Разработка метода автоматизации процесса разбраковки тканей на основе математического аппарата вейвлет-анализа тема диссертации и автореферата по ВАК РФ 05.19.02, кандидат технических наук Агафонов, Владимир Игоревич

  • Агафонов, Владимир Игоревич
  • кандидат технических науккандидат технических наук
  • 2009, Москва
  • Специальность ВАК РФ05.19.02
  • Количество страниц 132
Агафонов, Владимир Игоревич. Разработка метода автоматизации процесса разбраковки тканей на основе математического аппарата вейвлет-анализа: дис. кандидат технических наук: 05.19.02 - Технология и первичная обработка текстильных материалов и сырья. Москва. 2009. 132 с.

Оглавление диссертации кандидат технических наук Агафонов, Владимир Игоревич

ВВЕДЕНИЕ.

1. Современное состояние проблемы контроля качества ткани.

1.1. Контроль качества в технологии производства тканей.

1.2. Методы автоматизированного контроля качества тканей.

1.3. Сравнение систем автоматизированного контроля качества ткани.

1.4. Современное состояние ^возможности компьютерной техники.

1.5. Компьютерные алгоритмы обнаружения пороков тканей.

1.6. Постановка проблемы исследования.

2. Метод поиска пороков.30'

2.1. Визуальные параметры метода.

2.2. Анализ функции яркости.

2.3. Вейвлет-анализ.

2.4. Анализ вейвлет-декомпозиции.40^

2.5. Метод учёта регулярных структур.

Выводы главы 2.

3. Методика классификации пороков тканей.

3.1. Критерии классификации пороков.

3.1.1. Допущения классификации.

3.1.2. Разделение пороков на группы.

3.1.3. Различение пороков основы.

3.1.4. Различение пороков утка.

3.1.5. Различение распределённых пороков типа «пятно».

3.2. Расширение классификации.

Выводы главы 3.

4. Алгоритмы поиска и классификации пороков тканей.

4.1. Алгоритм поиска областей с пороками.

4.1.1. Обучение системы на примере материала без пороков.

4.1.2. Диагностика присутствия порока.

4.1.3. Поиск пороков, их размера и местоположения.

4.1.4. Схема алгоритма поиска пороков.

4.2. Алгоритм классификации пороков тканей.

4.3. Алгоритм поиска параметров структуры ткани.

4.4. Алгоритмы вейвлет-анализа.

Выводы главы 4.

5. Экспериментальные исследования метода автоматизированного поиска пороков тканей.

5.1. Лабораторная установка для диагностики тканого материала.

5.2. Испытания на модельных примерах.

5.2.1. «Идеальные» модели пороков.

5.2.2. Модели цветовых пороков на ткани.

5.3. Выявление реально возникающих пороков ткачества.

5.4. Методика проверки стабильности и достоверности обнаружения и классификации пороков.

5.4.1. Исследование стабильности выявления выбранного порока

5.4.2. Исследование стабильности различения оптически близких пороков.

5.5. Анализ готовых тканей.

Выводы главы 5.

Рекомендованный список диссертаций по специальности «Технология и первичная обработка текстильных материалов и сырья», 05.19.02 шифр ВАК

Введение диссертации (часть автореферата) на тему «Разработка метода автоматизации процесса разбраковки тканей на основе математического аппарата вейвлет-анализа»

Актуальность работы; В' современном мире растет потребление товаров текстильной промышленности. Повышаются; требования покупателей к соотношению «качество/цена» текстильной продукции. Эффективными способами увеличения этого показателя являются снижение цены и повышение качества конечного продукта. Как следствие высокого спроса, растёт объём выпуска продукции. Однако повышающийся, объем производства и уровень сложности изготовления современных тканей оказываются: настолько? высокими, что возникает необходимостью автоматизации и разработки автоматических систем управления технологическими процессами. Растущий объем автоматизации имеет наряду с большими преимуществами^и недостатки: даже1 самое передовое оборудование, необходимое для выпуска тканей, дает сбои в; работе, что приводит к появлению брака.

