингр. Университета, 1976. - 248 с.

3. Plant Sterols and Risk of Stomach Cancer: A Case-Control Study in Uruguay / Stefani De Eduardo et al. // Nutrition and Cancer. 2000. - V.37, № 2. - P. 140-144.

4. Ostlund R.E. Inhibition of cholesterol absorption by phytosterol-replete wheat germ compared with phytosterol-depleted wheat germ / R.E. Ostlund, S.B. Racette, W.F. Stenson // American Journal Clinical Nutrition. 2003. - V.77, №6.-P. 1385-1589.

5. Phytosterol content of sea buckthorn (Hippophae rhamnoides L.) seed oil: Extraction and identification / Li T. S. C. et al. // Food Chemistry. 2007. -V.101, № 4. - P. 1633-1639.

6. Экспериментальная витаминология (справочное руководство); под ред. Островского Ю. М. Мн. : Наука и техника, 1979. - 552 с.

7. Impact of pulsed electric field treatment on the recovery and quality of plant oils / Guderjan M. et al. // Journal of Food Engineering 2005. - У.67. -P. 281-287.

8. Hafidi A. Membrane-based simultaneous degumming and deacidification of vegetable oils / A.Hafidi, D. Pioch, H. Ajana // Innovative Food Science and Emerging Technolology. 2005. - V.6. - P. 203-212.

9. Lechner M. Determination of tocopherols and sterols in vegetable oils by solid-phase extraction and subsequent capillary gas chromatographic analysis / M . Lechner, B. Reiter, E. Lorbeer // Journal of Chromatography A. 1999. -V.857-P. 231-238.

10. Gas chromatographic characterization of vegetable oil deodorization distillate / T. Verleyen et al. // Journal of Chromatography A. 2001. - V.921 -P. 277-285.

11. Process for recovery of plant sterols from by-product of vegetable oil refining: pat. W02004000979 Hungry / Czuppon, T., Kemeny, Z., Kovari, E., Recseg, K.; CEREOL NOVENYOLAJIPARI RT; appl. 02.07.2002; publ. 31.12.2003

12. Ruperez F.J. Chromatographic analysis of a-tocopherol and related compounds in various matrices / F.J. Ruperez, D. Martin, E. Herrera, C. Barbas // Journal of Chromatography A. 2001. - V.935. - P. 45-69.

13. Simultaneous detection of retinol and alpha-tocopherol in human serum by high performance liquid chromatography / A.P. De Leenheer et al. // Journal of Chromatography A. -1979. V. 162. - P. 408-413.

14. Automated analysis of vitamin E isomers in vegetable oils by continuous membrane extraction and liquid chromatography electrochemical detection / A. Sanchez-Perez et al. // Journal of Chromatography A. - 2000. -V. 881 - P. 229-249.

15. Determination of tocopherols, tocopherolquinones and tocopherolhydroquinones by gas chromatography-mass spectrometry and preparation with lipophilic gel chromatography / H.U. Melchert et al. // Journal of Chromatography A. 2002. - V. 976. - P. 215-220.

16. Ye L. Vitamin E content of margarine and reduced fat products using a simplified extraction procedure and HPLC determination / L. Ye, J. L. Landen, R. R. Eintemiller // Journal of Liquid Chromatography and Relation Technology. -1998.-№21-P. 1227-1238.

17. Emmons C. L. In vitro antioxidant activity and contents of phenolic and tocol antioxidants / C.L. Emmons, D.M. Peterson, G.L. Paul // Journal of Agricultural Food Chemistry. 1999. - V. 47 - P. 4894-4898.

18. Simultaneous determination of a-tocopherol and (3-carotene in olive oil by reserved-phase high performance chromatography / E. Gimeno et al. // Journal of Chromatography A. 2000. - V. 881 - P. 255-259.

19. Storage, heating, and tocopherols affect cholesterol oxide formation in food oils / S.X. Li et al. // Journal of Agricultural Food Chemistry. 1996. -V. 44.-P. 3830-3834.

20. C.G. Rammell Separation of tocols by HPLC on an amino-cyano polar phase column / C.G. Rammell, J.J.L. Hoogenboom // Journal of Liquid Chromatography. 1985. - V. 8 - P. 707-717.

21. E. Psomiadou Simultaneous HPLC determination of tocopherols, carotenoids, and chlorophylls for monitoring their effect on virgin olive oil oxidation / E. Psomiadou, M. Tsimidou // Journal of Agricultural Food Chemistry. 1998.-V. 46-P. 5132-5138.

