Рождение дилептонов и очарованных частиц и эволюция ядерного вещества в столкновениях релятивистских тяжелых ионов тема диссертации и автореферата по ВАК РФ 01.04.23, доктор физико-математических наук Емельянов, Валерий Михайлович

  • Емельянов, Валерий Михайлович
  • доктор физико-математических наукдоктор физико-математических наук
  • 2001, Москва
  • Специальность ВАК РФ01.04.23
  • Количество страниц 208
Емельянов, Валерий Михайлович. Рождение дилептонов и очарованных частиц и эволюция ядерного вещества в столкновениях релятивистских тяжелых ионов: дис. доктор физико-математических наук: 01.04.23 - Физика высоких энергий. Москва. 2001. 208 с.

Оглавление диссертации доктор физико-математических наук Емельянов, Валерий Михайлович

Введение

СОДЕРЖАНИЕ

Глава 1. Пространственная зависимость партонныж структурных функций и начальные условия эволюции партонной системы.

1.1. Структурная функция ядра и эффекты экранирования.

1.2. Начальные условия эволюции партонной системы и рождение министруй в столкновениях тяжелых ядер.

1.3. Влияние экранирования на начальные условия эволюции партонной системы.

Глава 2. Корреляции между поперечной энергией и прицельным параметром.

2.1. Формирование поперечной энергии в столкновениях релятивистских ядер.

2.2. Распределения по поперечной энергии в столкновениях ядер на ускорителях RHIC и LHC.

Глава 3. Рождение тяжелых кварков, J/\|/ и Дрелл - Яновских пар в столкновениях релятивистских ядер.

3.1.Сечениерождения тяжелых кварков.

3.23ависимость сечения рождения тяжелых кварков от прицельного параметра.

3.3. Сечение рождения пар тяжелых кварков как функция поперечного импульса.

3.4. Рождение J/y/ и Дрелл - Яновских пар на ускорителях SPS, RHIC и LHC.

Глава 4. Дилептоны промежуточных масс и проблема термализации ядерного вещества в столкновениях релятивистских тяжелых ионов.

4.1. Испускание дилептонов неравновесной кварк - глюонной системой.

4.2. Спектр дилептонов из смешанной фазы кварк - глюонной плазмы.

4.3. Термализация ж ~мезонов и спектры дилептонных пар.

Глава 5. Проблема дилептонов малых масс и тормозное излучение пионов и кварков в столкновениях релятивистских ионов.

5.1. Тормозное излучение заряженных частиц.

5.2. Тормозное излучение к - мезонов.98 •

5.3. Тормозное излучение кварков.

5.4. Спектры дилептонов малых масс в нуклон - нуклонных и ядро — ядерных взаимодействиях.

Рекомендованный список диссертаций по специальности «Физика высоких энергий», 01.04.23 шифр ВАК

Введение диссертации (часть автореферата) на тему «Рождение дилептонов и очарованных частиц и эволюция ядерного вещества в столкновениях релятивистских тяжелых ионов»

1. В развитии квантовой хромодинамики за последние два десятка лет можно выделить два характерных этапа. Первый из них связан с изучением жестких процессов в КХД. Действительно, как известно, константа связи сильных взаимодействий а, убывает с ростом переданного квадрата 4- импульса | |.

Для I Q 1 » Л (Л КХД ~ 200 МэВ) константа связи аз « 1, и расчеты могут быть проведены в рамках теории возмущений. Такие вычисления процессов сильных взаимодействий многократно проводились, и результаты, как правило, подтверждали применимость теории возмущений КХД. Примером может служить экспериментальное наблюдение адронных струй с большими поперечными импульсами.

Однако сравнение количественных расчетов в КХД с экспериментальными данными зачастую затруднено из - за вынужденного феноменологического подхода к описанию мягких процессов. Действительно, наблюдаемые частицы - это не кварки, антикварки и глюоны КХД, а адроны, образующиеся при мягкой адронизации кварков и глюонов. Еще в начале 80-X годов стало очевидным, что теория возмущений КХД не описывает процессы сильных взаимодействий. Такие фундаментальные свойства сильных взаимодействий, как конфайнмент, нарушение киральной инвариантности, иерархия масс адронов связаны с непертурбативными флуктуациями КХД. Среди методов непертурбативной КХД, интенсивно развиваемых последние 20 лет, следует упомянуть решеточные калибровочные теории, правила сумм КХД и инстантоны. Применение этих методов показало, что «истинный» вакуум КХД отличается от вакуума теории возмущений КХД. Как изменяются свойства вакуума КХД с ростом аз (РА) и каковы наблюдаемые следствия этого изменения? Очевидно, что вопрос в такой постановке весьма сложен, и для того чтобы попытаться найти ответ, постановку задачи следует упростить. Один из возможных путей - рассмотрение макроскопической системы кварков, антикварков и глюонов, описываемой законами статистической физики и термодинамики.