Брак* может возникатына различных этапах ткачества или отделочных работ. Процесс браковки входит в общую структуру технологии производства, ткани. Разбраковка: тканей^ позволяет, с одной стороны, определить сортность конечного продукта,, а с другой:, - анализировать причины.брака^и влиять на его уменьшение. Уменьшение количествам низкосортной? продукции ведет к повышению конкурентоспособности предприятиями активному продвижению его брэнда на рынке. Поэтому одной из наиболее важных составляющих проблемы повышения качества; готовых изделий является;эффективный контроль их производства, в том числе, - и путем отслеживания; причин возникновения брака.

При выпуске тканей контролю подвергаются многочисленные показатели исходного^ сырья, полуфабрикатов, и готовой- продукции. Для проведения такого контроля шримеадются различныетехническиесредства, которые, позволяют проводить измерения необходимых параметров- Большинство методов; в совокупности с оборудованием контроля, используемые в текстильном производстве, не имеют аналогов в других отраслях промышленности, являются сложными и дорогими. Наряду с этим фактом анализ нормативно-технической документации на текстильные материалы показывает, что оценка внешнего вида тканей осуществляется, в основном, визуальными методами, которые устарели и требуют модернизации с учетом современных требований к скорости и точности обработки измерений. В результате, метод выявления пороков внешнего вида тканей, основанный на визуальном восприятии, оказывается достаточно медленным при растущих объемах производства, необъективным и недостоверным.

Неуклонно повышающийся уровень развития компьютерной техники дает возможность разрабатывать программно-технические комплексы, способные решать новые задачи автоматизированного контроля показателей качества различных текстильных изделий и материалов. Современные средства ввода изображения в компьютер позволяют проводить анализ визуальной информации при помощи прикладных методов компьютерной математики с высокой степенью точности. К анализу визуальной информации относится и поиск пороков внешнего вида тканей. Создание системьг полностью автоматической* разбраковки тканых материалов, имеющей высокую рентабельность, является, сложной научно-технической задачей, решение которой в мировой практике еще не получено. В-то же время, относительно невысокая стоимость и большая вычислительная мощность персональных компьютеров и таких средств получения цифровых изображений, как сканеры и видеокамеры, приводит к возможности создания на их базе лабораторных методов, которые решают актуальные задачи из комплекса проблем автоматизации процесса браковки текстильных материалов. Получаемые в результате решения таких задач методики поиска пороков, при условии их достаточной универсальности, ложатся в основу проектируемых модельных установок автоматизированной разбраковки тканей. Работа таких установок призвана с высокой степенью точности приближать условия и особенности производственного процесса.

Таким образом, разработка методов обнаружения и классификации пороков внешнего вида тканей базируется на доступных компьютерных средствах, необходимых для моделирования технологического процесса, нормах определения сортности тканей при визуальном контроле качества, а также современных методах прикладной математики, используемых для анализа оптической информации. Объединение составляющих этого базиса и создание перспективной методики автоматизированной разбраковки тканей является актуальной задачей научного и прикладного исследований.

Объектом исследования > данной работы являются системы автоматизированного обнаружения пороков внешнего вида тканей. Отсутствие использования таких систем на текстильных фабриках приводит к тому, что разбраковка, тканей - одно из самых узких мест в эффективности технологического процесса текстильного производства. Главной причиной этого является недостаточное развитие методов: и алгоритмов, заложенных в разработанные системы. Поэтому предмет перспективного исследования — методы поиска пороков, базирующиеся на компьютерной, обработке визуальной информации о тканом материале.

Цели и задачи исследования. Целью данной диссертационной работы является решение задачи о-разработке универсального метода автоматизированного обнаружения и классификации пороков внешнего вида тканей на основе научного подхода к проблеме контроля качества, дальнейшее развитие методов компьютерной обработки и распознавания изображений на тканях в текстильной промышленности.

Решение задачи об автоматизации технологического процесса разбраковки тканей выявляет ряд целей и задач на промежуточных этапах, решение которых требуется для достижения основной цели и базируется на расширенном применении новейших компьютерных и программных средств, использовании современных оптических датчиков, адаптации передовых методов^ математического исследования.

