Разработка режимов прокатки обшивочных листов для обтяжки с рациональным сочетанием параметров структуры и анизотропии свойств тема диссертации и автореферата по ВАК РФ 05.02.09, кандидат технических наук Гречникова, Анна Федоровна
- Специальность ВАК РФ05.02.09
- Количество страниц 193
Оглавление диссертации кандидат технических наук Гречникова, Анна Федоровна
СОДЕРЖАНИЕ
ВВЕДЕНИЕ
1. АНАЛИЗ ИССЛЕДОВАНИЙ ПО ВЛИЯНИЮ РЕЖИМОВ ПРОКАТКИ НА СТРУКТУРУ И АНИЗОТРОПИЮ СВОЙСТВ ЛИСТОВЫХ ЗАГОТОВОК И ИХ ПОВЕДЕНИЮ ПРИ ФОРМООБРАЗОВАНИИ
1.1 Анизотропия свойств листовых материалов: сущность явления и способы описания через технические показатели
1.2 Краткая характеристика процессов обтяжки. Сортамент обшивочных листов
1.3 Обзор исследований по влиянию структуры и анизотропии свойств заготовок на их поведение при формообразовании и эксплуатации
1.4 Анализ исследований по влиянию режимов прокатки и термообработки на структуру, компоненты текстуры и анизотропию свойств алюминиевых листовых материалов
1.4.1 Сплавы для обшивки самолетов: химический состав и основные свойства
1.4.2 Влияние режимов прокатки и термообработки на среднюю величину зерна
1.4.3 Влияние режимов прокатки и термообработки на текстурообразование и анизотропию свойств алюминиевых сплавов
1.5 Выводы по главе
1.6 Цель и задачи диссертационной работы
2. АНАЛИЗ КОМПЛЕКСНОГО ВЛИЯНИЯ ПАРАМЕТРОВ ТЕКСТУРЫ И ВЕЛИЧИНЫ ЗЕРНА НА ПРЕДЕЛЬНОЕ ФОРМОИЗМЕНЕНИЕ ОБШИВОЧНЫХ ЛИСТОВ ПРИ ОБТЯЖКЕ
2.1 Основные соотношения теории пластичности анизотропных (высокотекстурированных) материалов
2.2 Влияние компонент текстуры на устойчивость и предельный коэффициент обтяжки
2.3 Анализ совместного влияния параметров текстуры и величины зерна
обшивочных листов на предельное формоизменение при обтяжке
2.4 Выводы по главе
3. ИССЛЕДОВАНИЕ ВЛИЯНИЯ СРЕДНЕЙ ВЕЛИЧИНЫ ЗЕРНА НА УСТАЛОСТНЫЕ ХАРАКТЕРИСТИКИ ОБШИВОЧНЫХ ЛИСТОВ
3.1 Исходные образцы и методика исследования
3.2 Анализ результатов экспериментальных исследований
3.3 Выводы по главе
4. ИССЛЕДОВАНИЕ ЗАКОНОМЕРНОСТЕЙ ФОРМИРОВАНИЯ ПАРАМЕТРОВ СТРУКТУРЫ, ТЕКСТУРЫ И АНИЗОТРОПИИ ПРИ ПРОИЗВОДСТВЕ ОБШИВОЧНЫХ ЛИСТОВ ИЗ СПЛАВОВ ТИПА Д16Ч И В95ПЧ
4.1 Анализ статистических данных по величине зерна и анизотропии свойств листов, изготовленных по серийной технологии
4.2 Исследование изменения размеров зерна в зависимости от режимов прокатки и отжига обшивочных листов из сплавов Д16ч и В95пч
4.3 Исследование влияния режимов прокатки и окончательного отжига на формирование компонент текстуры и анизотропии свойств обшивочных листов
4.4 Анализ влияния вариантов состава многокомпонентной текстуры, полученной по опытным маршрутам, на предельный коэффициент обтяжки
4.5 Выводы по главе
5. ОПЫТНО-ПРОМЫШЛЕННАЯ АПРОБАЦИЯ НОВЫХ ТЕХНОЛОГИЧЕСКИХ РЕЖИМОВ ПРОКАТКИ ОБШИВОЧНЫХ ЛИСТОВ И ОЦЕНКА СТАБИЛЬНОСТИ РАЗМЕРОВ ЗЕРНА, МЕХАНИЧЕСКИХ
СВОЙСТВ И АНИЗОТРОПИИ
5.1 Разработка опытно-промышленных маршрутов изготовления обшивочных листов с рациональным сочетанием параметров структуры и анизотропии свойств
5.2 Экспериментальное исследование стабильности параметров структуры и анизотропии свойств в листах, изготовленных по новой технологии
5.3 Выводы по главе
ОСНОВНЫЕ ВЫВОДЫ И РЕЗУЛЬТАТЫ РАБОТЫ
ОСНОВНЫЕ ОБОЗНАЧЕНИЯ
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
Рекомендованный список диссертаций по специальности «Технологии и машины обработки давлением», 05.02.09 шифр ВАК
Влияние текстуры деформации и отжига на анизотропию физико-механических свойств некоторых металлов и сплавов с кубической решеткой1984 год, кандидат физико-математических наук Усов, Валентин Валентинович
Закономерности развития кристаллографической текстуры и субструктурной неоднородности в циркониевых сплавах при деформационном и термическом воздействиях2011 год, доктор физико-математических наук Исаенкова, Маргарита Геннадьевна
Разработка критерия пластичности, процедуры моделирования и формирования эффективной для глубокой вытяжки анизотропии свойств заготовок2012 год, кандидат технических наук Ерисов, Ярослав Александрович
Исследование влияния легирующих элементов на формирование текстуры и анизотропии свойств магниевых сплавов2011 год, кандидат технических наук Шафоростов, Александр Андреевич
Закономерности текстурных преобразований и роль мезоструктурных неоднородностей в процессах деформации и рекристаллизации ОЦК и ГЦК металлических материалов2003 год, доктор физико-математических наук Гервасьева, Ирина Владимировна
Введение диссертации (часть автореферата) на тему «Разработка режимов прокатки обшивочных листов для обтяжки с рациональным сочетанием параметров структуры и анизотропии свойств»
ВВЕДЕНИЕ
Актуальность работы. Современные технологии производства авиационной техники и сложные условия ее эксплуатации во всепогодных и всеклиматических условиях при резких перепадах температур и постоянных изменениях внешних силовых воздействий выдвигают новые, более жесткие требования к свойствам конструкционных материалов. В частности, это относится к обшивочным листам для обтяжки, изготовляемым прокаткой из высокопрочных алюминиевых сплавов типа Д16ч и В95 пч.
Уровень свойств конструкционных материалов, как известно, определяется химическим составом и сформированной в процессе производства структурой. Характерной особенностью структуры алюминия и его сплавов является то, что при стандартной технологии прокатки в листах формируется текстура, кристаллографическая ориентация (а следовательно, анизотропия) которой приводит в процессе формообразования к преимущественному развитию деформаций по толщине, быстрому утонению заготовок и разрушению.
Наглядным примером отрицательного влияния неблагоприятной текстуры и обусловленной ею анизотропии свойств является образование фестонов и разнотолщинность стенки детали при вытяжке. Аналогичные явления наблюдаются и при формообразовании анизотропных листов обтяжкой: снижается предельный коэффициент обтяжки, возникает разнотолщинность оболочки, ее чрезмерное утонение и локализованные разрывы.
