Разработка модуля формирования знаний в интеллектуальных системах на основе абдуктивного метода модификации посылок тема диссертации и автореферата по ВАК РФ 05.13.01, кандидат технических наук Котельников, Евгений Вячеславович
- Специальность ВАК РФ05.13.01
- Количество страниц 203
Оглавление диссертации кандидат технических наук Котельников, Евгений Вячеславович
ВВЕДЕНИЕ.
Глава 1. Анализ методов логического вывода и систем обработки знаний. 11 1.1 Методы логического вывода.
1.1.1 Формальные системы.
1.1.2 Формальная система исчисления высказываний.
1.1.3 Классификация методов логического вывода.
1.1.4 Метод деления дизъюнктов.
1.1.5 Абдуктивный логический вывод.
1.1.5.1 Понятие абдуктивного вывода.
1.1.5.2 Подходы к характеристике абдуктивного вывода.
1.1.5.3 Подходы к реализации абдуктивного вывода.
1.1.5.4 Применение абдукции. i 1.2 Системы обработки знаний.
1.2.1 Определение и структура систем обработки знаний.
1.2.2 Классификация систем обработки знаний.
1.2.3 Принципы функционирования систем обработки знаний.
1.2.4 Методика построения систем обработки знаний.
1.2.5 Стратегии получения знаний. ф 1.2.6 Оценка эффективности систем обработки знаний.
1.3 Методы формирования знаний в СОЗ.
1.3.1 Классификация методов формирования знаний в СОЗ.
1.3.2 Индуктивное обучение.
1.3.2.1 Структурно-логические методы.
1.3.2.2 Признаковые методы.
1.3.2.3 Методы извлечения знаний из баз данных.
1.3.3 Обучение на основе дедукции.
1.3.4 Обучение на основе аналогии.
1.3.5 Обучение на основе абдукции.
1.4 Выводы по главе 1.
Глава 2. Разработка методов логического вывода с изменением посылок.
2,1 Постановка задачи логического вывода.
2.2 Метод добавления посылок.
2.2.1 Теоретические основы метода.
2.2.2 Пример логического вывода.
2.3 Метод удаления посылок.
2.3.1 Теоретические основы метода.
2.3.2 Пример логического вывода.
1 2.4 Абдуктивный метод модификации посылок.
2.4.1 Теоретические основы метода.
2.4.2 Пример логического вывода.
2.5 Выводы по главе 2.
Глава 3. Разработка модуля формирования знаний.
3.1 Структура модуля формирования знаний.
3.1.1 Обобщенная структура модуля.
3.1.2 Детализированная структура модуля.
3.2 Принципы функционирования и построения систем обработки знаний с модулем формирования знаний.
3.2.1 Режимы работы системы обработки знаний.
1Ф 3.2.2 Режим дедуктивного вывода.
3.2.4 Создание базы знаний.
3.2.5 Особенности построения систем обработки знаний с модулем формирования знаний.
3.3 Оценка эффективности систем обработки знаний с модулем формирования знаний.
3.3.1 Критерии эффективности.
3.3.2 Расчет времени обучения.
3.3.3 Расчет степени модификации.
3.4 Выводы по главе 3.
Глава 4. Разработка программных реализаций модуля формирования знаний.
4.1 Разработка программных реализаций методов с изменением посылок.
4.1.1 Общая характеристика программных реализаций.
4.1.2 Программа реализации метода добавления посылок.
4.1.2.1 Структура программы.
4.1.2.2 Разработка интерфейса пользователя.
4.1.3 Программа реализации метода удаления посылок.
4.1.3.1 Структура программы.
4.1.3.2 Разработка интерфейса пользователя.
4.1.4 Программа реализации абдуктивного метода модификации посылок.
4.1.4.1 Структура программы.
4.1.4.2 Разработка интерфейса пользователя.
4.2 Разработка системы поддержки принятия решений по выбору сотовых телефонов.
4.2.1 Общие характеристики.
4.2.2 Структура системы.
4.2.3 База знаний.
4.2.4 Режим консультации.
4.2.5 Режим обучения.
4.2.6 Разработка интерфейса пользователя.
4.3 Разработка программной модели системы распознавания символов.
4.3.1 Общие характеристики.
4.3.2 Структура системы.
4.3.3 Режимы работы.
4.3.5 Топологические признаки распознавания.
4.3.6 Представление символов в базе знаний.
4.3.7 Режим обучения.
4.3.8 Разработка интерфейса пользователя.
4.4 Выводы по главе 4.
Рекомендованный список диссертаций по специальности «Системный анализ, управление и обработка информации (по отраслям)», 05.13.01 шифр ВАК
Метод и система логического вывода модифицируемых заключений2009 год, кандидат технических наук Томчук, Максим Николаевич
Разработка метода и системы логического вывода модифицируемых заключений2009 год, кандидат технических наук Томчук, Максим Николаевич
Машины логического вывода на основе теории параллельных дедуктивных и абдуктивных вычислений1999 год, доктор технических наук Страбыкин, Дмитрий Алексеевич
Формально-грамматическая модель логического вывода в системах искусственного интеллекта1999 год, кандидат физико-математических наук Анисимова, Ирина Николаевна
Методы и алгоритмы интеллектуальной поддержки принятия решений в задачах выявления причинно-следственных связей и диагностики технических систем, используемых в машиностроении2009 год, кандидат технических наук Бурлаченко, Татьяна Борисовна
Введение диссертации (часть автореферата) на тему «Разработка модуля формирования знаний в интеллектуальных системах на основе абдуктивного метода модификации посылок»
Актуальность темы исследования. В настоящее время интеллектуальные системы получили широкое распространение. В наибольшей степени это утверждение справедливо для экспертных систем, систем поддержки принятия решений, интеллектуальных баз данных, систем распознавания образов. Лучшим подтверждением успешности интеллектуальных систем может служить тот факт, что многие подобные системы перешли в разряд повседневных программ.
Но, несмотря на имеющиеся успехи, остаются и проблемы в разработке интеллектуальных систем. В частности, если система претендует на «интеллектуальность», то она должна обладать развитыми способностями к обучению. В современных интеллектуальных системах наибольшие успехи в обучении достигнуты при использовании нейронных сетей.
Процесс обучения с применением нейросетевых технологий начинается с предъявления системе набора обучающих примеров, состоящих из входных и выходных сигналов. Затем нейронная сеть автоматически подстраивает свои синаптические веса таким образом, что при последующем предъявлении входных сигналов на выходе получаются требуемые сигналы. Недостатком данного подхода являются трудности, возникающие при попытках семантической интерпретации механизмов работы нейронной сети. Кроме того, малоисследованным остается вопрос, каким образом представляются знания в нейронных сетях.