22. Richheimer S. L. Reversed-phase high-performance liquid chromatographic method using a pentafluorophenyl bonded phase for analysis of tocopherols / S. L. Richheimer, M. C. Kent, M. W. Bernart // Journal of Chromatography A. 1994. - V. 677 - P. 75-80.

23. A Rapid Gas Chromatographic Method for Direct Determination of Free Sterols in Animal and Vegetable Fats and Oils / Y.-M. Choong // Journal of Food and Drug Analysis. 1999. - V. 7. - P. 279-290.

24. Giacometti J. Determination of aliphatic alcohols, squalene, a-tocopherol and sterols in olive oils: direct method involving gas chromatography of the unsaponifiable fraction following silylation / J. Giacometti // Analyst. -2001.-V. 126.-P. 472-475.

25. Bruehl L. Extraction of oilseeds by SFE a comparison with other methods for determination of oil content / L. Bruehl, B. Matthaeus // Journal of Analytical Chemistry. - 1999. - V. 364 - P. 631-634.

26. Supercritical carbon dioxide extraction of carotenoids, tocopherols and sitosterols from industrial tomato by-products / E. Vagi et al. // J. of Supercritical Fluids. 2007. - V. 40. - P. 218-226.

27. Indyk H.E. Simultaneous liquid chromatographic determination of cholesterol, phytosterols and tocopherols in foods / H.E. Indyk // Analyst. 1990. -V. 115.-P. 1525-1530.

28. E. Ibanez E. Determination of tocopherols by GC-MS followed by SFE / E. Ibanez, J. Palacios, F.J. Sefiorans, G. Santa-Maria, J. Tabera, G. Reglero // Journal AOACS. 2000. - V. 77 - P. 187-191.

29. Bonvehi J.S. Liquid chromatographic determination of tocopherols and tocotrienols in vegetable oils, formulated preparations, and biscuits / J.S. Bonvehi, FY. Coll, I.A. Rius // Journal AOAC Int. 2000. - V. 83 - P. 627-634.

30. Konings E.J. Liquid chromatographic determination of tocopherols and tocotrienols in margarine, infant foods, and vegetables / E.J. Konings, H.H. Roomans, P.R. Beljaars // Journal of AOAC Int. 1996. - V. 79. - P. 902-906.

31. Hogarty C.J Tocopherol content of selected foods by HPLC/fluorescence quantitation / C.J Hogarty, С Ang, R.R. Eitenmiller // Journal of Food Composition and Analysis 1989. - V. 2. - P. 200-209.

32. Determination of Vitamin E in Aquatic Organisms by HighPerformance Liquid Chromatography with Fluorescence Detection / J.Z. Huo // Anal. Biochem.- 1996. -V. 242. P. 123-128.

33. Chase G.W.J. Liquid Chromatographic Determination of Tocopherols and Tocotrienols in Vegetable Oils, Formulated Preparations, and Biscuits / G.W.J. Chase, R.R. Eitenmiller, A.R. Long // J. AOAC Int. 1999. - V. 82. - P. 627-634.

34. Separation of vitamin E from palm fatty acid distillate using silica: I Equilibrium of batch adsorption / B. S. Chu. et al. // Journal of Food Engineering. -2004.- V. 62.-P. 97-103.

35. Hennion M.C. Solid-phase extraction: method development, sorbents, and coupling with liquid chromatography / M.C. Hennion // Journal of Chromatography A. 1999. - V. 856. P. 3-54

36. Писарев О. А. Современные подходы к конструированию структуры полимерных сорбентов для препаративной хроматографии биологически активных веществ / О.А. Писарев, Н.М. Ежова // Сорбционные и хроматографические процессы. 2008. - №.4. - С. 535-552.

37. Самсонов Г.В. Новые принципы препаративной ионообменной хроматографии и их применение для выделения, очистки и суперочистки антибиотиков / Г.В. Самсонов, О.А. Писарев // Прикл.биохимия и микробиол. 1992.-Т.28. -№1. - С. 5-17.

38. Писарев О.А. Взаимодействие эритромицина с полимерными сорбентами, настроенными на молекулу антибиотика / О.А. Писарев, Н.М.

39. Ежова, И.С. Гаркушина // Журнал физ. Химии. 2008. - Т.82. - №5. - С. 632637.