При температурах Т » Лкхд характеристические переданные импульсы в системе кварков, антикварков и глюоонов кзд и соответствующая константа связи ссл

Согласно асимптотической свободе КХД, такая система представляет собой релятивистский газ слабовзаимодействующих кварков и глюонов. Это состояние было названо [1] кварк глюонной плазмой. Следует отметить, что концепция нагретой адронной материи была развита в пионерских работах [2-4], где статистические и гидродинамические методы были использованы при изучении ансамблей сильновзаимодействующих частиц. Но в этих работах рассматривалась система нагретой сжатой материи, состоящей из адронов. Подобные идеи используются и в последнее время, зАитывая, однако, кварк - глюонный состав КХД. В работах [5-6] качественно предсказано существование фазового перехода «адроны-кварк-глюонная плазма», позже подтвержденная в решеточных вычислениях [7]. Различные модели фазового перехода предсказывают значения критической температуры порядка 150 + 200 МэВ и критические плотности, превышающие в 5 а 10 раз плотность нормальной ядерной материи. Так как ожидаемые температуры Т ~ Тс ~ Л кхд относятся к инфракрасной области КХД, большинство моделей макроскопической КХД являются феноменологическими. Можно надеяться, что новые экспериментальные данные позволят сократить число этих моделей и уточнить имеющиеся в них параметры. Феноменологический подход, безусловно, полезен для описания процессов в инфракрасной области 1СХД, однако он неудовлетворителен с точки зрения «первых принципов». В этом отношении очень привлекательны попытки расчетов свойств термодинамических систем сильновзаимодействующих частиц исходя из лагранжиана КХД на пространственно - временных решетках [7].

Следует отметить, что концепция термодинамического описания системы сильновзаимодействующих частиц имеет космологические и астрофизические следствия. Условия фазовых переходов в сильновзаимодействующей материи, по-видимому, реализовывались в первые минуты после большого взрыва, и могут суш;ествовать в нейтронных звездах.

Интерес к термодинамическим аспектам КХД значительно вырос за последние десять лет в связи с экспериментальными возможностями создания сильно сжатой адронной материи в столкновениях релятивистских тяжелых ионов.

В таблице приводятся имеющиеся и планируемые ускорители тяжелых ионов, их энергии и времена работы:

Таблица

Время Ускоритель Ядра Энергия в с.ц.м,

ГэВ/нуклон

1986-1993 BNL- AGS до'** Si 5

TIFPH- SPS ДoЛЛS 20

1993-1998 AGS - booster все A 4(Pb)

SPS-Pb booster все A 17 (Pb)

2000-2007 БШ1С Au 200

LHC Pb 6300

Использование, как легких, так и тяжелых ядер позволит исследовать эффекты формирования системы сильнодействующих частиц в различных пространственно-временных объемах и изучить ее динамические свойства. Интересно, что такие сложные события, как столкновения релятивистских тяжелых ионов, при использовании статистических и термодинамических методов могут описаны гораздо проще, чем нуклон-нуклонные взаимодействия. Исследование столкновения тяжелых ионов при высоких энергиях связано с изучением объемных свойств системы сильновзаимодействующих частиц (адронов и партонов). Однако далеко не очевидно, что предсказанный в КХД фазовый переход действительно может быть реализован в столкновениях релятивистских ядер. Устанавливается ли локальное термодинамическое равновесие в столкновениях тяжелых ионов и применим ли вообще статистическо - термодинамический подход к этим реакциям? Положительный ответ на этот вопрос зависит от соотношения между характеристическим временем установления локального термодинамического равновесия и характерным временем реакции Треак Обе величины, и и Тршс опрсдсляются динамикой процесса взаимодействия ядер и должны вычисляться, исходя из «первых принципов» теории сильных взаимодействий. Однако, как уже отмечалось выше, КХД в указанной инфракрасной области не дает устойчивых предсказаний. Первоначальные оценки тл [8,9] на основе феноменологических моделей дали значения -\фм1с. На наш взгляд, эти оценки могут меняться на порядок величины, как в меньшую, так и в большую сторону. Если - \0фм1с то маловероятно, что локальное термодинамическое равновесие устанавливается в столкновениях тяжелых ионов, поскольку оценка характерных времен реакции дает Треак.-10фл«/с. Таким образом, в настоящее время теоретически невозможно доказать наличие термодинамического равновесия в столкновениях релятивистских ядер. И применимость статистико-термодинамического описания следует рассматривать как гипотезу, допускающую экспериментальную проверку.

