Солнечные элементы на основе аморфного гидрогенизированного кремния, полученные в низкочастотном тлеющем разряде тема диссертации и автореферата по ВАК РФ 05.27.06, кандидат технических наук Черномордик, Владимир Дмитриевич

  • Черномордик, Владимир Дмитриевич
  • кандидат технических науккандидат технических наук
  • 2001, Ярославль
  • Специальность ВАК РФ05.27.06
  • Количество страниц 188
Черномордик, Владимир Дмитриевич. Солнечные элементы на основе аморфного гидрогенизированного кремния, полученные в низкочастотном тлеющем разряде: дис. кандидат технических наук: 05.27.06 - Технология и оборудование для производства полупроводников, материалов и приборов электронной техники. Ярославль. 2001. 188 с.

Оглавление диссертации кандидат технических наук Черномордик, Владимир Дмитриевич

Введение

Глава 1. Солнечные элементы на основе аморфного гидрогенизированного кремния

1.1. Принцип работы и основные параметры кремниевых фотоэлектрических преобразователей

1.2. Основные критерии выбора полупроводникового материала для солнечных элементов

1.3. Солнечные элементы на основе аморфного кремния

1.3.1. Краткий обзор развития кремниевых солнечных элементов

1.3.2. Свойства аморфного гидрогенизированного кремния, определяющие параметры солнечных элементов

1.4. Основные структуры аморфных кремниевых солнечных элементов

1.4.1. Элементы с барьером Шоттки и МОП - структурой

1.4.2. Элементы с p-i-n структурой

1.4.3. Анализ факторов, определяющих к.п.д. преобразования солнечных элементов

1.5. Стабильность и эффекты деградации в аморфных солнечных элементах

1.6. Основные методы повышения эффективности солнечных элементов

1.6.1. Солнечные элементы на основе гетеропереходов

1.6.2. Солнечные элементы с многослойной структурой

1.7. Экономические аспекты применения солнечных элементов на основе a-Si:H

1.8. Выводы

Глава 2. Технология изготовления и методы исследования свойств солнечных элементов на основе аморфного гидрогенизированного кремния

2.1. Технологические методы получения аморфного гидрогенизированного кремния

2.1.1. Получение пленок a-Si:H в плазме тлеющего разряда (PECVD)

2.1.2. Получение пленок a-Si:H методом ХОГФ

2.1.3. Получение пленок a-Si:H методами фотоиндуцированного ХОГФ

2.1.4. Получение пленок a-Si:H методом реактивного распыления

2.2. Технология осаждения пленок a-Si:H в плазме низкочастотного (55 кГц) тлеющего разряда (LF

PECYD)

2.3. Технология изготовления p-i-n солнечных элементов в низкочастотном (55 кГц) тлеющем разряде

2.4. Методы исследования фотоэлектрических параметров слоев a-Si:H и p-i-n солнечных элементов

2.4.1. Основные параметры, характеризующие пленки a-Si:H и солнечные элементы

2.4.2. Методика исследования температурных зависимостей темновой и фотопроводимости

2.4.3. Методика исследования генерационно -рекомбинационных механизмов фотопроводимости

2.4.4. Метод постоянного фототока

2.4.5. Методика исследования спектров оптического пропускания материала

2.4.6. Методика определения основных параметров солнечных элементов

2.5. Выводы

Глава 3. Исследование свойств аморфного кремния и сплавов на его основе, полученных в плазме НЧ тлеющего разряда. Оптимизация параметров пленок a-Si:H для солнечных элементов

3.1. Исследование оптических и электрофизических свойств нелегированных пленок a-Si:H, полученных в плазме НЧ (55 кГц) тлеющего разряда. Выбор оптимальных технологических режимов

3.1.1. Выбор оптимальной мощности разряда. Электрофизические и оптические свойства и структурные особенности пленок аморфного кремния

3.1.2. Выбор оптимальной температуры осаждения. Электрофизические и оптические свойства и структурные особенности пленок аморфного кремния

3.1.3. Светоиндуцированная метастабильность в a-Si:H, полученном методом НЧ тлеющего разряда

3.2. Исследование оптических и электрофизических свойств пленок a-Si:H и a-SiC:H р-типа, полученных в плазме НЧ (55 кГц) тлеющего разряда. Выбор оптимальных технологических режимов

3.2.1. Исследование оптических и электрофизических свойств пленок a-Si:H р-типа

3.2.2. Исследование оптических и электрофизических свойств нелегированных пленок a-SiC:H

3.2.3. Исследование оптических и электрофизических свойств пленок a-SiC:H р-типа

3.3. Исследование оптических и электрофизических свойств пленок a-Si:H n-типа, полученных в плазме НЧ (55 кГц) тлеющего разряда. Выбор оптимальных технологических режимов

3.4. Выводы

Глава 4. Исследование фотовольтаических характеристик солнечных элементов, полученных осаждением в плазме низкочастотного (55 кГц) тлеющего разряда

4.1. Исследование влияния свойств пленок нелегированного a-Si:H, полученных в плазме НЧ (55 кГц) разряда, на свойства стандартных солнечных элементов

4.2. Свойства и параметры солнечных элементов, изготовленных в низкочастотном (55 кГц) тлеющем разряде

4.3. Исследование влияния свойств р-слоев и резкого p/i -гетероперехода на характеристики солнечных элементов, изготовленных в низкочастотном (55 кГц) тлеющем разряде

4.4. Исследование влияния свойств пленок a-SiC:H р-типа (55 кГц) на характеристики солнечных элементов, изготовленных по стандартной ВЧ технологии

4.5. Оценка влияния свойств пленок a-Si:H n-типа на характеристики солнечных элементов, изготовленных в плазме низкочастотного (55 кГц) тлеющего разряда.

4.6. Модернизация конструкции фронтального р-слоя и выбор оптимальной толщины нелегированного a-Si:H рi-n солнечных элементов

4.7. Выводы

Рекомендованный список диссертаций по специальности «Технология и оборудование для производства полупроводников, материалов и приборов электронной техники», 05.27.06 шифр ВАК

Введение диссертации (часть автореферата) на тему «Солнечные элементы на основе аморфного гидрогенизированного кремния, полученные в низкочастотном тлеющем разряде»

Актуальность работы.

Интерес к солнечным элементам на основе аморфного гидрогенизированного кремния, непосредственно преобразующих солнечное излучение в электрическую энергию, вызван интенсивным и постоянно расширяющимся поиском источников возобновляемой энергии. Такой повышенный интерес к источникам возобновляемой энергии объясняется ограниченными запасами полезных ископаемых, ухудшением экологической обстановки и постоянно возрастающим уровнем загрязнения окружающей среды продуктами сгорания ископаемых источников, большим риском и возросшими затратами на обеспечение безопасности, связанными с использованием энергии атома для получения электроэнергии.