Указанные недостатки отсутствуют в системах на основе баз знаний, использующих для обучения логический вывод (JIB). При этом под способностью к обучению понимается возможность создания базы знаний, а также пополнение и модификация правил в базе знаний под влиянием вновь полученной информации.
Большинство современных интеллектуальных систем, использующих JIB, позволяет модифицировать базу знаний только в ручном режиме. Пользователь может вносить новые правила и удалять старые, при этом система осуществляет только контроль непротиворечивости информации, а существующая информация никак не учитывается. Возможны ситуации, когда вместо добавления пяти новых правил, без учета уже существующих, требуется добавить всего одно, которое дополняет имеющуюся информацию.
Известные методы формирования знаний (или методы машинного обучения), позволяющие автоматически изменять базу знаний, основаны на применении индуктивного JIB. Индукция подразумевает наличие достаточно представительной выборки обучающих примеров, которая обобщается посредством сгенерированных правил.
В связи с этим представляет интерес машинное обучение на основе абдукции, которое позволяет ограничиться небольшим числом наблюдений (от одного) и дает возможность максимального учета существующей в базе знаний информации.
Кроме того, использование абдуктивного вывода позволяет интеллектуальным системам приобрести некоторые свойства, ранее доступные лишь на основе нейросетевого подхода, например, возможность автоматической модификации («настройки») базы знаний под воздействием небольшого набора обучающих заключений, которые должны выводиться (или не выводиться) из посылок этой базы знаний.
Однако в настоящее время абдуктивный вывод в методах формирования знаний либо не применяется, либо используется в качестве вспомогательного.
Таким образом, является актуальной задача разработки методов и средств, основанных на абдуктивном ЛВ, для формирования баз знаний в интеллектуальных системах.
Значительный вклад в разработку и исследование методов обучения интеллектуальных систем внесли М. Л. Цетлин, М. М. Бонгард, Я. 3. Цыпкин, Д. А. Поспелов, В. К. Финн, Г. С. Осипов, В. Н. Вагин, Т. А. Гаврилова, В. Ф. Хорошевский, П. Гаек, Т. Гавранек, С. Осуга (S. Osuga), Ю. Саэки
U. Saeki), А. Сэмюэль (A. Samuel), Э. Хант (E. Hunt), Д. Марин (J. Marin), Ф. Стоун (P. Stone), P. Михальски (R. Michalski), Д. Карбонелл (J. Carbonell), Т. Митчелл (Т. Mitchell), Д. Куинлан (J. Quinlan).
Абдуктивный JIB исследовался в работах Ч. С. Пирса (С. S. Pierce), В. К. Финна, В. Н. Вагина, Е. Ю. Головиной, Д. А. Страбыкина, М. JI. Долженковой, Д. Габбая (D. Gabbay), П. Сметса (P. Smets), К. Бутилье (С. Boutilier), П. Флеча (P. Flach), А. Какаса (A. Kakas), К. Иноуэ (К. Inoue), Ч. Сакама (С. Sakama), Дж. Джозефсона (J. Josephson), С. МакИлрайта (S. Mcllraith), Дж. Пола (G. Paul) и др.
Целью исследования является разработка абдуктивных методов модификации посылок в исчислении высказываний и построение на основе этих методов модуля формирования знаний для интеллектуальных систем.
Для достижения указанной цели необходимо разработать:
- метод добавления посылок;
- метод удаления посылок;
- абдуктивный метод модификации посылок;
- структуру, принципы функционирования и критерии эффективности модуля формирования знаний;
- программные реализации абдуктивных методов модификации посылок и интеллектуальных систем с модулем формирования знаний.
Методы исследования. Для достижения поставленной в работе цели использовались методы научного анализа и синтеза, теории множеств, теории графов, математической логики, теории логического и объектно-ориентированного программирования.
Научная новизна исследования состоит в следующем:
- разработан метод добавления посылок в исчислении высказываний, позволяющий находить такие посылки, при добавлении которых в базу знаний требуемое заключение становится выводимым, и отличающийся от известных абдуктивных методов тем, что находится не единственная посылка, а семейство множеств дополнительных посылок, определяющее различные варианты пополнения базы знаний;
- разработан метод удаления посылок в исчислении высказываний, позволяющий находить такие посылки, при удалении которых из базы знаний требуемое заключение становится невыводимым, и отличающийся от известных методов тем, что находится не единственная посылка, а семейство множеств удаляемых посылок, определяющее различные варианты исключения посылок;
- разработан абдуктивный метод модификации посылок в исчислении высказываний, отличающийся процедурой комбинированного добавления и удаления посылок базы знаний с использованием трех методов ЛВ - дедуктивного вывода, метода добавления посылок и метода удаления посылок, и позволяющий автоматически модифицировать посылки с учетом существующей информации;
- введены операции над семействами множеств дизъюнктов - произведения семейств, дизъюнктивного добавления дизъюнкта к семейству дизъюнктов, конъюнктивного умножения семейства на логическую переменную, позволяющие в результате логического вывода получать не отдельную посылку или множество посылок, а семейство множеств посылок;
- предложены критерии эффективности модуля формирования знаний на основе абдуктивного метода модификации посылок — время обучения при модификации посылок и степень модификации базы знаний, позволяющие проводить сравнение различных реализаций модуля и оценивать степень использования существующей информации при модификации базы знаний.
Практическая ценность исследования состоит в следующих результатах:
- разработаны структура и алгоритм функционирования модуля формирования знаний на основе абдуктивного метода модификации посылок;
- выделены особенности построения и предложены алгоритмы функционирования интеллектуальных систем с модулем формирования знаний;
- разработаны программные реализации методов добавления, удаления и модификации посылок;
- разработана программная модель системы поддержки принятия решений с возможностью обучения при помощи модуля формирования знаний;
- разработана программная модель системы обработки знаний для распознавания символов с возможностью обучения посредством модуля формирования знаний.
Внедрение результатов исследования. Полученные теоретические и практические результаты использованы в НИР, выполняемых в рамках гранта РФФИ проект № 06-01-00089-а по тематике «Адаптивные системы логического вывода», а также в учебном процессе Вятского государственного университета и Вятского государственного гуманитарного университета в рамках дисциплин «Теория логического вывода», «Системы искусственного интеллекта», «Основы искусственного интеллекта», «Базы знаний и экспертные системы», что подтверждается соответствующими актами о внедрении.
Апробация работы. Основные положения и результаты исследования докладывались и обсуждались на Всероссийской ежегодной научно-технической конференции ВятГУ «Наука-производство-технологии-экология», г. Киров (2004, 2005, 2006 гг.), на Всероссийской научно-практической конференции «Актуальные проблемы гуманитарных и экономических наук», г. Киров (2004 г.).
Публикации. По теме исследования опубликовано 9 работ, из них 5 статей, 4 тезисов докладов.
