Синхронизация регулярных и хаотических колебаний в нейродинамических системах тема диссертации и автореферата по ВАК РФ 01.04.03, кандидат физико-математических наук Панкратова, Евгения Валерьевна
- Специальность ВАК РФ01.04.03
- Количество страниц 150
Оглавление диссертации кандидат физико-математических наук Панкратова, Евгения Валерьевна
Введение
1 Роль аддитивных шумов при формировании реакции мембранного потенциала на регулярные сигналы
1.1 Введение.
1.1.1 Структура нейрона.
1.1.2 Регуляция нейронной активности: ионный транспорт
1.1.3 Порог деполяризации нейрона.
1.1.4 Классическая модель Ходжкина-Хаксли.
1.1.5 Система уравнений ФитцХью-Нагумо.
1.2 Возникновение импульсов под действием внешнего периодически изменяющегося поля.
1.3 Учет флуктуаций окружающей среды.
1.4 Подавление шума при генерации нервных импульсов
1.4.1 Эффект резонансной активации в модели Ходжкина-Хаксли
1.4.2 Подавление шума в системе уравнений ФитцХью-Нагумо
1.4.3 Роль усреднения по начальной фазе внешнего воздействия
1.5 Эффект задержки переключения состояния системы . 43 1.5.1 Влияние источника шума.
1.6 Выводы.
2 Особенности потери устойчивости периодических движений, приводящие к возникновению хаотических колебаний
2.1 Введение.
2.2 Бифуркационные механизмы изменения поведения классической модели Ходжкина-Хаксли.
2.3 Влияние внешнего периодического сигнала: регулярные и нерегулярные ритмы в системе Ходжкина-Хаксли
2.3.1 Области синхронизации.
2.3.2 Влияние белого гауссова шума.
2.3.3 Особенности влияния цветного шума.
2.4 Генерация сложных колебаний в модели Ходжкина-Хаксли
2.5 Механизм генерации беретов эллиптического типа на примере упрощенной модели нервной клетки
2.5.1 Качественный анализ вырожденной системы быстрых движений.
2.5.2 Анализ поведения полной системы: генерация беретов эллиптического типа.
2.6 Регулярная и хаотическая генерация беретов.
2.7 Выводы.
3 Устойчивость режима хаотической синхронизации в различных сетях нейродинамических систем
3.1 Введение.
3.1.1 Полная синхронизация. Методы исследования
3.2 Метод покрытия цепями графа связи. Основные положения
3.2.1 Диссипативность.
3.2.2 Определение параметра а.
3.3 Хаотическая синхронизация в сети с простейшей структурой
3.3.1 Однонаправленная связь
3.3.2 Взаимная синхронизация.
3.3.3 Синхронизация шумом.
3.4 Глобальная устойчивость хаотической синхронизации в цепочке последовательно связанных осцилляторов.
3.4.1 Неоднородно связанные осцилляторы.
3.4.2 Однородно связанные осцилляторы
3.4.3 Влияние шумов.
3.5 Хаотическая синхронизация в сетях, содержащих структуры типа "звезда".
3.5.1 Неоднородная связь элементов.
3.5.2 Однородная связь элементов.
3.5.3 Влияние шумов.
3.6 Многослойные структуры нейронных сетей.
3.7 Выводы.
Рекомендованный список диссертаций по специальности «Радиофизика», 01.04.03 шифр ВАК
Кооперативные эффекты нелинейной динамики активных многоэлементных систем: Структуры, волны, хаос, управление2005 год, доктор физико-математических наук Казанцев, Виктор Борисович
Синхронизация и образование структур в сложных осцилляторных ансамблях: колебания на нескольких временных масштабах, нерегулярная топология связи2007 год, кандидат физико-математических наук Иванченко, Михаил Васильевич
Экспериментальное и теоретическое исследование автогенераторных моделей нейронных систем2011 год, кандидат физико-математических наук Щапин, Дмитрий Сергеевич
Экспериментальное исследование синхронизации квазипериодических и индуцированных шумом автоколебаний2013 год, кандидат физико-математических наук Феоктистов, Алексей Владимирович
Синхронизация в неоднородных ансамблях локально диффузионно связанных регулярных и хаотических осцилляторов2004 год, доктор физико-математических наук Осипов, Григорий Владимирович
Введение диссертации (часть автореферата) на тему «Синхронизация регулярных и хаотических колебаний в нейродинамических системах»
Интерес к задачам синхронизации нелинейных колебаний радиофизических систем, изучение которых было начато в классических работах нижегородской школы академика А.А. Андронова по теории захватывания и затягивания частоты автогенераторов, в последние годы значительно возрос в связи с возникшей проблемой динамики процессов синхронизации в больших ансамблях связанных нелинейных колебательных систем. Так, в области современной лазерной физики актуальность задач синхронизации связана с созданием мощных высокостабильных источников излучения. В сверхпроводниковой электронике особый интерес вызывают исследования синхронного поведения решеток джозефсоновских контактов, на основе которых возможно создание узкополосных генераторов миллиметрового и субмиллиметрового диапазона длин волн. Изучение синхронизации сложных колебаний в биофизике (колебаний и волн в нейронных сетях, сердечных и локомоторных ритмов и др.) направлено в первую очередь на создание приборов медицинской радиоэлектроники. Таким образом, проблемы синхронизации относятся к актуальным задачам современной теории нелинейных колебаний.
При изучении коллективной динамики ансамблей колебательных систем важное место занимают задачи, связанные с исследованием особенностей взаимодействия различных хаотических систем. Возможность синхронизации элементов со сложной динамикой была обнаружена относительно недавно. Авторами первых работ в этой области проводилось исследование эффекта синхронизации в ансамблях как с малым, так и с большим числом осцилляторов. В результате, были обнаружены различные типы синхронного поведения, включая фазовую синхронизацию (B.C. Анищенко, В.Н. Белых, В.И. Некоркин, Г.В. Осипов, А.С. Пиковский, М.Г. Розенблюм, В.Д. Шалфеев, J. Kurths, Е. Mosekilde и др.), обобщенную сипхронизацию (Н.Ф. Рульков, М.М. Сущик, JT.C. Цимринг, H.D. Abarbanel, L. Kocarev и др.), а также полную и кластерную синхронизации. К наиболее строгому типу синхронного поведения относят полную синхронизацию, при которой полностью исчезают различия в динамическом поведении всех идентичных подсистем, связанных в ансамбль (B.C. Афраймович, В.Н. Белых, Н.Н. Веричев, А.Ю. Погромский, М.И. Рабинович, T.L. Carroll, Н. Fujisaka, М. Hasler, К. Kaneko, L.M. Pecora, A. Sherman, Т. Yamada и др.).
В настоящее время проблема синхронного поведения хаотических динамических систем активно исследуется в рамках нейродинамических задач. Согласно многочисленным экспериментам, синхронная генерация электрических импульсов нейронными популяциями является типичным механизмом восприятия зрительных образов, обонятельной или тактильной информации. В связи с этим, проблема синхронной активности нервных клеток в различных, в том числе изменяющихся во времени, нейронных структурах представляет собой одну из центральных проблем. Трудность этой проблемы связана в первую очередь с тем, что колебания мембранного потенциала отдельной нервной клетки подобны сложным колебаниям релаксационного генератора.