Эксперименты на КШС и ЬНС должны дать ответ на вопрос о границах термодинамического описания. Если в этих экспериментах можно получить высокие начальные температуры или начальные плотности энергии, то возможно формирование нового состояния адронной материи - кварк -глюонной плазмы. Если же Т^<Тс или 5,<£Л, то возможно образование адронной плазмы, изучение свойств которой, пожалуй, столь же интересно, как и КГП.

Очевидно, что максимально достижимая начальная плотность энергии реализуется при центральных столкновениях ядер, когда величина прицельного параметра много меньше радиуса сталкивающихся ядер (для золота и свинца К-6л7фм). Так как центральные столкновения ядер являются достаточно редкими событиями, подавляющее большинство взаимодействий являются периферическими с прицельным параметром

Ъ>\фм. Среди периферических взаимодействий особое место занимают ультра периферические, с прицельным параметром Ь>2К, т.е. такие взаимодействия, при которых ядра практически не перекрываются. При таких значениях прицельного параметра сильные взаимодействия уже не являются доминирующими, поскольку могут происходить только на «хвостах» ядерной плотности. Конкуренцию сильным взаимодействиям в данном случае могут составить когерентные фотон-фотонные, фотон-померонные и померон-померонные взаимодействия ядер. Однако, как можно экспериментально разделять центральные, периферические и ультра периферические взаимодействия релятивистских ядер, ведь прицельный параметр не является экспериментально измеряемой величиной? Как будет показано ниже, прицельный параметр скоррелирован с «поперечной» энергией Ет в событии - измеряемой величиной. Поэтому, отбирая события в различных интервалах поперечной энергии, можно изучать ультрапериферические, периферические и центральные столкновения ядер. Если кварк-глюонная или адронная плазма формируется в процессах столкновений релятивистских ядер, то каковы сигналы этих состояний? К сожалению, до сих пор не найден такой экспериментальный сигнал, который бы однозначно свидетельствовал в пользу образования КГП или адронной плазмы. Другая трудность состоит в том, что фоны от «обычных процессов», как правило, сопоставимы с сигналами нагретой ядерной материи. Среди кандидатов на сигналы следует отметить:

1. немонотонности в импульсном распределение вторичных частиц, отражающие свойства фазового перехода адроны-кварк-глюонная плазма [10];

2. отношение выходов странных частиц к нестранным (к/л:), различное для адронизации адронного газа и КГП [11,12];

3. образование дроплетов странной материи, барионных состояний с малым отношением заряда к массе [13];

Все эти сигналы, называемые адронными пробами, имеют очевидный недостаток - мягкие процессы адронизации могут существенно исказить информацию о начальном состоянии ядерной системы. Обьино адронные пробы несут информацию о свойствах системы вблизи ее развала на невзаимодействующие частицы.

Лептоны и фотоны имеют малое сечение взаимодействия с ядерной материей, их средняя длина пробега гораздо больше поперечного размера ядерной материи, создаваемой в столкновениях релятивистских ионов. Поэтому лептоны и фотоны, образованные внутри объема ядерной материи, покидают этот объем практически без взаимодействия с окружающей материей и несут информацию о ее состоянии непосредственно в детектор. Отмеченное свойство лептонов и фотонов позволяет рассматривать их в качестве основного инструмента в исследовании свойств ядерной материи, формируемой в столкновениях релятивистских ионов [14-21]. В диссертации рассматриваются следующие вопросы:

1. какую информацию о состоянии ядерной материи несут спектры фотонов и лептонов?

2. какие основные источники лептонов и фотонов в столкновениях релятивистских ионов?

Как будет показано, процессы испускания лептонов связаны с поведением кварков, глюонов и мезонов в сжатой ядерной материи. Например, коллективные резонансные эффекты могут влиять на свойства мезонов, распространяющихся в ядерной материи.

Тяжелые (с и Ь) кварки, а также частицы, их содержащие (например, 1\у/ и у) представляют значительный интерес с точки зрения диагностики состояния ядерной материи в столкновениях релятивистских ионов. Действительно, исходные состояния сталкивающихся ядер содержат очень малую примесь с и Ь кварков, однако эти кварки могут рождаться в процессе эволюции ядерного столкновения, особенно на начальных ее стадиях, где доминируют жесткие партонные процессы с большими передачами импульса. При этом основным каналом генерации тяжелых кварков является процесс глюон- глюонного слияния. Следует отметить, что дилептонные пары возникают главным образом, за счет процессов кварк-антикварковой аннигиляции. Поэтому изучение испускания как дилептонов, так и частиц, содержащих тяжелые кварки, может дать важную информацию о поведении кварков и глюонов в процессе столкновения релятивистских ядер. Эти вопросы подробно рассматриваются в диссертации.