Структура и объем исследования. Диссертационная работа состоит из введения, четырех глав, заключения, библиографического списка (включающего 167 наименований) и списка сокращений. Основная часть работы изложена на 203 страницах и содержит 43 рисунка и 3 таблицы.
Похожие диссертационные работы по специальности «Системный анализ, управление и обработка информации (по отраслям)», 05.13.01 шифр ВАК
Совершенствование гибридных абдуктивных методов для создания интеллектуальных систем поддержки принятия решений2006 год, кандидат технических наук Лопатникова, Вера Борисовна
Разработка и реализация методов и алгоритмов абдуктивного вывода с использованием систем поддержки истинности на основе предположений2011 год, кандидат технических наук Хотимчук, Кирилл Юрьевич
Логический анализ систем на основе алгебраического подхода2007 год, доктор физико-математических наук Кулик, Борис Александрович
Методы и модели автоматического построения онтологий на основе генетического и автоматного программирования2008 год, доктор технических наук Найханова, Лариса Владимировна
Принципы и логические средства интеллектуального анализа социологических данных2011 год, доктор технических наук Михеенкова, Мария Анатольевна
Заключение диссертации по теме «Системный анализ, управление и обработка информации (по отраслям)», Котельников, Евгений Вячеславович
4.4 Выводы по главе 4
1. Разработаны три программные реализации методов логического вывода с изменением посылок:
- программа Addition of premises - реализация метода добавления посылок в исчислении высказываний;
- программа Deletion of premises - реализация метода удаления посылок в исчислении высказываний;
- программа Modification of premises - реализация абдуктивного метода модификации посылок в исчислении высказываний.
Программные реализации предназначены для решения логических задач с изменением (добавлением, удалением, модификацией) исходных посылок. Они позволяют осуществить проверку разработанных методов на корректность, а также используются в учебном процессе в лабораторном практикуме по методам логического вывода с изменением посылок.
2. Разработана программная модель системы поддержки принятия решений по выбору сотовых телефонов. Данная модель представляет собой реализацию системы обработки знаний, в которой основой подсистемы обучения является модуль формирования знаний. Разработанная система показывает возможности абдуктивного метода модификации посылок, служит для проверки корректности абдуктивных методов, а также демонстрирует жизнеспособность подхода в целом.
Система поддержки принятия решений по выбору сотовых телефонов может применяться в учебном процессе с целью демонстрации возможностей подобных систем и методов обучения на основе абдукции, а также использоваться в торговых фирмах по продаже сотовых телефонов для консультации покупателей.
3. Разработана программная модель системы распознавания символов, представляющая собой программную реализацию системы обработки знаний с модулем формирования знаний. Данная система позволяет проверить на корректность разработанные методы с изменением посылок, может использоваться в учебном процессе в демонстрационных целях в рамках курсов «Методы логического вывода», «Системы искусственного интеллекта», «Методы распознавания образов» и др. На примере разработанной системы показана целесообразность применения методов с изменением посылок в системах обработки знаний.
ЗАКЛЮЧЕНИЕ
1. Разработан метод добавления посылок в исчислении высказываний, позволяющий для заданного заключения генерировать семейство множеств дополнительных посылок. При добавлении любого множества из найденного семейства во множество исходных посылок ранее не выводимое заключение становится логическим следствием исходных посылок.
Разработанный метод добавления посылок имеет ряд отличий от известных абдуктивных методов:
1) для выполнения действий над семействами множеств посылок, представленных в виде дизъюнктов, введены следующие операции:
- операция произведения семейств множеств «•», позволяющая комбинировать множества разных семейств;
- операция дизъюнктивного сложения семейства множеств дизъюнктов и отдельного дизъюнкта «V», позволяющая включить отдельный дизъюнкт в каждое множество семейства множеств дизъюнктов;
- операция конъюнктивного умножения семейства множеств дизъюнктов и логической переменной «а», позволяющая включать или не включать (в зависимости от значения логической переменной) семейство множеств дизъюнктов в окончательное решение.
Использование введенных операций в методе добавления посылок позволяет в результате работы метода получать не отдельную посылку или множество посылок, а семейство множеств посылок, что дает возможность выбора добавляемого множества из нескольких вариантов. Это обстоятельство важно при наличии дополнительных требований к добавляемому множеству. Например, имеется два заключения: di (не выводится, но должно выводиться) и d2 (не выводится и не должно выводиться). Для заключения dj генерируется семейство множеств добавляемых посылок. Дополнительное требование, накладываемое на множества данного семейства, заключается в том, что после объединения множества исходных посылок и множества дополнительных посылок заключение 62 не стало выводимым.
2) Осуществляется конструирование новых посылок из литералов исходных посылок, в то время как в традиционной абдукции объяснения являются элементами заранее заданного множества фактов (абдуцентов). Генерация посылок из множества исходных посылок в методе добавления позволяет говорить о том, что данный метод выполняет модификацию с учетом существующей информации. Эта особенность позволяет уменьшить число добавляемых посылок, так как часто встречаются ситуации, когда вместо добавления нескольких новых правил без учета уже существующих, достаточно добавить всего одно, которое дополняет имеющуюся информацию.
3) При генерации добавляемых посылок в методе учитываются не только факты (однолитеральные дизъюнкты), но и правила (многосимвольные посылки), в то время как в известных абдуктивных методах кандидатами на добавление являются только факты из заданного множества. Использование и фактов, и правил позволяет, во-первых, максимально учитывать существующую информацию во множестве исходных посылок, а во-вторых, применять метод добавления посылок для наполнения изначально пустого исходного множества требуемой информацией.
4) Каждое множество дополнительных посылок имеет коэффициент глубины вывода. Данный коэффициент позволяет ранжировать все множества-кандидаты на добавление с точки зрения использования существующих посылок в исходном множестве. Коэффициент глубины вывода используется при разрешении конфликтов, когда несколько множеств претендуют на добавление.
2. Разработан метод удаления посылок в исчислении высказываний. Данный метод для заданного заключения d позволяет осуществлять поиск множества посылок М' среди множества исходных посылок М. При удалении М' из множества М заключение d, выводившееся из множества исходных посылок, перестает быть логическим следствием М. Результатом работы метода является семейство множеств посылок-кандидатов на удаление.
Метод удаления посылок имеет несколько отличий от известных абдук-тивных методов:
1) для выполнения действий над семействами множеств введена операция произведения семейств множеств «•», позволяющая комбинировать множества разных семейств. За счет использования этой операции в процессе работы метода находится не одна посылка или множество посылок, а семейство множеств посылок-кандидатов на удаление;
2) метод удаления посылок основан на методе поиска одного решения. За счет многократного применения данного метода находятся все возможные пути вывода заключения из множества исходных посылок.
Методы добавления и удаления посылок являются самостоятельными методами абдуктивного логического вывода и могут независимо друг от друга применяться в интеллектуальных системах. В то же время наибольшую функциональность можно получить, используя данные методы совместно в рамках абдуктивного метода модификации посылок.
