Разработка математических моделей электроупругих структур и их применение в САПР пьезокерамических элементов тема диссертации и автореферата по ВАК РФ 05.13.12, кандидат технических наук Шахворостов, Дмитрий Юрьевич

  • Шахворостов, Дмитрий Юрьевич
  • кандидат технических науккандидат технических наук
  • 2007, Москва
  • Специальность ВАК РФ05.13.12
  • Количество страниц 93
Шахворостов, Дмитрий Юрьевич. Разработка математических моделей электроупругих структур и их применение в САПР пьезокерамических элементов: дис. кандидат технических наук: 05.13.12 - Системы автоматизации проектирования (по отраслям). Москва. 2007. 93 с.

Оглавление диссертации кандидат технических наук Шахворостов, Дмитрий Юрьевич

ВВЕДЕНИЕ.

ГЛАВА 1. МЕТОДЫ РАСЧЕТА ПЬЕЗОКЕРАМИЧЕСКИХ ЭЛЕМЕНТОВ И УСТРОЙСТВ НА ИХ ОСНОВЕ.

1.1. Пьезокерамика.

1.1.1. Пьезокерамика и области ее применения.

1.1.2. Формулы пьезоэффектов.

1.1.3. Технология изготовления пьезоэлементов.

1.1.4. Уравнения состояния пьезокерамической среды.

1.2. Конечно-элементное моделирование пьезокерамических изделий.

1.2.1. Сущность МКЭ и основные этапы его практической реализации.

1.2.2. Построение физической модели.

1.2.3. Построение математической модели.

1.2.4. Возможности АШУБ в решении задач электроупругости.

1.2.4.1. Определение материальных констант пьезоэлектрических материалов.

1.2.4.2. Граничные условия на электродах.

1.2.4.3 Определение частот электрических резонансов.

Выводы к главе 1.

ГЛАВА 2. РАЗРАБОТКА МОДЕЛЕЙ ПЬЕЗОЭЛЕМЕНТОВ ДЛЯ ФИЛЬТРОВ И ИССЛЕДОВАНИЕ ИХ ХАРАКТЕРИСТИК.

2.1. Сравнительный анализ исследований моночастотности пьезокерамических дисковых резонаторов аналитическими методами и методом конечных элементов.

2.2. Исследование влияния геометрической формы на характеристики пьезокерамических «квадратных» резонаторов.

Выводы к главе 2.

ГЛАВА 3. КОНЕЧНО-ЭЛЕМЕНТНЫЙ РАЧЕТ АКУСТИЧЕКОГО ПУЧКА И КОЛЕБАНИЙ СФЕРИЧЕСКОГО ФОКУСИРУЮЩЕГО

ПЬЕЗОЭЛЕМЕНТА.

Выводы к главе 3.

ГЛАВА 4. МОДЕЛИРОВАНИЕ ЧУВСТВИТЕЛЬНОГО ЭЛЕМЕНТА ДЛЯ МАЛОГАБАРИТНОГО ПЬЕЗОЭЛЕКТРИЧЕСКОГО БИМОРФНОГО ГИРОСКОПА.

4.1. Устройство и физические явления в чувствительном элементе.

4.2. Аналитическое описание колебательных процессов.

4.3. Моделирование колебательных процессов биморфного чувствительного элемента.

Выводы к главе 4.

Рекомендованный список диссертаций по специальности «Системы автоматизации проектирования (по отраслям)», 05.13.12 шифр ВАК

Введение диссертации (часть автореферата) на тему «Разработка математических моделей электроупругих структур и их применение в САПР пьезокерамических элементов»

Эффективность электромеханического преобразования в сочетании с механической, электрической и температурной прочностью и технологической отработанностью серийного изготовления пьезокерамических материалов и преобразователей обуславливают широкое использование пьезокерамики. Достаточно привести примеры использования пьезокерамики в гидроакустике (ультразвуковые излучатели и приемники), в приборах контроля (дефектоскопы, расходомеры, толщиномеры), в устройствах частотной селекции [1,2] (резонаторы для фильтров, дискриминаторы), в качестве генераторов высокого напряжения [3-5], для различных датчиков [6] (давления, вибрации, сейсмической активности, угловых скоростей [7]), для пьезотрансформаторов, акгюаторов и др.

Применение пьезоэлектрической керамики [8] в новых и совершенствование потребительских свойств существующих устройств сопровождается существенными затратами на разработки конструкций и технологий пьезокерамических изделий.