Целями диссертационной работы явились:

• анализ современного состояния проблемы автоматизированного поиска пороков тканей в мировой практике;

• разработка общей концепции решения задачи об обнаружении* пороков на основе современного научного представления о визуальном восприятии;

• создание метода и методики поиска и классификации пороков тканей в лабораторных условиях путем компьютерного анализа изображений поверхности исследуемого материала;

• испытание разработанной методики как на модельных образцах тканей, так и на тканях в промышленном производстве;

• разработка рекомендаций, необходимых для, создания, промышленных образцов системы автоматизированной разбраковки тканей.

Для реализации научного подхода к достижению указанных целей были поставлены следующие научно-практические задачи:

• провести анализ оборудования, выпускаемого для поиска пороков внешнего вида текстильных материалов;

• изучить и сравнить компьютерные методы обнаружения пороков тканей на основе анализа изображений;

• изучить и сравнить прикладные математические методы распознавания образов;

• применить современные методы математического исследования на основе вейвлет-технологий к анализу изображений;

• реализовать разработанные методы в виде набора исследовательских программных средств, позволяющих определять параметры строения и классифицировать пороки тканей по их цифровому изображению;

• создать лабораторную установку, реализующую методику автоматизации процесса поиска пороков;

• провести экспериментальные исследования разработанных компьютерных методов по обнаружению пороков тканей в лабораторных условиях на производстве.

Методической и теоретической основой диссертации явились научные труды и научно-прикладные работы:

• текстильное материаловедение;

• технология ткачества, отделки материалов в текстильной промышленности и кожевенного производства;

• методы и средства измерений;

• методы оценки и прогнозирования качества;

• методы получения достоверных цифровых образов предметно-пространственной среды;

• методы компьютерного распознавания образов;

• научные работы по физиологии зрения и принципам видения;

• прикладные методы обработки сигналов;

• функциональный анализ;

• алгоритмирование и программирование на языках высокого уровня.

Научная новизна. В диссертационной работе впервые получены следующие результаты:

• на основе анализа научных работ по физиологии зрения и принципам видения установлены основные критерии, которые лежат в основе обнаружения пороков тканей при визуальном контроле качества;

• на основе современных достижений прикладной математики разработан метод анализа изображений с помощью вейвлет-функций, использующий энергетические критерии поиска пороков;

• разработана методика классификации пороков тканых полотен на основе метода анализа изображений с помощью вейвлет-технологий;

• выявлены направления оптимизации разработанной методики классификации пороков в зависимости, от индивидуальных характеристик тканей;

• в ходе тестирования алгоритмов'в лабораторных условиях на ряде промышленных образцов, тканей выявлены преимущества разработанной методики анализа по сравнению с известными подходами и-её недостатки.

Практическая значимость работы. В результате проведённых, научных исследований, созданы исследовательские алгоритмы и программы< для лабораторного метода поиска пороков тканей. Разработанная методика прошла испытания на образцах гладкокрашеных тканей ОАО «Трёхгорная мануфактура». Универсальность методики поиска пороков на основе энергетических принципов позволяет использовать ее как базовую в установках для автоматизированной разбраковки продукции текстильной и лёгкой- промышленности с более сложными характеристиками. Общие принципы, разработанной' методики могут найти применение в других отраслях промышленности, где используется неразрушающий контроль .качества оптическими методами.

Апробация работы. Исследования проводились, на кафедрах ГОУ ВПО «РосЗИТЛП»: технологии тканей и трикотажа, электротехники и автоматизированных промышленных установок. Практические испытания методики обнаружения и классификации пороков внешнего вида тканей проводились также в исследовательских лабораториях ОАО «Трёхгорная мануфактура».

Основные материалы диссертационной работы изложены в докладах и-тезисах:

• научно-технических и научно-практических конференций;

• в директорате ОАО «Трёхгорная мануфактура»,

• на кафедре технологии тканей и трикотажа ГОУ ВПО «Рос-ЗИТЛП»,

• на кафедре электротехники и автоматизированных промышленных установок, и получили положительную оценку.