3. Разработан абдуктивный метод модификации посылок в исчислении высказываний. Предложенный метод позволяет для заданного множества заключений и требований выводимости каждого заключения (так как во множество заключений могут входить как заключения, которые должны являться следствием исходных посылок, так и заключения, которые не должны выводиться из множества исходных посылок) изменять (то есть добавлять и/или удалять посылки) множество исходных посылок таким образом, чтобы выполнить требования выводимости. Абдуктивный метод модификации посылок основан на совместном применении методов добавления посылок, удаления посылок и дедуктивного вывода в рамках единого процесса. Добавляемые и удаляемые множества посылок в методе модификации согласуются с требованиями выводимости для всего набора заключений. Метод также включает механизм разрешения ситуаций зацикливания, когда база знаний перестает изменяться в процессе модификации, а требования выводимости заключений не удовлетворяются.
Новизна метода модификации посылок обусловлена ранее не встречавшейся формулировкой задачи модификации посылок и включает несколько отличий от других абдуктивных методов логического вывода:
- учитываются как заключения, которые должны быть выводимы из исходных посылок, так и заключения, которые выводиться не должны. Это позволяет модифицировать множество исходных посылок в соответствии с вновь поступившей информацией, которая может требовать как добавления новых, так и удаления существующих посылок;
- совместно применяются три базовых метода - метод определения выводимости (дедуктивного вывода), метод добавления посылок и метод удаления посылок, с помощью которых проверяется выводимость заключений, генерируются дополнительные посылки и находятся лишние посылки;
- используется механизм разрешения ситуаций зацикливания, позволяющий выполнять требования выводимости для случаев, когда эти требования для множества заключений вступают в противоречие друг с другом.
4. Разработана структура модуля формирования знаний на базе абдуктивного метода модификации посылок, составляющего основу подсистемы обучения систем обработки знаний. Посредством данного модуля реализуется режим обучения в СОЗ, который позволяет накапливать информацию первоначально, может быть, в пустой базе знаний и модифицировать существующую в базе знаний информацию. Особенности режима обучения вытекают из применения абдуктивного метода модификации посылок. Такими особенностями являются:
- возможность наполнения первоначально пустой базы знаний;
- возможность максимального учета существующей в базе знаний информации;
- возможность использования небольшого числа наблюдений;
- возможность использования как положительных, так и отрицательных наблюдений.
Предложенная структура модуля формирования знаний позволяет реализовать подсистему обучения аппаратным, программным или аппаратно-программным способами.
Предложены критерии оценки эффективности режима обучения систем обработки знаний: с модулем формирования знаний на основе абдуктивного метода модификации посылок:
1) Тобуч - время обучения при модификации посылок. Данный критерий позволяет проводить оценку и сравнение различных реализаций модуля формирования знаний;
2) S - степень модификации базы знаний. Этот критерий позволяет оценивать степень использования существующей информации базы знаний при модификации и степень изменения базы знаний при начальном наполнении и модификации в процессе работы. Рассмотрены четыре разновидности данного критерия:
- - степень модификации при добавлении посылок;
- Sy - степень модификации при удалении посылок;
- Skoh количественная степень модификации;
- SKa4 - качественная степень модификации.
5. Разработаны программные реализации методов с изменением посылок:
- программа Addition of premises - реализация метода добавления посылок;
- программа Deletion of premises - реализация метода удаления посылок;
- программа Modification of premises - реализация абдуктивного метода модификации посылок;
- программная модель системы поддержки принятия решений по выбору сотовых телефонов с возможностью обучения на основе абдуктивного метода модификации посылок;
- программная модель системы распознавания символов, представляющая собой программную реализацию системы обработки знаний с модулем формирования знаний.
Данные программы позволяют осуществить проверку разработанных методов логического вывода на корректность, используются в учебном процессе в рамках курсов «Методы логического вывода» и «Системы искусственного интеллекта», а также показывают целесообразность применения методов с изменением посылок в системах обработки знаний.
Список литературы диссертационного исследования кандидат технических наук Котельников, Евгений Вячеславович, 2006 год
1. Амамия, М. Архитектура ЭВМ и искусственный интеллект Текст. / М. Амамия, Ю. Танака. М.: Мир, 1993. - 400 с.
2. Амарел, С. Подход к автоматическому формированию теории Текст. / С. Амарел // Принципы самоорганизации. М.: Мир, 1966. - С. 533-580.
3. Андрейчиков, А. В. Интеллектуальные информационные системы Текст. : учебник / А. В. Андрейчиков, О. Н. Андрейчикова. М.: Финансы и статистика, 2004. - 424 с.
4. Антонюк, Б. Д. Разработка экспертных систем искусственного интеллекта в США Текст. / Б. Д. Антонюк. М.: ВНИИСИ, 1986.
5. Аркадьев, А. Г. Обучение машины классификации объектов Текст. / А. Г. Аркадьев, Э. М. Браверманн. М.: Наука, 1971. - 192 с.
6. Аткинсон, Р. Введение в математическую теорию обучения Текст. / Р. Аткинсон, Г. Бауэр, Э. Кротерс. М.: Мир, 1969.
7. Ашинянц, Р. А. Логические методы в искусственном интеллекте Текст. / Р. А. Ашинянц. М.: МГАПИ, 2001. - 223 с.
8. Баженов, Л. Б. Основные вопросы теории гипотез Текст. / Л. Б. Баженов. -М.: Высш. шк., 1961. 68 с.
9. Барсегян, А. А. Методы и модели анализа данных: OLAP и Data Mining Текст. / А. А. Барсегян, М. С. Куприянов, В. В. Степаненко, И. И. Холод. СПб.: БХВ-Петербург, 2004. - 336 с.
10. Башмаков, А. И. Интеллектуальные информационные технологии Текст. : учеб. пособие / А. И. Башмаков, И. А. Башмаков. М.: Изд-во МГТУ им. Н. Э. Баумана, 2005. - 304 с.
11. Баяковский, Ю. М. Курс лекций: Введение в компьютерную графику Текст. / Ю. М. Баяковский. М.: ВМиК МГУ, 2002.
12. Бонгард, М. М. Проблема узнавания Текст. / М. М. Бонгард. М.: Наука, 1967.-320 с.
13. Борисов, А. Н. Приобретение знаний для интеллектуальных систем Текст. / А. Н. Борисов, И. П.Федоров, И. Ф. Архипов. Рига: Рижский техн. ун-т, 1991.
14. Браверманн, Э. М. Структурные методы обработки эмпирических данных Текст. / Э. М. Браверманн, И. Б. Мучник. М.: Наука, 1983.
15. Братко, И. Алгоритмы искусственного интеллекта на языке PROLOG Текст. / И. Братко. М.: Вильяме, 2004. - 640 с.