Отличительной чертой всего класса солнечных элементов является то, процесс преобразования энергии солнечного излучения в электрическую происходит внутри солнечного элемента и не требует использования каких-либо движущихся частей или природного топлива. Более того, в процессе преобразования не образуется никаких отходов. К тому же, с точки зрения временных масштабов эволюции человека, Солнце представляет собой неограниченный источник энергии.

Основная особенность солнечных элементов (СЭ) на основе аморфного гидрогенизированного кремния (a-Si:H) состоит в использовании этого материала в качестве активного слоя и имеющего более высокие, по сравнению с монокристаллическим кремнием, значения коэффициента поглощения и фоточувствительности, обусловленные разупорядоченностью структуры a-Si:H и наличием в нем водорода. Так, оптическое поглощение аморфного кремния, полученного в плазме тлеющего разряда, в 20 раз превышает оптическое поглощение в кристаллическом кремнии. Поэтому для эффективного поглощения солнечного излучения в видимом диапазоне достаточно пленки a-Si:H толщиной 0,5 - 1 мкм. Кроме того, перспективным является и технологическая возможность получать слои аморфного кремния в виде тонких пленок большой площади при сохранении прочих свойств, существенных для солнечных элементов. Отсутствие технологических расходов и потерь материала при резке и полировке, что неизбежно в случае монокристаллических кремниевых солнечных батарей (элементов), делает изготовление тонкопленочных кремниевых элементов в десятки раз дешевле. Преимущества солнечных элементов на основе a-Si:H по сравнению с аналогичными поликристаллическими кремниевыми элементами связаны с более низкими температурами их изготовления (< 300 °С), что позволяет использовать дешевые стеклянные и тонкие гибкие подложки и в 20 раз снизить потребности в кремнии [3-5,28]. Еще одним важным преимуществом солнечных элементов на основе a-Si:H является возможность их формирования практически на любых (как с точки зрения материала, так и размеров) подложках. Это особенно существенно при использовании диэлектрических подложек: на них можно сформировать интегральную схему, верхняя часть которой является датчиком излучения, а нижняя -электронной схемой управления и обработки сигнала, что приведет к значительной миниатюризации сенсорных устройств.

Вместе с тем солнечные элементы на основе a-Si:H к настоящему времени не получили достаточно широкого распространения. Причиной этому является относительно невысокий к.п.д. (эффективность) преобразования солнечной энергии в электрическую, деградация свойств солнечных элементов при длительном облучении, сложность получения оптимальных значений параметра (стоимость)х(эффективность) при массовом производстве. Как правило, с точки зрения технологии, получение приемлемых значений последнего параметра и снижение стоимости солнечных элементов связывают с необходимостью увеличения скорости осаждения пленок a-Si:H при сохранении требуемых свойств материала и основных параметров солнечных элементов. Особенно критичны затраты времени на получение активных слоев в области производства модулей солнечных элементов в промышленных масштабах [112].

Обычно увеличение скорости осаждения пленок a-Si:H приводит к ухудшению свойств и снижению стабильности самого материала и приборов на его основе. Поиск путей формирования качественных и стабильных по своим характеристикам солнечных элементов на основе активных слоев a-Si:H, полученных при высоких скоростях осаждения, представляет фундаментальную задачу. Для решения такой задачи необходимо выявление закономерностей между физическими свойствами пленок и параметрами солнечных элементов, что требует разработки и совершенствования методов исследования слоев и солнечных элементов, развития физических представлений об электрофизических, оптических и структурных особенностях пленок a-Si:H.

Решение такой задачи усложняется тем, что:

1) параметры солнечных элементов в значительной степени зависят от свойств легированных и нелегированных слоев a-Si:H, входящих в состав СЭ, а также от качества границ раздела между слоями;

2) существует прямая зависимость свойств пленок аморфного полупроводника от условий его получения, что обусловлено аморфной, т.е. метастабильной структурой a-Si:H.

Для создания полной картины зависимости между свойствами пленок и параметрами солнечных элементов необходим последовательный анализ условий формирования слоев с оптимальными свойствами ("приборного" качества), закономерностей влияния свойств отдельных слоев и границ между ними на основные параметры СЭ, выбор конструкции СЭ для достижения требуемых рабочих характеристик.

В данной работе исследования были направлены на разработку технологии изготовления солнечных элементов на основе пленок a-Si:H и его сплавов, полученных с высокой скоростью осаждения в плазме низкочастотного (55 кГц) тлеющего разряда.

Цель настоящей работы: разработка технологии получения солнечных элементов с высокой скоростью осаждения активных фоточувствительных слоев и установление взаимосвязи между физическими свойствами аморфных пленок и параметрами СЭ с целью прогнозируемого повышения их к.п.д. преобразования.

Для достижения поставленной цели решались следующие задачи:

1. Разработка технологии получения нелегированных пленок a-Si:H и определение оптимальных условий формирования активных фоточувствительных слоев при высоких скоростях осаждения.

2. Разработка технологии получения легированных пленок a-Si:H и a-SiC:H и определение оптимальных условий формирования слоев р- и п-типа.

3. Разработка комплекса методик исследования характеристик легированных и нелегированных слоев a-Si:H и определения основных параметров солнечных элементов.

4. Разработка технологии получения солнечных элементов на основе a-Si:H в плазме низкочастотного (55 кГц) тлеющего разряда при высоких скоростях осаждения пленок.

5. Разработка базовой конструкции солнечных элементов на основе p-i-n структур.

6. Оптимизация параметров слоев и конструкции солнечных элементов для повышения их к.п.д. (эффективности) преобразования.

7. Изготовление экспериментальных образцов солнечных элементов в плазме низкочастотного тлеющего разряда на основе разработанных конструкций и технологий.

На защиту выносятся следующие положения:

1. Технология получения активных фоточувствительных слоев a-Si:H при высоких скоростях осаждения (до 10-15 А/с) и легированных слоев а-SiC:H р-типа и a-Si:H n-типа с оптимальными параметрами для солнечных элементов в плазме низкочастотного (55 кГц) тлеющего разряда.

2. Природа взаимосвязи физических свойств и структурных особенностей нелегированных слоев a-Si:H, легированных слоев a-SiC:H р-типа и a-Si:H n-типа, полученных в плазме низкочастотного (55 кГц) тлеющего разряда.

3. Технология формирования солнечных элементов в плазме низкочастотного (55 кГц) тлеющего разряда и характеристики впервые полученных по этой технологии экспериментальных образцов солнечных элементов.