40. Писарев О.А. Фронтально-вытеснительная хроматография мелиттина на сетчатых полимерных ионитах. / О.А. Писарев, С.Г. Юнышева, Г.В. Самсонов // Прикл. биохим. микробиол. 1998. Т.34. - №5. - С.480-484.

41. Писарев О.А. Применение новых методов препаративной хроматографии низкого давления для повышения качества лекарственных препаратов / О.А. Писарев, Н.В. Глазова // Сорбционные и хроматографические процессы. 2001. - Т1.-№2. - С. 415 - 424.

42. Даванков В.А. Новый подход к созданию равномерно сшитых макросетчатых полистирольных структур / В.А. Даванков, С.В. Рогожин, М.П. Цюрупа // Высокомолек. Соед. Б. 1973. - №6. - С. 463- 466.

43. Davankov V.A. Structure and properties of porous hypercrosslinked polystyrene sorbents Styrosorb / V.A. Davankov, M.P. Tsyurupa // Pure and Appl. Chem. 1989. - V.61. - P. 1881-1888.

44. Adachi Т. Fundamental characteristics of synthetic adsorbents intended for industrial chromatographic separation / Adachi Т., Isobe E. // J. Chromatogr. A. 2004. - V. 1036, № l.-P. 33-44.

45. Писарев O.A. Взаимодействие эритромицина с полимерными сорбентами, настроенными на молекулу антибиотика / О.А. Писарев, Н.М. Ежова, И.С. Гаркушина //Журнал физ. Химии. 2008. Т.82. - №5. - С.632-637.

46. Кудринская В.А. Синтез и исследование сорбционных свойств полимеров с молекулярными отпечатками кверцетина / В.А. Кудринская, С.Г. Дмитриенко, Ю.А. Золотов // Вестн. Моск. ун-та. Серия 2. Химия. -2009. Т. 50. вып.З. - С. 156-163.

47. Препаративная жидкостная хроматография под ред. Б. Бидлинггмейера//М: Мир, 1990, С. 359.

48. Золотов Ю.А. Сорбционное концентрирование микрокомпонентов из растворов. Применение в неорганическом аназизе / Ю.А. Золотов, Г.И. Цизин, С.Г. Дмитриенко, Е.И. Моросанова . М.: Наука, 2007. - 320 с.

49. Christie W.W. Solid-phase extraction columns in the analysis of lipids / W.W. Christie // Advances in Lipid Methodology One. - 1992. - P. 1-17.

50. Химия привитых поверхностных соединений; под ред. Лисичкина Г.В. М.: ФИЗМАТЛИТ, 2003. - 592 с.

51. Srinivasan G. Influence of Solvents on the Conformational Order of CI8 Alkyl Modified Silica Gels / G. Srinivasan, K. Miiller // J. Chromatogr. A. -2006.-V.97.-P. 508-512.

52. Asmus P.A. Polar silicone-based chemically bonded stationary / P.A. Asmus, C.E. Low, M.J. Novotny // Analytical Chemistry. 1973. - V. 45. -P. 971-974.

53. Luechinger M. Automated immobilization of amino acids on mesoporous silica support/ M. Luechinger, R. Prins, G.D. Pirngruber //Studies in Surface Science and Catalysis. 2005. - V. 158, Part 2. - P. 1193-1200.

54. Silylation of mesoporous silica MCM-41 with the mixture of Cl(CH2)3SiCl3 and CH3S1CI3: combination of adjustable grafting density andimproved hydrothermal stability / H. Yang et al. // Microporous and Mesoporous Materials. 2004. - V. 68. - P. 119-125.

55. Engelhardt H. Hydrophilic Silica-Based Anion Exchanger with Adjustable Cabacity for HPLC of Nucleotides / H. Engelhardt, E. Schweinheim // Chromatographia. 1986. - V. 22. - P. 425 - 429

56. Unger K. K. Packings and Stationary Phases for Biopolymer Separations by HPLC / K. K. Unger, R. Janzen, G. Jilge // Chromatographia. -1987.-V. 24.-P. 144-154.

57. Nash A.M. Limited extraction of soybeans with hexane / A.M. Nash, E.N. Frankel // J. Am. Oil Chem. Soc. 1986. - V. 63. - P. 244-246.

58. Comparison of the lipid composition of breast milk from mothers of term and preterm infants / J. Bitman et al. // Am. J. Clin. Nutr. 1983. - V. 38, №2.-P. 300-312.

