Синтез органических веществ - предшественников первых живых систем под влиянием физических факторов космической среды тема диссертации и автореферата по ВАК РФ 03.00.02, кандидат физико-математических наук Гонтарева, Наталия Борисовна
- Специальность ВАК РФ03.00.02
- Количество страниц 85
Оглавление диссертации кандидат физико-математических наук Гонтарева, Наталия Борисовна
Список принятых сокращений
Введение
Глава I Обзор литературы
1.1 Современные теории возникновения жизни
1.2 Возможные места появления органических молекул
1.2.1 Первичная Земля
1.2.2 Метеориты
1.2.3 Лунный грунт
Глава II Материалы и методы исследования
2.1 Объекты исследования
2.2 Методы исследования
2.2.1 Абиогенный синтез полипептидов
2.2.2 Абиогенный синтез нуклеотидов
2.2.3 Полётные эксперименты на поверхности ОС "Мир"
2.2.4 Полётные эксперименты на поверхности спутника "Космос-2044"
2.3 Аналитические методы
2.4 Определение квантового выхода реакций
2.5 Статистическая обработка результатов
Глава Ш Экспериментальная часть
3.1 Изучение абиогенного синтеза олигопептидов в присутствии лунного грунта на поверхности ОС "Мир"
3.2 Изучение абиогенного синтеза нуклеотидов в присутствии лунного грунта на поверхности ОС "Мир"
3.3 Изучение абиогенного синтеза пиримидиновых нуклеотидов на поверхности спутника "Космос-2044"
3.4 Изучение абиогенного синтеза полипептидов в присутствии метеоритов Алленде и Мерчисон под действием вакуумного ультрафиолетового излучения
3.5 Изучение абиогенного синтеза пуриновых нуклеотидов в присутствии метеоритов Алленде и Мерчисон под действием вакуумного ультрафиолетовою излучения
Глава IV Обсуждение результатов
Выводы
Рекомендованный список диссертаций по специальности «Биофизика», 03.00.02 шифр ВАК
Роль вакуумного ультрафиолетового излучения и других видов энергии открытого космоса в абиогенном синтезе нуклеотидов и дипептидов2005 год, кандидат химических наук Симаков, Михаил Борисович
Жизнеспособность природных микробных сообществ в условиях моделирования параметров инопланетных грунтов и открытого космоса2019 год, кандидат наук Чепцов Владимир Сергеевич
Вариации изотопного состава ксенона в природе1984 год, доктор химических наук Данг Ву Минь, 0
Современные дистанционные исследования физических свойств и состава лунной поверхности2012 год, кандидат физико-математических наук Лу Янсяои
Облученные космическими лучами метеоритные оливины как инструмент поиска сверхтяжелых элементов в природе2022 год, доктор наук Тан Найнг Со
Введение диссертации (часть автореферата) на тему «Синтез органических веществ - предшественников первых живых систем под влиянием физических факторов космической среды»
Астробиология является сравнительно новой научной дисциплиной, целью которой является получение ответов на вопросы: "Откуда мы произошли?", "Одиноки ли мы во Вселенной?", "Каково наше будущее на Земле и вне её пределов?". Бурное развитие таких отраслей науки, как биотехнология, информатика и исследование космического пространства позволило выработать новые экспериментальные подходы для ответа на эти вечные вопросы. В настоящее время под астробиологией понимается изучение эволюции, распределения и предназначения жизни во вселенной. Астробиология находится на стыке многих традиционных научных дисциплин, таких как астрономия, химия, молекулярная биология, микробиология, палеонтология, экология.
Одним из главных направлений астробиологии является изучение процесса возникновения жизни. Земная форма живой материи является единственной из известных доселе форм, и она сформировалась из единого общего предшественника. Для решения проблемы происхождения жизни необходимо определить исходный источник органики, либо сформировавшейся в пределах Земли, либо прибывшей из космоса. Необходимо также выяснить, какие условия способствовали соединению начальных компонентов в молекулы и какие силы привели к развитию систем, способных получать энергию из окружающей среды и использовать её для создания своих копий. Очень важным является вопрос возможного обмена биологическим материалом между различными планетами, так как вполне возможно, что жизнь сформировалась вне Земли и впоследствии была привнесена на нашу планету с помощью космических тел.
Изучение происхождения и химической природы органических и неорганических компонентов, энергетических источников и микроокружения, существовавших на первичной Земле, позволит составить полное представление о контексте возникновения жизни. Имея предположительный первичный источник органических компонентов, альтернативные пути формирования белков, нуклеиновых кислот и липидоподобных молекул, можно говорить об их дальнейшей эволюции. В данном аспекте большую роль играют лабораторные модельные эксперименты, позволяющие изучать протекание органических процессов на разных эволюционных этапах. Процесс полимеризации простейших молекул приводит к следующей эволюционной стадии - появлению протоклетки, способной к саморепликации и эволюционированию на ранней Земле, что привело к формированию общего предшественника всех живых организмов.