4. Основные закономерности влияния свойств отдельных слоев a-Si:H и границ между ними на параметры солнечных элементов, позволившие оптимизировать конструкцию и технологию получения СЭ в плазме низкочастотного (55 кГц) тлеющего разряда при высокой скорости осаждения с к.п.д. преобразования до 6,5%.

Апробация работы.

По результатам исследований были сделаны доклады на YII и XI Всероссийских научно-технических конференциях "Датчики и преобразователи информации систем измерения, контроля и управления" ("Датчик-95"), Крым, 1995 г., 1999 г.; Всероссийских научно-технических конференциях "Электроника и информатика", Зеленоград, МИЭТ, 1995 г., 1997 г., 2000 г.; конференции международного исследовательского общества MRS, Сан-Франциско, 1997 г.; Международной школе-конференции по физическим проблемам в материаловедении полупроводников, Черновцы, 1995 г., 1997 г.; объединенной международной конференции электрохимического общества и международного общества электрохимии, Париж, 1997 г.; 2-й Российской конференции с участием зарубежных специалистов "Высокие технологии в промышленности России", Москва, МГТУ им. Баумана, 1997 г.; 17-й международной конференции "Аморфные и микрокристаллические полупроводники", Будапешт, 1997 г.; X международном симпозиуме "Тонкие пленки в электронике", Ярославль, 1999 г.; конференции "Полупроводники-99", Новосибирск, 1999 г.; 47-м международном симпозиуме по тонким пленкам, Бостон, 2000 г.;

Всероссийской конференции с международным участием по современным проблемам разработки и применения сенсоров и элементной базы микросистемной техники "Сенсоры и микросистемы" СЕНСОР-2000, Санкт-Петербург, 2000 г.

Публикации.

По теме диссертации опубликовано 20 печатных работ, в том числе, 2 в ведущих зарубежных изданиях, 2 в центральных российских журналах, 4 работы в трудах зарубежных и российских конференций, а также тезисы докладов на российских и зарубежных конференциях. Получено решение (от 30.01.2001 г.) о выдаче патента РФ на изобретение.

Структура диссертации.

Диссертация состоит из введения, четырех глав, основных результатов и выводов по работе, содержит 184 страницы машинописного текста, включая 21 таблицу, 59 рисунков и список литературы в количестве 185 наименований.

Похожие диссертационные работы по специальности «Технология и оборудование для производства полупроводников, материалов и приборов электронной техники», 05.27.06 шифр ВАК

Заключение диссертации по теме «Технология и оборудование для производства полупроводников, материалов и приборов электронной техники», Черномордик, Владимир Дмитриевич

Основные результаты и выводы.

1. На основе анализа современных достижений в области технологии формирования солнечных элементов и принципов их работы определены ключевые факторы, определяющие эффективность преобразования и экономическую конкурентоспособность приборов, что позволило сформулировать цель работы, связанную с разработкой новой высокоскоростной технологии формирования солнечных элементов на основе a-Si:H.

2. Разработаны и изготовлены стенд для комплексного исследования оптических и электрофизических свойств пленок a-Si:H и его сплавов с применением методик исследования температурных зависимостей темновой и фотопроводимости, исследования генерационно - рекомбинационных механизмов фотопроводимости, метода постоянного фототока (МПФ), методики исследования спектров оптического пропускания материала и стенд для измерения основных параметров солнечных элементов.

3. Разработана технология получения нелегированных пленок a-Si:H в плазме НЧ (55 кГц) тлеющего разряда при высоких скоростях осаждения для использования их в качестве активных слоев в p-i-n солнечных элементах. Установлены основные параметры пленок a-Si:H, полученных при оптимальных условиях осаждения: фоточувствительность стф/атдо 1-106, оптическая ширина запрещенной зоны Eg = 1,74 ^ 1,8 эВ, параметр Урбаха Eov = 0,49 -г- 0,53 мэВ, плотность глубоких дефектов Nd ~ 5-1016 см*3.

4. Установлены основные механизмы роста a-Si:H, обеспечивающие достижение лучших эксплуатационных параметров пленок за счет формирования в них оптимальной микроструктуры и минимальной плотности дефектов. Основные процессы, контролирующие механизмы роста, а именно, высокий поток радикалов, ионная обработка поверхности, десорбция водорода и его перераспределение между конфигурациями SiH и SiH2 связями, определяют также и оптические и электрофизические свойства материала. Участие макроскопических частиц в процессе роста приводит к изменению концентрации водорода и микроструктуры пленок в масштабе, не оказывающем существенного влияния на их оптические и электрофизические свойства.

5. Разработана технология получения легированных слоев a-SiC:H р-типа и a-Si:H n-типа в плазме НЧ (55 кГц) тлеющего разряда для использования их в качестве электродов, создающих встроенное электрическое поле в p-i-n солнечных элементах. Полученные при оптимальных технологических режимах легированные слои р- и п-типа проводимости обладают оптическими и электрофизическими характеристиками, достаточными для их приборного применения в солнечных элементах.

6. Установлено, что специфической особенностью пленок a-Si:H и а-SiC:H, легированных бором, является взаимосвязь уровня легирования и оптической ширины запрещенной зоны Eg. Зависимости оптической ширины запрещенной зоны и положения уровня Ферми от концентрации диборана в газовой смеси определяются концентрацией водорода и типом формируемых водородных конфигураций. Уменьшение концентрации водорода приводит к увеличению эффективности легирования и уменьшению оптической ширины запрещенной зоны.

7. Разработана технология получения p-i-n солнечных элементов на основе a-Si:H в плазме низкочастотного (55 кГц) тлеющего разряда при высоких (до 10 А/с) скоростях осаждения пленок. Установлена взаимосвязь между параметрами p-i-n солнечных элементов и физическими свойствами отдельных слоев a-Si:H и его сплавов, что позволило получить солнечные элементы с к.п.д. преобразования до 6,5%.

Список литературы диссертационного исследования кандидат технических наук Черномордик, Владимир Дмитриевич, 2001 год

1. А.А. Айвазов, Б.Г. Будагян, О.Н. Становов, Д.А. Стряхилев. Методика комплексного исследования оптических и электрофизических свойств неупорядоченных полупроводников. Заводская лаборатория, 1992, Вып. 1, с. 54-56.

2. А.А. Айвазов, Б.Г. Будагян, С.П. Вихров, А.И. Попов. Неупорядоченные полупроводники: Уч. пособ./Под ред. А.А. Айвазова. М.: Изд-во МЭИ, 1995.- 332 с.

3. Аморфные и поликристаллические полупроводники: Пер. с нем./ Под ред. В. Хейванга. М.: Мир, 1987. - 160 с.

4. Аморфные полупроводники: Пер. с англ./ Под ред. М. Бродски. М.: Мир, 1982.- 419 с.