59. O'Connor C.J. A rapid and sensitive separation of retinol and retinyl palmitate using a small, disposable bonded-phase column: kinetic applications / C.J. O'Connor, B.J. Yaghi // Lipid Res. 1988. - V. 29, № 12. - P. 1693-1697.

60. Tsui I.C. Rapid determination of total cholesterol in homogenized milk / I.C. Tsui // J. Assoc. Off. Anal. Chem. 1989. - V. 72, № 3. - P. 421-424.

61. Aufenanger, J. and Katterman,R., J. Clin. Chem. Clin Biochem., 27, 605-611 (1989).

62. Rapid separation of lipid classes in high yield and purity using bonded phase columns / Kaluzny M.A. et al. // J. Lipid Res. 1985. - V. 26, № 1. -P. 135-140.

63. Egberts,J. and Buiskool,R. Isolation of the acidic phospholipid phosphatidylglycerol from pulmonary surfactant by sorbent extraction chromatography / Egberts,J. and Buiskool,R. // Clin. Biochem., 1988. - V. 34. -P. 163-164. ^

64. Continuous-flow determination of natural and synthetic antioxidants in foods by gas chromatography / M. Gonzalez et al. // Analytica Chimica Acta. -1998.-V.359.-P. 47-55.

65. Selective Adsorption of Vitamin E from Palm Fatty Acid Distillate on Silica-Packed Fixed-Bed Columns / B.S. Chu et al. // International Journal of Food Engineering. 2009. - V. 5. - P. 1-15

66. Грегг С. Адсорбция, удельная поверхность, пористость / С. Грегг, К. Синг. -М.: Мир, 1984. 310 с.

67. A new family of mesoporous molecular sieves prepared with liquid crystal templates / J.S. Beck et al. // Journal of the American Chemical Society. -1992.-V. 114.-P. 10834-10843.

68. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism / C.T. Kresge et al. // Nature. 1992. - V.359. - P. 710-712.

69. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores / Zhao D. et al. // Science. 1998. - V. 279. - P.548-552.

70. Inagaki S. Synthesis of highly ordered mesoporous materials from a layered polysilicate / Inagaki S., Fukushima Y., Kuroda K. // J. Chem. Soc., Chem. Commun. 1993 - P. 680-682.

71. Zhao D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures / D. Zhao et al. // Journal of the American Chemical Society 1998. -№ 120. - P. 6024-6036.

72. Adsorption of Direct Yellow 12 onto Ordered Mesoporous Carbon and Activated Carbon / F. Liu et al. // J. Chem. Eng. Data. 2009. - V. 54. -P. 3043-3050.

73. Comparison of an ordered mesoporous alumosilicate, silica, alumina, titania and zirconia in normal-phase high-perfomance liquid chromatography / M. Grün et al. // J. Chromatogr. A. 1996. - V. 740. - P. 1-9.

74. Капиллярная газохроматографическая колонка с пористым слоем на основе регулярной структуры мезопористого материала / Ю.В. Патрушев и др. // Журнал Физической Химии А. 2008. - Т. 82, № 7. - С. 1202-1205.

75. Хайвер К. Высокоэффективная газовая хроматография / К.Хайвер. -134 с.

76. Silica-Based Mesoporous Organic-Inorganic Hybrid Materials / F. Hoffmann et al. // Angew. Chem. Int. Ed. 2006. - V. 45. - P. 3216-3251.

77. K. Kailasam, K. Miiller // Physico-chemical characterization of MCM-41 silica spheres made by the pseudomorphic route and grafted with octadecyl chains // Journal of Chromatography A. 2008. - Vol.1191. -P. 125-135.

78. P.J.E. Harlick and A. Sayari // Amine grafted, pore-expanded MCM-41 for acid gas removal: Effect of grafting temperature, water, and amine type on performance // Studies in Surface Science and Catalysis. 2005. - V. 158. - P. 987-994.

79. X.S. Zhao, G.Q. Lu // Modification of MCM-41 by surface silylation with trimethylchlorosilane and adsorption study // J. Phys. Chem. B. 1998. - V. 102.-P. 1556-1561.

80. S. L. Burkett, S. D. Sims, S. Mann, Chem. Commun. 1996, 13671368.

81. H. Zhu, D. J. Jones, J. Zajac, R. Dutartre, M. Rhomari, J. Rozie're, Chem. Mater. 2002. - V. 14. - 4886 - 4894.

82. Prins R. Metal Phosphides and Zeolite-like Mesoporous Materials as Catalysts / R. Prins, G. Pirngruber, T.Weber // Chimia. 2001. V. 55. -P. 791-795.