При проведении анализа коллективного поведения нейроподобных систем немаловажную роль играет выбор модели математического описания поведения изолированных нервных клеток. На этом уровне исследования значительный интерес вызывает изучение возможных динамических режимов, возникающих в результате воздействия на систему различного рода возмущений. Согласно данным различных экспериментов, в нервной системе обработка сигналов происходит в постоянно флуктуирующей окружающей среде. При этом роль флуктуаций в процессах детектирования, кодирования, а также дальнейшей передачи информации по нейронной сети может быть существенной. В результате, в последнее время активное развитие получило направление, связанное с изучением особенностей влияния шумов на генерацию импульсов нервными клетками при наличии некоторого информационного сигнала. В частности, в научной литературе опубликован целый ряд работ, в которых в качестве информационного сигнала рассматривалось слабое (подпороговое) периодическое воздействие. Многие системы в этом случае демонстрируют явление стохаотического резонанса, проявляющееся в типичной структуре распределения межимпульсных интервалов (B.C. Анищенко, А. Нейман, P. Hanggi, F. Moss, К. Wiesenfeld и др.). Возникающая при этом корреляция между последовательностями генерируемых импульсов и внешним воздействием наблюдалась во многих экспериментах. При исследовании особенностей воздействия на систему апериодических сигналов было обнаружено подобное явление, получившее впоследствии название апериодического стохастического резонанса (J.J. Collins, Т.Т. Imhoff и др.). Эти резонансные эффекты выявляют важность шумового воздействия в динамике нелинейных систем. В то же время, при рассмотрении поведения одиночного нейрона, влияние шумового поля на генерацию импульсов в условиях наложения надпорогового сигнала в научной литературе изучено слабо.
При исследовании коллективной динамики ансамблей в последнее время происходит смещение акцентов в сторону рассмотрения сетей с большим числом элементов и различными конфигурациями связей. Это вызвано появлением целого ряда проблем, возникающих при формировании и самоорганизации многоэлементных сетей. К ним, в частности, относятся задача оптимального использования ресурса связи, обеспечивающего синхронизацию, и задача адаптивного управления сложными сетевыми колебательными системами.
Одной из главных задач динамики таких сетей служит задача о локальной и глобальной устойчивости режима синхронизации элементов сети, определяемой характером колебаний изолированного элемента, числом элементов в сети, силой и конфигурацией связей. Эта проблема интенсивно изучалась как для ансамблей периодических динамических систем, так и для сетей хаотических осцилляторов. Наиболее общий подход к исследованию локальной синхронизации-линейно связанных хаотических систем был предложен в 1998 году авторами L.M. Ресога и T.L. Carroll1. Существует целый ряд аналогичных подходов к исследованию синхронизации, позволяющих получить хорошую оценку для порогов синхронизации (B.C. Афраймович, Н.Н. Веричев, А.Ю. Погромский, Н.Ф. Рульков, М.М. Сущик, P. Ashwin, L.O. Chua, L. Kocarev, C.W. Wu и др.). Однако, использование таких подходов сопряжено с рядом трудностей, возникающих, в decora, L.M. Master stability functions for synchronized coupled limit-cycle and chaotic systems / L.M. Pecora, T.L. Carroll // Phys. Rev. Lett. - 1998. - Vol. 80. - P. 2109-2112. частности, при вычислении собственных значений матрицы связи, аналитический вывод которых не всегда возможен для ансамблей со сложной конфигурацией. Более того, в сетях с изменяющимися во времени коэффициентами связи использование таких методов невозможно.
Недавно в работе В.Н. Белых, И.В. Белых, М. Hasler2 для изучения вопросов глобальной синхронизации был предложен новый подход, в основе которого лежит метод покрытия цепями графа связи. Этот подход, сочетая в себе метод функций Ляпунова и теорию графов, позволяет получить условия на коэффициенты связи, гарантирующие установление глобальной синхронизации в сетях произвольной, в том числе сложной регулярной или изменяющейся во времени, структуры. Исследование таких сетей в настоящее время является одной из наиболее актуальных задач нелинейной динамики, имеющей приложения в радиофизике, радиоэлектронике, биофизике, а также в других областях знаний.
Цели диссертационной работы. В соответствие с приведенным обзором актуальных проблем, возникающих при изучении нейродинамиче-ских систем, были сформулированы цели настоящей работы:
- Изучение бифуркационных механизмов генерации сложных регулярных и хаотических колебаний в системах нейродинамического типа.
- Исследование роли аддитивных шумов при формировании реакции мембранного потенциала одиночной нервной клетки, подверженной надпороговому периодическому воздействию. Получение условий минимизации негативного влияния флуктуаций на процесс генерации электрических импульсов.
- Развитие теории устойчивости глобальной синхронизации и использование ее в приложении к сетям хаотических нейродинамических систем с релаксационным типом колебаний. Изучение влияния топологии связи на характер зависимости порогов синхронизации от числа входящих в ансамбль осцилляторов, а также исследование влияния случайных полей на установление режима синхронной генерации.
2Belykh, V.N. Connection graph stability method for synchronized coupled chaotic systems / V.N. Belykh, I.V. Belykh, M. Hasler // Physica D. - 2004. - Vol. 195 - P. 159-187.
Методы исследований и достоверность научных результатов.
При решении поставленных задач использовались методы статистической радиофизики, методы качественной теории колебаний и теории бифуркаций динамических систем, а также методы численного моделирования. Достоверность результатов подтверждается их непротиворечивостью экспериментальным данным и численным расчетам, известным из литературы; воспроизводимостью результатов при рассмотрении различных математических моделей, в отдельных случаях строгими доказательствами, а также согласованием полученных теоретических оценок с результатами численного моделирования.
Научная новизна работы заключается в следующем:
1. На основе современных подходов теории бифуркаций динамических систем показаны основные механизмы генерации сложных колебаний в виде пачек импульсов (беретов эллиптического типа).
2. В рамках рассмотрения систем пейродинамического типа исследована роль аддитивных шумов при формировании реакции мембранного потенциала на регулярные сигналы. Обнаружено явление подавления шума, позволяющее повысить надежность передачи внешнего надпорогового сигнала в определенном частотном диапазоне. При этом негативная роль шума, выражающаяся в нарушении регулярности следования импульсов на выходе системы, существенно уменьшается.
3. Для сетей различных структур проведен анализ устойчивости режима полной синхронизации. Изучены особенности влияния конфигурации связей на характер зависимости порогов синхронизации от числа входящих в ансамбль осцилляторов. Получены условия, позволяющие контролировать сохранение полной синхронизации при увеличении числа элементов в сетях заданной структуры.
4. Впервые в рамках метода покрытия цепями графа связи проведен анализ особенностей установления режима полной синхронизации в сетях, структура которых изменяется во времени.
5. Исследованы особенности влияния случайных полей, описываемых гауссовым случайным процессом, на установление режима синхронной генерации в сетях различных структур. На основе полученных результатов предложено обобщение метода покрытия цепями графа связи, позволяющее получить теоретические оценки порогов синхронизации, учитывающие влияние флуктуаций.