Проблемам видоизменения состава компонент текстуры при прокатке и учета фактора анизотропии в технологических расчетах листовой штамповки посвящены многочисленные труды Ю.М. Арышенского, В.Ю. Арышенского, A.A. Бабарэко, Я.Д. Вишнякова, Г. Вассермана, В.Д. Головлева, Ф.В. Гречникова, И. Гревена, Г. Бунге, A.M. Дмитриева, В.Д. Дурнева, В.Д.
Кухаря, В.А. Михеева, B.C. Смирнова, А.Д. Томленова, В.В. Уварова, Р.Хилла, В.Ф. Шамрая, С.П. Яковлева, С.С. Яковлева, и др.
В ряде этих и других работ показано, что у заготовок с благоприятным составом текстуры, а, следовательно, и анизотропией свойств, повышаются показатели предельного формоизменения, устраняется разнотолщинность и фестонообразование, улучшаются эксплуатационные, например, усталостные характеристики [1 - 13].
Однако в большинстве выполненных работ анализ процессов формообразования анизотропных заготовок осуществлялся на основе феноменологической теории пластичности, в уравнения которой не входят характеристики текстуры. Вследствие этого, при анализе не учитываются реальные структура и свойства деформируемого материала, хотя именно они определяют параметры осуществления процесса и качество продукции.
Другой важнейшей структурной характеристикой обшивочных листов, оказывающей большое влияние на технологические и эксплуатационные характеристики изделий, является средний размер зерна в полуфабрикатах и деталях. Исследования И.Н. Фридляндера, В.Н. Мацнева, Л.Г. Комаровой, В.И. Елагина, Ю.М. Вайнблата, В.И. Ливанова, Л.Б. Бера, В.Г. Давыдова и других российских и иностранных специалистами [14 - 18], показали, что с измельчением зерна повышается предел текучести, предельные степени деформации, характеристики усталости, трещиностойкости и качество поверхности.
В связи с этим ФГУП ВИАМ выпустил изменение к действующему стандарту ОСТ 1-90070 на обшивочные листы марок Діб, Д16ч, 1163, В95пч и В95оч, в котором регламентируется размер зерна.
Из анализа литературных данных также видно, что в сложившейся практике исследовательских работ и промышленных экспериментов проблемы формирования текстуры и зеренной структуры в листовых материалах рассматриваются, как правило, отдельно и относятся либо к
выполнению требований по размеру зерна, либо - по параметрам текстуры и анизотропии свойств.
В связи с этим актуальными являются комплексные исследования изменения предельной деформации при обтяжке и характеристик усталости сплава в зависимости от параметров его структуры, и разработка технологических режимов прокатки, обеспечивающих формирование в обшивочных листах рационального сочетания величины зерна, состава компонент текстуры и анизотропии свойств.
Целью диссертационного исследования является научное обоснование требований к структуре и анизотропии свойств заготовок для обтяжки и разработка технологических режимов производства обшивочных листов из сплавов Д16ч и В95пч с рациональным сочетанием величины зерна, параметров текстуры и анизотропии.
Для достижения поставленной цели сформулированы следующие задачи исследования:
1. Провести теоретический анализ комплексного влияния компонент текстуры и размеров зерна на величину геометрического коэффициента обтяжки.
2. Установить рациональные для процесса обтяжки сочетания параметров структуры, текстуры и анизотропии свойств в обшивочных листах.
3. Провести экспериментальные исследования влияния средней величины зерна на усталостные характеристики обшивочных листов.
4. Исследовать закономерности формирования параметров структуры, текстуры и анизотропии в зависимости от режимов прокатки и термообработки обшивочных листов из сплавов Д16ч и В95пч.
5. Разработать производственные маршруты изготовления, обеспечивающие формирование в обшивочных листах Д16ч и В95пч рационального сочетания состава текстуры, размеров зерна и анизотропии свойств.
6. Провести промышленную апробацию разработанных режимов прокатки и оценку изменения параметров, свойств и анизотропии обшивочных листов, изготовленных по новой технологии.
Область исследования. Закономерности пластического деформирования материалов и создание технологий изготовления заготовок высокого качества.
Объект исследования. Технологические процессы прокатки и термообработки обшивочных листов из высокопрочных алюминиевых сплавов Д16ч и В95пч.
Предмет исследования. Закономерности формирования структуры, текстуры и анизотропии свойств в процессах прокатки и отжига обшивочных листов для обтяжки.
Методы исследования. В работе использован комплексный метод исследований, включающий теоретический анализ формоизменения листовых заготовок при обтяжке и экспериментальное изучение изменения параметров структуры и свойств в зависимости от режимов листовой прокатки.
Теоретические исследования выполнены на основе критерия пластичности, учитывающего константы кристаллической решетки и параметры текстуры деформируемого материала.
При экспериментальных исследованиях структуры, компонент текстуры и анизотропии свойств использовалось промышленное оборудование прокатного цеха Самарского металлургического завода и современное оборудование лабораторий кафедры ОМД СГАУ, ИМЕТ РАН и ЦЗЛ СМЗ. Исследования проводились с применением методов математического планирования экспериментов.
Обработка опытных данных и промышленных экспериментов производилась методами математической статистики.
Научная новизна.
1. Предложена аналитическая зависимость геометрического коэффициента обтяжки от параметров кристаллической решетки, компонент текстуры величины зерна листовых заготовок.
2. Определены параметры структуры, текстуры и анизотропии, необходимые для повышения предельного формоизменения обшивочных листов при обтяжке.
3. Установлены закономерности формирования размеров зерна и компонент текстуры в зависимости от режимов прокатки и отжига.
4. Разработаны технологические режимы прокатки, обеспечивающие формирование в обшивочных листах из сплавов Д16ч и В95пч рационального сочетания компонент текстуры, показателей анизотропии и величины зерна.
Практическая ценность работы.
1. Разработана процедура расчета показателей предельного формоизменения при обтяжке в зависимости от состава компонент текстуры листовых заготовок.
2. Разработаны научно-обоснованные рекомендации по формированию эффективного состава текстуры и величины зерна в обшивочных листах для повышения их предельного формоизменении при обтяжке.
3. Установлены технологические схемы деформаций при прокатке и режимы отжига, необходимые для получения в обшивочных листах рационального сочетания параметров структуры и анизотропии свойств.
Положения, выносимые на защиту.
1. Результаты аналитического исследования зависимости коэффициента обтяжки от констант кристаллической решетки и ориентационных факторов текстуры листовых заготовок.
2. Процедура расчета геометрического коэффициента обтяжки для многокомпонентной текстуры обшивочных листов.
3. Результаты экспериментального исследования влияния режимов и маршрутов прокатки на средний размер зерна, состав текстуры и анизотропию свойств обшивочных листов из сплавов Д16ч и В95пч.
4. Технологические режимы прокатки и отжига, обеспечивающие формирование в обшивочных листах Д16ч и В95пч рационального сочетания параметров структуры и анизотропии свойств.
5. Результаты промышленной реализации разработанных режимов прокатки и оценки изменения параметров структуры, механических свойств и анизотропии обшивочных листов, изготовленных по новой технологии.
Апробация работы. Основные результаты работы доложены на следующих международных и российских научных конференциях и семинарах:
IX Королевские чтения. Всероссийская молодежная научная конференция с международным участием. Самара, СГАУ, 2007.
X Королевские чтения. Всероссийская молодежная научная конференция. Самара, СГАУ, 2008.
IV международная научно-техническая конференция. Самара, МИР,
2009.