16. Вагин, В. Н. Дедукция и обобщение в системах принятия решений Текст. / В. Н. Вагин. М.: Наука. Гл. ред. физ.-мат. лит., 1988. - 383 с. -(Проблемы искусств, интеллекта.)
17. Вагин, В. Н. Достоверный и правдоподобный вывод в интеллектуальных системах Текст. / В. Н. Вагин, Е. Ю. Головина, А. А. Загорянская, М. В. Фомина. М.: Физматлит, 2004. - 704 с.
18. Вагин, В. Н. Аргументация в правдоподобном выводе Текст. / В. Н. Вагин, А. А. Загорянская // Труды конф. КИИ'2000. Т. 1. М.: Изд. физ.-мат. лит., 2000. - С. 165-173.
19. Вагин, В. Н. Организация абдуктивного вывода средствами теории аргументации Текст. / В. Н. Вагин, А. А. Загорянская // Труды конгресса «Искусственный интеллект в XXI веке». М.: Изд. физ.-мат. лит., 2001. -С. 13-20.
20. Вагин, В. Н. Системы аргументации и абдуктивный вывод Текст. / В. Н. Вагин, А. А. Загорянская // Известия РАН. Сер. Теория и системы управления. 2004. № 1. С.125-137.
21. Вагин, В. Н. Абдуктивный вывод в системах принятия решений Текст. / В. Н. Вагин, К. В. Лукин // Сб. науч. тр. Нац. конф. с междунар. участием «Искусственный интеллект-94». Рыбинск, 1994. Т. 2. - С.251-255.
22. Вагин, В. Н. Методы извлечения и обобщения информации в больших базах данных Текст. / В. Н. Вагин, А. А. Федотов, М. В. Фомина // Известия РАН. Сер. Теория и системы управления. 1999. № 5.
23. Варшавский, П. Р. Применение метода аналогий в рассуждении на основе прецедентов для интеллектуальных систем поддержки принятия решений Текст. / П. Р. Варшавский // Труды конф. КИИ'2004, Тверь, Т.1. Тверь, 2004. - С. 218-226.
24. Варшавский, П. Р. Поиск решения на основе структурной аналогии для интеллектуальных систем поддержки принятия решений Текст. / П. Р. Варшавский, А. П. Еремеев // Известия РАН. Сер. Теория и системы управления. 2005. № 1. С. 97-109.
25. Вишняков, В. А. Аппаратно-программные средства процессора логического вывода Текст. / В. А. Вишняков, Д. Ю. Буланже, О. В. Герман. -М.: Радио и связь, 1991. 264 с.
26. Гаврилова, Т. А. Базы знаний интеллектуальных систем Текст. / Т. А. Гаврилова, В. Ф. Хорошевский. СПб.: Питер, 2001. - 384 с.
27. Гаврилова, Т. А. Извлечение и структурирование знаний для экспертных систем Текст. / Т. А. Гаврилова, К. Р. Червинская. М.: Радио и связь, 1992.
28. Гаек, П. Автоматическое образование гипотез: математические основы общей теории Текст. / П. Гаек, Т. Гавранек; пер с англ. М.: Наука, 1984.-280 с.
29. Гладун, В. П. Планирование решений Текст. / В. П. Гладун. Киев: Наукова думка, 1987. - 167 с.
30. Гладун, В. П. Эвристический поиск в сложных средах Текст. / В. П. Гладун. Киев: Наукова думка, 1977. - 166 с.
31. Головина, Е. Ю. Абдуктивный вывод в инструментальных средствах для создания динамических систем принятия решений Текст. / Е. Ю. Головина // Труды конгресса «Искусственный интеллект в XXI веке». М.: Изд. физ.-мат. лит., 2001. - С. 50-60.
32. Горелик, A. JI. Методы распознавания Текст. / A. JI. Горелик, В. А. Скрипкин. М.: Высш. шк., 2004. - 261 с.
33. Гришкина, М. П. Разработка логических моделей и алгоритмов обучения Текст. : дис. . канд. техн. наук (05.13.11) / М. П. Гришкина. М.: 2001.
34. Девятков, В. В. Системы искусственного интеллекта Текст. / В. В. Де-вятков. М.: Изд-во МГТУ им. Н. Э. Баумана, 2001. - 352 с.
35. Джексон, П. Введение в экспертные системы Текст. / П. Джексон. М.: Вильяме, 2001.-622 с.
36. Джонс, М. Т. Программирование ИИ в приложениях Текст. / М. Т. Джонс. М.: ДМК Пресс, 2004. - 312 с.
37. Долженкова, М. JI. Объектно-ориентированная машина абдуктивная логического вывода Текст. : дис. канд. техн. наук (05.13.13) / М. JI. Долженкова. СПб., 1998. - 244 с.
38. Дюк, В. Data Mining Текст. : учебный курс / В. Дюк, А. Самойленко. -СПб.: Питер, 2001. 368 с.
39. Еремеев, А. П. Архитектура интеллектуальной системы поддержки принятия решений реального времени семиотического типа Текст. / А. П. Еремеев // Научная сессия МИФИ-2002: Сборник научных трудов. Т.З. -М.: МИФИ, 2002.
40. Ерофеев, А. А. Интеллектуальные системы управления Текст. : учеб. пособие для вузов / А. А. Ерофеев, А. О. Поляков. СПб.: Изд-во СПбГТУ, 1999.-264 с.
41. Ершов, Ю. JI. Математическая логика Текст. / Ю. JI. Ершов, Е. А. Па-лютин. М.: Наука. Гл. ред. физ.-мат. лит., 1987. - 336 с.
42. Ефимов, Е. И. Решатели интеллектуальных задач Текст. / Е. И. Ефимов. М.: Наука, 1982.-316 с.
43. Ефимов, Е. И. Семиотические модели в задачах планирования для систем искусственного интеллекта Текст. / Е. И. Ефимов, Д. А. Поспелов // Известия АН СССР «Техническая кибернетика». 1977. № 5. С. 60-68.
44. Ивашко, В. Г. Экспертные системы и некоторые проблемы их интеллектуализации Текст. / В. Г. Ивашко, В. К. Финн // Семиотика и информатика. 1986. Вып. 27. С. 25-61.
45. Искусственный интеллект Текст. : в 3 кн. Кн.2. Модели и методы: справочник / под ред. Д. А. Поспелова. М.: Радио и связь, 1990.
46. Искусственный интеллект: Применение в интегрированных производственных системах Текст. / под ред. Э. Кьюсиака. М.: Машиностроение, 1991.-539 с.
47. Кобринский, Б. А. Искусственный интеллект и медицина: возможности и перспективы систем, основанных на знаниях Текст. / Б. А. Кобринский // Новости искусственного интеллекта. 2001. № 4.