Необходимо учитывать и то, что жизнь могла появиться вне Земли и впоследствии была привнесена на развивающуюся планету извне. При этом нужно знать, при каких условиях появилась внеземная жизнь и как она была доставлена на Землю. Изучения возможных процессов транспортировки молекул и живых организмов, а также их выживаемости, важно для понимания 4 гипотетических современных процессов обмена биологическими материалами между Землёй и Марсом. Теоретическая оценка количества транспортируемой органической материи, жизни в экстремальных условиях, изучение метеоритов и других средств доставки органики позволяет понять как возможность возникновения жизни на земле, так и дальнейшего распространения её во Вселенной.
Одна из первых моделей химической эволюции была предложена в 1924 году академиком Опариным (Опарин, 1924). Согласно его теории химической эволюции, жизнь является результатом общего развития материи во Вселенной, одним из этапов которого является эволюция вещества от простейших газообразных соединений до сложных полимерных молекул и многомолекулярных систем. Опарин предположил, что небольшие органические молекулы, необходимые для примитивных форм жизни, были сформированы в первичной атмосфере с преобладанием метана. Эта идея была проверена в лаборатории Миллера (Miller et al., 1953; 1998) путём воздействия электрических разрядов на смесь метана, аммиака, водорода и воды. В своём эксперименте Миллер получил четыре из 20 существующих в природе аминокислот через промежуточное формирование циановодорода и формальдегида. Лабораторный синтез Миллера проходит успешно в случае использования окислительной газовой смеси, содержащей значительный процент водорода. Впоследствии было проведено большое число исследований, моделирующих условия первобытной земли и доказавших возможность синтеза органических веществ в данных условиях.
В качестве гипотезы, альтернативной возможному земному происхождению первых органических соединений на Земле, Аррениусом и Рихтером (Arrhenius and Richter, 1908) была выдвинута так называемая теория панспермии, предполагающая доставку жизни на Землю из другой звёздной системы. Последние научные открытия подтверждают правомерность данной гипотезы. Образцы космической пыли как из верхних слоёв атмосферы (Lowe and Brownlee, 1993), так и из гренландского и антарктического льда (Maurett et al., 1995; Maurett, 1998) свидетельствуют о том, что Земля захватывает межпланетную пыль в виде микрометеоритов ежедневно в количестве приблизительно 50-100 тонн. Одновременно с этим на Землю выгадает в 2000 раз больше (0.03 т в день) метеоритов более крупного размера (Bland et al., 1996). Эти данные уже предполагают возможную роль метеоритов при доставке комплексной органики на раннюю Землю в период от 4.2 до 3.9 млрд лет назад, когда их поток был в 1000 раз выше (Anders et al., 1989). Углистые микрометеориты могли перенести около Ю20 г углерода за период в 300 миллионов лет в соответствии с последней фазой звёздной бомбардировки. -Эта доставка представляет больше углерода, чем его содержится в поверхностной биомассе, т. е. около 1018 г.
Учёными была установлена возможность достижения высоких скоростей в случае отрыва малых частиц от поверхности после удара о планету более крупного метеорита, что свидетельствует о вероятности переноса органики в пределах Солнечной системы. Наряду с этим была продемонстрирована высокая устойчивость бактериальных спор по отношению к ударным волнам и УФ облучению в условиях низких температур, то есть способность примитивных биологических систем к выживанию в экстремальных условиях. Учитывая вышеизложенные факты, весьма важным представляется экспериментальная проверка гипотезы о возможности 5 твердофазного синтеза органики (нуклеотиды и олигопептиды) из молекул, встречающихся в космосе, и дальнейшего переноса вещества в пределах солнечной системы. В частности, изучение возможного абиогенного синтеза данных БЗС возможно в условиях открытого космоса, аналогичным существовавшим на поверхности малых тел Солнечной системы в период пребиотической эволюции.
Земная орбита предоставляет уникальную возможность изучать воздействие космической радиации на синтез БЗС в условиях открытого космоса. УФ поток в разреженной межзвёздной среде для фотонов с энергией более чем 6 эв составляет величину 108 фотон*см"2*сек"1 (Greenberg, 1993). На земной орбите интенсивность солнечного излучения для фотонов с такой энергией составляет около 0.0362% всего солнечного света (вычислено по Nicolet, 1989), то есть 9*1015 фотон*см"2*сек"х. Поэтому величина солнечного излучения на земной орбите за две недели равна межзвёздному потоку излучения в течение 2*10б лет, то есть на земной орбите существуют уникальные условия, позволяющие смоделировать условия, существовавшие на первичной Земле и экспериментально показать возможность абиотического синтеза органических соединений в данных условиях. Актуальность данных исследований определяется также возможностью ответить на вопрос о достаточно быстром протекании периода химической эволюции (105 - 107 лет), предшествовавшего периоду биологической эволюции, в результате которого и возникли современные формы жизни. Это определило цель и задачи настоящего исследования.