5. Аморфные полупроводники и приборы на их основе: Пер. с англ./ Под ред. Й. Хамакавы. М.: Металлургия, 1986. - 376 с.

6. Аморфный кремний и родственные материалы: Пер. с англ./ Под ред. X. Фрицше. М.: Мир, 1991, 544 с.

7. А.Е. Бердников, Б.Г. Будагян, А.А. Попов, В.Д. Черномордик. Осаждение пленок аморфного кремния в низкочастотном тлеющем разряде. Материалы X Международного симпозиума "Тонкие пленки в электронике", ч. 2. Ярославль, 20-25 сентября 1999 г., с. 314-319.

8. Б.Г. Будагян, А.А. Айвазов, М.Н. Мейтин, Д.А. Стряхилев, А.Г. Радосельский, А.А. Попов, В.Д. Черномордик, В.Г. Мальшаков, А.Е. Бердников. Перспективный метод получения аморфного кремния. Известия ВУЗов, серия "Электроника", 1997, N2, с. 44-48.

9. Б.Г. Будагян, А.Ю. Сазонов, А.Е. Бердников, А.А. Попов. Увеличение скорости роста при осаждении аморфного гидрогенизированного кремния в низкочастотном тлеющем разряде. Известия ВУЗов, серия "Электроника", 1997, № 3-4, с. 19-24.

10. Б.Г. Будагян, А.А. Шерченков, А.Е. Бердников, В.Д. Черномордик. Высокоскоростной метод осаждения аморфного кремния. Микроэлектроника, 2000, т. 29, вып. 6, с. 442-448.

11. Б.Г. Будагян, А.А. Шерченков, М.Н. Мейтин. Полупроводниковые преобразователи энергии. Учебное пособие. М.: МИЭТ (ТУ), 2000, 68 с.

12. С. Зи. Физика полупроводниковых приборов: В 2-х книгах. Пер. с англ. -М.: Мир, 1984.

13. А. Меден, М. Шо. Физика и применение аморфных полупроводников: Пер. с англ. М.: Мир, 1991. - 670 с.

14. Н. Мотт, Э. Дэвис. Электронные процессы в некристаллических веществах: В 2-х томах. Пер. с англ. М.: Мир, 1982.

15. Проект НАТО PST.CLG 975481-2000.

16. А. Роуз. Основы теории фотопроводимости: Пер. с англ./ Под ред. А.А. Рогачева и Р.Ю. Хансеварова. М.: Мир, 1966, 190 с.

17. Современные проблемы полупроводниковой фотоэнергетики: Пер. с англ./ Под ред. Т. Коутса, Дж. Микина. М.: Мир, 1988. -307 с.

18. К. Чопра, С. Дас. Тонкопленочные солнечные элементы: Пер. с англ. -М.: Мир, 1986. 435 с.

19. К.В. Шалимова. Физика полупроводников. Учебное пособие. М.: Энергия, 1971. -312 с.

20. В. Abeles, C.R Wronski, Т. Tiedje and G.D. Cody. Exponential absorption edge in hydrogenated a-Si films. Solid State Commun., 1980, v. 36, p. 537-540.

21. R.L. Anderson. Experiments on Ge-GaAs heterojunctions. Solid State Electron., 1962, v. 5, p. 341-351.

22. R.R. Arya, A. Catalano and R.S. Oswald. Amorphous silicon p-i-n solar cells with graded interface. Appl. Phys. Lett., 1986, v. 49, p. 1089-1091.

23. I. Balberg. The two carries' mobility-lifetime products and their light intensity dependencies in hydrogenated amorphous silicon. J. Appl. Phys., 1994, v. 75 (2), p. 914-923.

24. M.S. Bennett and K. Rajan. Stability of multijunction a-Si:H-based solar cells. J. Appl. Phys., 1990, v. 67 (9), p. 4161-4166.

25. W. den Boer. Determination of midgap density of states in a-Si:H using space-charge-limited current measurements. J. Phys., 1981, C4, p. 451-454.

26. L. Boufendi and A. Bouchoule. Particle nucleation and growth in a low-pressure argon-silane discharge. Plasma Sources Sci. Technol., 1994, v. 3, p.262-267.

27. B.G. Budaguan, A.A Aivazov and M.N Meytin in "Amorphous Silicon Technology", ed. by M. Hack, E.A. Schiff, S. Wagner, R.E.I. Schropp and A. Matsuda (Mater. Res. Soc. Proc. 420, Pittsburgh, PA 1996), p. 635-640.

28. B.G. Budaguan, A.A. Sherchenkov, V.D. Chernomordic, A.A. Popov, A.V. Biriukov and L. Ljungberg. Current-voltage and capacitance-voltage characteristics of a-Si:H/c-Si heterojunction formed by 55 kHz PECVD.

29. Abstracts of Second International School-Conference on Physical Problems in Material Science of Semiconductors (PPMSS'97), Chernivtsi, Ukraine, September 8-12, 1997, p.289.

30. B.G. Budaguan, A.A. Popov, A.Yu. Sazonov, M.N. Bosyakov, D.I. Grunsky and D.W. Zhuk. The application of low frequency glow discharge to high-rate deposition of a-Si:H. J. Non-Cryst. Solids, 1998, v. 227 230, p. 39-42.

31. B.G. Budaguan, A.Yu. Sazonov and D.A. Stryachilev. The properties of powder particles incorporated in a-Si:H films. J. Non-Cryst. Solids, 1998, v. 227 -230, p. 100-104.

32. B.G. Budaguan, A.A. Sherchenkov, V.D. Chernomordic, A.V. Biriukov and L. Ljungberg. a-Si:H/c-Si heterostructures prepared by 55 kHz glow discharge high-rate deposition technique. J. of Non- Cryst. Solids, 1998, v. 227 230, p. 1123-1126.

33. B.G. Budaguan, A.A. Sherchenkov, A.A. Berdnikov, V.D. Chernomordic and A.A. Aivazov. a-SiC:H thin films fabricated by the high rate deposition method. Proceedings of AVS 47th International Symposium Thin Films, Boston, October 2, 2000.

34. D.E. Carlson and C.R. Wronski. Amorphous silicon solar cell. Appl. Phys. Lett., 1976, v. 28 (11), p. 671-673.

35. D.E. Carlson. Amorphous silicon solar cells. IEEE Transactions on Electron Devices, 1977, ED-24, p. 449-453.

36. D.E. Carlson, C.R. Wronski, J.I Pankove, P.J. Zanzucchi and D.L. Steabler. Properties of amorphous silicon and a-Si solar cells. RCA Rev., 1977, v. 38, p. 211-225.

37. D.E. Carlson. Factors influencing the efficiency of amorphous silicon solar cells, J. Non-Cryst. Solids, 1980, v. 35-36, p. 707-717.