Публикации. По теме диссертационной работы опубликованы статьи:

• в научно-техническом журнале «Известия вузов. Технология текстильной промышленности», № 3, 2008 г.,

• в сборниках «Новое в науке и производстве текстильной и легкой промышленности» (вып. 3, 4), «Наука в высшей школе», «Современные информационные технологии».

Похожие диссертационные работы по специальности «Технология и первичная обработка текстильных материалов и сырья», 05.19.02 шифр ВАК

Заключение диссертации по теме «Технология и первичная обработка текстильных материалов и сырья», Агафонов, Владимир Игоревич

Выводы главы 5

1. Разработанные метод и методика поиска и классификации пороков внешнего вида тканей, объединённые спроектированным набором алгоритмов-и программ, приводят к возможности проведения, логически, завершённого комплекса прикладных работ - от исследования моделей1 до анализа,образцов готовой продукции текстильного производства.

2. Методика классификации,пороков позволяет проводить исследование как суровых, так и готовых тканей: Получен высокий процент верной классификации.

Ч11 и. II | II 111 г 11 ч у тт»Г1>«гттиштк1 ИЯ1М1» Т »'И1Н<«<Щ<И1>Н»П»1ПИ>1

ЙИ||Н|»ГП> ШII >11111

1И11ИНИ вптстмв

ИЙ»»«И»<»ч 4***1 ц|щ»ч»>«г>т»п

ГИГ

ШИП 1|11Н»»»Ш»ЧГ

Г«»»»Т»Ч шгтИ'»« »»«Т«»>»)|Ц||»Н<||И —I Щ<»ШЧЧИШ»1Г«1 я п

И НТО«« кти«и»1»»»ч«и«111 ит1«и<»шчи1тш п Г*** ■«I»« ЩЩТГИТТТТТ»»'

МЙ№Ш ни.щи. ■ <?1м»«1и1И«т>««т«>1ц>и>

----- И»ПЧИШ(|Ц1»ЯЯШ*Г0И1

Т< ш'ПГГИУГ! »»|»<|ИМ»|<||»«| »»ишЧ 1М111' а).

У» >1<К»»(Н»|«И«»

I '.У.'""'" *

Г"

Рис. 5.12. Примеры пороков, обнаруженные с помощью автоматизированного метода поиска пороков при анализе готовых тканей, а). Неравномерная плотность и оборванные нити. Ь). Неподработанные нити основы, с). Поднырки. (1), Зацепки

3. Анализ плотности готовых тканей по основе и утку даёт более высокий результат, чем анализ суровых тканей, что связано с большей регулярностью сетки переплетений.

4. Метод поиска пороков даёт возможность обнаруживать большинство известных пороков, их местоположение и характерные линейные размеры даже при отсутствии сведений об их классе в базе данных компьютера.

5. Методика проверки стабильности и достоверности обнаружения и классификации пороков позволяет констатировать устойчивость работы алгоритмов и программ при возникновении случайных факторов, влияющих на колебания параметров сканирующей системы.

6. Успешность проведённых прикладных исследований позволяет рекомендовать разработанный метод автоматизации процесса разбраковки тканей в качестве базового для дальнейшего создания опытных образцов интегрированной системы автоматического контроля качества тканей в производстве.

ЗАКЛЮЧЕНИЕ

1. Новый перспективный метод автоматизации процесса разбраковки тканей (см. раздел 2) является более универсальным по сравнению с известными подходами к автоматизированной разбраковке (см. раздел 1). Он позволяет проводить поиск и классификацию пороков внешнего вида не только суровых, но и готовых тканей и, в конечном итоге, определить сортность ^текстильной продукции, заменяя визуальный контроль качества.

2. Разработанный метод, базирующийся^ на офтальмологической теории'зрения, может применяться не только в текстильной, но и в других областях промышленности (см. раздел 3), где используется, визуальный контроль качества.

3. Разработанная методика,классификации пороков тканей (см. раздел 3) позволяет проводить достаточно достоверную классификацию пороков (см. раздел 5), а также определять плотность тканых материалов1 с высокой точностью.