Цель работы состояла в изучении реакции твердофазного синтеза компонентов белков и нуклеиновых кислот, происходящих на минеральной поверхности, под действием ультрафиолетового излучения различных длин волн (145 и 254 нм), оценке стабилизирующей роли подложек внеземного происхождения и подтверждения правомерности вышеизложенной гипотезе космического переноса БЗС.
В соответствии с этим были поставлены следующие конкретные задачи:
1) Установить характер действия минеральных подложек на синтез предшественников первых биологических систем (полипептидов и нуклеотидов) в условиях открытого космоса и в лабораторных условиях
2) Изучить влияние минеральных подложек внеземного происхождения на распад природных органических соединений
3) Провести сравнительный анализ действия различных источников энергии открытого космоса и их суммы на два типа смесей - аминокислоты и нуклеозид + неорганический фосфат - в условиях облучения твёрдых плёнок
4) Выявить наиболее эффективный среди изученных источник энергии, способствующий синтезу органических веществ.
5) Идентифицировать минеральную подложку, оказывающую максимальное потенцирующее действие на формирование биологических соединений
Похожие диссертационные работы по специальности «Биофизика», 03.00.02 шифр ВАК
Философский аспект проблемы происхождения и сущности жизни2003 год, доктор философских наук Ашнокова, Лариса Мухамедовна
Космическое вещество в осадках и осадочных породах: методы диагностики и применение для решения геологических задач2019 год, кандидат наук Кузина Диляра Мтыгулловна
Зеркальные телескопы ВУФ диапазона для внеатмосферной солнечной астрономии2011 год, доктор физико-математических наук Слемзин, Владимир Алексеевич
Экспериментальное исследование образования сложных веществ в кометах под действием частиц солнечного ветра2002 год, кандидат физико-математических наук Шоекубов, Шоаюб Шосиддикович
Ударное преобразование битумов: Приложение к органическому веществу метеоритов и импактитов2004 год, кандидат геолого-минералогических наук Корочанцев, Александр Владимирович
Заключение диссертации по теме «Биофизика», Гонтарева, Наталия Борисовна
Выводы
Экспериментальные результаты, полученные и интерпретированные в свете теории химической эволюции, позволили придти к следующим выводам:
11
1) Установлен потенцирующий (защитный и каталитический) характер действия минеральных подложек на синтез полипептидов и нуклеотидов в условиях открытого космоса и в лабораторных условиях.
2) Доказано, что минеральные подложки внеземного происхождения замедляют распад природных органических соединений, что свидетельствует в пользу возможности транспортировки органики в космосе.
3) В ходе сравнительный анализ действия различных источников энергии открытого космоса и их суммы на два типа смесей - аминокислоты и нуклеозид + неорганический фосфат - в условиях облучения твёрдых плёнок выявлен наиболее эффективный источник энергии, способствующий синтезу органических веществ - это вакуумное ультрафиолетовое излучение (145 нм).
4) Идентифицирована минеральная подложка, оказывающая максимальное потенцирующее действие на формирование биологических соединений -порошок метеорита Мерчисона.
Список литературы диссертационного исследования кандидат физико-математических наук Гонтарева, Наталия Борисовна, 0 год
1. Везерилл Г. В., Доморское кратерообразование и ранняя история Солнечной системы // Космохимия Луны и планет. М., С. 411-424, (1975).
2. Виноградов А. П. Дифференциация вещества Луны // Космохимия Луны и планет. М., С. 5-28, (1975).
3. Вдовыкин Г. П. Экзобиология Луны, под ред. А. П. Виноградова, М.: Наука, (1975).
4. Вуд Дж. А., Обзор типов лунных пород и сравнение лунной и земной коры // Космохимия Луны и планет. М., С. 29-45. (1975).
5. Додонова Н. Я., Цыганенко Н. М., Кузичева Е. А., Симаков М. Б. Абиогенный синтез уридиновых нуклеотидов под действием вакуумного ультрафиолетового излучения //Биофизика. 1994. Т. 39., 1, С. 26-31.
6. Киселёва М. Н., Зароченцева Е. П., Додонова Н. Я, Спектры поглощения нуклеиновых кислот и родственных им соединений в спектральной области 120-180 нм. Биофизика, 20(4), 561-565 (1975).
7. Кузичева Е. А., Фотохимические превращения компонентов нуклеиновых кислот в присутствии лунного грунта. Ж. эвол. бихим. и физиол., 23(1), 3-8 (1987).
8. Кузичева Е. А., Гонтарева Н. Б., Действие вакуумного ультрафиолетового излучения на абиогенный синтез адениновых нуклеотидов в присутствии лунного грунта, Ж. эвол. бихим. и физиол., 37(5), 391-394 (2001).
9. Кузичева Е. А., Цупкина Н. В., Абиогенный синтез нуклеозидмонофосфатов под воздействием гамма- и ультрафиолетового излучения. Ж. эвол. биохим. и физиол., 16(3), 322-326 (1992).