83. Berg K. Herstellung oberfliichenmodifizierter Adsorbentien II. Reaktion von Phenylcldorsilanen mit Silicagel / K. Berg, K. Unger // Kolloid-Z. u. Z. Polymere. 1971. -V. 246. - P. 682-687.

84. Upfield The preparation. Properties and some applications of bonded ion-exchange pickings based on microparticulate silica gel for high-performanceliquid chromatography / G.B. Cox et al. // J. of Chromaography. 1976. - V. 117.-P. 269-278.

85. Surface Characterization and Functionalization of MCM-41 Silicas via Silazane Silylation / R. Anwander et al. // J. Phys. Chem. B. 2000. - V. 104. -P. 3532-3544.

86. M. Novotny; S. L. Bektesh, K. Grohmatm Chemically bonded stationary phases with variable selectivity // J. Chromaography. 1973. - V. 83. -P. 25-30.

87. Thermal and hydrothermal stability of amino-functionalized SBA-16 and promotion of hydrophobicity by silylation / J. Wei et al. // Microporous and Mesoporous Materials. 2009. - V. 117. - P. 596-602.

88. Amine-Grafted MCM-48 and Silica Xerogel as Superior Sorbents for Acidic Gas Removal from Natural Gas / H. Y. Huang et al. // Ind. Eng. Chem. Res. 2003. - V. 42. - P. 2427-2433.

89. Hybrid Organic-Inorganic Quaternary Ammonium Organosilane Functionalized Mesoporous Thin Films / M. A. Markowitz et al. // Langmuir. -2001. V. 17, № 22. - P. 7085-7092.

90. Salmio H. Distribution of Amino Groups on a Mesoporous Silica Surface after Submonolayer Deposition of Aminopropylsilanes from an Anhydrous Liquid Phase / H. Salmio, D. Briihwiler // J Phys Chem C. 2007. - V. 111. -P. 923-929.

91. Optical metal ion sensor based on diffusion followed by an immobilizing reaction. Quantitative analysis by a mesoporous monolith containing functional groups / D. L. Rodman et al. // Analitical Chemistry. 2005. - V. 77. -P. 3231-3237.

92. Design and synthesis of self-assembled monolayers on mesoporous supports (SAMMS): The importance of ligand posture in functional nanomaterials / G. E. Fryxell et al. // J. Mater. Chem. 2007. - № 17. - P. 2863-2874.

93. Sayen S. Electrochemical modulation of the ligand properties of organically modified mesoporous silicas / S. Sayen, A. Walcarius // Journal of Electroanalytical Chemistry. 2005. - V. 581. - P. 70-78.

94. P.J.E. Harlick and A. Sayari // Amine grafted, pore-expanded MCM-41 for acid gas removal: Effect of grafting temperature, water, and amine type on performance // Studies in Surface Science and Catalysis. 2005. - V. 158. - P. 987-994

95. Trens P. Adsorption of (y-Aminopropyl)triethoxysilane and Related Molecules at the Silica/Heptane Interface / P. Trens, R. Denoyel // Langmuir. -1996.-V. 12, № 11.-P. 2781-2784.

96. Ganesan V. Ion exchange and ion exchange voltammetry with functionalized mesoporous silica materials / V. Ganesan, A. Walcarius // Mater Sci Eng B Solid State Mater. Adv. Technol. 2008. - V. 149. - P. 123-132.

97. Cauvel A. Monoglyceride Synthesis by Heterogeneous Catalysis Using MCM-41 Type Silicas Functionalized with Amino Groups / A. Cauvel, G. Renard, D. Brunei // J. Org. Chem. 1997. - V. 62. - P. 749-751.

98. Sharma K. K. Efficient Afunctional nanocatalysts by simplepostgrafting of spatially-isolated catalytic groups on mesoporous materials / K. K. Sharma, T. Asefa // Angew.Chem. Int. Ed. 2007. - V. 46. - P. 2879 - 2882.

99. Moller K. Inclusion Chemistry in Periodic Mesoporous Hosts / K. Moller, T. Bein // Chem. Mater. 1998. - V. 10. - P. 2950-2963.