2. Прежде чем приступить к описанию испускания частиц в процессах столкновения релятивистских тяжелых ионов, следует рассмотреть пространственно-временную эволюцию ядерного вещества. Начнем с более простой картины адрон-адронных взаимодействий. В рамках кварк-партонной модели адронов взаимодействие адронов высоких энергий выглядит следующим образом: а) Перед столкновением адроны представляют собой ансамбль партонов (валентных и морских кварков, антикварков и глюонов), распределенных по доле импульса х адрона. Начальные функции распределения партонов извлекаются из экспериментальных данных по глубоко неупругому взаимодействию еМ/М,уМ и йЛ. (Рис.1) б) В результате адрон-адронного взаимодействия некоторые из быстрых партонов не участвуют в коллективных взаимодействиях и при адронизации образуют лидирующие адроны. Относительно медленные партоны сталкивающихся адронов взаимодействуют друг с другом, образуя кварк-глюонную систему, эволюция которой приводит к образованию мягкой части вторичньк адронов.

Каких изменений следует ожидать при переходе от адрон-адронных к ядро-ядерным взаимодействиям? Прежде всего, ядра являются более протяженными объектами, поэтому геометрия столкновения играет важную роль в ядро-ядерных взаимодействиях. Временные масштабы АА взаимодействий гораздо больше ММ, и это может приводить к интересным физическим следствиям.

Как известно, состояние партона (кварка, антикварка и глюона) в нуклоне описывается структурной функцией, зависящей от доли импульса х, переносимой данным партоном, и от квадрата переданного импульса . Если же партон входит в состав нуклона ядра, то его ядерная структурная функция будет зависеть не только от переменных хи , но и от переменной F, характеризующей положение партона относительно центра ядра. Действительно, свойства нуклонов в ядре изменяются (ЕМС- эффект) по сравнению со свойствами свободных нуклонов, причем эти изменения тем больше, чем ближе нуклон расположен к центру ядра. Поэтому следует ожидать, что и свойства партонов зависят от их расположения относительно от центра ядра. Как было отмечено выше, корреляции между интервалами прицельных параметров в столкновении и измеряемой поперечной энергией позволяют экспериментально исследовать различные области сталкивающихся ядер. Поэтому становится возможной экспериментальная проверка гипотезы пространственной зависимости ядерной партонной структурной функции. В диссертации рассмотрено влияние пространственной зависимости ядерных структурных функций на спектры тяжелых кварков, Jl\f/ и Дрелл-Яновских пар в столкновениях релятивистских ядер.

Пространственно-временная эволюция центральных (с прицельным параметром 6 = 0) Pb-Pb столкновений при энергиях RHIC и LHC выглядит следующим образом.

В начальный интервал времени в нуклон-нуклонных столкновениях двух Лоренц сжатых ядер (с толщиной к\фм) происходит взаимодействие партонов (кварков и глюонов), приводящее к множественному рождению кварков, антикварков и глюонов [22]. Рожденные кварки и глюоны, в свою очередь, взаимодействуют между собой в цветовом поле КХД. При определенных условиях, связанных с динамикой партонов в КХД, множественные партон-партонные взаимодействия могут привести к установлению локального термодинамического равновесия в кварк-глюонной системе при температуре Г,. При > - температура фазового перехода система может находиться в состоянии кварк-глюонной плазмы. КГП быстро расширяется, температура падает и достигает критической температуры ГА. Если фазовый переход первого рода, ядерная материя проводит некоторое время в состоянии смешанной фазы, в которой 9 сосуществуют кварки, антикварки, глюоны и адроны. В этом состоянии происходит преобразование кварковых степеней свободы в адронные. Далее система расширяется в адронной фазе от до температур распада на невзаимодействующие частицы,

В этом описании возникают, по крайней мере, два основных вопроса:

1, как следует описывать переход кварк глюонной системы из начального состояния (перед адронными столкновениями) в возможное состояние термодинамического равновесия?

2, устанавливается ли вообще локальное термодинамическое равновесие в столкновениях релятивистских ионов?