Экспериментальные исследования зависимостей эксплуатационных параметров пьезокерамических изделий от их конструкции, параметров пьезокерамического материала и технологии представляют собой сложную и трудоемкую задачу, являющуюся итерационным процессом с большими затратами времени и ресурсов. Поэтому разработка математических моделей, учитывающих электроупругие свойства пьезокерамики, и их применение в специализированных системах автоматизированного проектирования (САПР) пьезокерамических элементов представляется весьма актуальной. Современные САПР, использующие различные математические методы, в частности метод конечных элементов (МКЭ), обладают большими возможностями для решения подобных задач.

В настоящей диссертационной работе с помощью пакета ANS YS, основанного на МКЭ, были разработаны математические модели электроупругих структур в ортогональной, цилиндрической и сферической системах координат, которые были применены в САПР трех типов пьезокерамических элементов, разрабатывавшихся в ОАО «Элпа». Эти пьезоэлементы используются в фильтрах промежуточной частоты для аппаратуры низовой радиосвязи, в ингаляторах в качестве ультразвуковых фокусирующих излучателей, в датчиках угловых скоростей, где они исполняют роль чувствительного элемента.

Целью диссертационной работы является разработка математических моделей электроупругих структур этих пьезоэлементов, исследование с помощью построенных моделей зависимостей эксплуатационных параметров от изменения формы и дефектов пьезокерамических элементов, определение технологических допусков и выработка рекомендаций по совершенствованию конструкций пьезоэлементов и технологических процессов их изготовления.

Для достижения цели в диссертационной работе решены задачи:

- создание программ расчета основных параметров пьезоэлементов прямоугольной, цилиндрической и сферической формы;

- моделирование пьезокерамических элементов в виде резонаторов для фильтров ПЧ нового поколения;

- исследование характеристик ультразвуковых фокусирующих излучателей;

- моделирование чувствительных элементов малогабаритных вибрационных датчиков угловых скоростей;

- определение допусков к технологическим дефектам, возникающим на стадии изготовления перечисленных пьезокерамических элементов, которые не приводят к недопустимому снижению их параметров.

Практическая значимость диссертационной работы заключается в выработке и реализации технических решений:

- уменьшение массогабаритных показателей резонаторов для пьезокерамических фильтров поверхностного монтажа; указанные фильтры обладают приблизительно в 2,5 раза меньшими размерами по сравнению с традиционными и нашли применение в трактах промежуточной частоты (ПЧ) радиостанций низовой радиосвязи;

- разработка способа подстройки частоты резонаторов, что позволило усовершенствовать технологический процесс, увеличив в 2 раза процент выхода годных;

- повышение эффективности работы ингаляторов за счет использования ультразвукового фокусирующего элемента в виде части сферической оболочки с плоским участком в середине; объем испаряющейся жидкости при использовании такого пьезоэлемента увеличивается в 1,3 раза (заявка на изобретение № 2006124170/14, на которую получено уведомление о положительном результате проведения формальной экспертизы);

- разработка принципов автоматизированной балансировки чувствительного элемента для серийного производства пьезокерамических вибрационных датчиков угловых скоростей.

Результаты диссертационной работы использованы при выполнении опытно-конструкторских работ: "Разработка серии пьезокерамических фильтров для навесного и поверхностного монтажа", "Разработка сферических ультразвуковых излучателей", "Разработка пьезокерамического гироскопа с разрешающей способностью не хуже 0,1 град/с и угловой скоростью до 200 град/с", "Разработка базовых конструкций и технологий малогабаритных пьезокерамических биморфных гироскопов" и внедрены в производство ОАО «Элпа».

Похожие диссертационные работы по специальности «Системы автоматизации проектирования (по отраслям)», 05.13.12 шифр ВАК

Заключение диссертации по теме «Системы автоматизации проектирования (по отраслям)», Шахворостов, Дмитрий Юрьевич

Выводы к главе 4

В четвертой главе приведены результаты моделирования и проведения комплекса расчетов, определены основные технологические допуска на изготовление чувствительного элемента и разработана методика балансировки чувствительного элемента, которая заключается в настройке параметров пьезокерамической биморфной балки.

Зависимости, полученные в результате моделирования, показали необходимость изготовлении сечение балки с точностью 5 мкм, а глубина и ширина основного пропила с точностью 10 мкм. Такие допуска имеют место быть только при условии однородности пьезокерамического материала. При отсутствии технологии, позволяющей обеспечить такие допуска, чувствительный элемент подвергается балансировке (настройке разности частот /г ¡у и фаз потенциалов с измерительных электродов).

Настройка частот /г и /у проводится путем введения центрального пропила со стороны, противоположной измерительным электродам. Настройка фаз сигналов с измерительных электродов проводится также благодаря внесению пропилов на этой же стороне, но смещенных от центра балки (рис. 4.4).