100. Ritter H. Accessibility of Amino Groups in Postsynthetically Modified Mesoporous Silica / H. Ritter, D. Briihwiler // J. Phys. Chem. C. 2009. - V. 113. -P. 10667-10674.

101. Srinivasan G. Influence of Solvents on the Conformational Order of CI8 Alkyl Modified Silica Gels / G. Srinivasan, K. Miiller // J. Chromatogr. A. -2006.-V.97.-P. 508-512.

102. Briihwiler D. Postsynthetic functionalization of mesoporous silica / D. Briihwiler // Nanoscale. 2010. - V.2. - P.887-882.

103. The Effect of Water on the Functionalization of Mesoporous Silica with 3-Aminopropyltriethoxysilane // N. Gartmann // J. Phys. Chem. Lett. 2010. -V. l.-P. 379-382.

104. Grafting of 5-Cp(COOMe)MoCl(CO)3 on the Surface of Mesoporous MCM-41 and MCM-48 Materials / A. Sakthivel et al. // Organomet. Chem. -2006.-V. 691.-P. 997-1011.

105. Surface modification of silica gels with aminoorganosilanes / K. C. Vrancken et al. // Colloids Surf. A. 1995. - V. 174. - P. 86-91.

106. Luechinger M. Functionalization of silica surfaces with mixtures of 3-aminopropyl and methyl groups / M. Luechinger, R. Prins, G. D. Pirngruber // Microporous and Mesoporous Materials. 2005. - V. 85. - P. 111-118.

107. Assink R.A. Sol-gel kinetics I. Functional group kinetics / R.A. Assink, B.D. Kay // Journal of Non-Crystalline Solids. 1998. - V. 99, № 2-3. -P. 359-370.

108. Walcarius A. Characterization of Quaternary Ammonium-Functionalized Silica Microspheres Obtained by the Surfactant Template Route / A. Walcarius, V. Ganesan // Langmuir. 2006. - № 22. - P. 496-477.

109. Functionalized mesoporous silica films as a matrix for anchoring electrochemically active guests / D. Fattakhova-Rohlfing et al. // Langmuir. -2005.-№21.-P. 11320-11329.

110. Balaji T. Naked eye detection of cadmium using inorganic-organic hybrid mesoporous material / T. Balaji . M. Sasidharan, H. Matsunaga // Anal. Bioanal. Chem. 2006. - V. 384. - P. 488^94.

111. Unger Surface Functionalization and Stabilization of Mesoporous Silica Spheres by Silanization and Their Adsorption Characteristics /

112. A. Matsumoto et al. // Langmuir. 2002. - V. 18. -P. 4014-4019.

113. Unger K.K. Surface Functionalization and Stabilization of Mesoporous Silica Spheres by Silanization and Their Adsorption Characteristics / K.K. Unger //Langmuir. 2002. V. 18.-P. 4014-4019.

114. Ryoo R. Improvement of Hydrothermal Stability of MCM-41 Using Salt Effects during the Crystallization Process / R. Ryoo, S. Jun // J. Phys. Chem.

115. B. -1997. -V. 101.-P. 317-320.

116. Disordered Molecular Sieve with Branched Mesoporous Channel Network/R. Ryoo et al. //J. Phys. Chem. 1996. -V. 100. - P. 17718-17721.

117. Mesoporous Sieves with Unified Hybrid Inorganic/Organic Frameworks / B.J. Melde et al. // Chem. Mater. 1999. - V. 11. - P. 3302-3308.

118. Jaroniec C.P. Tailoring Surface and Structural Properties of MCM-41 Silicas by Bonding Organosilanes / C.P. Jaroniec, M. Kruk, M. Jaroniec // J. Phys. Chem. B.- 1998,- V. 102.-P. 5503-5510.

119. Truedinger U. Porous zirconia and titania as packing materials for high-performance liquid chromatography / U. Truedinger, G. Mueller, K.K. Unger // J. Chromatogr. 1990. - V. 535. - P. 111-125.

120. Spherical ordered mesoporous silicas and silica monoliths as stationary phases for liquid chromatography / A. Galarneau et al. // J. Sep. Sci. -2006.-V. 29.-P. 844-855.

121. Characterization of mesoporous silica and its pseudomorphically transformed derivative by gas and liquid adsorption / J. Iapichella et al. // Microporous and Mesoporous Materials. 2007. - V. 102, № 1-3. - P. 111-121.

122. Great Improvement of Chromatographic Performance Using MCM-41 Spheres as Stationary Phase in HPLC / T. Martin et al. // Chem. Mater. 2004. -V. 16, №9.-P. 1725-1731.