Практическая значимость. В работе проводится изучение механизмов генерации сложных регулярных и хаотических колебаний в индивидуальных системах, а также особенностей коллективного поведения элементов с такой сложной динамикой. Исследуется роль аддитивных шумов при формировании электрических импульсов в одиночном осцилляторе, а также синхронного поведения элементов в различных сетях. В работе даны ответы на ряд общих вопросов теории нелинейных динамических систем, теории хаотической синхронизации. Полученные в диссертации результаты могут быть использованы в различных приложениях, касающихся свойств устойчивости генерации колебаний в нелинейных системах. Развиваемые методы могут найти применение при исследовании поведения в сетях, состоящих из большого числа хаотических осцилляторов различной природы.
Основные положения, выносимые на защиту.
1. Флуктуации замедляют скорость реакции нейродинамической системы на информационный сигнал, приводя к задержке возникновения генерации (эффект задержки переключения состояния системы из-за шума). При этом длительность задержки существенно зависит от источника шумового воздействия.
2. Негативная роль шумов при генерации нейродинамической системой электрических импульсов в ответ на надпороговый периодический сигнал может быть существенно понижена в результате оптимального выбора параметров сигнала. В этой области параметров надежность передачи информации заметно повышается.
3. Условия устойчивости режима полной синхронизации существенно зависят от структуры рассматриваемого ансамбля. Получаемые в рамках метода покрытия цепями графа связи теоретические оценки порогов синхронизации позволяют эффективно поддерживать синхронное поведение элементов не только в сетях определенной структуры, но и в сетях, которым соответствуют расширяющиеся во времени графы связи.
Личный вклад автора. В совместных работах автору принадлежит выполнение численного моделирования, участие в постановке задачи, обсуждении и интерпретации результатов. Основные результаты теоретического и численного исследования получены лично автором.
Апробация результатов работы. Основные результаты диссертационной работы докладывались на международных научных конференциях "Periodic Control Systems" (PSYCO'07, Санкт-Петербург, Россия, 2007), "Synchronization in Complex Networks" (Leuven, Belgium, 2006), "Constructive Role of Noise in Complex Systems" (CRNCS'06, Dresden, Germany, 2006), "Critical Phenomena and Diffusion in Complex Systems" (CPDCS'06, Нижний Новгород, Россия, 2006), "Fluctuations and Noise in Biological, Biophysical, and Biomedical Systems" (SPIE'04, Maspalomas, Spain, 2004 и SPIE'05, Austin, Texas USA, 2005), 5th International Conference on Biological Physics (ICBP'04, Goteborg, Sweden, 2004), "A Tool to Examine Biological Function and Predict Drug Action" (Copenhagen, Denmark, 2002), "Progress in Nonlinear Science" (Нижний Новгород, Россия, 2001), а также на конференциях молодых ученых "Нелинейные волновые процессы" (Нижний Новгород, 2004, 2006, 2008), "Научной конференции по радиофизике" (Нижний Новгород, 2003, 2004), "Нижегородской сессии молодых ученых (естественно-научные дисциплины)" (Нижний Новгород, 2003 - 2006), "Нижегородской сессии молодых ученых (математика)" (Нижний Новгород, 2006), научно-методической конференции профессорско-преподавательского состава ВГАВТ (Нижний Новгород, 2005, 2007).
Результаты исследований обсуждались на научных семинарах кафедры математики ВГАВТ, кафедры теории колебаний и автоматического регулирования ННГУ им. Н.И. Лобачевского, физического факультета Датского технического университета, факультета радиоэлектроники Католического университета, Левен, Бельгия.
По теме диссертации опубликовано 19 научных работ, включая 8 статей в научных журналах, 6 статей в сборниках трудов научных конференций, 5 тезисов докладов.
Структура и объем работы. Диссертационная работа состоит из введения, трех глав, заключения и списка цитируемой литературы. Общий объем работы - 150 страниц, включая 50 рисунков и список литературы из 128 наименований на 13 страницах.
Похожие диссертационные работы по специальности «Радиофизика», 01.04.03 шифр ВАК
Механизмы синхронизации непериодических колебательных процессов в системах взаимодействующих осцилляторов в режимах мультистабильности2000 год, доктор физико-математических наук Постнов, Дмитрий Энгелевич
Синхронизация хаотических автоколебаний в присутствии шумов в эксперименте с радиофизическими генераторами и нейронными ансамблями головного мозга и диагностика осцилляторных паттернов2011 год, кандидат физико-математических наук Овчинников, Алексей Александрович
Хаотическая синхронизация в системах цифровых осцилляторов2002 год, кандидат физико-математических наук Шиманский, Владислав Эдуардович
Полная и частичная синхронизация связанных динамических систем с хаотическими аттракторами1999 год, кандидат физико-математических наук Белых, Игорь Владимирович
Мультистабильность синхронных режимов в осцилляторных ансамблях2010 год, кандидат физико-математических наук Крюков, Алексей Константинович
Заключение диссертации по теме «Радиофизика», Панкратова, Евгения Валерьевна
3.7 Выводы
В данной главе исследована полная синхронизация в различных сетях диффузионно связанных нейродинамических систем, демонстрирующих хаотическое поведение. Анализ глобальной устойчивости режима полной синхронизации в таких ансамблях проведен в рамках метода покрытия цепями графа связи. Полученные результаты позволяют сделать вывод о том, что структура сети существенно влияет на пороги полной синхронизации. В частности, показано, что примером нерациональной конфигурации служит цепочка последовательно связанных элементов, поскольку увеличение числа элементов в ней приводит к квадратичному росту порога синхронизации. С другой стороны, организация ансамбля, в котором все элементы связаны по принципу "каждый с каждым" (здесь для установления режима синхронизации достаточно малых сил связи, г ~ 1/га), чрезвычайно трудоемка в силу необходимости реализации огромного числа связей в такой сети [п(п — 1)/2]. В результате возникает задача об оптимально подобранной структуре сети, в которой режим полной синхронизации устанавливается при небольшом количестве связей достаточно малой силы. Так, например, в ансамбле с конфигурацией типа "звезда" при линейном росте числа связей (п — 1) для достаточно больших п порог синхронизации перестает зависеть от числа элементов в сети [е ~ (2 — 3/п)]. Но стоит только соединить две "звезды", добавив всего одну связь, как для установления синхронного движения элементов в полученной сети требуется сила связи, пропорциональная полному числу осцилляторов. Так, для "звезд", соединенных центральными узлами, £ ~ (Зп/4 — 1), нецентральными - £ ~ (5п/4 — 3). Отдаление же "звезд" друг от друга в результате их соединения посредством цепочки элементов приводит к квадратичному росту порога синхронизации.
Проведенный анализ глобальной устойчивости полной синхронизации в сетях, содержащих структуры типа "звезда", показал, что порог синхронизации всегда больше в случае симметричной конфигурации сети, когда число элементов в "звездах" одинаково. В результате исследования различных сценариев развития такой сети указан сценарий, требующий минимальных затрат ресурса связи.