В этой главе приведены результаты моделирования более чем 50-ти зависимостей параметров чувствительного элемента от характеристик балансировочных пропилов. На основании этих результатов в настоящее время разрабатываются алгоритмы автоматической балансировки чувствительных элементов, которая необходима для обеспечения массового производства датчиков угловых скоростей.

ЗАКЛЮЧЕНИЕ

В ходе выполнения диссертационной работы получены следующие основные результаты:

1. Разработаны математические модели электроупругих пьезокерамических структур произвольной формы; созданы программы расчета основных параметров пьезоэлементов прямоугольной, цилиндрической и сферической формы, с помощью построенных моделей исследованы зависимости эксплуатационных параметров от изменения формы и дефектов пьезокерамических элементов.

2. По результатам математического моделирования дисковых пьезоэлементов и пьезоэлементов в виде квадратных пластин для фильтров промежуточной частоты получены зависимости, которые позволили:

- оценить влияние различных дефектов на АЧХ пьезоэлементов и определить технологические допуски при изготовлении пьезоэлементов;

- разработать конструкцию и способ подгонки по частоте квадратных пьезоэлементов, что увеличило процент выхода годных изделий по частоте, и снизило влияние различных дефектов на возникновение нежелательных резонансов.

3. Исследованы характеристики ультразвуковых сферических излучателей; по результатам математического моделирования разработаны:

- рекомендации для крепления пьезоэлементов, по допустимым отклонениям от среднего значения толщины пьезоэлемента;

- новые конструктивные решения ультразвукового фокусирующего элемента, которые позволили достичь эффективной фокусировки ультразвукового излучения в зоне геометрического фокуса пьезоэлемента и увеличения объема и скорости испарения жидкости (воды) при использовании такого пьезоэлемента в 1,3 раза.

4. Проанализированы параметры чувствительных элементов малогабаритных вибрационных датчиков угловых скоростей; по результатам математического моделирования:

- определены основные технологические допуска на изготовление чувствительного элемента для пьезокерамического биморфного датчика угловых скоростей;

- получены результаты, необходимые для разработки алгоритма автоматической балансировки чувствительного элемента, без которого невозможно создание серийного производства пьезокерамических вибрационных датчиков угловых скоростей.

5. Результаты диссертационной работы внедрены в производство ОАО «Элпа» и использованы при выполнении опытно-конструкторских работ: "Разработка серии пьезокерамических фильтров для навесного и поверхностного монтажа", "Разработка сферических ультразвуковых излучателей", "Разработка пьезокерамического гироскопа с разрешающей способностью не хуже 0,1 град/с и угловой скоростью до 200 град/с", "Разработка базовых конструкций и технологий малогабаритных пьезокерамических биморфных гироскопов".

Список литературы диссертационного исследования кандидат технических наук Шахворостов, Дмитрий Юрьевич, 2007 год

1. Великин Я.И., Гельмонт З.Я., Зелях Э.В. Пьезоэлектрические фильтры. -М.: Связь, 1966.-396 с.

2. Аржанов В.А., Ясинский И.М. Электрические фильтры и линии задержки: Учеб. пособие, Омск: Изд-во ОмГТУ, 2000. - 372 с.

3. Магнитные и диэлектрические приборы, ч.1. Пер. с англ. Под ред. И.Б. Негневицкого. Изд-во «Энергия», 1964.

4. Некрасов М.М., Злогодух Г.М. Новые пьезо- и сегнетоматериалы и их применение (материал семинара). Изд-во Моск. Дома научно-технической пропаганды, 1969, стр. 199.

5. Злогодух Г.М., Лавриенко В.В. Новые пьезо- и сегнетоматериалы и их применение (материал семинара). Изд-во Моск. Дома научно-технической пропаганды, 1969, стр. 201.

6. Глозман И.А. Пьезокерамика. Изд-во «Энергия», 1967.

7. Ryoo H., Lee Y., Roh Y. Design and fabrication of a dual-axial gyroscope with piezoelectric ceramics // Sensors and Actuators. 1998. V. A65. P. 54 60.

8. Джигунов Р.Г., Борисюк A.M. Современные тенденции и направления развития пьезотехники. Фундаментальные проблемы пьезоэлектроники. Ростов-на-Дону: МП "Книга", 1995. Т. 3. С. 5-12.

9. Смажевская Е.Г., Фельдман Н.Б. Пьезоэлектрическая керамика. М., Изд-во «Советское радио», 1971,200 с.

10. Ю.Мэзон У. Пьезоэлектрические кристаллы и их применение в ультраакустике. М.: Иностранная литература, 1952.