48. Ковальски, Р. Логика в решении проблем Текст. / Р. Ковальски. М.: Наука, 1990.-290 с.
49. Козлов, Ю. М. Адаптация и обучение в робототехнике Текст. / Ю. М. Козлов. М.: Наука, 1990. - 248 с.
50. Корнеев, В. В. Базы данных. Интеллектуальная обработка информации Текст. / В. В. Корнеев, А. Ф. Гареев, С. А. Васютин, В. В. Райч. М.: Нолидж, 2000.
51. Кузнецов, С. О. Об одной модели обучения и классификации, основанной на операции сходства Текст. / С. О. Кузнецов, В. К. Финн // Обозрение прикладной и промышленной математики. Т. 3. Вып.1. 1996.
52. Ларичев, О. И. Теория и методы принятия решений Текст. / О. И. Ларичев. М.: Логос, 2000. - 296 с.
53. Левит, В. Е. Структура и поле данных при распознавании образов Текст. / В. Е. Левит, В. С. Переверзев-Орлов. М.: Наука, 1984.
54. Лорьер, Ж.-Л. Системы искусственного интеллекта Текст. / Ж.-Л. Лорь-ер. М.: Мир, 1991.-568 с.
55. Любарский, Ю. А. Интеллектуальные информационные системы Текст. / Ю. А. Любарский. М.: Наука, 1990. - 227 с.
56. Люгер, Дж. Ф. Искусственный интеллект: стратегии и методы решения сложных проблем Текст. / Дж. Ф. Люгер. М.: Изд. дом «Вильяме», 2003. - 864 с.
57. Маслов, С. Ю. Обратный метод установления выводимости в классическом исчислении предикатов Текст. / С. Ю. Маслов // ДАН СССР. 1964. Т. 159.-С. 17-20.
58. Маслов, С. Ю. Теория дедуктивных систем и её применение Текст. / С. Ю. Маслов. М.: Радио и связь, 1986. - 135 с.
59. Микони, С. В. Методы и алгоритмы принятия решений Текст. : учеб. пособие / С. В. Микони. СПб.: СПГУПС, 1995. - Ч. 1.
60. Микони, С. В. Методы и алгоритмы принятия решений Текст. : учеб. пособие / С. В. Микони, А. Н. Баушев. СПб.: СПГУПС, 1996. - Ч. 2.
61. Микони, С. В. Модели и базы знаний Текст. : учеб. пособие / С. В. Микони. СПб.: СПГУПС, 2000. - 155 с.
62. Минский, М. Структура для представления знаний Текст. / М. Минский // Психология машинного зрения / под ред. П. Уинстона. М.: Мир, 1978.-С. 249-338.
63. Минский, М. Фреймы для представления знаний Текст. / М. Минский. -М.: Энергия, 1979.-151 с.
64. Моделирование обучения и поведения Текст. М.: Наука, 1975.
65. Моргоев, В. К. Метод извлечения и структуризации экспертных знаний: моделирование консультаций Текст. / В. К. Моргоев // Сб. тр. ВНИИСИ «Человеко-машинные процедуры принятия решений» / под ред. С. В. Емельянова, О. И. Ларичева. -М.: ВНИИСИ, 1988.
66. Невзорова, О. А. Машинное обучение и задачи обработки естественного языка Текст. / О. А. Невзорова // Новости искусственного интеллекта. 1998. № 1.
67. Нильсон, Н. Дж. Искусственный интеллект Текст. / Н. Дж. Нильсон. -М.: Радио и связь, 1973. 272 с.
68. Нильсон, Н. Дж. Принципы искусственного интеллекта Текст. / Н. Дж. Нильсон. М.: Радио и связь, 1985. - 373 с.
69. Осипов, Г. С. Информационные технологии, основанные на знаниях Текст. / Г. С. Осипов // Новости искусственного интеллекта. АИИ. 1993. № 1.-С. 7-41.
70. Осипов, Г. С. Приобретение знаний интеллектуальными системами. Основы теории и технологии Текст. / Г. С. Осипов. М.: Наука. Физмат-лит, 1997.- 112 с.
71. Осуга, С. Обработка знаний Текст. / С. Осуга; пер. с яп. М.: Мир, 1989.-293 с.
72. Петрушин, В. А. Экспертно-обучающие системы Текст. / В. А. Петру-шин / под. ред. А. М. Довгяло; АН УССР; Ин-т кибернетики. Киев: Наукова думка, 1992.
73. Пойа, Д. Математика и правдоподобные рассуждения Текст. / Д. Пойа. -М.: Наука, 1975.-463 с.
74. Попов, Э. В. Экспертные системы Текст. / Э. В. Попов. М.: Наука, 1987.-283 с.
75. Попов, Э. В. Алгоритмические основы интеллектуальных роботов и искусственного интеллекта Текст. / Э. В. Попов, Г. Р. Фирдман. М.: Наука, 1976.-456 с.
76. Попов, Э. В. Статические и динамические экспертные системы Текст. / Э. В. Попов, И. Б. Фоминых, Е. Б. Кисель, М. Д. Шапот. М.: Финансы и статистика, 1996. - 319 с.
77. Поспелов, Г. С. Искусственный интеллект основа новой информационной технологии Текст. / Г. С. Поспелов; АН СССР. - М.: Наука, 1988. -278 с.
78. Поспелов, Г. С. Искусственный интеллект прикладные системы Текст. / Г. С. Поспелов, Д. А. Поспелов. - М.: Знание, 1985. - 48 с.
79. Поспелов, Д. А. Моделирование рассуждений. Опыт анализа мыслительных актов Текст. / Д. А. Поспелов. М.: Радио и связь, 1989. - 182 с.
80. Поспелов, Д. А. Ситуационное управление: теория и практика Текст. / Д. А. Поспелов. М.: Наука, 1986. - 288 с.
81. Поспелов, Д. А. Фантазия или наука: на пути к искусственному интеллекту Текст. / Д. А. Поспелов. М.: Наука, 1982. - 224 с.
82. Поспелов, Д. А. Мышление и автоматы Текст. / Д. А. Поспелов, В. Н. Пушкин. -М.: Сов. радио, 1972.
83. Похилько, В. И. Система KELLY Текст. / В. И. Похилько, Н. Н. Страхов. -М.: МГУ, 1990.
84. Представление и использование знаний Текст. / под ред. X. Уэно, М. Исидзука. М.: Мир, 1990. - 220 с.
85. Приобретение знаний Текст. / под ред. С. Осуги, Ю. Саэки. М.: Мир, 1990.-304 с.
86. Пупков, К. А. Интеллектуальные системы: исследование и создание Текст. / К. А. Пупков. М.: Изд-во МГТУ им. Н. Э. Баумана, 2003. - 348 с.
87. Растригин, Л. А. Адаптация сложных систем Текст. / JI. А. Растригин. -Рига: Зинатне, 1981. 375 с.