Проведено обобщение метода покрытия цепями графа связи на случай, когда синхронизация должна установиться в условиях наложения внешнего случайного поля. Для ансамблей, рассмотренных в главе, исследованы особенности влияния случайных полей, описываемых белым гауссовым шумом, на изменение порогов синхронизации. Показано, что достаточные для установления режима синхронного поведения значения сил связей, полученные в результате численного моделирования, проведенного для моделей ФитцХью-Ринцеля и Ходжкина-Хаксли, хорошо согласуются с оценками, полученными в рамках метода покрытия цепями графа связи. При этом очевидно, что достаточные условия полной синхронизации, полученные в рамках используемого подхода могут быть применены не только в контексте нейродинамических систем, но и в различных приложениях, где проблема контроля синхронного поведения подсистем является актуальной.
Заключение
В заключение сформулируем основные результаты, приведенные в данной диссертационной работе:
1. Исследована роль аддитивных шумов при формировании реакции мембранного потенциала на регулярные сигналы. Обнаружен эффект задержки переключения состояния системы, заключающийся в том, что увеличение интенсивности шума приводит к увеличению времени, необходимого для возникновения вынужденных колебаний.
2. Обнаружено явление подавления шума, позволяющее' повысить надежность передачи внешнего надпорогового сигнала в определенном частотном диапазоне. При этом негативная роль шума, выражающаяся в нарушении регулярности следования импульсов на выходе системы, существенно уменьшается.
3. Обнаружена область частот сигнала, в которой влияние шума носит позитивный характер. В этом диапазоне частот увеличение интенсивности шумового воздействия приводит к установлению более упорядоченной генерации импульсов, частота следования которых на выходе системы приближается к частоте внешнего периодического сигнала. Исследованы особенности, связанные с шириной полосы спектра шума.
4. В режиме хаотической генерации изучены особенности взаимодействия нервных клеток в сетях, построенных на базе элементов Ходжкина-Хаксли и ФитцХью-Ринцеля. В рамках метода покрытия цепями графа связи исследованы различные структуры ансамблей. Изучено влияние топологии связи на характер зависимости порогов синхронизации от числа входящих в ансамбль осцилляторов. Доказаны утверждения, позволяющие получить полное распределение пороговых значений коэффициентов связи, достаточных для установления режима синхронизма элементов в рассматриваемых сетях.
5. Исследованы особенности влияния случайных полей, описываемых белым гауссовым шумом, на установление режима синхронной генерации в сетях различных структур. Получены теоретические оценки порогов синхронизации, учитывающие влияние флуктуаций.
Благодарности
Работа выполнена на кафедре математики Волжской государственной академии водного транспорта. Автор диссертации выражает искреннюю благодарность зав. кафедры математики ВГАВТ, заслуженному деятелю науки РФ, д.ф.-м.н., профессору Владимиру Николаевичу Белых, без научного руководства и внимания которого эта работа была бы невозможна. Выражаю признательность д.ф.-м.н., профессору Виктору Борисовичу Казанцеву и к.ф.-м.н., доценту Андрею Владимировичу Половинкину за ценные комментарии и полезные советы.
Отдельные слова благодарности хочу также выразить коллективам кафедры математики Волжской государственной академии водного транспорта и кафедры теории колебаний и автоматического регулирования Нижегородского государственного университета им. Н.И. Лобачевского.
Работа выполнялась в рамках российских и международных проектов РФФИ (проекты 03-02-17543, 05-01-00509, 05-02-19815-МФ, 07-02-01404, 047-017-018-NWO), и при финансовой поддержке фонда "Династия".
Список литературы диссертационного исследования кандидат физико-математических наук Панкратова, Евгения Валерьевна, 2008 год
1. Kandel, E.R. Principles of Neural Science / E.R. Kandel, J.H. Schwartz, T.M. Jessell. - Norwalk: Appleton and Lange, 1991.
2. Keener, J. Mathematical Physiology / J. Keener, J. Sneyd. Berlin: Springer Verlag, 1998.
3. Ходжкин, А. Нервный импульс / А. Ходжкин. Москва: Мир, 1965.
4. Оке, С. Основы нейрофизиологии / С. Оке. Москва: Мир, 1969.
5. Куффлер, С. От нейрона к мозгу / С. Куффлер, Дж. Николе. Москва: Мир, 1979.
6. Блум, Ф. Мозг, разум и поведение / Ф. Блум, А. Лейзерсон, J1. Хофстедтер. Москва: Мир, 1988.
7. Рубин, А.Б. Биофизика / А.Б. Рубин. Москва: Книжный дом, "Университет", 1999.
8. Абарбанель, Г.Д.И. Синхронизация в нейронных ансамблях / Г.Д.И. Абарбапель, М.И. Рабинович, А. Сельверстон, М.В. Баженов, Р. Ху-эрта, М.М. Сущик, JI.JI. Рубчинский. // Успехи физических наук. -1996. Т.166, Ш. - С. 363-390.
9. Hodgkin, A.L. A quantitative description of membrane current and its application conduction and excitation in nerve / A.L. Hodgkin, A.F. Huxley // J. Physiology. 1952. - Vol. 117 - P. 500-544.
10. Fitzhugh, R. Impulses and physiological states in theoretical models of nerve membrane / R. Fitzhugh // Biophys. J. 1961. - Vol. 1. - P. 445466.
11. Nagumo, J.S. An active pulse transmission line stimulating nerve axon / J.S. Nagumo, S. Arimoto, S. Yoshizawa // Proc. IRE. 1962. - Vol. 50. -P. 2061-2071.
12. Джордж, M. Чудеса магнитотерапии / M. Джордж //В мире науки. 2003. - Ш2. - С. 39-45.
13. Stacey, W.C. Stochastic resonance improves signal detection in hippocampal CA1 neurons / W.C. Stacey, D.M. Durand // J. Neurophysiol. 2000. - Vol. 83. - P. 1394-1402.
14. Stacey, W.C. Synaptic noise improves detection of subthreshold signals in hippocampal CA1 neurons / W.C. Stacey, D.M. Durand // J. Neurophysiol. 2001. - Vol. 86. - P. 1104-1112.
15. Levin, J.E. Broadband neural encoding in the cricket cercal sensory system enhanced by stochastic resonance / J.E. Levin, J.P. Miller // Nature.1996. Vol. 380. - P. 165-168.
16. Fellous, J.-M. Frequency dependence of spike timing reliability in cortical pyramidal cells and interneurons / J.-M. Fellous, A.R. Houweling, R.H. Modi, R.P.N. Rao, P.H.E. Tiesinga, T.J. Sejnowski // J. Neurophysiol. 2001. - Vol. 85. - P. 1782-1787.
17. Hunter, J.D. Resonance effect for neural spike time reliability / J.D. Hunter, J.G. Milton, P.J. Thomas, J.D. Cowan // J. Neurophysiol. -1998. Vol. 80. - P. 1427-1438.
18. Hunter, J.D. Amplitude and frequency dependence of spike timing implications for dynamic regulation / J.D. Hunter, J.G. Milton // J. Neurophysiol. 2003. - Vol. 90. - P. 387-394.