38. R.C. Chittick, J.H. Alexander and H.F. Sterling. The preparation and properties of amorphous silicon. J. Electrochem. Soc., 1969, v. 116, p. 77-81.

39. J.B. Choi, D.C. Yun, Y.I. Park, J.H. Kim. Properties of hydrogenated amorphous silicon thin film transistors fabricated at 150°C. J. Non-Cryst. Solids, 2000, v. 266-269, p. 1315-1319.

40. G.D. Cody, B. Abeles, C.R. Wronski, R.B. Stevens and B. Brooks. Optical characterization of amorphous silicon hydride films. Solar Cells, 1980, v. 2, p. 227-243.

41. G.D. Cody, T. Tieje, B. Abeles, B. Brooks and Y. Goldstein. Disorder and the optical absorption edge of hydrogenated amorphous silicon. J. Phys., 1981, C4, p. 301-304.

42. B.L. Crowder, R.S. Title, M.H. Brodsky and G.D. Pettit. ESR and optical studies of ion-implanted silicon. Appl. Phys. Lett., 1970, v. 16, p. 205-208.

43. H. Curtins, N. Wyrsch and A. Shah. Influence of plasma excitation frequency on deposition rate and on film properties for hydrogenated amorphous silicon. Mat. Res. Soc. Proc., 1987, v. 95, p. 249-253.

44. F. Demichelis, R. Galloni, A. Madan, C.F. Pirri, P. Rava, M. Ruth, R.E.I. Schropp, C. Summonte and E. Tresso. Effect of plasma treatment of the TCO on a-Si solar cell performance. Mat. Res. Soc. Symp. Proc., 1992, v. 258, p. 905-907.

45. Final report on INTAS project INTAS 94 - 4352.

46. D.L. Flamm. Frequency effects in plasma etching. J. Vac. Sci. and Technol., 1986, A4, p. 729-738.

47. S.J. Fonash. Metal insulator - semiconductor solar cell: theory and experimantal results. Thin Solid Films, 1976, v. 36 (2), p. 387-392.

48. H. Fritzsche and N. Ibaraki. Thermostimulated conductivity in amorphous semiconductors. Phil. Mag., 1985, B52, p. 299-311.

49. W. Fuhs and R. Klenk. Thin-film cells overview. 2nd World Conf. on Photovolt. Solar Energy Convers., 6-10 July 1998, Vienna, Austria, p. 381-386.

50. I. Giamioni and M. Musci. Laser-assisted CVD of amorphous materials. J. Non-Cryst. Solids, 1985, v.77-78, p. 743-752.

51. A. Goetzberger and Ch. Hebling. Photovoltaic materials: past, present, future. Solar Energy Materials and Solar Cells, 2000, v. 62, p. 1-19.

52. M.A. Green, K. Emery, D.L. King and S. Igari. Solar Cell Efficiency Tables (Version 15). Prog. Photovolt. Appl., 2000, v. 8, p. 187-195.

53. M.A. Green, K. Emery, D.L. King, S. Igari and W. Watra. Solar Cell Efficiency Tables (Version 16). Prog. Photovolt: Res. Appl., 2000, v.8, p. 377-383.

54. S. Guha, X. Xu, J. Yang and A. Banerjee. High deposition rate amorphous silicon-based multijunction solar cell. Appl. Phys. Lett., 1995, v. 66, p. 595-597.

55. S. Guha and J. Yang. Science and technology of amorphous silicon alloy photovoltaics. IEEE Trans, on Electron Devices, 1999, v. 46 (10), p. 2080-2085.

56. S. Guha, J. Yang and A. Baneijee. Amorphous Silicon Alloy Photovoltaic Research Present and Future. Prog. Photovolt. Res. Appl., 2000, v. 8, p. 141150.

57. M.A. Hachicha, J.C. Bruyere, E. Bustarret, A. Deneuville and M. Brunei. Low temperature deposition of hydrogen-free microcrystalline silicon by 50 kHz PECVD. 6th Int. Conf. Ion&plasma assisted techniques. Brighton, UK, May 1987, p.360-365.

58. R.N. Hall. Germanium rectifier characteristics. Phys. Rev., 1951, v. 83, p. 228-231.

59. R.N. Hall. Electron-hole recombination in germanium. Phys. Rev., 1952, v. 87, p. 387-390.

60. Y. Hamakawa. Present status of solar photovoltaic R and D projects in Japan. Surface Sci., 1979, v. 86, p. 444-461.

61. Y. Hamakawa, H. Okamoto and Y. Nitta. A new type of amorphous silicon photovoltaic cell generating more than 2.0 V. Appl. Phys. Lett., 1979, v. 35 (2), p. 187-189.

62. Y. Hamakawa, Y. Matsumoto, G. Hirata and H. Okamoto. Optoelectronics and photovoltaic applications of microcrystalline SiC. Mat. Res. Soc. Symp. Proc., 1990, v. 164, p. 291-301.

63. D. Han, H. Habuchi, T. Hori, A. Nishibe, T. Namioka, J. Lin and G. Yue. Optical and electronic properties of microcrystalline silicon deposited by hot-wire chemical vapor deposition. J. Non-Cryst. Solids, 2000, v. 266-269, p. 274-278.

64. M. Heintze. Diagnostics of high rate a-Si:H deposition in a variable frequency plasma. Solid State Phenomena, 1995, v. 44 - 46, p. 181-194.

65. R. Hulstrom, R. Bird and C. Riordan. Spectral solar irradiance data sets for selected terrestrial condition. Solar Cells, 1985, v. 15, p. 365-391.

66. M. Isomura, T. Takahama, S. Tsuda and S. Nakano, Dependence of open circuit voltage of amorphous silicon solar cells on thickness and doping level of the p-layer, Jap. J. Appl. Phys., 1993, v. 32, p. 1902-1907.

67. W.B. Jackson, N.M. Amer, A.C. Boccora and D. Fournier. Photothermal deflection spectroscopy and detection. Appl. Optics, 1981, v. 20, p. 1333-1344.

68. W.B. Jackson and N.M. Amer. Direct measurement of gap-state absorption in hydrogenated amorphous silicon by photothermal deflection spectroscopy. Phys. Rev., 1982, B25, p. 5559-5562.

69. W.B. Jackson. Role of hydrogen complexes in the metastability of hydrogenated amorphous silicon. Phys. Rev. B, 1990, v. 41 (14), p. 10257-10260.

70. W.B. Jackson, C.C. Tsai and P.V. Santos. Dependence of hydrogen trapping densities of hydrogen concentration. J. Non-Cryst. Solids, 1991, v. 137/138, p. 2124.