123. Kailasam K. Physico-chemical characterization of MCM-41 silica spheres made by the pseudomorphic route and grafted with octadecyl chains / K. Kailasam, K. Miiller // Journal of Chromatography A. 2008. - V. 1191, № 1-2. -P. 125-135.

124. Chiarakorn S. Influence of functional silanes on hydrophobicity of MCM-41 synthesized from rice husk / S. Chiarakorn, T. Areerob, N. Grisdanurak // Science and Technology of Advanced Materials. 2007. - V. 8 - P. 110-115.

125. Sindorf D.W. Silicon-29 NMR study of dehydrated/rehydrated silica gel using cross polarization and magic-angle spinning / D.W. Sindorf, G.E. Maciel // Journal of the American Chemical Society. 1983. - V. 105, № 6. - P. 14871493.

126. Kailasam K. Octadecyl grafted MCM-41 silica spheres using trifunctionalsilane precursors preparation and characterization / K. Kailasam, A. Fels, K. Miiller // Microporous and Mesoporous Materials. - 2009. - V. 117. -P. 136-147.

127. Inumaru. K. Molecular selective adsorption of nonylphenol in aqueous solution by organo-functionalized mesoporous silica / K. Inumaru, J. Kiyoto, S. Yamanaka // Chem. Commun. 2000. - P. 903 - 904.

128. The use of M41S materials in chiral HPLC / C. Thoelen et al. // Chem. Commun. 1999. - P. 1841-1842.

129. Spherical MSU-1 Mesoporous Silica Particles Tuned for HPLC / C. Boissiere et al. // Adv. Funct. Mater. 2001. - V. 11. - P. 129-135.

130. Mesoporous M41S materials in capillary gas chromatography / M. Raimondo et al. // Chem. Commun. 1997. - № 15. - P. 1343-1344.

131. Grün M. The synthesis of micrometer- and submicrometer-size spheres of ordered mesoporous oxide MCM-41 / M. Grün, I. Lauer, K.K. Unger // Adv. Mater. 1997. - V. 9, № 3. - P. 254-257.

132. The Use of Mesoporous Silica in Liquid Chromatograph / K.W. Gallis et al. // Adv. Mater. 1999. - V. 11. P. 1452-1455.

133. Kurganov A. Packings of an unidimensional regular pore structure as model packings in size-exclusion and inverse size-exclusion chromatography / A. Kurganov, K.K. Unger, T. Issaeva // J. Chromatogr. A. 1996. - V. 753, № 2. - P. 177-190.

134. Adsorption of amino acid on mesoporous molecular sieves / A. Vinu et al. // Studies in Surface Science and Catalysis. 2005. - V. 156. - P. 631-636.

135. Adsorption study of heme proteins on SBA-15 mesoporous silica with pore-filling models / M. Miyahara et al. // Thin Solid Films. 2006. - V. 499, № 1-2.-P. 13-18.

136. Adsorption of lysozyme over mesoporous carbons with various pore diameters / A. Vinu et al. // Studies in Surface Science and Catalysis. 2005. -V. 156.-P. 637-642.

137. Adsorption of lysozyme over mesoporous carbons with various pore diameters / A. Vinu et al. // Studies in Surface Science and Catalysis. 2005. -V. 156.-P. 637-642.

138. Miyahara M. Adsorption myoglobin over mesoporous silica molecular sieves: Pore size effect and pore-filling model / M. Miyahara, A. Vinu, K. Ariga // Materials Science and Engineering: C. 2007. - V. 27, № 2. - P. 232-236.

139. Adsorption of vitamin E on mesoporous silica molecular sieves / G. Chandrasekar et al. // Studies in Surface Science and Catalysis. 2005. - V. 158. -P. 1169-1176.

140. Hartmann M. Adsorption of Vitamin E on Mesoporous Carbon Molecular Sieves / M. Hartmann, A. Vinu, G. Chandrasekar // Chemical Material. 2005. - V. 17, № 4. - P. 829-833.

141. Tejib(J)epHX O. Hohhtbi / Tejib^epHX. M. : HJ1, - 1962. - 490 c.

142. Stephen Brunauer, P. H. Emmett, Edward Teller, Adsorption of Gases in Multimolecular Layers // S. Brunauer, P. H. Emmett, E. Teller // J. Am. Chem. Soc. 1938. - V. 60. - P. 309-319.