4. Используемый в.методе поиска пороков (см. раздел 2) подход к диагностике цифрового образа материала с точки зрения'теории нестационарных сигналов позволяет использовать эффективность методологии, отработанной практикой различных исследований. Построчное исследование изображения позволяет сократить время работы алгоритма (см. раздел 4) предварительной диагностики изображения с целью выявления структуры материала и общей картины наличия пороков.

5. Разработанные исследовательские алгоритмы^ и программы (см. раздел 4) позволяют провести прикладные исследования по анализу тканых материалов. Универсальность алгоритмовшозволяет реализовать их на любом языке программирования высокого уровня.

6. Компьютерная обработка.изображения, выявление и классификация пороков тканей с помощью вейвлет-декомпозиции функций яркости изображения явились, эффективным средством исследования. Использование различных типов известных вейвлетов (см. 2.3) позволяет анализировать практически любой сигнал и проводить классификацию локальных пороков материала (см. раздел 3), необходимую для определения сортности ткани.

7. Созданная для прикладных исследований тканей лабораторная установка (см. раздел 5) основана на принципе использования серийных технологий, что существенно уменьшает время разработки и стоимость её промышленного аналога.

8. Метод автоматизированной разбраковки тканей успешно проверен в ряде прикладных исследований по обнаружению и классификации (см. раздел 3) пороков внешнего вида промышленных образцов готовых тканей' (см. раздел 5), что является-решающим фактором для его включения^как составляющей в общий технологический процесс производства текстиля.

Таким образом, в рамках поставленной задачи проведён полный комплекс исследований, которые могут, быть использованы для создания опытных образцов интегрированной системы автоматического контроля качества тканей^в производстве.

Для этого необходимо осуществить следующие мероприятия.

• Исследовать особенности динамики движения ткани.

• Исследовать возможности применения блочного исследования изображения на основе двумерных вейвлетов.

• Разработать библиотеку оптимальных вейвлетов в соответствии с известными типами пороков.

• На основе разработанных методов спроектировать систему автоматизированной разбраковки тканей на производстве.

• Внедрить систему контроля качества в производственный процесс.

Создание динамической системы отслеживания пороков с адаптируемой системой вейвлет-функций на. базе интерактивного взаимодействия с профессиональным контролёром является перспективным направлением в области автоматизации разбраковки материалов.

Список литературы диссертационного исследования кандидат технических наук Агафонов, Владимир Игоревич, 2009 год

1. Селятина, Е. Н. Экономика, организация и планирование производства в легкой промышленности / Е. Н. Селятина, И. Г. Никитина, С. Ю. Платова. - М.: Легпромбытиздат, 1992. - 464 с.

2. Соловьев, А. Н. Оценка и прогнозирование качества текстильных материалов / А. Н. Соловьев, С. М. Кирюхин. М.: Легкая и пищ. пром-сть, 1984.-215 с.

3. Кирюхин, С. М. Качество тканей / С. М. Кирюхин, Ю. В. Додонкин.- М.: Легпромбытиздат, 1986. 123 с.

4. Cho, C.-S. Development of real-time vision-based fabric inspection system /С.-S. Cho, B.-M. Chung, M.-J. Park // IEEE Transactions on Industrial Electronics.- 2005.- vol. 52, №4.- p. 1073-1079.

5. Немнюгин, С. Параллельное программирование для многопроцессорных вычислительных систем / С. Немнюгин, О. Стесик. СПб.: БХВ, 2002. -396с.

6. ГОСТ 25506-82. Полотна текстильные. Термины и определения пороков / М-во лёгкой пром. СССР. М.: Изд-во стандартов, 1983.- 11 с.

7. ГОСТ 161-86. Ткани хлопчатобумажные, смешанные и из пряжи химических волокон. Определение сортности / М-во лёгкой пром. СССР. М.: Изд-во стандартов, 1987.- 14 с.

8. ГОСТ 187-85. Ткани шелковые и полушелковые. Определение сортности / М-во лёгкой пром. СССР. М.: Изд-во стандартов, 1986.- 16 с.

9. ГОСТ 357-75. Ткани чистольняные, льняные и полульняные. Определение сортности / М-во лёгкой пром. СССР. М.: Изд-во стандартов, 1976.13 с.