88. Растригин, Л. А., Эренштейн М. X. Адаптивное обучение с моделью обучаемого Текст. / Л. А. Растригин, М. X. Эренштейн. Рига: Зинатне, 1988.- 160 с.
89. Рузавин, Г. И. Абдукция как метод поиска и обоснования объяснительных гипотез Текст. / Г. И. Рузавин // Теория и практика аргументации. -М.: Институт философии РАН, 2001.
90. Рыбина, Г. В. Проектирование систем, основанных на знаниях Текст. : учеб. пособие / Г. В. Рыбина. М.: МИФИ, 2000. - 104 с.
91. Сидоренко, Е. А. Логическое следование и условные высказывания Текст. / Е. А. Сидоренко. М.: Наука. АН СССР, 1983.
92. Слэйгл, Дж. Искусственный интеллект Текст. / Дж. Слэйгл. М.: Мир, 1973.-313 с.
93. Стефанюк, В. JL Локальная организация интеллектуальных систем Текст. / В. Л. Стефанюк. -М.: Физматлит, 2004. 328 с.
94. Страбыкин, Д. А. Метод параллельных вычислений для абдуктивного вывода на знаниях Текст. / Д. А. Страбыкин // Известия Академии наук. Теория и системы управления. 2000. № 5. С. 101-106.
95. Страбыкин, Д. А. Организация машин параллельного логического вывода Текст. : учеб. пособие для вузов / Д. А. Страбыкин. Киров: Изд-во ВятГТУ, 1999.- 189 с.
96. Страбыкин, Д. А. Логический вывод в системах обработки знаний Текст. / Д. А. Страбыкин; под ред. Д. В. Пузанкова; СПбГЭТУ. СПб., 1998.- 164 с.
97. Сэмюэль, А. Некоторые исследования возможности обучения машин на примере игры в шахматы Текст. / А. Сэмюэль // Вычислительные машины и мышление / под ред. Э. Фейгенбаума и Дж. Фельдмана. М.: Мир, 1967.-С. 71-110.
98. Таусенд, К. Проектирование и программная реализация экспертных систем на персональных ЭВМ Текст. / К. Таусенд, Д. Фохт. М.: Финансы и статистика, 1990.
99. Тейз, А. Логический подход к искусственному интеллекту: от классической логики к логическому программированию Текст. / А. Тейз, П. Гри-бомон, Ж. Луи и др. М.: Мир, 1990. - 429 с.
100. Тейз, А. Логический подход к искусственному интеллекту: от модальной логики к логике баз данных Текст. / А. Тейз, П. Грибомон, Г. Юлен и др. М.: Мир, 1998. - 494 с.
101. Терехина, А. Ю. Представление структуры знаний методами многомерного шкалирования Текст. / А. Ю. Терехина. М.: ВИНИТИ, 1988.
102. Толковый словарь по искусственному интеллекту Текст. / сост.: А. Н. Аверкин, М. Г. Гаазе-Рапопорт, Д. А. Поспелов. М.: Радио и связь, 1992.-256 с.
103. Убейко, В. Н. Экспертные системы Текст. / В. Н. Убейко. М.: МАИ, 1992.
104. Уемов, А. И. Логические основы метода моделирования Текст. / А. И. Уемов. М.: Мысль, 1971.
105. Юб.Уинстон, П. Г. Искусственный интеллект Текст. / П. Г. Уинстон. М.: Мир, 1980.-520 с.
106. Уотермен, Д. Руководство по экспертным системам Текст. / Д. Уотер-мен; пер. с англ. М.: Мир, 1989. - 388 с.
107. Фейгенбаум, Э. А. Искусственный интеллект, темы исследования во втором десятилетии развития Текст. / Э. А. Фейгенбаум // Кибернетический сборник, новая серия, вып. 10. М.: Мир, 1973. - С. 171-203.
108. Финн, В. К. Интеллектуальные системы и общество Текст. / В. К. Финн. -М.:РГГУ, 2001.-309 с.
109. Финн, В. К. Интеллектуальные системы: проблемы их развития и социальные последствия Текст. / В. К. Финн // Будущее искусственного интеллекта / под ред. К. Е. Левитина, Д. А. Поспелова. М.: Наука, 1991. -С. 157-177.
110. Финн, В. К. Правдоподобные выводы и правдоподобные рассуждения Текст. / В. К. Финн // Итоги науки и техники. Сер. «Теория вероятностей. Математическая статистика. Теоретическая кибернетика». Т.28. -М.: ВИНИТИ, 1988. С. 3-84.
111. Финн, В. К. Правдоподобные рассуждения в интеллектуальных системах типа ДСМ Текст. / В. К. Финн // Итоги науки и техники. Сер. «Информатика». Т. 15. Интеллектуальные информационные системы. М.: ВИНИТИ, 1991.-С. 54-101.
112. Фор, А. Восприятие и распознавание образов Текст. / Фор. М.: Машиностроение, 1989. - 272 с.
113. Форсайт, Р. Экспертные системы. Принципы работы и примеры Текст. / Р. Форсайт. -М.: Радио и связь, 1987.
114. Пб.Хант, Э. Искусственный интеллект Текст. / Э. Хант; пер с англ. М.: Мир, 1978.-558 с.
115. Хант, Э. Моделирование процесса формирования понятий на вычислительной машине Текст. / Э. Хант, Д. Марин, Ф. Стоун. М.: Мир, 1970. -302 с.
116. Хейес-Рот, Ф. и др. Построение экспертных систем Текст. / Ф. Хейес-Рот и др.; под ред. Ф. Хейес-Рота, Д. Уотермена, Д. Лената. М.: Мир, 1987.-441 с.
117. Цетлин, М. Л. Исследования по теории автоматов и моделированию биологических систем Текст. / М. Л. Цетлин. М.:.Наука, 1969. - 316 с.
118. Цыпкин, Я. 3. Адаптация и обучение в автоматических системах Текст. /. М.: Наука, 1968.-400 с.
119. Цыпкин Я. 3. Основы теории обучающихся систем Текст. / Я. 3. Цыпкин. М.: Наука, 1970. - 252 с.
120. Частиков, А. П. Разработка экспертных систем. Среда CLIPS Текст. / А. П. Частиков, Т. А. Гаврилова, Д. Л. Белов. СПб.: БХВ-Петербург, 2003.-608 с.
121. Чень, Ч. Математическая логика и автоматическое доказательство теорем Текст. / Ч. Чень, Р. Ли. М.: Наука, 1983.-360 с.
122. Чери, С. Логическое программирование и базы данных Текст. / С. Чери, Г. Готлоб, Л. Танка. М.: Мир, 1992. - 352 с.
123. Шалютин, С. М. Искусственный интеллект: Гносеологический аспект Текст. / С. М. Шалютин.- М.: Мысль, 1985. 199 с.