10. Ю.Кузичева Е, А., Цупкина Н. В., Небиологический синтез уридиновых нуклеотидов в условиях полёта орбитальной станции «Салют-7». Ж. Эвол. биохим. и физиол., 22(1), 17-23 (1986).
11. П.Кузичева Е. А., Додонова Н. Я, Малько И. Л., Петров М., Симаков М. Б., Спектры поглощения и фотопроцессы в триптофане и его дипептиде с глицином в вакуумной ультрафиолетовой области спектра. Оптика и спектроскопия, 77(4), 584-589 (1994).78
12. Кузичева Е. А., Жукова В. Ф., Симаков М. Б., Роль УФ-и гамма-радиации в абиогенном синтезе нуклеотидов в твёрдом состоянии. Ж. Эвол. биохим. и физиол., 29(4), 339-344 (1993).
13. Кузичева Е. А., Симаков М. Б., Малько И. Л. Вклад вакуумного ультрафиолетового излучения в абиогенный синтез пиримидиновых нуклеотидов // Ж. эвол. биохим. и физиол. 1997. Т. 33, №2. С. 129-133.
14. Кузичева Е. А., Цупкина Н. В., Потапова Н. Г. Влияние отдельных факторов космической среды на абиогенный синтез нуклеотидов. Ж. эвол. биохим. и физиол., 24(1), 2-8 (1988).
15. Невзгодана Л. В., Григорьев Г., Маренный А. М. (1990) Действие тяжёлых ионов на биологические объекты. Энергоатомиздат.
16. Опарин А. И. (1924) Происхождение жизни на Земле. М,: Московский рабочий.
17. Опарин А. И. Пути возникновения жизни. Вестник АН СССР (6), 57-64 (1980).
18. Розанов А. Ю., Цианобактерии и, возможно, низшие грибы в метеоритах, Соросовский образовательный журнал, 11, стр. 61-65, (1996).
19. Принс М., Фодор Р. В., Кайл К. Сравнение лунных пород и метеоритов: приложение к истории Луны и родительских метеоритных тел // Космохимия Луны и планет. М., С. 5-28, (1975).
20. Теренин А. Н. Происхождение жизни на Земле. Тез. Междунар. Симп., М., 19-24 авг 1954 г. Под ред. А. И. Опарина и др., М., Изд-во АН СССР (1959).
21. Урбах В. Ю. Статистический анализ в биологических и медицинских исследованиях. М., Медицина, 1975. С. 295.
22. Фокс С., и Дозе К. (1975). Молекулярная эволюция и возникновение жизни. М.:Мир.
23. Aksyonov S. I. (1982) The duration limit of anabiosis in microorganisms, Mikrobiologiya, 51, 877-880.
24. Anders E., Prebiotic organic matter from comets aid asteroids, Nature, 342, 255256 (1989).
25. Arrhenius S. (1908) Worlds in the Making. The Evolution of the Universe. Harper and Row.
26. Bailey J., Chiysostomou A., Hough J. H, Gledhill Т. M., McCall A, Clark S, Menard F. And Tamura M., Circular polarization in star formation regions: Implications for biomolecular homochirality, Science, 281, 672-674 (1998).
27. Barbier В., Boillot F., Chabin A., Venet M., Bure C., Jaquet R., Bertrand-Urbaniak M,, Brack A Behavior of amino acids and peptides exposed in Earth orbit // Proc. 1st European Workshop on Exo-/Astrobiology, ESA SP-496, 291294, (2001).
28. Bernhard W. A., Solid-state radiation chemistry of DNA: the bases. Advances in Radiation Biology, 9, 199-280(1981).
29. Bernal J. D., (1967) The Origin of Life. Cleveland: The World Publishing Company.79
30. Bland P. A., Smith Т. В., Jull A. J., Berry F. J., Bewan A. W., Cloudt S., and Pillinger С. Т., The flux of meteorites to the Earth over the last 50 000 years, Mon. Not. R. Astron. Soc. 233, 551-565 (1996).
31. Bonner W. A. and Rubinstein E,, Supernovae, neutron stars and biomolecular chirality, BioSystems, 20, 99-111 (1987).
32. Brack, A., Life in the Solar System, Adv. Space Res., 24, 417-433, 1999.
33. Brack, A., and С. T. Pillinger, Life on Mars: Chemical Arguments and Clues from Martian Meteorites, Extermophiles, 2, 313-319, 1998.
34. Brinton K. L. F., Engrand C., Glavin D. P., Bada J. L. and Maurette M., A search for extraterrestrial aminoacids in carbonaceous Antarctic micrometeorites, Origins Life Evol. Biosphere, 28, 413-424 (1998).
35. Bujdak J. and Rode В. M., The effect of clay structure on peptide bond formation catalysis, Journal of Molecular Catalysis A: Chemical 144, 129-136, (1999a).
36. Bujdak J. and Rode В. M., Silica, alumnia, and clay-catalyzed peptide bond formation: enhance efficiency of alumnia catalyst, Orig. Life Evol. Biosphere, 29, 451-461(1999b).