10. ГОСТ 358-82. Ткани чистошерстяные и полушерстяные. Определение сортности / М-во лёгкой пром. СССР. М.: Изд-во стандартов, 1983.- 15 с.

11. Хацевич, Т. Н. Физиологическая оптика. В 2 ч. Ч 1. / Т. Н. Хацевич.- Новосибирск: СГТА. 1998. - 98 с.

12. Цвет в промышленности / Под ред. Р. Мак-Доналда: Пер: с англ. — М.: Логос, 2002.-596 с.

13. Контроль технологических параметров- текстильных материалов: методы и устройства / под ред. JI. К. Таточенко. М.: Легкая и пищевая промышленность, 1983. - 160 с.

14. Любимцев, В. В. Разработка теоретических основ и технических средств повышения эффективности обнаружения дефектов структуры текстильных полотен: дис. д-ра техн. наук: 05.19.03 / Любимцев В. В.- Кострома, 1996. 403 с.

15. Комаров, А. Б. Разработка методов обнаружения пороков ткани с использованием компьютерных технологий: дис. канд. техн. наук: 05.19.01 / Комаров^А.Б. Кострома, 2004,- 167 с.

16. Официальная интернет-страница EVS ScanMaster Электронный ресурс. / Elbit Vision Systems Ltd.- Электрон, дан. 2009- .- Режим доступа: www.evs.co.il.

17. Официальная интернет-страница Barco Электронный ресурс.,/ Barco Co.- Электрон, дан. — 2009- .- Режим доступа: www.barco.com/textiles.

18. Официальная интернет-страница Mahlo Электронный ресурс. / Mahlo Gmbh & Co. KG.- Электрон, дан. 2009- Режим доступа: www.mahlo.com.

19. Агафонов В. И. Определение местных пороков тканей на базе визуальной информационной системы / В. И.Агафонов, М. И. Сёмин // Современные информационные технологии. Сб. научн. тр. вып. 2.- М.: РосЗИТЛП.-2006.- С. 61-67.

20. Агафонов В. И. Методы и средства определения местных пороков ткани в текстильной промышленности / В. И.Агафонов // Новое в науке, технике и производстве текстильной промышленности. Сб. научн. тр.- вып. 3.- М.: РосЗИТЛП.- 2007.- С.320-323.

21. Агафонов В. И. Методы определения локальных пороков тканей с помощью вейвлет-технологий / В. И.Агафонов, М. И. Сёмин // Известия вузов. Технология текстильной промышленности. — 2008. №3. — С.10-13.

22. Лукин, А. Введение в цифровую обработку сигналов (математические основы / А. Лукин.- М.: МГУ, 2002.- 44 с.

23. Knell, А.А. Automatic Fabric Inspection / A. A. Knell // Textile Institute and Industry.- 1975.-T42, Vol. 13.-P. 120-131.

24. Aubert, A. Surface texture classification from morphological transformations / A. Aubert, D. Jeulin, R. Hashimoto // Droc. ISMM' 2000. Mathematical morphology and its applications to Image and Signal Processing.- 2000.- P. 252-253.

25. Xie, X. Texture exemplars for defect detection-on random'textures / X. Xie, M. Mirmehdi // Icapr.- 2005.- P. 404-413.

26. Ojala, T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns / T. Ojala, MI Pietikainen, T. Maenpaa // IEEE

27. Transactions onPattern Analysis-and Machine Intelligence.- 2002.- Vol.24, № 7.- P. 971-987.

28. Bomarova, A. Suitability analysis of techniques for flaw detection in textiles using texture analysis / A. Bornarova, M: Bennamoum, K. Kublik // Pattern Analysis and Applications.- 2000.- Vol. 3, № 3, P. 254-266.

29. Ngan, Hi. Y. T. Novel method for patterned fabric inspection using Bollinger bands / Hi Y. T. Ngan, G. К. H. Pang // Optical Engineering.- 2006;- Vol. 45, № 8, 087202.