124. Шенк, Р. Познать механизмы мышления Текст. / Р. Шенк, Л. Хантер // Реальность и прогнозы искусственного интеллекта. М.: Мир, 1987.
125. Элти, Д., Кумбс М. Экспертные системы: концепции и примеры Текст. / Д. Элти, М. Кумбс. М.: Финансы и статистика, 1987.
126. Эндрю, А. Искусственный интеллект Текст. / А. Эндрю. М.: Мир, 1985.-264 с.
127. Ясницкий, JI. Н. Введение в искусственный интеллект Текст. : учеб. пособие для вузов / JI. Н. Ясницкий. М.: Изд. центр «Академия», 2005. -176 с.
128. Abductive reasoning and learning Text. // Handbook of defeasible reasoning and uncertainty management systems / Ed. By D. M. Gabbay, P. Smets. V.4 -Kluwer Acad. Publishers, Dordrecht Hardbound, 2000. 448 p.
129. Aussenac-Gilles, N. Making the Method Solving Explicit with MACAO: the SISYPHUS case-study in Sisyphus'92: Models of problem solving Text. / N. Aussenac-Gilles, N. Natta; Ed. by M. Linster, GMD.
130. Banerji, R. Theory of problem solving: an approach to artificial intelligence Text. / R. Banerji. American Elsevier Publishing Company, Inc., New York, 1969.
131. Boutilier, C. Abduction as belief revision Text. / C. Boutilier, V. Becher // Artif. Intell., 1995. V. 77. P. 43-94.
132. Computational Models of Learning Text. / Ed. BolcL.: Springer, 1987. -208 p.
133. Сох, Р.Т. Causes for events: their computation and applications. Text. / P. Т. Cox, T. Pietrzykowski // Proc. CADE86 (1986). P. 608-621.
134. Davies, T. A logical reasoning by analogy Text. / T. Davies, S. Russel // Proc. IJCAI, 1987. -P.264-270.
135. Davis, R. TEIRESIAS: Applications of meta-level knowledge Text. / R. Davis // Knowledge-based systems in Artificial Intelligence. N.Y.: McGraw-Hill, 1982.
136. DeJong, G., Mooney R. Explanation-based learning: an alternative view Text. /G. DeJong//Machine Learning, 1986. Vol.1. P. 145-176.
137. Dennis, J. B. Data Flow Supercomputers Text. / J. B. Dennis // Computer. 1992. N. 11.-P. 48-56.
138. Eisenstadt, M. Visual Knowledge Engineering Text. / M. Eisenstadt, J. Domingue, T. Rajan, E. Motta // IEEE Transactions on Software Engineering. Vol. 16, No. 10. 1990.-P. 1164-1177.
139. Ellman, T. Explanation-based learning: a survey of programs and perspectives Text. / T. Ellman // ACM Computing Survey. Vol.21. June, 1989. P. 163222.
140. Evans, C. A. Hypothetico-deductive reasoning Text. / C. A. Evans, A. C. Kakas // Technical report. Logic Programming Croup, Imperial College-London. 1991.
141. Hunt, E. Experiments in induction Text. / E. Hunt, J. Marin, P. Stone. -Acad. Press, New York, 1965. '
142. Inoue, K., Sakama C. Abductive framework for nonmonotonic theory change ш Text. / K. Inoue, C. Sakama // Proc. of the 14th Int. Joint Conf. on Artif. Intell., 1995.-P. 204-210.
143. Josephson, J.R., Josephson S.G. (Eds.) Abductive Inference: Computation, Philosophy, Technology Text. New York: Cambridge University Press, 1994.
144. Kakas, A.C. The role of abduction in logic programming Text. / A. C. Kakas, R. A. Kowalski, F. Toni // Handbook of Logic in Artificial Intelligence and Logic Programming / Ed. By D. M. Gabbay, C. J. Hoger, J. A. Robinson.
145. Ф Oxford University Press, 1998. P. 235-324.
146. Levesque, H. A knowledge-level account of abduction Text. / H. Levesque // Proc. of the 11th Int. Joint Conf. on Artif. Intell., 1989. P. 1061-1067.
147. McIlraith, S. A. Logic-Based Abductive Inference Text. / S. A. Mcllraith // Knowledge Systems Laboratory, Stanford Univ., Stanford, CA 94305-9020, July 6,1998.-29 p.
148. Michalski, R. S. Machine Learning Text. / R. S. Michalski, J. G. Carbonell, Т. M. Mitchell ed. An Artificial Intelligence Approach. Vol. 1. Palo Alto, CA: Tioga, 1983.
149. Mitchell, Т. M. Generalization as search Text. / Т. M. Mitchell // AI, Vol. 18.1982.-P. 203-226.
150. Mostow, J. Design by derivational analogy Text. / J. Mostow // Artificial Intelligence, vol.40, 1989.
151. NEXPERT-OBJECT Text. //Tutorial. Nexpert Co. 1990.
152. Nunez, M. The use of Background knowledge in Decision Tree Induction Text. / M. Nunez // Machine Learning. 1991. Vol.6. P. 231-250.
153. Paul, G. AI Approaches to Abduction Text. / G. Paul // Handbook of Defea-• sible Reasoning and Uncertainty Management Systems. V. 4: Abductive Rea-isoning and Learning / Ed. by D. M. Gabbay and P. Smets. Kluwer Academic Publishers, 2000. - P.35-99.
154. Pierce, C. S. Collected papers of Charles Sanders Pierce Text. / C. S. Pierce. Vol. 2.1931-1958. Harvard University Press.
155. Quinlan, J. R. Generating production rules from Decision Trees Text. / J. R. Quinlan // Proc. of IJCAI 87. Milan. 1987. P. 304-307.
156. Quinlan, J. R. Improved use of Continuous attributes in C4.5 Text. J. R. Quinlan // Joint of Artificial Intelligence. Res. 1996. V.4. P. 77-90.
157. Quinlan, J. R. Induction of decision trees Text. / J. R. Quinlan // Machine Learning. Vol.1: 81-106. 1986.
158. Shanahan M. Prediction is deduction but explanation is abduction Text. / M. Shanahan / Proc. IICAI89. 1989.
159. Shaw, M. L. Validation of knowledge support system Text. / M. L. Shaw, J. B. Woodward // Proceedings of the 2nd Knowledge Acquisition for Knowledge-Based Workshop. Banff, Canada, 1988.
160. Toussaint, G. T. Course: Skeletons Text. / G. T. Toussaint. Montreal: McGill University, 1997.
161. Utgoff, P. E. Incremental induction of Decision Trees Text. / P. E. Utgoff // Machine Learning. 1989. Vol.4. P. 161-186.
162. Warren, D. H. An Abstract Prolog Instruction Set. Tech. Note 309 Text. / D. H. Warren. AI Research Center, 1983.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.