19. Mainen, Z.F. Reliability of spike timing in neocortical neurons / Z.F. Mainen, T.J. Sejnowski // Science. 1995. - Vol. 268. - P. 1503-1506.
20. Juusola, M. The efficiency of sensory information coding by mechanoreceptor neurons / M. Juusola, A.S. French // Neuron.1997. Vol. 18. -P. 959-968.
21. Yu, Y. Resonance-enhanced signal detection and transduction in the Hodgkin-Huxley neuronal systems/ Y. Yu, W. Wang, J. Wang, F. Liu // Phys. Rev. E. 2001. - Vol. 63. - P. 021907-1-021907-12.
22. Stocks, N.G. Suprathreshold stochastic resonance in multilevel threshold systems / N.G. Stocks // Phys. Rev. Lett. 2000. - Vol. 84, №11. - P. 2310-2313.
23. Mosekilde, E. Noise-activated and noise-induced rhythms in neural systems / E. Mosekilde, O.V. Sosnovtseva, D. Postnov, H.A. Braun, M.T. Huber // Nonl. Studies. 2004. - Vol. 11, №3. - P. 449-467.
24. Stocks, N.G. Information transmission in parallel threshold arrays: Suprathreshold stochastic resonance / N.G. Stocks // Phys. Rev. E. -2001. Vol. 63, №4. - P. 041114-1-041114-9.
25. Smith, G.D. Fourier analysis of sinusoidally driven thalamocortical relay neurons and a minimal integrate-and-fire-or-burst model / G.D. Smith, C.L. Cox, S.M. Sherman, J. Rinzel // J. Neurophysiol. 2000. - Vol. 83. -P. 588-610.
26. Pei, X. Noise-madiated spike timing precision from aperiodic stimuli and an array of Hodgkin-Huxley-type neurons / X. Pei, L. Wilkens, F. Moss // Phys. Rev. Lett. 1996. - Vol. 77, №2. - P. 4679-4682.
27. Gutkin, B. Spike generating dynamics and the conditions for spike-time precision in cortical neurons / B. Gutkin, G.B. Ermentrout, M. Rudolph // J. Сотр. Neuroscience. 2003. - Vol. 15. P. 91-103.
28. Coombes, S. Mode locking in a periodically forced integrate-and-fire-or-burst neuron model / S. Coombes, M.R. Owen, G.D. Smith // Phys. Rev. E. 2001. Vol. 64, №4. - P. 041914-1-041914-12.
29. Scott, A.C. The electrophysics of a nerve fiber / A.C. Scott. // Rev. Mod. Phys. 1975. - Vol. 47, №. - P. 487-528.
30. Liu, F. Dynamics of the noisy neural network / F. Liu, W. Wang, X. Yao // Biol. Cybern. 1997. - Vol. 77. - P. 217-224.
31. Swain, P.S. Noise in genetic and neural networks / P.S. Swain, A. Longtin // Chaos. 2006. - Vol. 16, №2. - P. 026101-1-026101-6.
32. Lee, S. Coherence resonance in a Hodgkin-Huxley neuron / S. Lee, A. Neiman, S. Kim // Phys. Rev. E. 1998. - Vol. 57, №3. - P. 32923297.
33. Pikovsky, A.S. Coherence resonance in a noise-driven excitable system / A.S. Pikovsky, J. Kurths // Phys. Rev. Lett. 1997 - Vol. 78, №5. - P. 775-778.
34. Postnov, D.E. Experimental observation of coherence resonance in cascaded excitable systems / D.E. Postnov, S.K. Han, T.G. Yim, O.V. Sosnovtseva // Phys. Rev. E. 1999. - Vol. 59, №4. - P. 3791-3794.
35. Kiss, I.Z. Experiments on coherence resonance: Noisy precursors to Hopf bifurcations / I.Z. Kiss, J.L. Hudson, G.J.E. Santos, P. Parmananda // Phys. Rev. E. 2003. - Vol. 67. - P. 035201-1-035201-4.
36. Gammaitoni, L. Stochastic resonance / L. Gammaitoni, P. Hanggi, P. Jung, F. Marchesoni. // Rev. Mod. Phys. 1998. - Vol. 70, №1. - P. 223287.
37. Анищенко, B.C. Стохастический резонанс как индуцированный шумом эффект увеличения степени порядка / B.C. Анищенко, А. Б. Нейман, Ф. Мосс, Л. Шиманский-Гайер. // Успехи Физических Наук. -1999. Т. 169, Ж. - Р. 7-38.
38. Chik, D.T.W. Stochastic resonance in a Hodgkin-Huxley neuron in the absence of external noise / D.T.W. Chik, Y. Wang, Z.D. Wang // Phys. Rev. E. 2001. - Vol. 64, №2. - P. 021913-1-021913-6.
39. Longtin, A. Stochastic resonance in neuron models / A. Longtin // J. Stat. Phys. 1993. - Vol. 70. - P. 309-327.
40. Liu, F. Signal-to-noise ratio gain in neuronal systems / F. Liu, Y. Yu, W. Wang // Phys. Rev. E 2001. - Vol. 63, №5. - P. 051912-1-051912-4.
41. Wiesenfeld, К. Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs / K. Wiesenfeld, F. Moss // Nature. 1995. -Vol. 373. - P. 33-36.
42. Greenwood, P.E. Stochastic resonance enhances the electrosensory information available to paddlefish for prey capture / P.E. Greenwood, L.M. Ward, D.F. Russell, A. Neiman, F. Moss // Phys. Rev. Lett. 2000.- Vol. 84. P. 4773-4776.
43. Liu, F. Effects of correlated and independent noise on signal processing in neuronal systems / F. Liu, B. Hu, W. Wang // Phys. Rev. E. 2001. -Vol. 63, №3. - P. 031907-1-031907-9.
44. Sakumura, Y. Stochastic resonance and coincidence detection in single neurons / Y. Sakumura, K. Aihara // Neural Processing Letters. 2002.- Vol. 16. P. 235-242.
45. Wang, W. Firing and signal transduction associated with an intrinsic oscillation in neuronal systems / W. Wang, Y. Wang, Z.D. Wang // Phys. Rev. E. 1998. - Vol. 57, №3. - P. 2527-2530.
46. Chialvo, D.R. Stochastic resonance in models of neuronal ensembles / D.R. Chialvo, A. Longtin, J. Muller-Gerking // Phys. Rev. E. 1997. -Vol. 55, №2. - P. 1798-1808.
47. Massanes, S.R. Classical-like resonance induced by noise in a FitzHugh-Nagumo neuron model / S.R. Massanes, C.J.P. Vicente // Int. J. Bifurcation and Chaos. 1999.- Vol. 9, №12. - P. 2295-2303.
48. Massanes, S.R. Nonadiabatic resonances in a noisy FitzHugh-Nagumo neuron model / S.R. Massanes, C.J.P. Vicente // Phys. Rev. E. 1999. -Vol. 59, №4. - P. 4490-4497.
49. Longtin, A. Stochastic and deterministic resonances for excitable systems / A. Longtin, D.R. Chialvo // Phys. Rev. Lett. 1998. - Vol. 81, №18. -P. 4012-4015.