30. Ясинский, И: Ф. Разработка нейросетевой системы для' обнаружениями классификации: дефектов тканишамерильно-браковочном оборудовании: дис. канд. техн;.наук:;05;02.13 / Ш.Ф*. Ясинский:- Иваново; 2007.- 192 с.

31. Tsai, I.S. Automatic Inspection of Fabric Defects Using an. Artificial Neural Network Technique / I. S. Tsai, M. C. Hu // Textile Research Journal.-1996.-Vol. 66.-P. 474-482.

32. Ghan, C. Fabric defect detection by Fourier analysis / C. Chan, G. Pang // IEEE Transactions on Industry Applications.- 2000.- Vol. 36 (5).- P: 1267-1276.

33. Tsai, D. M. Automated surface; inspection Tor statistical textures / D. Mi Tsai, T. Y. Huang // Image and Vision Computing.- 2003.- Vol; 21(4).- P. 307-323.

34. Дьяконов, В. П. Вейвлеты. От теории к практике / В. П. Дьяконов.-Mi: COJIOH-Hpecc, 2004. 400 с.

35. Комаров; А.Б. Разработка методов обнаружения пороков, ткани с использованием компьютерных' технологий: дис. канд. техн. наук: 05.19.01 / А. Б. Комаров.- Кострома, 2004.- 164 с.

36. Ngan, H. Y. Т. Wavelet based methods on patterned fabric defect detection / H. Y. T. Ngan и др. // Pattern Recognition.- 2005.- Vol. 38, № 4.- P. 559-576.

37. Arivazhagan, S. Fault segmentation in fabric images using Gabor wavelet transform / S. Arivazhagan, L. Ganesan, S. Bama // Machine Vision and Applications.- 2006.- Vol. 16, № 6.- P. 356-363.

38. Столниц,,Э. Вейвлеты в, компьютерной графике. Теория и приложения / Э. Столниц, Т. ДеРоуз, Д. Салезин; под общ. ред. Е. В. Мищенко; пер. с англ. JI.A. Кунгуровой- Ижевск: НИЦ «Регулярная и хаотическая динамика», 2002.- 272 с.

39. Демидов, В: Е. Как мы видим то; что видим / В. Е. Демидов. М;: Знание, 1979.- 208 с:

40. Луизов, А.В. Глаз и свет / А. В. Луизов. Л.: Энергия, 1983. 140 с.49.' Астафьева, Н. М: Вейвлет-анализ: основы, теории и примеры применения/Н. М. Астафьева //УФЫ.- 1996.-т. 166, № 11.-С. 1145-1170:

41. Wavelet based techniques for textile inspection // Wavelets and applications, Lecture Notes / IMUB,- University of Barcelona. 2002.- Vol. 1. - P.435-466.

42. Jasper, W. J. Texture characterization and defect detection using adaptive wavelets / W. Jl Jasper, S. J. Gamier, H. Potapalli // Optical Engineering. — 1999.- vol. 35. P. 3140-3149:

43. Добеши, И. Десять лекций по вейвлетам / И. Добеши; пер. с англ. НИЦ «Регулярная и хаотическая динамика».- Ижевск: НИЦ «Регулярная и хаотическая динамика», 2001. — 464 с.

44. Шитов; А. Б. Разработка численных методов и программ, связанных с применением вейвлет-анализа для моделирования и обработки экспериментальных данных : дисс. канд. физ.-мат. наук : 05.13.18 / А. Б. Шитов.- Иваново, 2001.- 125 с.

45. Бахвалов, Н. С. Численные методы / Н. С. Бахвалов; Н. П. Жидков, Г. М. Кобельков,- М.': Бином, Лаборатория знаний; 2008.- 640 с.

46. Strang, G. Wavelets and Filter Banks / G. Strang, T. Nguyen.-Wellesley-Cambridge Press, 1996.- 672 p.

47. Воробьев, В. И. Теория и практика вейвлет-преобразования / В. И. Воробьев, В. Г. Грибунин. С.-Петербург: ВУС, 1999. - 202 с.

48. Официальная интернет-страница Colortrac Электронный ресурс. / Colortrac Ltd.- Электрон, дан. 2009- .- Режим доступа: www.colortrac.com.