Симпозиум с международным участием «Самолетостроение России. Проблемы и перспективы». Самара, СГАУ, 2012
Международный научно-технический форум, посвященный 100-летию ОАО «Кузнецов» и 70-летию СГАУ. Самара, СГАУ, 2012.
Разработанные технологические рекомендации внедрены в производство на Самарском металлургическом заводе. Суммарный экономический эффект от внедрения составил 4,3 млн. руб.
Публикации. Основное содержание диссертационной работы отражено в 9 печатных работах, в том числе 6 статей в ведущих рецензируемых научных
журналах и изданиях, рекомендованных ВАК Минобрнауки РФ для публикации результатов диссертаций.
Структура и объем диссертации. Диссертационная работа состоит из введения, 5 глав, общих выводов, списка использованных источников, в количестве 137 наименований. Работа изложена на 193 страницах, содержит 90 рисунков и 34 таблицы.
1. АНАЛИЗ ИССЛЕДОВАНИЙ ПО ВЛИЯНИЮ РЕЖИМОВ ПРОКАТКИ НА СТРУКТУРУ И АНИЗОТРОПИЮ СВОЙСТВ ЛИСТОВЫХ ЗАГОТОВОК И ИХ ПОВЕДЕНИЮ ПРИ ФОРМООБРАЗОВАНИИ
Заготовками для деталей обшивки самолетов являются листы из алюминиевых сплавов систем А1-Си-М§, А1-2п-М£-Си от которых требуется высокая технологическая деформируемость при формообразовании обтяжкой, а так же требуемый уровень эксплуатационных характеристик.
Как известно, основными структурными характеристиками листовых материалов, определяющими их технологические и эксплуатационные свойства, являются размер зерна и кристаллографическая текстура, формирование которой при прокатке приводит к анизотропии как механических свойств, так и деформационных характеристик заготовок.
В свою очередь тот или иной уровень параметров структуры и анизотропии свойств заготовок определяется природой сплава, а так же технологическими маршрутами и режимами прокатки и термообработки.
Поэтому прежде чем приступить к изложению основного материала диссертации, необходимо:
1. Привести основные сведения о природе анизотропии свойств и ее технических показателях.
2. Дать краткую характеристику процессов обтяжки и сортамента обшивочных листов.
3. Показать влияние величины зерна и анизотропии свойств на штампуемость и усталостные характеристики листовых заготовок.
4. Провести анализ опубликованных исследований по влиянию режимов прокатки и термообработки на формирование зеренной структуры, текстуры и анизотропии обшивочных листов.
1.1 Анизотропия свойств листовых материалов: сущность явления и способы описания через технические показатели
Свойства любого вещества определяются как его химическим составом, так и внутренним строением, расположением атомов в кристаллической решетке [19 - 21]. Если расстояния между атомами в различных направлениях решетки не одинаковы, то не одинаковы и силы связи между ними. Это вызывает исходную анизотропию свойств, являющуюся основной характерной особенностью монокристаллов.
Физической основой анизотропии поликристаллических тел является текстура, возникающая при обработке давлением. Интенсивное пластическое течение вызывает значительное повышение плотности дислокаций, скопление их в решетке кристалла. Возникающие в результате этого внутренние напряжения, приводят к развороту большинства кристаллов составляющих металл в направлении внешнего деформирующего усилия [8]
Для качественного описания возникающей в металле текстуры разработана специальная индексация кристаллографических плоскостей и направлений. [22] Ориентация конкретного зерна для металлов с кубической решеткой может быть представлена набором индексов Миллера (7гк1)[илт]. Здесь (кк1) - кристаллографическая плоскость, параллельная поверхности определяемого зерна, а [илт] представляет собой кристаллографическое направление, параллельное оси X в системе координат, связанной с зерном (Лл). На рисунке 1.1 кристаллографической плоскостью, параллельной поверхности зерна, является плоскость (110), а кристаллографическим направлением, параллельным оси X, является [001]. Таким образом, ориентация выделенного зерна - (110)[001].
Рисунок 1.1- Пример индексации кристаллографических плоскостей и направлений листового проката
Систему эквивалентных плоскостей (с одинаковыми свойствами) записывают в фигурных скобках - {кк1}, а семейство эквивалентных направлений - в ломаных скобках <иуи>>.
Текстура характеризуется определенной симметрией. Различают два главных вида симметрии текстуры - аксиальную и текстуру прокатки [8, 9]. Первый вид наблюдается при деформации с осевой симметрией -растяжении, сжатии, волочении, прессовании и т.п. В этом случае зерна обращены в направлении деформации в одном и том же кристаллографическом направлении (рисунок 1.2 а). Такие текстуры записываются индексами направления: <муи>>.
а - аксиальная (В - ось волокна); б - текстура прокатки (ограниченная текстура). НП - направление прокатки; ПН - поперечное направление; НН - направление нормали (нормаль к плоскости в которой лежат НП и ПН)
Рисунок 1.2 - Идеальная текстура в металлах с кубической решеткой.
Текстура прокатки (ограниченная текстура), как показали теоретический анализ и дальнейшая экспериментальная проверка методами рентгенографии и ультразвука [19], имеет совокупность элементов симметрии, присущую параллелепипеду, а именно: три оси симметрии второго порядка, одна из которых совпадает с направлением прокатки, а две других - с перпендикулярными ему направлениями - нормали и поперечным; три плоскости симметрии, одна из которых совпадает с плоскостью прокатки, а другие перпендикулярны к ней. В этом случае текстура определяется плоскостью, задаваемой индексами {кк1}, и направлением в этой плоскости - <иууу> (рисунок 1.2 б).
Для листовых полуфабрикатов характерны ограниченные текстуры, определяемые кристаллографической осью, параллельной направлению прокатки. При этом в материале может формироваться как однокомпонентная, так и многокомпонентная текстуры прокатки (рисунок 1.3)
в
Рисунок 1.3 - Случайная ориентировка (а), однокомпонентная (б) и многокомпонентная (в) текстуры
Качественное описание и анализ преимущественных
кристаллографических ориентаций осуществляется, как правило, путем построения прямых и обратных полюсных фигур после различных режимов обработки (рисунок 1.4). Прямые полюсные фигуры представляют собой графическое изображение статистической вероятности совпадения определенного кристаллографического направления в кристалле с различными направлениями в образце в противоположность обратным полюсным фигурам (ОПФ), которые представляют вероятность совпадения направления в образце с различными направлениями в кристалле.
Рисунок 1.4 - Примеры прямых (а) и обратных (б) полюсных фигур.
В последнее время широкое распространение получило количественное описание текстур с помощью вероятностных функций распределения зерен по ориентациям (ФРО) [4, 8]. В основе их построения лежит аналитическое представление ориентации кристаллографических осей кристаллов по отношению к «лабораторным» осям текстурированного образца с помощью углов Эйлера.
Так как на упругие и пластические свойства влияют только три коэффициента ФРО [4, 23], то при исследовании анизотропии пластических свойств текстурированных поликристаллических материалов отпадает необходимость в определении всех коэффициентов ФРО, что значительно упрощает математические вычисления.