37. Bunch Т. E. and Chang S., Carbonaceous chondrites: П. Carbonaceous chondrite phyllosilicates and light element geochemistry as indicators of parent body processes and surface conditions. Geochim. Cosmochim Acta, 44, 1543-1577 (1980).
38. Cadet J. and Vigny P. (1990) The photochemistry of nucleic acids. In Bioorganic Photochemistry, Vol. 1 (ed. H. Morrison), pp. 1-272. Woley Interscience.
39. Cairns-Smith A. G. (1982) Genetic takeover and the Mineral Origins of Life. Cambridge: Cambridge University Press.
40. Cavadore J. C., and Previero A., Polycondensation d'acides amines libres en solution aquese par l'intermediaire d'une carbodiimide hydrosoluble, Bull. Soc. Chim. Biol. 51, 1245-1253 (1969).
41. Cech T. R., Zaug A. J. and Grabowski P. J., In vitro splicing of the ribosomal RNA precursor of Tetrahymena: Involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell, 27, 487-496, (1981).
42. Chyba C. F., Thomas P. J., Brookshaw L., and Sagan C., Cometaiy delivery of organic molecules to the early Earth, Science, 249, 366-373 (1990).
43. Chyba C. F. and Sagan C., Endogenous production, exogenous delivery and impact-stock synthesis of organic molecules: an inventory for the origins of life. Nature, 355, 125-132 (1992).
44. Clemett S. J., Maechling C. R., Zare R. N., Swan P. D. and Walher R. M., Identification of complex aromatic molecules in individual interplanetary dust particles. Science, 262, 721-725 (1993).
45. Cockell C. S., Ultraviolet radiation, evolution and 7i-electron system. Biol. J. Linn. Soc., 62, 449-457 (1998).
46. Cooper G. W. An investigation of sugars and other possible formaldehyde products in the Murchinson meteorite // Proceed. Of sixth symposium on chemical evolution and the origin and evolution of life. 1997. P.48.
47. Cooper, G. W., W. M. Onwo, and J. R Cronin, Alkyl Phosphonic Acids in Murchinson Meteorite, Geochim. Cosmochim. Acta, 56, 4109-4115, 1992.
48. Cronin, J. R., and S. Pizarello, Enantiomeric Excesses in Meteoritic Amino Acids, Science, 275, 951-955, 1997.
49. Cronin, J. R., S. Pizarello, and D. P. Cruikchank, Organic Matter in Carbonaceous Chondrites, Planetary Satellites, Asteroids and Comets, in Meteorites and the80
50. Early Solar System, ed. J. F. Kerridze and M. S. Matthews, pp. 819-857, Univ. Of Arizona Press, Tuscon, AZ, 1988.
51. Delsemme, A. H., Cometary Origin of Carbon, Nitrogen and Water on the Earth, Origin of life andEvol. Biosphere, 21, 279-298, 1992.
52. Delsemme, A. H., Nature and History of the Organic Compounds in Comets: an Astrophysical View, in Comets in the Post Halley Era I., eds. R.L. Newburn Jn., M Neugebauer and J. Rahe, pp. 377-428, Kluwer, Dordrecht, 1991.
53. Delsemme, A. H., Cosmic origin of the biosphere, in The molecular origins of life: assembling pieces of the puzzle, ed. A. Brack, pp 100-118, Cambridge University Press, Cambridge, (1998).
54. Engel M. H. and Macko S. A., isotopic evidence for extraterrestrial nonracemic aminoacids in the Murchison meteorite, Nature, 389, 265-268 (1997).
55. Fenis J. P., The chemistry of Life's. Chem. Eng. News, 62(35), 22-35 (1984).
56. Fenis J. P. and Hagan Jr. W. J., The adsorption and reaction of adenine nucleotides on montmorillonite // Orig. Life Evol. Biosphere, 17, 69-84 (1986).
57. Fenis J. F., Hill A. R., Liu R., and Orgel L. E., Synthesis of long prebiotic oligomers on mineral surfaces, Nature, 381, 59-61 (1996).
58. Fox S. W., and Dose K. D., in Molecular evolution and the origin of life, Marcel Dekker, New York (1977).
59. Gladilin, C. L., A. N. Suvorov, and A. I. Oparin, Theory of Life Origin and Modern State of the Problem, Achievements of Biological Chemistry, 34, 3-39, 1994.
60. Gilbert W., The RNA world. Nature, 319, 618, (1986).
61. Glindemann D., Graaf R. M.d., and Schwartz A. W., Chemical reduction of phosphate on the primitive Earth. Orig Life Evol. Biospher., 29(6), 555-561 (1999).
62. Gontareva N. B. and Kuzicheva E. A., Laboratory photochemical formation of peptides in presence of meteorites as a model of chemical evolution process. Proc. First European Workshop on Exo/Astrobiology, Frascati, ESA SP-496, (2001).