Иными словами, можно ли ядро-ядерные столкновения описывать на микроскопическом уровне (в терминах функций распределения исходных партонов) или существует временной интервал, на котором макроскопическое (статистическое) описание применимо к системе кварков и глюонов?

На первый взгляд, для достижения термодинамического равновесия необходимо большое число взаимных столкновений партонов. Например, в работе [22] их число оценивается >10. Однако число взаимных столкновений партонов не является единственным существенным фактором формирования локального термодинамического равновесия. Следует иметь ввиду, что партоны КХД несут цветовые степени свободы. Поэтому уже на начальных стадиях взаимодействия партонные распределения могут быть описаны суперпозицией коллективных и внутренних (цветовых) состояний [23]. Если в начальный момент адрон-адронных взаимодействий возбуждаются цветовые степени свободы, и по ним происходит статистическое усреднение, то условия для коллективного (гидродинамического) поведения партонной системы могут реализовываться и при 2-3 партонных столкновениях [23]. Среди попыток теоретического описания кинетических процессов в столкновениях тяжелых ионов следует отметить работы [24-26]. В этих работах начальные условия задаются структурными функциями сталкивающихся адронов. Во время адрон-адронных столкновений рождаются новые партоны в дополнение к тем, которые уже были в адронах. Вторичные взаимодействия партонов изменяют исходные структурные функции. Этот подход является по своей сути кинетическим, и мог бы описывать экспериментальные данные, если бы были известны достаточно точно структурные функции исходных адронов. Проблема кварковых и глюонных структурных функций сталкивающихся ядер достаточно подробно рассматривается в диссертации. Другие попытки количественного описания кинетической стадии ядро-ядерных взаимодействий сделаны в работах [27,28]. В системе центра масс сталкивающихся адронов их взаимодействие может быть описано обменом одним или несколькими глюонами, что приводит к ненулевому эффективному цветовому заряду адронов. В этом процессе формируется хромоэлектрическая трубка, нестабильная относительно рождения глюонов и кварк-антикварковых пар. Рожденные дд и глюоны взаимодействуют между собой и с хромоэлектрическим полем, и если характеристические времена сильных взаимодействий превышают времена столкновений дд пар и глюонов, то система кварков, антикварков и глюонов может перейти в состояние локального термодинамического равновесия.

Интересная программа моделирования партонного каскада, прослеживающая весь путь от структурных функций до равновесного состояния КГП, предложена в работах [29-31]. Ядерные столкновения описываются последовательными жесткими и мягкими партон-партонными соударениями, сопровождающимися рождением и поглощением партонов. Важнейшими аспектами пространственно-временной эволюции партонной системы являются условия баланса между испускательными и поглощательными процессами, учет эффекта Ландау-Померанчука и эффектов глюонной интерференции. В этом подходе для разделения мягких и жестких процессов используется обрезание по поперечному импульсу рл>2 ГэВ/с. Для условий БШ1С характеристическое время рождения кварков, антикварков и глюонов тл-0.5фм/с, импульсные распределения партонов приближаются к равновесным температурным и число рожденных глюонов превышает более чем на порядок число кварков. Эти результаты свидетельствуют в пользу сценария «горячих глюонов», предложенного Э.Шуряком [32]. В этой картине в столкновении тяжелых ионов при высоких энергиях можно выделить два этапа: в глюонной системе время установления равновесия Tg -0.5фм/с. Соответственно, и начальные температуры в сценарии «горячих глюонов» - 400 Л 500МэВ гораздо выше, чем в «стандартном» сценарии с установлением равновесия за времена -1фм/с. В последнем случае оценки [33] начальных температур дают т; - 240МэВ для RHIC и т,. -290МэВ для LHC. Другой подход к описанию предравновесной фазы ядро-ядерных столкновений основан на модели независимых струн (ISM) [34]. В ней предполагается отсутствие перерассеяний на конечной стадии, т.е. частицы в одной струне взаимодействуют или с частицами, рожденными в другой струне или нуклонами сталкивающихся ядер. Эта модель теоретически последовательна, в ней выполняются условия унитарности и аналитичности, она описывает распределения вторичных частиц по быстротам и «поперечным» энергиям. Однако легко видеть, что уже при плотностях энергии ~ 1 ГэВ/фмЛ плотность струн составляет ~ 2 струны/фмЛ, и взаимодействие струн становится существенным.

Таким образом, многие феноменологические модели, так или иначе описывающие экспериментальные данные, предсказывают возможность установления термодинамического равновесия в столкновения релятивистских тяжелых ионов. Однако это предположение, как и сама пространственно-временная картина взаимодействий, может рассматриваться как гипотеза, требующая экспериментального подтверждения. Экспериментальные следствия вышеупомянутой картины взаимодействия рассмотрены в настоящей диссертации.