При исследованиях упругопластических свойств эти три независимых коэффициента ФРО обычно используются не в явном виде, как
(101
а
Похожие диссертационные работы по специальности «Технологии и машины обработки давлением», 05.02.09 шифр ВАК
Влияние условий прокатки на текстуру, неоднородность выделения дисперсных фаз и рекристаллизацию сплавов AMr6, 1420 и 15702004 год, кандидат технических наук Масюков, Сергей Александрович
Формирование текстуры листовых полуфабрикатов титановых сплавов разных классов при пластической деформации и термической обработке2006 год, кандидат технических наук Дзунович, Дмитрий Анатольевич
Развитие теории и методов совершенствования процессов листовой штамповки путем формирования при прокатке оптимальной кристаллографии структуры заготовок2019 год, доктор наук Ерисов Ярослав Александрович
Формирование в листах алюминиевых сплавов при термической и деформационной обработке упорядоченной структуры для повышения их штампуемости2022 год, доктор наук Носова Екатерина Александровна
Научное обоснование технологических решений изготовления крупногабаритных осесимметричных деталей ответственного назначения из высокопрочных анизотропных материалов2010 год, доктор технических наук Поликарпов, Евгений Юрьевич
Заключение диссертации по теме «Технологии и машины обработки давлением», Гречникова, Анна Федоровна
ОСНОВНЫЕ ВЫВОДЫ И РЕЗУЛЬТАТЫ РАБОТЫ
1) Структура и анизотропия свойств обшивочных листов из сплавов Д16ч и В95пч, широко применяемых в производстве летательных аппаратов, не отвечает современным требованиям по величине зерна, показателей анизотропии и параметров формообразования. В частности, расчетные формулы для коэффициента обтяжки, не учитывают степень текстурирования обшивочных листов.
2) Теоретический анализ устойчивости и предельного формоизменения при обтяжке, выполненный на основе кристаллографического варианта теории пластичности, позволил получить формулы для расчета геометрического коэффициента обтяжки с учетом упругих констант кристаллов и степени текстурирования листовых материалов.
3) На основе анализа комплексного влияния компонент текстуры и среднего размера зерна на величину геометрического коэффициента обтяжки определены рациональные для формообразования сочетания параметров структуры, текстуры и анизотропии обшивочных листов из сплавов Д16ч и В95пч.
4) По результатам проведенных усталостных испытаний листов В95пч АТ2В с различной средней величиной зерна выявлено, что оптимальное сочетание значений СРТУ, К] и МЦУ имеют листы с величиной зерна 70 - 300 мкм.
5) Изучение изменения микроструктуры, текстуры и механических свойств лент типа Д16 и В95 в процессе горячей прокатки позволило установить, что начиная с 3-й клети в сплавах не успевают проходить процессы рекристаллизации, и формируется деформированная структура с преобладающими ориентировками типа 8 (618)<-1-21>, (592)<1-12>, (528)<-4-85>, что снижает возможности управления величиной зерна на этой стадии прокатки. Обеспечение в ленте температуры, достаточной для начала рекристаллизации, ограничивается техническими возможностями прокатного оборудования.
6) Результаты лабораторных экспериментов по совместному влииянию на структуру листов степени деформации при холодной прокатке и скорости нагрева до температуры отжига показали, что формирование требуемой по стандарту величины зерна обеспечивается прокаткой со степенями обжатий £ > 50% и отжигом со скоростью нагрева V > 8 °С/мин.
7) Установлено видоизменение состава компонент текстуры и показателей анизотропии в зависимости от маршрутов холодной прокатки и режимов окончательного отжига, что обеспечивает принципиальную возможность управления формированием рационального состава компонент текстуры в обшивочных листах.
8) Результаты анализа проведенных промышленных экспериментов показали, что для повышения предельного формоизменения при обтяжке, выравнивания показателей анизотропии в плоскости листа и снижения средней величины зерна в обшивочных листах необходимо холоднокатаные листы (со степенью деформации е > 50 %) подвергнуть скоростному отжигу на ЛНТО с последующим полным отжигом в садочных печах.
9) В итоге, разработана новая технология производства обшивочных листов с рациональным сочетанием значений величины зерна, механических свойств и анизотропии, включающая следующие основные режимы:
• нагрев и горячая прокатка по стандартным схемам;
• холодная прокатка со степенью обжатия £>50 %;
• скоростной отжиг: V > 8 °С/мин, Тмет = 410 - 420°С;
• полный отжиг в садочных печах: Тмет =380 - 400°С, выдержка 10-30 мин, охлаждение не более 30°С/час до температуры 150°С (для сплава В95пч) или 260°С (для сплавов типа Д16ч), далее - на воздухе.
Статистический анализ изменения параметров структуры и характеристик механических свойств и анизотропии обшивочных листов, изготовленных по новой технологии, подтверждает высокие показатели стабильности основных параметров листов.
ОСНОВНЫЕ ОБОЗНАЧЕНИЯ сг| — тензор напряжений второго ранга; <тг- -интенсивность напряжений; ds\p— вектор приращения пластических компонент деформаций;
- интенсивность деформаций; dsi - приращение интенсивности деформаций; р - критическая интенсивность деформаций при простом нагружении; /- функция текучести;
AT] — материальный тензор четвертого ранга, записанный в главных осях анизотропии ортотропного тела;
АТ]А - материальный тензор, выраженный через константы кристаллической решетки и ориентационные факторы текстуры; Q - характеристический параметр кристаллической решетки;
Лг - ориентационный фактор текстуры; а,у - направляющие косинусы; s'ijkl - упругие константы монокристалла; rjij - обобщенный показатель текстурированного состояния;
- показатели анизотропии (коэффициенты поперечной деформации);
Mi - показатель анизотропии под углом 45° к направлению прокатки; m - показатель напряженного состояния;
Кобт - пРеДельный коэффициент обтяжки; п - модуль упрочнения; (hkl)[uvw], - индексы Миллера; hkl}{uvw) (,,Л/
Р - объемная доля г-ой компоненты viki)\uvw
А- - ориентационные факторы многокомпонентной текстуры с1ср - средний размер зерна в плоскости прокатки;
СРТУ - скорость роста усталостных трещин;
КСУ - критический коэффициент интенсивности напряжений; оС0 - остаточная прочность пластины с трещиной;
МЦУ - сопротивление усталости; ств - временное сопротивление;
То,2 ~ условный предел текучести; д - относительное удлинение;
Список литературы диссертационного исследования кандидат технических наук Гречникова, Анна Федоровна, 2013 год
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
1. Шевелев, В.В. Анизотропия листовых материалов и ее влияние на вытяжку [Текст] / В.В. Шевелев, С.П. Яковлев. - М.: Машиностроение, 1972.- 136 с.
2. Арышенский, Ю.М. Формоизменение анизотропных материалов [Текст]/ Ю.М. Арышенский, В.Ю. Арышенский, И.И. Калужский // Сборник «Технология производства и прочность деталей летательных аппаратов и двигателей». - Казань: КАИ, 1976. - С. 76-78.
3. Арышенский, Ю.М. Теория и расчеты пластического формоизменения анизотропных материалов [Текст] / Ю.М. Арышенский, Ф.В. Гречников. - М.: Металлургия, 1990 - 304 с.
4. Bunge, H.J. Mathematische methoden der Texturanalyse [Текст] / H.J. Bunge// Akademie-Verlag, Berlin. - 1969. - 325 s.
5. Хилл, Р. Математическая теория пластичности [Текст] / Р. Хилл. - М.: ГИТТЛ, 1956.-407с.
6. Гречников, Ф.В. Деформирование анизотропных материалов (резервы интенсификации) [Текст] / Ф.В. Гречников. - М.: Машиностроение, 1998.-448с.
7. Гречников, Ф.В. Феноменологические и кристаллографические основы формирования заданной анизотропии свойств при прокатке высокотекстурованных алюминиевых лент [Текст] /Ф.В.Гречников, В.Ю. Арышенский // Вестник Самарского государственного аэрокосмического университета имени академика С.П. Королева. - 2002. - №1. - С. 68 - 77.