63. Goossen J. Т. H. and Kloosterboer J. Т., Photolysis and hydrolysis of adenosine-5'-phosphates. Photochem. Photobiol., 27, 703-708 (1978).
64. Gordy W., Free radicals from biological purines and pyrimidines. Annals of the New York Academy of Sciences, 158, 100-123(1969).
65. Greenberg J. M, Interstellar dust. In Cosmic dust, ed. J. A. M. McDonnel. Wiley, New York, pp. 187-294 (1978).
66. Greenberg, J. M., Physical and Chemical composition of Comets. From Interstellar Space to the Earth, in The Chemistry of Life Origin, eds. J. M. Greenberg and С. X. Mendoza-Gomez, pp. 195-207, Kluwer, Dordrecht, 1993.
67. Groth W. E. and Rommel H. J., Die photolyse des ammoniaks bei den wellenlangen 1849 A (Hg), 1470 A (Xe), 1236 A (Kr). Zeitshrift fur Physikalische Chmie Neue Folge, 45, 96-116 (1965).
68. Groth W. E. and Weysenhoff H. V., Photochemical formation of organic compounds from mixtures of simple gases. Planet. Space Sci., 2, 79 (1960).
69. Gut I. G., Farmer R., Huang R. C., and Kochevar I. E., Upper excited state photochemistry of DNA. Photochem. Photobiol., 58(3), 313-317(1993).
70. Hallmann M. and Platzner I., The photochemistry of phosphorous compounds. Part IV. Photolysis of sodium hydrogen phosphate in aqueous solution. J. Phys. Chem., 71,1053-1060 (1967).81
71. Heinen W. And Lauwers A. M., Sulfur compounds resulting from the interaction of iron sulfide, hydrogen sulfide and carbon dioxide in an anaerobic aqueous environment, Origins Life Evol. Biosphere, 26, 131-150(1996).
72. Hennet R. J.-C., Holm N. and Orgel L., Polymerization on the rocks: negatively-charged alpha-amino acids, Origins Life Evol. Biosphere, 28, 235-243 (1998).
73. НШ Jr. A. R., Boehler C., and Orgel L. E., Polymerization on the rocks: negatively-charged alpha-amino acids, Origins Life Evol. Biosphere, 28, 3235-243 (1998).
74. Haldane J. B. S. (1929) The origin of life. Reprinted in J. D. Bernal, The origin of Life, 1967,, pp. 242-249. London: Weidenfeld and Nicolson.
75. Holm N. G. and Andersson E. M., Abiotic synthesis of organic compounds under the conditions of submarine hydrotermal systems: a perspective, Planet Space Sci., 43, 153-159(1995).
76. Horneck G. European activities in exobiological research in space, Proc. Of the 3rd European Symposium on Life Sciences Research in Space, Graz, Austria, ESA SP-271,185-192, (1987).
77. Horneck G. Exobiology, the study of origin, evolution and distribution of life within the context of cosmic evolution // Planet. Space Sci. V. 43, №1/2. PP. 189217, 1995.
78. Horneck, G., Exobiological Experiments in Earth Orbit, Adv. Space Res., 22, 3, 317-326, (1998).
79. Horneck, G., European Activities in Exobiology in Earth Orbit: Results and Perspectives, Adv. Space Res., 23, 2, 381-386, (1999).
80. Horneck, G., G. Reitz, P. Rettenberg, M. Shuber, H. Kochan, D. Mohlmann, L. Richter, and H. Seidlidz, A Ground-Based Program for Exobiological Experiments on the International Space Station, Planetary and Space Science, 48, 507-513, 2000.
81. Huber J. R. and Hayon E., Flash photolysis in the vacuum ultraviolet region of the phosphate anion H2P04", HP042" and P2074" in agueous solutions. J. Phys. Chem., 72, 3820-3827 (1968).
82. Huber C. and Wachtershauser G., Activated acetic acid by carbon fixation on (Fe, Ni) S under primordial conditions, Science, 276, 245-247 (1997).
83. Huber C. and Wachtershauser G., Peptides by activation of aminoacids with CO on (Ni, Fe) surfaces: implication for the origin of life, Science, 281, 670-672 (1998).
84. Ito A., Taniguchi Т., and Ito Т., Wavelength dependence for the inactivation of ATP in the vacuum-ultraviolet region above 140 nm. Photochem. Photobiol., 44(3), 273-277 (1986).
85. Jericevic Z,, Kuchanl., and Chambers R. W., Photochemical cleavage of phosphodiester bonds in oligonucleotides. Biochemistry., 21, 6563-6567 (1982).
86. Kasamatsu Т., Kaneko Т., Saito Т., and Kobayashi K., Formation of organic compounds in simulated interstellar media with high energy particles. Bull. Chem. Soc. Jpn., 70(5), 1021-1026 (1997).