Похожие диссертационные работы по специальности «Физика высоких энергий», 01.04.23 шифр ВАК

Заключение диссертации по теме «Физика высоких энергий», Емельянов, Валерий Михайлович

Основные результаты диссертации заключаются в следующем: а) Партонные структурные функции нуклона изменяются под воздействием ядерного окружения. Степень модификации зависит от положения нуклона относительно центра ядра. Величина эффекта пропорциональна плотности ядерного вещества. Отбирая столкновения релятивистских ядер с разными прицельными параметрами, можно изучать характер изменения структурных функций ядра в зависимости от расположения партонов относительно центра ядра. б) Показано, что поперечная энергия в событии - мера центральности столкновения ядер. Отбор событий в заданных интервалах поперечной энергии позволяет выделить столкновения в фиксированных интервалах прицельного параметра. в) В центральных столкновениях релятивистских ядер на ускорителях RHIC и LHC по наклону спектров по поперечной энергии можно оценить величину экранирования глюонной структурной функции в ядре. г) В столкновениях ядер из-за эффектов ядерного экранирования сечения рождения на нуклон министруй, тяжелых кварков, J/y/ частиц и дилептонов изменяются по отношению к свободным нуклонам. Величина изменения зависит от кинематической области и может достигать в случае рождения пар очарованньгх кварков 40^50% при энергиях КШС и -80% на LHC. При энергиях SPS экранирование сменяется антиэкранированием, эффект которого составляет —15%. д) Различная степень экранирования кварков и глюонов является источником дополнительной зависимости отношения сечений рождения Jly/ и Дрелл-Яновских пар от прицельного параметра. Показано, что отношение сечений Jly/ и Дрелл-Яновских дилептонов является растущей функцией от поперечной энергии в условиях эксперимента NA50 на ускорителе SPS. е) Вычислены спектры дилептонов, испускаемых неравновесной кварк-глюонной системой. Показано, что эти спектры не обладают свойством скейлинга, характерного для испускания дилептонов из равновесной кварк-глюонной плазмы. Отмечено, что другим сигналом установления локального термодинамического равновесия может служить изучение корреляций qx-x{y), М-х{у) ъ спектрах дилептонов. ж) Рассмотрено испускание дилептонов из смешанной фазы кварк-глюонной плазмы. Показано, что из-за эффектов восстановления киральной

117 инвариантности в спектре лептонов возникает пик при поперечных импульсах Рх~100н-300 МэВ. з) В приближении времени релаксации рассмотрен процесс термализации пионов в столкновениях релятивистских ядер. Показано, что для энергий SPS степень термализации может достигать -70% для S+S столкновений и -90% для ОлАи. Для КШС степень термализации пионного газа близка к 100%. Вычислены спектры дилептонов от распадов мезонов и реакций и взаимодействия псевдоскалярных и векторных мезонов. Показано, что существует интервал поперечных энергий дилептонов (МА-2.5-5-3.0 ГэВ), в котором спектры дилептонов не обладают свойством скейлинга. В этом интервале Мл, при условии вычитания фоновых процессов (распадов очарованных частиц) возможно разделение вкладов адронной и кварковой фаз. и) Впервые рассмотрен вклад процессов тормозного излучения пионов и кварков в спектр дилептонов малых масс. Показано, что экспериментальные данные, полученные коллаборацией CERES, могут быть описаны при М <300 МэВ тормозным излучением кварков и пионов. Предсказано, что для dN энергий LHC при множественностях —> 4000 выход еле пар будет dy пропорционален квадрату множественности , а для М<100 МэВ ydy, пропорционален первой степени множественности. dNA 1

Для энергий RHIC следует ожидать переходного поведения от к dy ) Kdy)

Отклонение спектра дилептонов от линейного поведения по множественности указывает на вклад термализованной ядерной материи.

Автор выражает глубокую благодарность всем своим соавторам К. Haglin, С. Gale, S. Klein, R. Vogt и A. Ходинову, М. Стриханову, Ю.П. Никитин оказал огромное влияние на формирование моего интереса к физике взаимодействий тяжелых ионов.

Я благодарен коллективу кафедры физики, и особенно Б.И. Громову, за помощь и поддержку.

ЗАКЛЮЧЕНИЕ.