8. Вишняков, Я.Д. Теория образования текстур в металлах и сплавах [Текст] / Я.Д. Вишняков, A.A. Бабарэко, С.А. Владимиров и др. - М.: Наука, 1979.-343с.
9. Смирнов, B.C. Текстурообразование металлов при прокатке [Текст] / B.C. Смирнов, В.Д. Дурнев. - М.: Металлургия, 1971. - 256с.
10. Гречников, Ф.В. Прогрессивные технологические процессы холодной штамповки [Текст] / Ф.В. Гречников, A.M. Дмитриев, В.Д. Кухарь и др. - М.: Машиностроение, 1985. - 184с.
11. Сгибнев, Б.Ф. Анизотропия свойств рулонной ленты [Текст] / Б.Ф. Сгибнев // Кузнечно-штамповочное производство. -1962.-№2 - С.27-31.
12. Томленов, А.Д. Пластическое деформирование металлов [Текст] / А.Д. Томленов. - М.: Металлургия, 1972. - 408 с.
13. Яковлев, С.П. Штамповка анизотропных заготовок [Текст] / С.П. Яковлев, В.Д. Кухарь. - М.: Машиностроение, 1986. - 136 с.
14. Мацнев, В.Н. Предотвращение крупнокристаллической структуры при изготовлении обшивок двойной кривизны [Текст] / В.Н Мацнев., Л.Г.Комарова, Л.П. Ланцова // ТЛС. - 1999. - № 6. - С. 7 - 13.
15. Алюминиевые сплавы. Структура и свойства полуфабрикатов из алюминиевых сплавов: Справ, изд. [Текст] -М.: Металлургия, 1974.-432с.
16. Handbook of Aluminum. V.l. Physical metallurgy and processes [Текст] / edited by G.E. Totten, D.S. MacKenzie. - NY: Marcel Dekker Inc., 2003. -1296 p.
17. Sachdev, A. K. Development of an aluminum sheet alloy with improved formability [Текст] / A. K. Sachdev // Met Trans. - 1990. - Vol. 21A -p. 165.
18. Колачев, Б.А. Металловедение и термическая обработка цветных металлов и сплавов [Текст] / Б.А. Колачев, В.А. Ливанов, В.И. Елагин. -М.: Металлургия, 1981. -416 с.
19. Шаскольская, М.П. Очерки о свойствах кристаллов [Текст] / М.П. Шаскольская. - М.: Наука, 1978. - 191с.
20. Сторожев, М.В. Теория обработки металлов давлением [Текст] / М.В. Сторожев, Е.А. Попов. - М.: Машиностроение, 1977. - 423с.
21. Громов, Н.П. Теория обработки металлов давлением [Текст] / Н.П. Громов. - М.: Металлургия, 1978. - 360с.
22. Сиротин, Ю.И. Основы кристаллофизики [Текст] / Ю.И. Сиротин, М.П. Шаскольская. - М.: Наука, 1979. - 632с.
23. Адамеску, P.A. Анизотропия физических свойств металлов [Текст] / P.A. Адамеску, П.В. Гельд, Е.А. Митюшов. - М.: Металлургия, 1985. - 136 с.
24. Митюшова, J1.JI. Ориентационные факторы анизотропии упругих свойств металлов с кубической симметрией [Текст] / Л.Л. Митюшова, Е.А. Митюшов, P.A. Адамеску, В.И. Юшков // ФММ. - 1985. - Т.60, вып. 5.-С. 993-999.
25. Микляев П.Г. Анизотропия механических свойств металлов [Текст] / П.Г. Микляев, Я.Б. Фридман. - М.: Металлургия, 1960. - 306с.
26. Hill, R. Constitutive modeling of orthotropic plasticity in sheet metals [Текст]/ R. Hill // Journal of Mechanics and Physics of Solids. - 1999. - №38 (3).-C. 405-417.
27. Aleksandrovic, S. Variation of Normal Anisotropy Ratio «г» during Plastic Forming [Текст] / S. Aleksandrovic, M. Stefanovié, D. Adamovic, V. Lazic // Journal of Mechanical Engineering. - 2009. - 55(2009)6. - C. 392-399.
28. Lankford, W.T. New criteria for predicting the press performance of deep drawing sheets [Текст] / W.T.Lankford //Trans. ASM. -1950.-№ 42. -C.l 197.
29. Колесников, Н.П. Метод определения способности листового металла к пластическому формоизменению [Текст] / Н.П. Колесников // Кузнечно-штамповочное производство. - 1966. - №5. - С. 16-22.
30. Sevillano, J.G. Thin sheets story: plastic anisotropy, formability and strain localization [Электронный ресурс]: Materials engineering - Tecnun: [б.и.], 2003. - Электрон, текстовые дан. on-line. - Загл. с титул, экрана
URL: http ://www. tecnun. es/asi gnaturas/estcompmec/documentos/thinsheets .pdf
(дата обращения 21.03.2012).
31. Made, W. Formänderungsvermögen von tiefzichfahigen Blechen unter Zweiaxialer Reckbean Spicnung [Текст] / W. Made // Fertigung Technik und betrieb. - 1967. - №5. - C. 789-792.
32. Гречников, Ф.В. Влияние режимов прокатки и отжига на анизотропию свойств листов из алюминиевых сплавов [Текст] / Ф.В. Гречников, Ю.М. Арышенский, В.В. Уваров // Темат. сб. науч. тр. МЧМ СССР (МИСиС). -М.: Металлургия, 1976 - №94. - С. 38-43.
33. Арышенский, Ю.М. Определение упругих и пластических характеристик ортотропных металлов [Текст] / Ю.М. Арышенский, В.Ю. Арышенский, ИИ Калужский // Сборник «Исследование в области пластичности и обработки металлов давлением». - Тула: ТПИ, 1982. - С. 129-133.
34. Громова, А.И. Изготовление деталей из листов и профилей при серийном производстве [Текст] / А.И. Громова, В.И. Завьялова, В.К. Коробов. - М.: Оборонгиз, 1960. - 343с.
35. Горбунов, М.Н. Технология заготовительно-штамповочных работ в производстве самолетов [Текст]/ М.Н. Горбунов. - М.: Машиностроение, 1981.-224с.
36. Тарасов, Ю.Л. Надежность элементов конструкций летательных аппаратов [Текст] / Ю.Л. Тарасов, Э.И. Миноранский, В.М. Дуплякин. -М.: Машиностроение, 1992. - 224 с.
37. ОСТ1-90070-92. Листы обшивочные из алюминиевых сплавов. Технические условия [Текст].
38. Материалы будущего [Текст] / Пер. с нем. - Л.: Химия, 1985. - 234с.
39. Попов, Е.А. Основы теории листовой штамповки [Текст] / Е.А. Попов. -М.: Машиностроение, 1977. - 278с.
40. Головлев, В.Д. Расчеты процессов листовой штамповки [Текст] / В.Д. Головлев. - М.: Машиностроение, 1974. - 135 с.
41. Мортон К. Смит. Основы физики металлов [Текст] / Мортон К. Смит / Пер. с англ. - М.: Металлургиздат, 1962. - 456 с.
42. Brammer, I.S. Sheet Strecls for forming applications [Текст] / I.S. Brammer, T.R. Thompson, R.M. Hobbs // I. Austral Inst. Metals. 1972, 17. №3 (B ТОКП, № 19, 1973).