87. Kasting J. F., Earth's early atmosphere, Science, 259, 920-926 (1993).
88. Kasting I F. and L. L. Brown, The early atmosphere as a sourse of biogenic compounds, in The molecular origins of life: assembling pieces of the puzzle, ed. A. Brack, pp. 35-56, Cambridge University Press, Cambridge (1998).
89. Khenokh M. A., Nikolaeva M. V. and Kuzicheva E. A., Abiogenic synthesis of nucleosides, Stadia Biophysica, 28, 23 -34 (1971).
90. Khoroschilova E. V., N. M. Tsyganenko, M. Yu. Petrov and N. Ya. Dodonova, Photosynthesis of Peptides at Tyrosine Exposure by Vacuum Ultraviolet Radiation, Doklady Akadem. NaukSSSR, 319, 1244-1247, 1991.
91. Kissel J. and Krueger F. R., The organic component in dust from comet Halley as measured by the PUMA mass spectrometer on board of Vega 1, Nature, 326, 755760 (1987).
92. Kland M. J. and Johnson L. A., A kinetic study of ultraviolet decomposition of biochemical derivatives of nucleic acids. I. Purines. JACS. 79, 6187-6192 (1957).
93. Kobayashi K., Kaneko Т., and Saito Т., Characterisation of complex organic compounds formed in simulated planetary atmospheres by the action of high energy particles. Adv. Space Res., 24, 461-464 (1999).
94. Kobayashi K., Kasamatsu Т., Kaneko Т., Koike J., Saito Т., Yamamoto Т., and Yanagawa H., Formation of amino acids precursors in cometary ice environments by cosmic radiation. Adv. Space Res., 16(2), (2)21-(2)26 (1995).
95. Kobayashi K., Kaneko Т., Saito Т., and Oshima Т., Amino acid formation in gas mixtures by high energy particle irradiation. Orig Life Evol. Biosphere, 28, 155165 (1998).
96. Kobayashi K. and Saito Т., Energetics for Chemical Evolution on the Primitive Earth. In: The role of Radiation in the Origin and Evolution of life, ed. by M. Akaboshi, N. Fujii and R. Navarro-Gonsales, pp. 25-38, Kyoto Univ. Press, Japan, 2000.
97. Kuzicheva, E. A. and Gontareva N. B, The Possibility of Nucleotide Abiogenic Synthesis in Conditions of «Cosmos-2044» Satellite Space Flight, Adv. In Space Res., 23, 393-396, (1999).
98. Kuzicheva, E. A. and Gontareva N. B, Study of the peptide prebiotic synthesis in context of exobiological investigations on earth orbit, Adv. In Space Res., 23, 393396, (2001).
99. Kuzicheva, E. A., N. J. Dodonova, I. L. Malko, M. Ju. Petrov, and M. B. Simakov, Absorption Spectra and Photoprocesses in Triptophane and its Dipeptide with Glycine in Vacuum Ultraviolet Spectrum Range, Optics and Spectroscopy, 77, 4, 584-588, (1994).
100. Kuzicheva, E. A. and Simakov M. В., Abiogenic Synthesis of Nucleotides in Conditions of Space Flight of Biosputnik «Bion-11», Adv. Space Res., 23, 387391, (1999).83
101. Kuzicheva, E. A., M. B. Simakov, Malko I. L., Dodonova N. Ya. and Gontareva N. В., Role of vacuum ultraviolet (VUV) radiation in abiogenic synthesis of adenine nucleotides. Adv. Space Res., 18(12), 65-68, (1996).
102. Kuzicheva, E. A. and Tzupkina N. V., Non-Biologic Synthesis of Uridine Nucleotides in the Conditions of «Salut-7» Orbital Station Space Flight, J. Evol. Biochem and Physiol, 22, 1, 17-23, (1986).
103. Kuzicheva, E. A., N. V. Tzupkina, and N. G. Potapova, The action of Some Factors of Space Medium on the Abiogenic Synthesis of Nucleotides, Adv. Space Res., 9, 6, 53, (1989).
104. Lahav N., White D. H., and Chang S., Peptide formation in the prebiotic era: thermal condensation of glycine in fluctuating clay environment. Science, 201, 6769 (1978).
105. Langfinger D. and Sonntag C., Gamma-radiolysis of 2'-deoxyguanosine. The structure of the malondialdehydelike product. Zeitschrift fur Naturforschung, 40c, 446-448 (1985).
106. Levy M. and Miller S. L., The stability of the RNA bases: Implications for the origin of life. PNAS, 95(14), 7933-7938 (1998).
107. Liu R., and Orgel L. E., Polymerization on the rocks: beta amino acids and arginine, Orig Life Evol. Biosphere, 28, 245-257 (1998).
108. Love S. G. and Brownlee D. E., A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science, 262 (5133), 550-553 (1993).
109. Macia E., Hemandes M. V., and Oro J., Promaiy sources of phosphorus and phosphates in chemical evolution. Orig. Life Evol. Biospher., 27, 459-480 (1997).