71. N.M. Johnson. Hydrogen in crystalline and amorphous silicon. J. Non-Cryst. Solids, 1991, v. 137/138, p.37-40.

72. S.J. Jones, A. Myatt, H. Ovshinsky, J. Doehler, M. Izu, A. Banerjee, J. Yang and S. Guha. Use of gas jet deposition technique to prepare a-Si:H solar cells. Conf. Record 26th IEEE Photovoltaic Specialists Conf. 1997, IEEE, New York, 1997, p. 659-662.

73. T. Kamei, P. Stradius and A. Matsuda. Effects of embedded crystallites in amorphous silicon on light-induced defect creation. Appl. Phys. Lett, 1999, v. 74, p. 1707-1709.

74. H. Keppner, U. Kroll, J. Meier and A. Shah. Very high frequency glow discharge: plasma and deposition aspects. Solid State Phenomena, 1995, v. 44-46, p. 97-126.

75. D.V. Lang, J.D. Cohen and J.P. Harbison. Measurements of the density of gap states in hydrogenated amorphous silicon by space charge spectroscopy. Phys. Rev., 1982, B25, p. 5285-5320.

76. S. Lee, S. Kumar, C.R. Wronski and N. Maley. A critical investigation of a-Si:H photoconductivity generated by subgap absorption of light. J. Non-Cryst. Solids, 1989, v. 114, p. 316-319.

77. C.H. Lee, J.W. Jeon and K.S. Lim. Ultrathin boron-doped microcrystalline silicon as a novel constant band gap buffer inserted at the p-a-SiC:H/i-a-Si:Hinterface of amorphous silicon solar cells. J. Appl. Phys., 2000, v. 87 (12), p. 8778-8785.

78. K.S. Lim, M. Konagai and K. Takahashi. A novel structure, high conversion efficiency p-SiC/graded p-SiC/i-Si/n-Si/metal substrate-type amorphous silicon solar cell. J. Appl. Phys., 1984, v. 56, p. 538-542.

79. C. Loveland, W.E. Spear and A. Al-Sharbaty. Photoconductivity and absorption in amorphous Si. J. Non-Cryst. Solids, 1973, v. 13, p. 55-68.

80. G. Lucovsky, Z. Jing, Z. Lu, D.R. Lee and J.L. Whitten. Properties of bonded hydrogen in hydrogenated amorphous silicon and other hydrogenated amorphous - silicon alloys. J. Non-Cryst.Solids, 1995, v. 182 (1-2), p. 90-102.

81. W. Luft and Y. Tsuo. Hydrogenated Amorphous Silicon Deposition, Marcel Dekker, New York, 1993.

82. A.H. Mahan, J. Carapella, B.P. Nelson, R.S. Crandall and I. Balberg. Deposition of device quality, low H content amorphous silicon. J. Appl. Phys., 1991, v. 69, p. 6728-6730.

83. Materials for solar cells with improved stability. Project NWO № 047-00509-96. Reports 1-3, 1998-1999.

84. Materials for solar cells with improved stability. Project NWO № 047-00509-96. Final report 4, 1999.

85. A. Matsuda, M. Matsumura, S. Yamasaki, H. Yamamoto, T. Imura, H. Okushi, S. Iizima and K. Tanaka. Boron doping of hydrogenated silicon thin films. Jap. J. Appl. Phys., 1981, v. 20, L183-L186.

86. A. Matsuda et al. Influence of power source frequency on the properties of GD a-Si:H. Jap. J. Appl. Phys., 1984, v. 23, p. L567-L569.

87. A. Matsuda et al., Surface Science, 1990, v. 227, p. 50.

88. T.J. McMahon and J.P. Xi. Photoconductivity and light-induced charge in a-Si:H. Phys. Rev., 1986, v. 34 (4), p. 2475-2481.

89. E. Morgado. Recombination at correlated dandling bonds and the effects of Fermi level position on steady-state photoconductivity in amorphous silicon. Phil. Mag., 1991, В 63 (2), p. 529-542.

90. N. Nakamura, T. Takahama, M. Ohnishi and Y. Kuwano. The influence of Si-H bond and the light induced effect in a-Si films and a-Si solar cells. Jap. J. Appl. Phys., 1989, v.28, p. 1762-1768.

91. G.W. Neudeck and A.K. Malhorta. Field effect conductance modulation in vacuum-evaporated amorphous silicon films. J. Appl. Phys., 1975, v. 46 (1), p. 239-246.

92. M. Nopic, F. Smole and J. Furlan. Numerical analysis of a thin microcrystalline p-layer in p-i-n a-Si:H solar cells. J. Appl. Phys., 1998, v. 83 (8), p. 4518-4521.

93. S. Oda and M. Yasukawa. High quality a-Si:H films and interfaces prepared by YHF plasma CVD. J. Non-Cryst. Solids, 1991, v. 137-138, p. 677-680.

94. M. Ohsawa, T. Hama, T. Akasaka, T. Ichimura, H. Sakai, S. Ishida and Y. Uchida. The role of hydrogen in the Staebler-Wronski effect of a-Si:H. Jap. J. Appl. Phys., 1985, v. 24, p. L838-L840.

95. H.C. Ostendorf, R. Schwarz, W. Kusian and W. Kruhler. CPM-characterization of light and current stressed a-Si:H diodes with nin, pip and pin structures. Proc. of the 23th IEEE PVSC, 1993, p. 872-877.

96. H.C. Ostendorf, W. Kusian, W. Kruhler and R. Schwarz. Light and current degradation of a-Si:H pin, nin and pip diodes detected with CPM. J. Non-Cryst. Solids, 1994, v. 164-166, p. 659-662.

97. N. Palit and P. Chatteijee. Computer analysis of a-Si:H p-i-n solar cells with a hydrogenated microcrystalline silicon p-layer. J. Appl. Phys., 1999, v. 86 (12), p. 6879-6889.

98. J. Pallares and R.E.I. Schropp. Role of the buffer layer in the active junction in amorphous-crystalline silicon heterojunction solar cells. J. Appl. Phys., 2000, v. 88 (1), p. 293-299.

99. W. Paul and D.A. Anderson. Properties of amorphous hydrogenated silicon, with special emphasis on preparation by sputtering. Solar Energy Mater., 1981, v. 5, p. 229-316.

100. J. Perrin. Reactor design for a-Si:H deposition. In: "Plasma Deposition of Amorphous Silicon Based Materials". Ed. by G. Bruno, P. Capezzuto, A. Madan. Academic Press, 1995, p. 177-241.

101. F.L. Pilar. Elementary quantum chemistry, McGraw-Hill Book Co., New York, 1968, p.500.

102. G.G. Qin and G.L. Kong. Silicon hydrogen bonds and microvoids in hydrogenated amorphous silicon and Staebler-Wronski effect. Sol. Stat. Commun., 1989, v.71, p. 41-43.