143. Barrett E.P. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms / E.P. Barrett, L.G. Joyner P.P.J. Halenda // J. Am. Chem. Soc. 1951. - V. 73. - P. 373-380.

144. Дёрффель. Статистика в аналитической химии/ Пер. с нем. JI.H. Петровой, Под. ред. Ю.П. Адлера. М.: Мир, 1994. - 269 с.

145. Patent USA № 4,430,496 07.02.1984. Strong anion exchange composition and methods / Abbot S.R.

146. Novel Organic/Inorganic Hybrid Materials by Covalent Anchoring of Phenothiazines on MCM-41 / Z. Zhou et al. // Chem. Mater. 2008. - V. 20. -P. 4986-4992.

147. Structural Characterization of (3-Aminopropyl)triethoxysilane-Modified Silicas by Silicon-29 and Carbon-13 Nuclear / G. S. Caravajal et al. // Anal. Chem. 1988. - V. 60. - P. 1776-1786.

148. Zur Unterscheidung der Silanolgruppen im mesoporosen Molekularsieb MCM-41 / J. Chen et al. // Angew. Chem. 1995. - V. 107. - P. 2898-2900.

149. Comprehensive Study of Surface Chemistry of MCM-41 Using 29Si CP/MAS NMR, FTIR, Pyridine-TPD, and TGA / X.S. Zhao et al. // J. Phys. Chem. 1997. - V. 101. - P. 6525-6531.

150. Koodyanska D. FT-IR/PAS studies of chelates adsorption on anion exchangers / D. Koodyanska, J. Riczkowski, Z. Hubicki // The European Physical Journal. Special Topics. 2008. - Vol. 154. - P. 339 - 343.

151. Photocatalytic selective oxidation of anionic compounds on Ti02 photocatalysts modified with quaternary ammonium base groups / S. Miyayama et al. // Separation and purification technology. 2007. - V. 58. - P. 206 - 210.

152. Котова Д.JI. Термический анализ ионообменных материалов / Д.Л. Котова, В.Ф. Селеменев. М: Наука, 2002. - с.

153. Rochester С.Н. Infrared study of the adsorption of amines on silica immersed in carbon tetrachloride / C.H. Rochester, G.H. Yong // J. Chem. Soc. Faraday Trans. 1980. - V. 76. - P. 1158-1165.

154. Sindorf D.W. Solid-state NMR studies of the reactions of silica surfaces with polyfunctional chloromethylsilanes and ethoxymethylsilanes / D.W. Sindorf, G.E. Maciel // Journal of the American Chemical Society. 1983. -V. 105.-P. 3767-3776.

155. Piers A. IR Studies of Adhesion of Promoters / A. Piers, H. Rochester // J. Chem. Soc. Faraday Trans. 1995. - V. 91. - P. 105-112.

156. Ralph T. Yang Adsorbents: Fundamentals and Applications / T. Ralph. Whiley Interscience, 2003. - 410 p.

157. Драго P. Физические методы в химии: в 2т. / Р. Драго. М.: Мир, 1981. Т. 1.-423 с.

158. Кирхнер Ю. Тонкослойная хроматография / Ю. Кирхнер. М.: Мир, 1981.-616 с.

159. Хохлова О.Н. Влияние температуры на необменную сорбцию ароматических аминокислот низкоосновным анионообменником АН-31 / О.Н. Хохлова, В.А. Еременко // Сорбционные и хроматографические процессы. 2007. - Т. 7, вып. 6. - С. 1032-1038.

160. Kovalenko G.A. Adsorption of antiseptics (furacilin, chlorhexidine) and vitamin E on carbon-containing enterosorbents / G.A. Kovalenko, E.V. Kuznetsova // Pharmaceutical Chemistry Journal. 2000. - V. 34, № 6. - P. 327-331.

161. Рудаков О.Б. Спутник хроматографиста. Методы жидкостной хроматографии. / О.Б. Рудаков, И.А. Востров, С.В. Федоров, А.А. Филиппов, В.Ф. Селеменев, А.А. Приданцев; под. ред. В.Ф. Селеменева. Воронеж: Изд-во "Водолей". 2004. - 528 с.

162. Sow M. Spectroscopic and photophysical properties of some biological antioxidants: structural and solvent effects / M. Sow, G. Durochertt // Journal of Photochemistry and Photobiology, A: Chemistry. 1990. - V. 54. P. 349-365