49. Соловьев, А. Н. Оценка качества и стандартизация текстильных материалов / А. Н. Соловьев, С. М. Кирюхин. М.: Легкая индустрия, 1974. - 245 с.

50. Проблемы экономики и прогрессивные технологии в текстильной, легкой и полиграфической отраслях промышленности / Санкт-Петербургский государственный университет технологии и дизайна. Сб. тр. аспирантов.- Вып 11.- СПб : Изд-во СПГУТД, 2006. 350 с.

51. Allgood, G. О. Textile laser-optical system for inspecting fabric structure and form / G. O. Allgood, D. A. Treece // Oak Ridge National Eab (USA), 2000.- P. 270-279.

52. Хлопкоткачество: Справочник. 2-е изд., перераб. и доп. / П. Т. Бу-каев и др.. М.: Легпромбытиздат, 1987. - 576 с.

53. Оников, Э. А. Технология, оборудование и рентабельность ткацкого производства / Э. А. Оников.- М.: Издательство «текстильная промышленность», 2003.- 320 с.

54. Оников, Э. А. Проектирование ткацких фабрик / Э. А. Оников.- М.: Информ-Знание, 2005.- 432 с.

55. Агафонов В. И. Методы определения местных пороков ткани с помощью* вейвлет-технологий / В. И.Агафонов, М. И. Сёмин // Новое в науке,технике и производстве текстильной промышленности. Сб. научн. тр.- вып. 4.-М.: РосЗИТЛН.- 2009.- С. 171-176.

56. Куропаткин, П. В. Теория автоматического управления: Учеб. Пособие для электротехн. спец. вузов / П.В. Куропаткин. — М.: Высшая школа, 1973.-528 с.

57. Приборы для неразрушающего контроля материалов и изделий. В 2-х кн. Кн. 1 / Под ред. В. В. Клюева,- М.: Машиностроение, 1986.- 488 с.

58. Эдварде, Р. Ряды Фурье в современном изложении. В, 2 т. Т.1 / Р. Эдварде ; пер. с англ. М.: Мир, 1985. - 264 с.

59. Солонина, А. И. Алгоритмы и процессы цифровой обработки сигналов / А. И. Солонина, Д. А. Улахович, Л. А. Яковлев.- Спб:: БХВ-Петербург, 2002.- 464 с.

60. Дрёмин, И. М. Вейвлеты и их использование / И: М; Дрёмин, О. И. Иванов, В. А. Нечитайло // Успехи физ. наук.- 2001.- Т. 171, № 5,- С. 465-501.

61. Чуй, Ч. Введение в вэйвлеты. / Ч. Чуй ; пер. с англ. Я. М. Жилейки-на.- М:: Мир, 2001.-412 с.

62. Петухов, А. П; Введение в теорию базисов всплесков / А. П. Петухов.- СПб: СПбГТУ, 1999.- 132 с.

63. Buckheigt, J. About WaveLab / J. Buckheigt и др..- Stanford University and NASA-Ames Research Center.-2005.- 39 p.

64. Tajeripour, F. Fabric Defect Detection Using Modified Local Binary Patterns / F. Tajeripour, E. Kabir, A. Sheikhi // EURASIP Journal on Advances in Signal Processing.- 2008.- 12 p.

65. Tsai, D. M. Automatic surface inspection using wavelet reconstruction / D. M. Tsai, B. Hsiao //Machine Vision Lab. Department of Industrial Engineering and Management. Yuan-Ze University, Chung-Li, Taiwan, R.O.C.- 2007.- 58 p.

66. Finvek, V. Fabric defect detection using wavelet methods / V. Finvek, D. CTerna' // Technical University in Liberec, Czech Republic.- 2007.- 6 p.

67. Tae, J. K. Fabric Surface Roughness Evaluation Using Wavelet-Fractal Method / J. K. Tae h // Textile Research Journal.- 2005.- 75(11).- P:751-760.

68. Yang, X. Robust fabric defect detection and classification using multiple adaptive wavelets / X. Yang, G. Pang, N. Yung // Image Signal Process.- 2005.- Vol., 152, No. 6.-P. 715-723.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.