103. Yu.P. Raizer. Gas Discharge Physics, Springer, Heidelberg, 1991.

104. B. Rech, C. Beneking and H. Wagner. Improvement in stabilized efficiency of a-Si:H solar cells through optimized p/i interface layers. 1st World Conference on Photovoltaic Solar Energy Conversion, Hawaii, 5-9 December 1994, p. 472-475.

105. P. Roca i Cabarrocas, P. Morin, V. Chu, J.P. Conde, J.Z. Liu, H.R. Park and S. Wagner. Optoelectronic properties of hydrogenated amorphous silicon films deposited under negative substrate bias. J. Appl. Phys., 1991, v.69 (5), p. 2942-2949.

106. P. Roca i Cabarrocas. Towards high deposition rates of a-Si:H the limiting factors. J. Non-Cryst. Solids, 1993, v. 166, p. 131-134.

107. P. Roca i Cabarrocas and Y. Poissant. Optimizing phosphorous and boron doped layers for stable p-i-n solar cells. J. Non-Cryst. Solids, 2000, v. 266-269, p. 1134-1139.

108. A. Rothwarf. A mechanism for enhanced recombination at the p-i junction of a-Si:H solar cells. Proc. of the 20th IEEE Photovoltaic Specialists Conf., 1988, p. 166-170.

109. Т. Saitoh, S. Muramatsu, Т. Shimada and M. Migitaka. Optical and electrical properties of amorphous silicon films prepared by photochemical vapor deposition. Appl. Phys. Lett., 1983, v. 42, p. 678-679.

110. M.C.M. Van de Sanden et al., Mat. Res. Soc. Symp. Proc. 1997, v. 467, p. 621.

111. P.V. Santos, C. Doland, N.M. Johnson and R.A. Street. Light induced hydrogen diffusion in a-Si:H. J. Non-Cryst. Solids, 1991, v. 137/138, p. 33-36.

112. A. Sazonov, A. Nathan. 120 °C fabrication technology for a-Si:H thin film transistors on flexible polyimide substrates. J. Vac. Sci. and Technol., 2000, A 12(2), p.780-782.

113. R.E.I. Schropp and M. Zeman. Amorphous and microcrystalline silicon solar cells: modeling, materials and device technology. Kluwer Academic publishers, Boston/Dordrecht/London, 1998, p.207.

114. B.A. Scott, R.M. Plecenik and E.E. Simonyi. Kinetics and mechanism of amorphous hydrogenated silicon growth by homogeneous vapor deposition. Appl. Phys. Lett., 1981, v. 39, p. 73-75.

115. B.A. Scott. Homogeneous chemical vapor deposition. Semiconductors and Semimetals. Ed. J. Pankove, Academic Press, Orlando, U.S.A., 1984, v. 21, part A, p. 123-127.

116. A. Shah, J. Dutta, N. Wyrsch, K. Prasad, H. Curtins, F. Finger, A. Howling and C. Hollenstein. VHF plasma deposition: a comparative overview. Mat. Res. Soc. Symp. Proc., 1992, v. 258, p. 15-26.

117. A. Shah, U. Kroll, H. Keppner, J. Meier, P. Torres and D. Fischer. Potential of VHF-plasmas for low-cost production of a-Si:H solar cells. Int. Dig. PVSEC-9, Tokyo, Japan, 1996, p. 267-270.

118. A. Shah, J. Meier, P. Torres, U. Kroll, D. Fischer, N. Beck, N. Wyrsch and H. Keppner. Recent progress on microcrystalline solar cells. Conf. Record 26th IEEE Photovoltaic Specialists Conf. 1997, IEEE, New York, 1997, p. 569-574.

119. D.S. Shen and S. Wagner. Numerical modeling of the dependence of the steady state photoconductivity in hydrogenated amorphous silicon on the rate of carries deneration. J. Appl. Phys., 1995, v. 78 (1), p. 278-282.

120. W. Shockley and W.T. Read. Statistics of the recombinations of holes and electrons. Phys. Rev. B, 1952, v. 87, p. 835-842.

121. J.G. Simmons and G.W. Taylor. Nonequilibrium steady-state statistics and associated effects for insulators and semiconductors containing an arbitrary distribution of traps. Phys. Rev. B, 1971, v. 4(2), p. 502-511.

122. J.G. Simmons, G.W. Taylor and M.C. Tam. Thermally stimulated currents in semiconductors and insulators having arbitrary trap distributions. Phys. Pev., 1973, B7, p. 3714-3719.

123. I. Solomon and L.R. Tessler. Very high-gap tetrahedrally coordinated amorphous silicon-carbon alloys. MRS Proc., 1994, v. 336, p. 505-510.

124. W.E. Spear and P.G. LeComber. Substitutional doping of amorphous silicon. Solid State Comm., 1975, v. 17, p. 1 193-1 196.

125. D.L. Steabler and C.R. Wronski. Reversible conductivity changes in discharge-produced amorphous Si. Appl. Phys. Lett., 1977, v. 31 (4), p. 292-294.

126. D.L. Steabler and C.R. Wronski. Optically induced conductivity changes in discharge-produced hydrogenated amorphous silicon. J. Appl. Phys., 1981, v. 51, p. 3262-3268.

127. H. Stiebig, A. Kreisel, J.-L. Nicque, Th. Eickhoff, C. Beneking and H. Wagner. Experimantal and numerical study of a-Si:H solar cells. Proc. of the 12th ECPVSEC, 1994, Eds. R. Hill et al., Amsterdam, the Netherlands, p. 164167.

128. R.A. Street and C.C. Tsai. Dependence of hydrogen diffusion on growth conditions in hydrogenated amorphous silicon. Phil. Mag. B, 1988, v. 57 (5), p. 663-669.

129. R. Street. Hydrogen diffusion and electronic metastability in amorphous silicon. Physica B, 1991, v. 170, p. 69-81.

130. M Suzuki, T. Maekawa, Y. Kakimoto, T. Bandow. Properties of pure amorphous films prepared by rf-bias sputtering. J. Phys, 1981, C4, p. 623-626.

131. G.A. Swartz. Computer model of amorphous silicon solar cells J. Appl. Phys., 1982, v. 53 (1), p. 712-719.

132. G. Tao. Optical Modeling and Characterization of Hydrogenated Amorphous Silicon Solar Cells, Ph. D. thesis, Delft University of Technology, the Netherlands, 1994.

133. J. Tauc, R. Grigorovici and A. Vancu. Optical properties and electronic structure of amorphous germanium. Phys. Stat. Sol., 1966, v. 15, p. 627-637.