50. Collins, J.J. Aperiodic stochastic resonance in excitable systems / J.J. Collins, C.C. Chow, T.T. Imhoff // Phys. Rev. E. 1995. - Vol. 52. -P. 3321-3324.
51. Collins, J.J. Aperiodic stochastic resonance / J.J. Collins, C.C. Chow, A.C. Capela, T.T. Imhoff // Phys. Rev. E. 1996. - Vol. 54, №5. - P. 5575-5584.
52. Longtin, A. Synchronization of the stochastic FitzHugh-Nagumo equations to periodic forcing / A. Longtin // Nuovo Cimento D. 1995. - Vol. 17, №7. - P. 835-845.
53. Acebron, J.A. Noisy FitzHugh-Nagumo model: From single elements to globally coupled networks / J.A. Acebron, A.R. Bulsara, W.J. Rappel // Phys. Rev. E. 2004. - Vol. 69, №2. - P. 026202-1-026202-9.
54. Stocks, N.G. Generic noise-enhanced coding in neuronal arrays / N.G. Stocks, R. Mannella // Phys. Rev. E. 2001. - Vol. 64. - P. 0309021-030902-4.
55. Lindner, B. Analytical approach to the stochastic FitzHugh-Nagumo system and coherence resonance / B. Lindner, L. Schimansky-Geier // Phys. Rev. E. 1999. - Vol. 60, №6. - P. 7270-7276.
56. Makarov, V.A. Spiking behavior in a noise-driven system combining oscillatory and excitatory properties / V.A. Makarov, V.I. Nekorkin, M.G. Velarde // Phys. Rev. Lett. 2001. - Vol. 86, №15. - P. 3431-3434.
57. Lindner, B. Effects of noise in excitable systems / B. Lindner, J. Garcia-Ojalvo, A. Neiman, L. Schimansky-Geier // Phys. Rep. 2004. - Vol. 392.- P. 321-424.
58. Wiesenfeld, K. Stochastic resonance on a circle / K. Wiesenfeld, D. Pierson, E. Pantazelou, C. Dames, F. Moss // Phys. Rev. Lett. 1994.- Vol. 72, №14. P. 2125-2129.
59. Pei, X. The detection threshold, noise and stochastic resonance in the FitzHugh-Nagumo neuron model / X. Pei, K. Bachmann, F. Moss // Phys. Lett. A. 1995. - Vol. 206. - P. 61-65.
60. Press, W. Numerical Recipes in С / W. Press, B. Flannery, S. Teukolsky, and W. Vetterling Cambridge: Cambridge University Press, 1993.
61. DeWeese, M. Information flow in sensory neurons / M. DeWeese, W. Bialek // Nuovo Cimento D. 1995. - Vol. 17, №7. - P. 733-742.
62. Bulsara, A.R. Threshold detection of wideband signals: A noise-induced maximum in the mutual information / A.R. Bulsara, A. Zador // Phys. Rev. E. -1996. Vol. 54, №3. - P. 2185-2188.
63. Huber, M.T. Neuromodulatory actions of noise on sub- and suprathreshold responses of intrinsically oscillatory neurons / M.T. Huber, H.A. Braun // Proceedings of SPIE. 2003. - Vol. 5110. - P. 332-339.
64. Devoret, M.H. Resonant activation from the zero-voltage state of a current-biased Josephson junction / M.H. Devoret, J.M. Martinis, D. Esteve, J. Clarke // Phys. Rev. Lett. 1984. - Vol. 53. - P. 1260-1263.
65. Jung, P. Periodically driven stochastic systems / P. Jung // Physics Reports. 1993. - Vol. 234. - P. 175-295.
66. Doering, C.R. Resonant activation over a fluctuating barrier / C.R. Doering, J. Godoua // Phys. Rev. Lett. 1992. - Vol. 69, №16. - P. 23182321.
67. Boguna, M. Properties of resonant activation phenomena / M. Boguna, J.M. Porra, J. Masoliver, K. Lindenberg // Phys. Rev. E. 1998. - Vol. 57. - P. 3990-4002.
68. Mantegna, R.N. Experimental investigation of resonant activation / R.N. Mantegna, B. Spagnolo // Phys. Rev. Lett. 2000. - Vol. 84, №14. -P. 3025-3028.
69. Pankratov, A.L. Resonant activation in overdamped systems with noise subjected to strong periodic driving / A.L. Pankratov, M. Salerno // Phys. Lett. A. 2000. - Vol. 273. - P. 162-166.
70. Malakhov, A.N. Decay of unstable equilibrium and nonequilibrium states with inverse probability current taken into account / A.N. Malakhov, N.V. Agudov // Phys. Rev. E. 1999. - Vol. 60. - P. 6333-6342.
71. Malakhov, A.N. Evolution times of probability distributions and averages -Exact solutions of the Kramers problem / A.N. Malakhov, A.L. Pankratov // Adv. Chem. Phys. 2002. - Vol. 121. - P. 357-438.
72. Mantegna, R.N. Noise Enhanced Stability in an Unstable System / R.N. Mantegna, B. Spagnolo // Phys. Rev. Lett. 1996. - Vol. 76. - P. 563-566.
73. Stocks, N.G. Field-Induced Stabilization of Activation Processes / N.G. Stocks, R. Manella. // Phys. Rev. Lett. 1998. - Vol. 80, №22. - P. 48354839.
74. Agudov, N.V. Noise-enhanced stability of periodically driven metastable states / N.V. Agudov, B. Spagnolo // Phys. Rev. E. 2001. - Vol. 64. - P. 035102-1-035102-4.
75. Dubkov, A.A. Noise-enhanced stability in fluctuating metastable states /
76. A.A. Dubkov, N.V. Agudov, B. Spagnolo // Phys. Rev. E. 2004. - Vol. 69. - P. 061103-1-061103-7.
77. Pankratova, E.V. Resonant activation in a stochastic Hodgkin-Huxley model: Interplay between noise and suprathreshold driving effects / E.V. Pankratova, A.V. Polovinkin, E. Mosekilde. // European Physical Journal
78. B. 2005. - Vol. 45, №3. - P. 391-397.
79. Huber, M.T. Stimulus sensitivity and neuromodulatory properties of noisy intrinsic neuronal oscillators / M.T. Huber, J.C. Krieg, M. Dewald, K. Voigt, H.A. Braun // BioSystems. 1998. - Vol. 48. - P. 95-105.
80. Braun, H.A. Computer simulations of neuronal signal transduction: The role of the nonlinear dynamics and noise / H.A. Braun, M.T. Huber, M. Dewald, K. Schafer, K. Voigt // Int. J. of Bif. and Chaos. 1998. - Vol. 8, №5. - P. 881-889.
81. Somjen, G. Neurophysiology the Essentials / G. Somjen - Baltimore: Williams and Wilkins, 1983.
82. Shorten, P.R. A Hodgkin-Huxley model exhibiting bursting oscillations / P.R. Shorten, D.J. Wall // Bull. Math. Biol. 2000. - Vol. 62, Ш. - P. 695-715.