43. Бэкофен, В. Процессы деформации [Текст] / В. Бэкофен / Пер. с нем. -M.: Металлургия, 1977. - 288 с.
44. Броек, Д. Основы механики разрушения [Текст] / Д. Броек. - М.: Высшая школа, 1980.-368с.
45. Whiteley, R.L. Anisotropy os anasset for good drawability [Текст] / R.L. Whiteley, D.E. Blickwede // Sheet Met. Inds. 1961, - V. 409. - P. 38.
46. Moore, G.G. The effect-stability in sheet-metal forming [Текст] / G.G. Moore, J.E. Wallace // J. Inst. Metal., 1963. - №2, - P. 93-97.
47. Головлев, В.Д. Влияние анизотропии на процесс глубокой вытяжки [Текст] / В.Д. Головлев // Кузнечно-штамповочное производство, 1966. -№ 10.-С. 32-35.
48. Головлев, В.Д. Влияние анизотропии на глубокую вытяжку [Текст] / В.Д. Головлев //Прогрессивная технология глубокой вытяжки листовых материалов: Сб. докл. Тула, 1968. - С. 16-21.
49. Яковлев, С.П. О влиянии анизотропии на предельную степень вытяжки [Текст] / С.П. Яковлев, В.В. Шевелев, В.А. Короткое // Изв. вузов. Машиностроение, 1968. - №2. - С 34-36.
50. Wilson, D.V. Plastic anisotropy in Schell Metals [Текст] / D.V. Wilson // J. Inst. Metal. - 1966. - № 94. - P. 3 - 8.
51. Казакевич, Г.С. Анализ некоторых процессов пластического деформирования анизотропного листа [Текст] / Г.С. Казакевич // Ленингр. политехи, ин-т. Л.: Машиностроение, 1966. - № 271. - С. 36-51
52. Ширшов, A.A. Пластический изгиб листа из анизотропного материала при больших деформациях [Текст] / A.A. Ширшов // Изв. вузов. Машинострение. 1969. - № 10. - С. 148-152.
53. Арышенский, Ю.М. Теоретические основы расчетов технологических процессов кузнечно-штамповочного производства.: Учеб. пособие [Текст] / Ю.М. Арышенский, В.В. Уваров, В.Ю. Ненашев. - Куйбышев: Куйбышевский авиационный ин-т, 1973. - 114 с.
54. Арышенский, Ю.М. Расчет пружинения при обтяжке [Текст] / Ю.М. Арышенский, В.В. Уваров, И.И. Калужский // Куйбышев: КуАИ, 1979. -Вып. 64. - С. 4-8.
55. Уваров, В.В. Предельное формоизменение при штамповке деталей летательных аппаратов: Учеб. пособие [Текст] / В.В. Уваров, Ю.М. Арышенский, В.И. Мордасов, Ф.В. Гречников. - Куйбышев: Куйбышевский авиационный ин-т, 1978. - 68с.
56. Баскаков, С.Т. Определение величины пружинения обшивок при плоской схеме деформирования [Текст] / С.Т. Баскаков, С.С. Одинг, В.И. Максименков // Исследования в области пластичности и обработки металлов давлением: Сб. трудов. - Тула, 1977. - С. 11-18.
57. Fitspatriek, I.M. Texture Strengtheniny ox Ti-6A1-4V [Текст] / I.M. Fitspatriek, F.A. Crossleu, R.E. Lewis // Metals/Ena Quart. 1972. - VI2. -№1. - P. 27-31.
58. Папиров, И.И. Бериллий - конструкционный материал [Текст] / И.И. Папиров. - М.: Металлургия, 1977. - 160 с.
59. Пат. 6562154 США. Aluminum sheet products having improved fatigue crack growth resistance and methods of making same [Текст] / R.J. Rioja et. al. ; заявитель и патентообладатель Aluminum Company of America. -заявл. 12.06.2000; опубл. 13.05.2003. - 37 с.
60. Понагайбо, Ю.Н. Крупнокристаллическая структура в плакирующем слое алюминиевых обшивочных листов [Текст] / Ю.Н. Понагайбо // Сборник статей. Деформируемые алюминиевые сплавы. - М.: Оборонгиз, 1961. - С.44-53.
61. Pedersen, К. Fatigue Crack Growth of Short Cracks in an AlMgSi Alloy [Текст] / К. Pedersen // Advances in Fatigue Science and Technology. -Klewer Academic Publishers, 1989. - Pp. 773-783.
62. Pedersen, K. Fatigue Mechanism in an AlMgSi Alloy [Текст] / К. Pedersen // Fatigue '90, Proceedings of the 4th International Conference on Fatigue and
Fatigue Thresholds, July 15-20, 1990. - Birmingham, UK: Materials and Component Engineering Publications Ltd., 1990. - Pp. 99-104.
63. Lutjering, G. Influence of Grain Size on the Fracture of Aluminum Alloys [Текст] / G. Lutjering, T. Hamajima, and A. Gysler // Fracture 1977 , Vol. 2, ICF4, June 19-24, 1977. - Waterloo, Canada: Pergamon Press, 1977. -Pp. 7-16.
64. Ruch, W. The Influence of Microstructure on Fatigue Crack Initiation and Fatigue Crack Propagation in Al-Mg-Si Alloys [Текст] / W. Ruch, V. Gerold // Fracture and the Role of Microstructure, Proceedings of the 4th ECF Conference, Vol. 2, September 22-24, 1982. - Leoben, Austria: Engineering Materials Advisory Services Ltd., 1982. - Pp. 383-390.
65. Sanders, R. E. The Effect of Intermediate Thermomechanical Treatments on the Fatigue Properties of a 7050 Alloy [Текст] / R. E. Sanders, E. A. Starke // Metallurgical Transactions A. 1978. - Vol. 9A.- Pp. 1087-1100.
66. Рабинович, M. X. Влияние размера зерна на трещиностойкость алюминиевых сплавов [Текст] / М. X. Рабинович, М. В. Маркушев // МИТОМ, 1994. - №8. - С. 25-30.
67. Авиационные материалы: Справочник в 9 томах. Т. 4. Алюминиевые и бериллиевые сплавы под ред. Шалина Р.Е. [Текст]. - ОНТИ, 1982.
68. Мальцев, М.В. Металлография промышленных цветных металлов и сплавов [Текст] / М.В. Мальцев. - М.: Металлургия, 1970. - 364 с.
69. Микляев, П.Г. Сопротивление деформации и пластичность алюминиевых сплавов [Текст] / П.Г. Микляев, В.М. Дуденков. - М.: Металлургия, 1979. - 182 с.
70. Горелик, С.С. Рекристаллизация металлов и сплавов [Текст] / С.С. Горелик. - М.: Металлургия, 1978. - 568с.
71. Засимчук, Е.Э. Полигонизация, рекристаллизация и термическая стабильность свойств материалов [Текст] / Е.Э. Засимчук. - Киев: Наукова думка, 1976. - 227с.
72. Новиков, И.И. Теория термической обработки [Текст] / И.И. Новиков. -М.: Металлургия, 1978. - 392 с.
73. Doherty, R.D. The effect of a dispersed second phase on the recrystallization of Al-Cu alloys [Текст] / R.D. Doherty, J.W. Martin // J. Inst. Metals. 1962. -№91.-Pp. 332-338.
74. Doherty, R.D. Nucleation of recrystallization in cold and hot deformed polycrystals [Текст] / R.D. Doherty, I. Samajdar, C.T. Necker, H.E. Vatne, E. Nes // Proc. 16th International symposium on materials science: Microstructural and crystallographic aspects of recrystallization. - Roskidle, Denmark, 1995.-Pp. 1-23.