В диссертации рассмотрены процессы эволюции и сигналы формирования сжатой и нагретой ядерной материи в столкновениях релятивистских тяжелых ионов. Такими сигналами являются тяжелые (очарованные и прелестные) кварки и продукты их фрагментации, а также дилептоны и фотоны. Преимущество дилептонов и фотонов с точки зрения диагностики сильновзаимодействующей материи заключается в том, что они не испытывают вторичных взаимодействий. Можно выделить три области инвариантных масс дилептонов, рассмотренных в диссертации:

1) дилептоны с инвариантными массами М>Млл. В эту область спектра основной вклад вносят процессы Дрелла-Яна и распады очарованных частиц. Как показано в диссертации, спектры дилептонов в этой области чувствительны к структурным функциям налетающих ядер и к характеру экранирования в ядрах. Нами показано, что учет пространственного экранирования существенно влияет на выход дилептонов, особенно при переходе от периферических к центральным столкновениям ядер;

2) дилептоны с инвариантными массами < М < МЛАА. В эту области вносят вклад адронные реакции и распады мезонов, а также кварк-антикварковая аннигиляция, распады очарованных частиц и предравновесные процессы. В диссертации рассмотрены эти процессы и отмечено, что свойство Мл-скейлинга дилептонных спектров позволяет разделить в некоторых кинематических областях предравновесное испускание от равновесного испускания из кварковой и адронной фазы;

3) «мягкие» дилептоны с инвариантной массой М<МЛ. В эту область дают вклад ж' жц- Далиц-распады, ж ж аннигиляция, а также пионное и кварковое тормозное излучение.

Список литературы диссертационного исследования доктор физико-математических наук Емельянов, Валерий Михайлович, 2001 год

1. Shuryak Е., Phys. Rep. 67 (1980), 717

2. Fermi Е ., Progr. in Theor. Phys. 5 (1950), 570

3. Pomeranchuk I., Doklady Akad. Nauk SSSR, 5(1951), 889.1.ndau L., Izvestija AN SSSR Ser. Fiz., 17 (1953), 51.

4. Polyakov A., Phys. Lett. B82 (1979), 247.

5. Susskind L., Phys. Rev. D20 (1979), 2610.

6. Engels J. et al., Nucl. Phys. B205 (1982), 595.

7. Bjorken J., Phys. Rev. D27 (1983), 140.

8. Hwa R., Kajantie K., Phys. Rev. Lett. 56 (1986), 696.

9. Van Hove L., Phys. Lett. Bl 18 (1982), 138.

10. Koch Р., Muller В., Rafelski J., Phys. Rep. 142 (1986), 1.

11. Емельянов В., Письма в ЖЭТФ 47 (10) (1988), 491.

12. Greiner С, Koch Р., Stocker Н., Phys. Rev. Lett. 58 (1987), 1825.

13. Feinberg E., Nuov Cim. A34 (1976), 39.

14. Shuryak E., Sov. J. Nucl. Phys. 28 (1978), 408.

15. Domokos G., Goldman Т., Phys. Rev. D23 (1981),203.

16. Hwa R., Kajantie K., Phys. Rev. D32 (1985), 1109.

17. McLerran L., Toimela Т., Phys. Rev. D31 (1985), 545.

18. Kajantie K. et al, Phys. Rev. D34 (1986), 2745.

19. Braaten E., Pisarski R., Yuan Т., Phys. Rev. Lett. 64 (1990), 2242.

20. Ruuskanen Р., Nucl. Phys. A525 (1990), 255.

21. Sumiyoshy H. et al., Z. Phys. C23 (1983), 391.

22. Volosnin S., Emel'yanov V., Nikitin Yu. Yad.Fiz. 26(1977), 1104.

23. Van Hove L., Z. Phys. C21 (1983), 93.

24. Cemy V., Lichard Р., Pisut J., Phys. Rev. Dl 6 (1977), 2822.

25. Cemy V., Lichard Р., Pisut J., Phys. Rev. Dl 8 (1978), 2409.

26. Cemy V., Lichard Р., Pisut J., Phys. Rev. D20 (1979), 699.

27. Kajantie K., Matzui Т., Phys. Lett. B164 (1985), 373.

28. Baym G., Phys. Lett. B138 (1984), 18.

29. Geiger K., Muller В., Nucl. Phys. B369 (1992), 600.

30. Geiger К., Phys. Rev. D46 (1992), 4965.

31. Geiger К., Phys. Rev. D46 (1992), 4986.

32. Shuryak E., Phys. Rev. Lett. 68 (1992), 3270.

33. Satz H., Nucl. Phys. A544 (1992), 371 c.

34. Capeila A., Nucl. Phys. A525 (1991), 133 c.35. de Jager C, de Vries H., de Vries C, Atomic Data and Nuclear Data Tables 14(1974), 485.