83. Hindmarsh, J.L. A model of neuronal bursting using three coupled first order differential equations / J.L. Hindmarsh, R.M. Rose // Proc. Roy. Soc. London B. 1984. - Vol. 221. - P. 87-102.
84. Morris, C. Voltage oscillations in the barnacle giant muscle fiber / C. Morris, H. Lecar // Biophys. J. 1981. - Vol. 35. - P. 193-213.
85. Del Negro, C.A. Evidence for novel bursting mechanism in rodent trigeminal neurons / C.A. Del Negro, C.-F. Hsiao, S.H. Chandler, A. Garfmkel // Biophys. J. 1998. - Vol. 75. - P. 174-182.
86. Belykh, V.N. Homoclinic bifurcations leading to the emergence of bursting oscillations in cell models / V.N. Belykh, I.V. Belykh, M. Colding-Jorgensen, E. Mosekilde // Eur. Phys. J. E 2000. - Vol. 3. - P. 205-219.
87. Izhikevich, E. Neural excitability, spiking and bursting / E. Izhikevich // Int. J. Bif. and Chaos. 2000. - Vol. 10. - P. 1171-1266.
88. Izhikevich, E. Synchronization of elliptic bursters / E. Izhikevich // SIAM Review. 2001. - Vol. 43. - P. 315-344.
89. Doi, S. Complex nonlinear dynamics of the Hodgkin-Huxley equations induced by time scale changes / S. Doi, S. Nabetani, S. Kumagai // Biol. Cybern. 2001. - Vol. 85. - P. 51-64.
90. Matsumoto, G. Chaos and phase locking in normal squid axons / G. Matsumoto, K. Aihara, Y. Hanyu, N. Takahashi, S. Yoshizawa, J. Nagumo // Phys. Lett. A. 1987. - Vol. 123, №. - P. 162-166.
91. Lee, S.-G. Parameter dependence of stochastic resonance in the stochastic Hodgkin-Huxley neuron / S.-G. Lee, S. Kim // Phys. Rev. E. 1999. -Vol. 60, m. - P. 826-830.
92. Pankratova, E.V. Role of the driving frequency in a randomly perturbed Hodgkin-Huxley neuron with suprathreshold forcing / E.V. Pankratova, V.N. Belykh, E. Mosekilde // Europ. Phys. J. B. 2006. - P. 00401-100401-9.
93. Parmananda, P. Resonant forcing of a silent Hodgkin-Huxley neuron / P. Parmananda, C.H. Mena, G. Baier // Phys. Rev. E. 2002. - Vol. 66. - P. 047202-1-047202-4.
94. Rylyakov, A.V. Pulse jitter and timing errors in RSFQ circuits /
95. A.V. Rylyakov, K.K. Likharev // IEEE Trans. Appl. Supercond. 1999.- Vol. 9 P. 3539-3544.
96. Huber, M.T. Effects of noise on different disease states of recurrent affective disorders / M.T. Huber, H.A. Braun, J.C. Krieg // Biol. Psychiatry. 2000. - Vol. 47. - P. 634-642.
97. Gardiner, C.W. Handbook of Stochastic methods / C.W. Gardiner. -Berlin: Springer-Verlag, 1985.
98. Баутин, H.H. Поведение динамических систем вблизи границ области устойчивости / Н.Н. Баутин. Москва: Наука, 1984.
99. Белых, В.Н. О периодическом движении специального вида в системе дифференциальных уравнений 3-го порядка с малым параметром /
100. B.Н. Белых, Ю.С. Чертков. // Межвузовский сборник научных трудов "Краевые задачи". Пермский политехнический институт, Пермь.- 1980. с. 120-123.
101. Swadlow, H.A. Monitoring the excitability of neocortical efferent neurons to direct activation by extracellular current pulses / H.A. Swadlow // J. Neurophysiol. 1992. - Vol. 68. - P. 605-619.
102. Izhikevich, E.M. Polychronization: Computation with spikes / E.M. Izhikevich // Neural Computation. 2006. - Vol. 18. - P. 245282.
103. Belykh, I. Synchronization of Bursting Neurons: What Matters in the Network Topology / I. Belykh, E. Lange, M. Hasler // Phys. Rev. Lett. -2005. Vol. 94. - P. 188101-1 - 188101-4.
104. Yoshioka, M. Cluster synchronization in an ensemble of neurons interacting through chemical synapses / M. Yoshioka // Phys. Rev. E- 2005. Vol. 71. - P. 061914-1 - 061914-9.
105. Zhou, C. Noise-induced synchronization and coherence resonance of a Hodgkin-Huxley model of thermally sensitive neurons / C. Zhou, J. Kurths // Chaos. 2003. - Vol. 13, №. - P. 401-409.
106. Boccaletti, S. The synchronization of chaotic systems / S. Boccaletti, J. Kurths, G. Osipov, D.L. Valladares, C.S. Zhou // Physics Reports. -2002. Vol. 366. - P. 1-101.
107. Пиковский, А., Розенблюм M., Курте Ю. Синхронизация. Фундаментальное нелинейное явление / А. Пиковский, М. Розенблюм, Ю. Курте. Москва: Техносфера, 2003.
108. Belykh, V.N. Synchronization and control in ensembles of periodic and chaotic neuronal elements with time dependent coupling / V.N. Belykh, E.V. Pankratova // Proceedings of 3rd IFAC Workshop "Periodic Control Systems"PSYCC)-07. 2007.
109. Belykh, I. Synchronization and graph topology / I.V. Belykh, M. Hasler, M. Lauret, H. Nijmeijer // Int. J. Bif. and Chaos. 2005. - Vol. 15, №11.- P. 3423-3433.
110. Koshiya, N. Neuronal pacemaker for breathing visualized in vitro / N. Koshiya, J.C. Smith // Nature. 1999. - Vol. 400. - P. 360-363.
111. Gray, C.M. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties / C.M. Gray, P. Konig, A.K. Engel, W. Singer // Nature. 1989. - Vol. 338. - P. 334-337.
112. Stopfer, M. Impaired odour descrimination on desynchronization of odour-encoding neural assemblies / M. Stopfer, S. Bhagavan, B.H. Smith, G. Laurent // Nature. 1997. - Vol. 390. - P. 70-74.
113. Steinmetz, P.N. Attention modulates synchronized neuronal firing in primate somatosensory cortex / P.N. Steinmetz, A. Roy, P.J. Fitzgerald, S.S Hsiao, K.O. Johnson, E. Niebur // Nature. 2000. - Vol. 404. - P. 187-190.
114. Freund, H.-J. Motor unit and muscle activity in voluntary motor control / H.-J. Freund // Physiol. Rev. 1983. - Vol. 63. - P. 387-436.
115. Engel, J. Epilepsy: A Comprehensive Textbook / J. Engel, T.A. Pedley // Philadelphia: Lippincott-Raven, 1975.
116. Belykh, V.N. Connection graph stability method for synchronized coupled chaotic systems / V.N. Belykh, I.V. Belykh, M. Hasler // Physica
117. D. 2004. - Vol. 195 - P. 159-187.
118. Pecora, L.M. Master stability functions for synchronized coupled limit-cycle and chaotic systems / L.M. Pecora, T.L. Carroll // Phys. Rev. Lett.- 1998. Vol. 80. - P. 2109-2112.