110. Mason В., The carbonaceous chondrites, Space Sci. Rev. 1, 621-646 (1963).
111. Maurette M., Carbonaceous micrometeorites and the origin of life. Orig. Life Evol. Biosphere, 28, 385-412 (1998).
112. Miller S. L. A production of amino acids under possible primitive Earth conditions. Science, 117, 528-529 (1953).
113. Miller S. L. (1998) The endogenous synthesis of organic compounds. In The molecular origins of life: assembling pieces of puzzle (ed. A. Brack), pp. 59-85. Cambridge Universuty press.
114. Mizutani H., Mukuni H., Takahashi M. and Noda H., Orig. Life Evol. Biosphere, 6, 512-525 (1975).
115. Owen Т. C. and BarNun A., Comets, impacts and atmospheres, Icarus, 116, 215226 (1995).84
116. Owen Т. С. The origin of tiie atmosphere, in The molecular origin of life: assembling pieces of the puzzle, ed. A. Brack, pp. 13-34, Cambridge University Press, Cambridge (1998).
117. Paecht-Horowitz M., and Eirich F. R., The polymerization of amino acid adenylates on sodium montmorillonite with pre-absorbed polypeptides, Orig. Life Evol. Bioshpere, 18, 359-387 (1988).
118. Pullman A. And Pullman B. (1972) The quantum theory of purines. In The Purines -Theory and Experiment, Vol. 4 (ed. E. D. Bergmann and B. Pullman), pp.1. The Israel Academy of Sciences.
119. Raulin F., Sternberg R., Coscia D., Vidal-Madjar C., Millot M.-C., SebilUe В., Israel G. Chromatographic instrumentation in space: past, present and future developments for exobiological studies 11 Adv. Space Res. 1999. V. 23, № 2, PP. 361-366.
120. Reimann R., and Zubay G., Nucleoside phosphorylation: a feasible step in the prebiotic pathway to RNA. Orig. Life Evol. Biosphere, 29, 229-247 (1999).
121. Sagstuen E., Radiation damage to nucleosides and nucleotides. I. An ESR study of uridine-5'-phosphate 2Na+ single crystals. Radiat. Res., 81, 188-199 (1980).
122. Simakov, M. В., E. A. Kuzicheva, N. Ja. Dodonova, and A. Je. Antropov, Formation of Oligopeptides on the Surface of Small Bodies in Solar System by Cosmic Radiation, Adv. In Space Res., 19, 1063-1066, 1997.
123. Shapiro R., Prebiotic ribose synthesis: a critical analysis and implication for the origin of life. PNAS. 96(8), 4396-4401 (1999).
124. Stetter К. O. and Bullock M. A., Organic degradation under simulated martian conditions, J. Geophys. Res., 102, 10881-10888 (1998).
125. Stocks P. G. and Schwartz A. W., Basic nitrogen-heterocyclic compounds in the Murchison meteorite. Geochim. Cosmochim. Acta, 46, 309-315 (1982).
126. Suwannachot Y., and Rode В. M., Catalysis of dialanine formation by glycine in the salt-induced peptide formation reaction, Origins Life Evol. Biosphere, 28, 7990 (1998).
127. Urey H. C., On the early chemical history of the Earth and the origin of life. Proc. Natl. Acad. Sci. USA, 38, 351-363 (1952).
128. Wachtershauser G., Life in a ligand sphere, Proc. Natl. Acad. Sci. USA, 91, 4283-4287 (1994).85
129. Wachtershauser G., Origin of life in an iron-sulphur world, in The molecular origins of life: assembling pieces of the puzzle, ed. A. Brack, pp. 206-218, Cambridge University Press, Canbridge (1998).
130. Walker J. C. G., Carbon dioxide on the early Earth, Origins Life Evol. Biosphere, 16, 117-127(1985).
131. Wang K., Pan X., Wu J.-I., and Wang W., Enhancement of the photolysis of nucleic acid monomers by phosphates. Photochem. Photobiol., 65(4), 656-659 (1997).
132. Wang S. Y. (1976) Pyrimidine biomolecular photoproducts. In Photochemistry and Photobiology of Nucleic Acids, Vol. 1 (ed. S. Y. Wang), pp. 295-356. Academic press.
133. Wetherhill, G. W., Formation of the Earth, Ann. Rev. Earth Planet. Sci., 18, 205256 (1990).
134. White D. H., and Erickson J. D., Catalysis of peptide bond formation by histidil-histidine in a fluctuatin clay environment, J. Mol. Evol., 16,279-290 (1980).
135. Wetherhill G. W., Formation of the Earth, Ann. Rev Earth Planet. Sci., 18, 205256 (1990).
136. Wood, G. A., Review on Lunar Soil types and Comparison of Lunar and Earth Cortex, in Cosmochemistry of the Moon and Planets, pp. 29-45, Moscow, 1975
137. Yanagawa H. And Kobayashi K., An experimental approach to chemical evolution in submarine hydrotermal systems, Origis Life Evol. Biosphere, 22, 147159 (1992).
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.