75. Weiland, H. Nucleation and growth of recrystallized grains during industrial thermomechanical processing of aluminum alloys [Текст] / H. Weiland // Proc. 16th International symposium on materials science: Microstructural and crystallographic aspects of recrystallization. - Roskidle, Denmark, 1995. - Pp. 215-228.
76. Вайнблат, Ю.М. Диаграммы структурных состояний и карты структур алюминиевых сплавов [Текст] / Ю.М. Вайнблат // Металлы. - 1982. -№2.-С. 82-89.
77. Ланцман, П.Ш. Анализ режимов высокотемпературной термомеханической обработки на основе диаграмм структурных состояний [Текст] / П.Ш. Ланцман, Ю.М. Вайнблат // Легирование и обработка легких сплавов. М., 1981 г. - С. 161-171.
78. Вайнблат, Ю.М. Управление структурой полуфабрикатов из сплава 1420 с помощью спонтанной рекристаллизации [Текст] / Ю.М. Вайнблат, Н.А. Шаршагин, В.Г. Давыдов // Технология легких сплавов. - 1999. - №1-2. -С. 78-85.
79. Вайнблат, Ю.М. Непрерывная рекристаллизация в горячедеформированных алюминиевых сплавах [Текст] / Ю.М. Вайнблат // Технология легких сплавов. - 1994. - № 5 - 6. - С. 10-19.
80. Вайнблат, Ю.М. Влияние программы горячей деформации на размер зерна в сплаве АМгб. Спонтанная рекристаллизация. [Текст] / Ю.М. Вайнблат, H.A. Шаршагин, Э.А. Варфоломеева, П.Ш. Ланцман // Технология легких сплавов. - 1980. - №7. - С. 3 - 7.
81. Вайнблат, Ю.М. Спонтанная рекристаллизация алюминиевых сплавов в условиях горячей прокатки [Текст] / Ю.М.Вайнблат, H.A. Шаршагин, Э.А. Варфоломеева, В.П. Горохов, С.П. Молодчинина // Технология легких сплавов. - 1982. - №7. - С. 5 - 9.
82. Буданова, Л.В. [Текст] / Л.В. Буданова, С.Ю. Клепачевская // Технология легких сплавов. - 1978. - №1. - С. 24 - 25.
83. Bryant, A.J. [Текст] / Metals Technology, 1975, №1. - P. 21 - 32.
84. Барбанель, Р.И. [Текст] / Р.И. Барбанель, А.Т. Пчелин, Л.С. Аверина // Легкие сплавы и методы их обработки. - М., 1968. - С. 57 - 62.
85. Елагин, В.И. Термомеханическая обработка. [Текст] / В.И. Елагин // Алюминиевые сплавы. Структура и свойства полуфабрикатов из алюминиевых сплавов: Справ, изд. - М., 1984 г. - С 35 - 37.
86. Давыдов, В.Г. О продолжительности выдержки при нагреве под закалку листов и лент из сплавов AI - Си - Mg и AI - Си - Mg - Мп [Текст] / В.Г. Давыдов, Л.Б. Бер, A.A. Кольцова // Технология легких сплавов. - 1982. -№7.-С. 9- 15.
87. Клепачевская, С.Ю. Влияние технологических параметров изготовления на свойства и структуру листов Д16ч в отожженном состоянии [Текст] / С.Ю. Клепачевская, Л.Б. Бер, Г.М. Головизнина, В.Ю. Арышенский // Проблемы металлургии легких и специальных сплавов.-1991,- С. 269-277.
88. Кудрявцев, И.П. Текстуры в металлах и сплавах [Текст] / И.П. Кудрявцев - М.: Металлургия, 1965. - 292 с.
89. Вассерман, Г. Текстуры металлургических материалов. [Текст] / Г. Вассерман, И. Гревен. - М.: Металлургия, 1969. - 654 с.
90. Тихонов, Б.С. Прокатка цинка. [Текст] / Б.С. Тихонов. - М. Металлургиздат, 1963. - 200 с.
91. Арышенский, Ю.М. Определение девиатора анизотропной среды по ее текстурным параметрам [Текст] / Ю.М. Арышенский, Ф.В. Гречников, В.М. Зайцев // Изв. АН СССР. Металлы. - 1990. - №4. - С. 137 - 140.
92. Гречников, Ф.В. Исследование взаимосвязи показателей анизотропии с характеристиками текстуры и константами монокристалла при прокатке сплава АМц [Текст] / Ф.В. Гречников, С.Ю. Клепачевская, В.М. Зайцев// Цветные металлы. - 1991. - №3. - С. 59 - 62.
93. Blade, I.C. The influence of constitution on the caring of commercial purity aluminum [Текст] / I.C. Blade // J. Inst. Metals. - 1962. - V 90. - № 10. - Pp. 374-376.
94. Grewen, I. Gefuge Tekstur und Zipfelbildung von A1 99,5 in Abhangingkeit [Текст] /1. Grewen, M. Heimendahl // Z. fur Metallkunde. - 1968, - №3. -S.59-64.
95. Шубников, A.B. Избранные труды по кристаллографии. [Текст] / А.В. Шубников. - М.: Наука, 1975. - 536 с.
96. Уманский, Я.С. Кристаллография, рентгенография и электронная микроскопия [Текст] / Я.С. Уманский, Ю.А. Скаков, А.Н. Иванов, JI.H. Расторгуев. - М.: Металлургия, 1982. - 632 с.
97. Белоусова, Н.С. [Текст]/ Н.С. Белоусова, М.М. Бородина // ФММ. -1974. - 37. - вып.5. - С. 1081 - 1088.
98. Вишняков, Я.Д. Дефекты упаковки в кристаллической структуре. [Текст]/ Я.Д. Вишняков. - М.: Металлургия, 1970. - 216 с.
99. Major, В. Recrystallization textures of inhomogeneous FCC materials [Текст]/B. Major// Arch. hutn. - 1986. - V.31. - №1. - Pp. 117 -128.
ЮО.Певзнер, М.З. О текстуре рекристаллизации прокатанного алюминия. [Текст]/ М.З. Певзнер, Е.Ф. Сильникова // Металлы. - 1993. - №5. - С. 139- 143.
101. Певзнер, М.З. Формирование текстуре алюминиевой конденсаторной фольги [Текст]/ М.З. Певзнер // Изв. вузов. Цветная металлургия. - 1997. - №1. - С. 45-52.
102. Певзнер, М.З. К формированию текстуры сдвига на поверхности проката из ГЦК материалов [Текст]/ М.З. Певзнер, Е.Ф. Сильникова // Производство проката. - 2006. - №8.
103. Кристиан, Дж. Теория превращений в металлах и сплавах [Текст]/ Дж. Кристиан. - М.: Мир, 1978. - 4.1. - 806 с.
104. Лайнер, Д.И. Процессы рекристаллизации [Текст]/ Д.И. Лайнер, Е.М. Крупникова, Е.И. Перлина //ФМИН. - 1960. - Т.9.- С. 542 - 544.
105. Губкин, С.И. Теория обработки металлов давлением [Текст]/ С.И. Губкин. - М.: Металлургия, 1947. - 485с.
106. Тихонов, Б.С. Влияние разверток при горячей и холодной прокатке на анизотропию механических свойств цинка [Текст]/ Б.С. Тихонов. - М.: ЦНИИЦМ,- 1959.-Бюл. № 18.-С. 12-13.