119. Pecora, L.M. Synchronization conditions and desynchronizing patterns in coupled limit-cycle and chaotic systems / L.M. Pecora // Phys. Rev.
120. E. 1998. - Vol. 58, №1. - P. 347-360.
121. Wu, C.W. On a conjecture regarding the synchronization in an array of linearly coupled dynamical systems / C.W. Wu, L.O. Chua // IEEE Trans. Circuits Syst. I. 1996. - Vol. 43. - P. 161-165.
122. Pogromsky, A.Yu. Cooperative oscillatory behavior of mutually coupled dynamical systems / A.Yu. Pogromsky, H. Nijmeijer // IEEE Trans. Circuits Syst. I. 2001. - Vol.48. - P. 152-162.
123. Rulkov, N.F. Robustess of synchronized chaotic oscillations / N.F. Rulkov, M.M. Sushchik // Int. J. Bif. and Chaos. 1997. - Vol. 7. - P. 625-631.
124. Ashwin, P. Bubbling of attractors and synchronization of chaotic oscillators / P. Ashwin, J. Buescu, I. Stewart // Phys. Lett. A. 1994.- Vol. 193. P. 126-139.
125. Belykh, V.N. Blinking model and synchronization in small-world networks with a time-varying coupling / V.N. Belykh, I.V. Belykh, M. Hasler // Physica D. 2004. - Vol. 195. - P. 188-206.
126. Belykh, I.V. Synchronization in asymmetrically coupled networks with node balance / I.V. Belykh, V.N. Belykh, M. Hasler // Chaos. 2006. -Vol. 16, №. - P. 015102-1-015102-9.
127. Belykh, I.V. Generalized connection graph method for synchronization in asymmetrically networks / I.V. Belykh, V.N. Belykh, M. Hasler // Physica D. 2006. - Vol. 224. - P. 42-51.
128. Харари, Ф. Перечисление графов / Ф. Харари, Э. Палмер. Москва: Мир, 1977.
129. Rosenblum, M.G. From Phase to Lag Synchronization in Coupled Chaotic Oscillators / M.G. Rosenblum, A.S. Pikovsky, J. Kurths // Phys. Rev. Lett. 1997. - Vol. 78, №22. - P. 4193-4196.
130. Toral, R. Analytical and numerical studies of noise-induced synchronization of chaotic systems / R. Toral, C.R. Mirasso, E. Hernandez-Garcia, O. Piro // Chaos. 2001. - Vol. 11, №3. - P. 665-673.
131. Jensen, R.V. Synchronization of randomly driven nonlinear oscillators / R.V. Jensen // Phys. Rev. E. 1998. - Vol. 58, №6. - P. 6907-6910.
132. Список публикаций Е.В. Панкратовой
133. Pankratova, E.V. Suppression of noise in FitzHugh-Nagumo model driven by a strong periodic signal / E.V. Pankratova, A.V. Polovinkin, B. Spagnolo // Physics Letters A. 2005. - Vol. 344, №1. - P. 43-50.
134. Белых, В.Н. Хаотическая синхронизация в ансамблях связанных нейронов, моделируемых системой ФитцХью-Ринцеля / В.Н. Белых, Е.В. Панкратова. // Известия вузов. Радиофизика. 2006. - Т. 49, №11. -С. 1002-1014.
135. Панкратова, Е.В. Особенности перехода к режиму полной синхронизации в сетях элементов Ходжкина-Хаксли / Е.В. Панкратова, В.Н. Белых. // Известия вузов. Прикладная нелинейная динамика. 2008. - Т. 16, №2. - С. 3-19.
136. Pankratova, E.V. Resonant activation in a stochastic Hodgkin-Huxley model: Interplay between noise and suprathreshold driving effects / E.V. Pankratova, A.V. Polovinkin, E. Mosekilde. // European Physical Journal B. 2005. - Vol. 45, №3. - P. 391-397.
137. Pankratova, E.V. Role of the driving frequency in a randomly perturbed Hodgkin-Huxley neuron with supra- threshold forcing / E.V. Pankratova, V.N. Belykh, E. Mosekilde. // European Physical Journal B. 2006. - P. 00401-1-00401-9.
138. Pankratova, E.V. Noise suppression in a neuronal Hodgkin-Huxley model / E.V. Pankratova, A.V. Polovinkin, E. Mosekilde. //Modern Problemsof Statistical Physics. 2004. - Vol. 3. - P. 105-114.
139. Белых, B.H. Полная синхронизация в сети диффузионно связанных систем Моррис-Лекара / В.Н. Белых, Е.В. Панкратова. // Вестник ВГАВТ. Межвузовская серия "Моделирование и оптимизация сложных систем". 2007. - Вып. 20. - С. 24-34.
140. Belykh, V.N. Synchronization and control in ensembles of periodic and chaotic neuronal elements with time dependent coupling / V.N. Belykh, E.V. Pankratova. // Proceedings of the 3rd IFAC Workshop PSYCO'07, Saint Petersburg, Russia.
141. Панкратова, Е.В. Полная синхронизация в режиме хаотической генерации сети элементов ФитцХью-Ринцеля / Е.В. Панкратова. // Тезисы XI нижегородской сессии молодых ученых (естественнонаучные дисциплины). 2006. - С. 40-41.
142. Панкратова, Е.В. Регулярные и хаотические аттракторы в системе дифференциальных уравнений ФитцХью-Ринцеля / Е.В. Панкратова. // Научно-методическая конференция, посвященная 75-летию академии водного транспорта. 2005. - С. 88-91.
143. Pankratova, E.V. Influence of noise sources on FitzHugh-Nagumo model in the presence of a strong periodical driving / E.V. Pankratova, B. Spagnolo. // Proceedings of SPIE Int. Soc. Opt. Eng. 2005. - Vol. 5841. - P. 174-185.
144. Панкратова, Е.В. Подавление шума и эффект резонансной активации в модели Ходжкина-Хаксли / Е.В. Панкратова. // Тезисы IX нижегородской сессии молодых ученых (естественнонаучные дисциплины). -2004. С. 116-117.
145. Панкратова, Е.В. Подавление шума надпороговым периодическим сигналом при генерации отклика в модели ФитцХью-Нагумо / Е.В. Панкратова. // Труды 8-ой научной конференции по радиофизике. 2004. - С. 88-89.
146. Pankratova, E.V. Resonant activation in a single and coupled stochastic FitzHugh-Nagumo elements / E.V. Pankratova, A.V. Polovinkin, D.G. Luchinsky, P.V.E. McClintock. // Proceedings of SPIE Int. Soc. Opt. Eng. 2004. - Vol. 5467. - P. 192-201.
147. Pankratova, E.V. Noise Suppression by Means of Resonant Activation Effect in Stochastic Hodgkin-Huxley Model / E.V. Pankratova, A.V. Polovinkin, E. Mosekilde. // Abs. of the 5th International Conference on Biological Physics, ICBP. 2004. - P. B09-343.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.