134. J. Tauc. Optical properties of solids, ed. F. Abeles, North-Holland, Amsterdam, the Netherlands, 1972, p.277

135. J. Tauc. Amorphous and liquid semiconductors. Plenum Press, London, 1974.

136. Y. Tawada, M. Kondo, H. Okamoto and Y. Hamakawa. Hydrogenated amorphous silicon carbide as a window material for high efficiency a-Si solar cells. Solar Energy Mater., 1982, v. 6, p. 299-315.

137. G.W. Taylor and J.G. Simmons. Basic equations for statistics, recombination processes, and photoconductivity in amorphous insulators and semiconductors. J. Non-Cryst. Solids, 1972, v. 8-10, p. 940-946.

138. M.Q. Tran. On thermal quenching of the photoconductivity in hydrogenated amorphous silicon hydrogenated amorphous silicon. Phil. Mag., 1995, В 72 (1), p. 35-66.

139. M. Trijssenaar. Hydrogenated amorphous silicon and p/i-heterojunctions, Ph.D. thesis, Delft University of Technology, the Netherlands, 1995.

140. F. Urbach. The long-wavelength edge of photographic sensitivity of the electronic absorption of solids. Phys. Rev., 1953, v. 92, p. 1324.

141. M. Yanecek, J. Kocka, J. Stuchlik and A. Triska. Direct measurement of the gap states and band tail absorption by constant photocurrent method in amorphous silicon. Solid State Commun., 1981, v. 39, p. 1199-1202.

142. M. Yanecek, J. Kocka, J. Stuchlik, Z. Kozisek, O. Stika and A. Triska. Density of the gap states in undoped glow discharge a-Si:H. Solar Energy Mater., 1983, v. 8, p. 411-423.

143. M. Vanecek, A. Abraham, О. Stika, J. Stuchlik and J. Kocka. Gap states density in a-Si:H deduced from subgap optical absorption measurement on Schottky solar cells. Phys. Stat. Sol., 1984, A83, p. 617-623.

144. H.N. Wanka, E. Lotter and M.B. Schubert. Characterization and optimization of the TCO/a-Si:H (B) interface for solar cells by in-situ ellipsometry and SIMS/XPS depth profiling. Mat. Res. Soc. Symp. Proc., 1994, v.336, p. 657-660.

145. M.R. Wertheimer, M. Moisan, J.E. Klemberg-Sapieha, R. Glaude. Effect of frequency from "low frequency" to microwave on the plasma deposition of thin films. Pure and Appl. Chem., 1988, v.60 (5), p. 815-820.

146. H. Wiesmann, A.K. Ghosh, T. McMahon and M. Strongin. a-Si:H produced by high-temperature thermal decomposition of silane. J. Appl. Phys., 1979, v. 50, p. 3752-3754.

147. H. Witte, U. Barthel and B. Garke. Influence of X-Ray exposure on electrical properties of a-Si:H layers. Phys. Stat. Sol. A, 1994, v. 146 (2), p. 703712.

148. H. Witte and U. Barthel. The Influence of microstructure on X-Ray -induced degradation of dark conductivity of a-Si:H layers. J. Physics-Condensed Matter., 1995, v. 7 (19), p. 3675-3682.

149. D.L. Wood and J. Tauc. Weak absorption tails in amorphous semiconductors. Phys. Rev., 1972, B5, p. 3144-3151.

150. C.R. Wronski, D.E. Carlson and R.E. Daniel. Schottky-barrier characteristics of metal-amorphous-silicon diodes. Appl. Phys. Lett., 1976, v. 29 (9), p. 602-605.

151. S.R. Wronski. Amorphous silicon and its applications. Solid State Technology, 1988, v. 31 (6), p. 113-117.

152. C.R. Wronski. Amorphous silicon technology: coming of age. 1st World Conference on Photovoltaic Solar Energy Conversion, Hawaii, 5-9 December 1994, p. 373-379.

153. M. Wu, Y. Chen, K. Pangal, J.S. Sturm, S. Wagner. High-performance polysilicon thin film transistors on steel substrates. J.Non-Cryst. Solids, 2000, v. 266-269, p. 1284-1288.

154. Т. Yamaguchi, N. Sakamoto, M. Shimozuma, M. Yoshino and H. Tagashira. Particle formation in SiOx film deposition by low frequency plasma enhanced chemical vapor deposition. J. Appl. Phys., 1998, v. 83 (1), p. 554-560.

155. K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto and A. Nakajima. Thin film Si solar cell fabricated at low temperature. J. Non-Cryst. Solids, 2000, v. 266-269, p. 1082-1087.

156. J. Yang, A. Baneijee and S. Guha. Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies. Appl. Phys. Lett., 1997, v. 70 (22), p. 2975-2977.

157. S.B. Zhang and W.B. Jackson. Formation of extended hydrogen complexes in silicon. Phys. Rev. B, 1991, v.43 (14), p. 12142-12145.

158. M. Zhu and H. Fritzsche. Density of states and mobility-lifetime product in hydrogenated amorphous silicon, from thermostimulated conductivity and photoconductivity measurements. Phil. Mag., 1986, B53, p. 41-54.

159. M. Zhu. A study of the density of gap states in amorphous semiconductors from thermostimulated conductivity spectra. Appl. Phys., 1991, A52, p. 285-288.российская академия наук

160. ИНСТИТУТ МИКРОЭЛЕКТРОНИКИ И ИНФОРМАТИКИ150007 г.Ярославль, ул. Университетская, 21 тел/факс(0852) 11-65-52 (0852) 11-29-81 E-mail: gia@postoff.ics.ac.ru от 03.05.2001 г. № 11605-8111/100

161. УТВЕРЖДАЮ" •*' Директор ИМИ РАН \д.т.н. В^-Курчидисщщтщ1. АКТоб использовании результатов диссертационной работы Черномордика В.Д. "Солнечные элементы на основе аморфного гидрогенизированного кремния, полученные в низкочастотном тлеющем разряде"

162. Экспериментальные структуры солнечных элементов и данные их измерений используются в лабораторном практикуме при обучении студентов по специальности 20.01.00.

163. И.о. зав. каф. Материаловедения ифизической химии, доц., к.т.н. VJL^4^^^------- Шерченков А.А.

164. Доц., к.ф.-м.н. ^ ис/лМейтин М.Н.

165. УТВЕРЖДАЮ" Проректор Яр ГУ1. АКТоб использовании результатов диссертационной работы Черномордика В.Д.

166. Солнечные элементы на основе аморфного гидрогенизированного кремния, полученные в низкочастотном тлеющем разряде"

167. Зав. каф. микроэлектроники,1. Доц., к.ф.-м.н.д.ф-м.н., проф.poccr,i'lc!u$rocvr^c;^^ :- f- ь

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.