107. Krupkowski, A. Phenomenon of anisotropy in annealed polycrystalline metals [Текст]/ A. Krupkowski, S. Kowinski // J. Inst. Met. - 1949. - V. 75. - Pp. 869-880.
108. Шевелев, B.B. Влияние режимов прокатки и термообработки листового материала на анизотропию механических свойств [Текст]/ В.В. Шевелев, С.П. Яковлев, В.А. Короткое // Исследования в области пластичности и обработки металлов давлением: Сб. трудов. - Тула. - 1968. - С. 116-119.
109. Brammar, I.S. Sheet structures for forming applications [Текст]/ I.S. Brammar, T.R. Thompson, R.M. Hobbs // J. Austral. Inst. Metals. - 1972. -17. -№3.
110. Dillamore, I. Preferred orientation and the plastic behavior of sheet metal [Текст]/1. Dillamore, P. Mellor, R. Hasel // J. Inst. Metals. - 1972. - V. 10. -Pp. 50 - 57.
111. Адамеску, P.A. [Текст]/ P.A. Адамеску, К. Вальтер, П.В. Гельд и др. // ФММ. - 1983. - Т. 56. - С. 770 - 774.
112. Митюшова, Л. Л. Ориентационные факторы анизотропии упругих свойств металлов с кубической симметрией. [Текст]/ Л.Л. Митюшова,
Е.А. Митюшов, P.A. Адамеску, В.И. Юшков // ФММ. - 1985. - Т. 60, вып. 5.-С. 993-999.
113. Адамеску, P.A. Анизотропия предела текучести в металлах кубической симметрией. [Текст]/ P.A. Адамеску, JI.JI. Митюшова. - Деп. ВИНИТИ. -№6671.-Вып. 85.-32 с.
114. Бабарэко, A.A. Информация ВИНИТИ. [Текст]/ A.A. Бабарэко. - М.: ВИНИТИ. - 1980. - С. 79 - 148.
115. Maurice, С. [Текст]/ С. Maurice, J. Driver // Acta metall. mater. - 1993. -Vol. 41. -Pp.1653 - 1664.
116. Dies, K. Textur und anisotrope Aushärtung als Mittel zur Verbesserung der mechanischen eigenschaften von AI - Mg - Si legierungen. [Текст]/ К. Dies // Aluminium. - 1965. - Bd 41. - S. 12 - 24.
117. Ашкенази, E.K. Анизотропия конструкционных материалов [Текст]/ E.K. Ашкенази, Э.В. Ганов. - JL: Машиностроение, 1980. - 247 с.
118. Гречников, Ф.В. Разработка критерия пластичности для расчетов формообразования высокотекстурированных анизотропных заготовок [Текст]/ Ф.В. Гречников, Я.А. Ерисов // Вестник Самарского государственного аэрокосмического университета имени академика С.П. Королева (национальный исследовательский университет). - 2012. — №1. - С. 94 - 99.
119. Mises, R. Mechanik der plastischen Formänderung von Kristallen [Текст]/ R. Mises//ZAMM. - 1928. -№8-3.- c. 161 - 185.
120. Качанов, Jl.M. Основы теории пластичности [Текст]/ Л.М. Качанов. -М.: Наука, 1969.-420с.
121. Арышенский, Ю.М. Теория листовой штамповки анизотропных материалов [Текст]/ Ю.М. Арышенский. - Саратов: Изд-во Саратовского университета, 1973. - 112 с.
122. Соколовский, В.В. Теория пластичности [Текст]/ В.В. Соколовский. -М.: Высшая школа, 1969. - 608 с.
123. Аверкиев, А.Ю. Методы оценки штампуемости листового металла [Текст]/ А.Ю. Аверкиев. - М.: Машиностроение, 1985. - 176 с.
124. Томленов, А. Д. Теория пластического деформирования металлов [Текст]/ А.Д. Томленов. - М.: Металлургия, 1972. - 408 с.
125. Арышенский, Ю.М. Теория листовой штамповки анизотропных материалов [Текст]/ Ю.М. Арышенский, Ф.В. Гречников, В.В. Уваров, В.Ю. Арышенский, М.Г. Лосев. - Куйбышев, КуАИ, 1988. - 88 с.
126. Моррисон, В.Б. Пластичность сплавов со сверхмелким зерном [Текст]/ В.Б. Моррисон, Р.Л. Миллер // Сверхмелкое зерно в металлах и сплавах. -М.: Металлургия, 1973. - с. 181 - 205.
127. Сенаторова, О. Г. Развитие и перспективы применения высокопрочных алюминиевых сплавов для катаных полуфабрикатов [Текст]/ О.Г. Сенаторова, А. Ю. Сухих, В. В. Сидельников и др. // Технология легких сплавов. - 2002. - №4. - С. 28-33.
128.Мацнев, В.Н. Исследование структуры и свойств сплава 1163 и организация производства листовых деталей из этого материала [Текст]/ В. Н. Мацнев // Авиационная промышленность. - 2008 - №4. - С. 7-13.
129. Арышенский, В. Ю. Выбор технологических параметров для снижения размера зерна в основе и плакировке обшивочных листов из алюминиевых сплавов [Текст]/ В.Ю. Арышенский, А.Ф. Гречникова, A.M. Дриц и др. // Технология легких сплавов. - 2010. - №3. - С. 22-30.
130.Кишкина, С. Н. Сопротивление разрушению алюминиевых сплавов [Текст]/ С. Н. Кишкина. - М.: Металлургия, 1981, 300 с.
131. Методы и средства оценки трещиностойкости конструкционных материалов [Текст]. - М.: Наукова Думка, 1981. - С. 177-207.
132. Телешов, В. В. Сопротивление малоцикловой усталости полуфабрикатов из деформируемых алюминиевых сплавов (обзор литературы за 19701995 гг.) [Текст]/ В. В. Телешов, В. И. Кузгинов // Технология легких сплавов. - 1995. - №6. - С. 69-83, 133-136.
133. Адлер, Ю.П. Введение в планирование эксперимента [Текст]/ Ю.П. Адлер. - М.: Металлургия, 1969. - 157с.
134. Самонин, В.Н. Некоторые особенности прокатки алюминиевых лент на непрерывных станах горячей прокатки [Текст]/ В.Н. Самонин, В.Ю. Арышенский, М.В. Федоров // Сб. трудов МНТК «Металлофизика и деформирование перспективных материалов» // Вестник Самарского государственного аэрокосмического университета имени академика С.П. Королева. - Самара, 1999. - с. 17-20.
135. Самонин, В.Н. Анализ напряженно-деформированного состояния при горячей прокатке полос из сплава 3104 [Текст]/ В.Н. Самонин, Э.В. Беглов, И.Д. Фурман // Сб. трудов МНТК «Новые направления развития производства и потребления алюминия и его сплавов». - Самара, 2000. -С. 98- 108.
136. Серебряный, В.Н. Изучение ошибок ФРО при обращении полюсных фигур с использованием статистического метода гребневых оценок [Текст] / В.Н. Серебряный, С.Ф. Куртасов, М.А. Литвинович // Заводская лаборатория. - 2007. - Т. 73. - № 4. - С. 29-35.
137. Куртасов, С.Ф. Методика количественного анализа текстур прокатки материалов с кубической симметрией кристаллической решетки [Текст]/ С.Ф. Куртасов // Заводская лаборатория. - 2007. - Т. 73. - № 7. - С.29-35.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.