35. Gluck M., ReyaE., Vogt A., Z.Phys. C67 (1995), 433.

36. Martin A., Stirling J., Roberts R., Phys. Lett. B354 (1995), 155.

37. Eskola K., Qiu J., Czyzewski J. частное сообщение.

38. Duke D., Owens J., Phys. Rev. D39 (1984), 49.

39. Aide D. et al. Phys. Rev. Lett. 64 (1990), 2479.

40. Arnold et al. Phys. Rev. Lett. 52 (1984), 727.

41. Amaudruz P. et al. Z.Phys. C51 (1991), 387.

42. Eskola K., Nucl. Phys. B400 (1993), 240.

43. Emel'yanov V., Khodinov A., Klein S. and, Vogt R. Phys. Rev. Lett.81 (1998), 1801

44. Kitagaki T. et al., Phys. Lett. D214 (1988), 281.

45. GribovL., Levin E., Ryskin M., Phys. Rep. 100 (1983), 1.

46. Huang Z., Lu H., Sarcevic I., Nucl. Phys. A637 (1998), 79.

47. Wang X., Gyulassy M., Phys. Rev. D44 (1995), 3501.

48. Eskola K., Kajantie K., Lindfors J., Nucl. Phys. B323 (1989), 37. Emel'yanov V. et al. Phys. Rev C61 (2000), 044904.

49. Blaizot J., Muller A., Nucl. Phys. B289 (1987), 849.

50. Eichten E. et al., Rev. Mod. Phys. 56 (1984), 579.

51. Eskola K., Vogt R., Wang X., Int. J. Mod. Phys. Al O (1995), 3087.

52. Eskola K., Kajantie K., Z.Phys. C75 (1997), 515.

53. Emel'yanov V. et al., Nucl. Phys. A661 (1999),649 c.

54. CMS Technical Proposal, CERN/lhcc/94 38 (1994).

55. ALICE Technical Proposal, CERN/LHCC/95 71 (1995).

56. STAR Conceptual Design Report, L B L PUB 5347, (1993).

57. PHENIX Conceptual Design Report, 1993.

58. Eskola K., Kajantie K., Ruuskanen P., Nucl. Phys. B332 (1994), 191.

59. Alpgard A. et al., Phys. Lett. B115 (1982), 71.

60. Abt I. et al. (HI Collab.), Nucl. Phys. B407 (1993), 515.

61. Derrik et al. (ZEUS Collab.), Phys. Lett. B316 (1993), 412.

62. GyulassiM., Wang X., Phys. Rev. D44 (1991), 3501.

63. Schmidt M. et al., Z.Phys. C38 (1988), 109.

64. Albrecht R. et al., Z.Phys. C38 (1988), 3.

65. Емельянов В., Ходинов A., Стриханов М., Ядерная физика 60 (1997),539

66. Емельянов В., Ходинов А., и др.Ядерная физика 62 (1999), 62 .

67. Eskola К., Kajantie К., Z.Phys. С75 (1997), 515.

68. Емельянов В., Ходинов А., Ядерная физика 60 (1997), 1489.

69. Emel'yanov V.et al Preprint LBM-40398.

70. Nason et al Nucl. Phys. 13303(1998).607

71. Gluck et al., Z. Phys. C67 (1995), 433.

72. Emel'yanov V., Khodinov A., Klein S., Vogt R., Phys. Rev. C56 (1997), 2726.

73. Matsui Т., Satz H, Phys. Lett. В178 (1986), 416.

74. Ваняшин A., Емельянов В., Письма ЖЭТФ 45 (1987), 513.

75. Abreu М. et al., (NA50 Collab.), Phys. Lett. B410 (1997), 337.

76. Emel'yanov V., Khodinov A., et al. Phys. Rev. c59 (1999). R1860

77. Gavai R. et al. Int. J. of Mod. Phys. AlO (1995), 3043.

78. Combridge В., Nucl. Phys. B151 (1979), 429.

79. Gavin S., Vogt R., Nucl. Phys. B345 (1990), 104.

80. Baier R., Ruckl R., Z. Phys. C19 (1983), 251.

81. Bodwin G. et al. Phys. Rev. D51 (1995), 1125.

82. Benke M., Rothstein L, Phys. Rev. D54 (1996), 2005.

83. Gordon H. et. al. Proposal SPSC/84-43.

84. HwaR., Phys. Rev. D32 (1985), 637.

85. Bialas A., Blaizot J., Phys. Rev. D32 (1985), 2954.86

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.