11. П.Мэзон У. Применение пьезоэлектрических кристаллов и механических резонаторов в фильтрах и генераторах. В кн.: Физическая акустика/Под ред. У. Мэзона. -М.: Мир, 1966.

12. Глюкман Л.И. Пьезоэлектрические кварцевые резонаторы. 3-е изд., перераб. и доп. -М.: Радио и связь, 1981.-232 с.

13. Кэди У. Пьезоэлектричество и его практические применения. Пер. с англ., под ред. А.В. Шубникова. Изд-во иностранной литературы, 1949.

14. Пьезоэлектрическая керамика: принципы и применение / Пер. с англ. С.Н. Жукова. Мн. ООО «ФУАинформ», 2003 .- 112с.

15. Берленкур Д., Керран Д., Жаффе И.Г. Пьезоэлектрические и пьезомагнитные материалы и их применение в преобразователях. Физическая акустика. Под ред. У. Мэзона. Т. 1. Методы и приборы ультразвуковых исследований, часть А. М.: Мир, 1966. 592 с.

16. Яффе Б., Кук У., Яффе Г. Пьезоэлектрическая керамика. М.: Изд-во «Мир», 1974.-288 с.

17. Морс Ф., Фешбах Г. Методы теоретической физики. М Издательство иностранной литературы. 195 8. Т.1.-931 с.

18. Lloyd P., Redwood М. Finite-difference method for the investigation of the equivalent-circuit characteristics of piezoelectric resonators // J. Acoust. Soc. Amer. 1966. V. 36, N 2. P. 346-361.

19. Шульга H.A., Болкисев A.M. Колебания пьезоэлектрических тел. Киев: Наук, думка, 1990.228 с.

20. Москальков М.Н. Исследование разностной схемы решения задачи излучения звука цилиндрическим пьезовибратором // Дифференц. уравнения. 1986. Т. 22, № 7. С. 1220-1226.

21. Мельник В.Н., Москальков М.Н. О связанных электроупругих нестационарных колебаниях пьезоэлектрического цилиндра с радиальной поляризацией //ЖВМ и МФ. 1988. Т.28,№ 11. С.1755-1756.

22. Мельник В.Н., Москальков М.Н. Разностные схемы и анализ приближенных решений для двумерных нестационарных задач связанной электроупругости // Дифференц. уравнения. 1991. Т. 27, № 7. С. 1220-1229.

23. Власенко В.Д. Численное моделирование электроупругих процессов в пьезопластине в режиме излучения // Методы числ. анал. / РАН. ДВО. ВЦ. Владивосток, 1993. С.113-131.

24. Чебан В.Г., Форня Г.А. Решение задачи о распространении электроупругой волны в пьезокерамическом стержне // Изв. АН МССР. Математика. 1990. № 1. С.55-59.

25. Ватульян А.О., Кубликов B.JI. О граничных интегральных уравнениях в электроупругости // ПММ. 1989. Т. 53, № 6. С. 1037-1041.

26. Ватульян А.О., Кубликов B.JI. Метод граничных элементов в электроупругости // Механика деформируемых тел. Межвуз. сб. науч. тр. / ДГТУ, Ростов-на-Дону. 1994. С. 17-21.

27. Vatulian А.О., Kublikov V.L. Boundary element method in electroelasticity // Boundary Elem. Commun. 1995. V. 6. P. 59-61.

28. Ватульян A.O., Кирютенко А.Ю., Наседкин A.B. О формулировке граничных интегральных уравнений связанной термоэлектроупругости // Интегродифференциальные операторы и их приложения. Межвуз. сб. науч. трудов / ДГТУ, Ростов-на-Дону. 1996. С. 19-25.

29. Докучаев С.А., Наседкин A.B. Реализация МГЭ в нестационарных задачах электроупругости для среды класса 6mm // Современные проблемы механики сплошной среды. Тр. III Межд. конф. Ростов н/Д, 1-9 окт. 1997. Ростов н/Д: МП "Книга", 1997. Т. 1. С. 111-115.

30. Балабаев С.М., Ивина Н.Ф. Анализ собственных колебаний пьезокерамических цилиндров произвольных размеров // Прикл. механика. 1989. Т. 25, № 10. С.37-41.

31. Балабаев С.М., Ивина Н.Ф. Анализ пьезопреобразователей комбинированным методом конечных и граничных элементов // Акуст. журн. 1996. Т. 42, № 2. С. 172-178.

32. Ивина Н.Ф. Численный анализ собственных круглых пьезокерамических пластин конечных размеров // Акуст. журн. 1989. Т. 35, № 4. С. 667-673.

33. Болкисев A.M. Конечно-элементный анализ деформированного состояния пьезоэлектрического двигателя // Прикл. механика. 1993. Т. 29, № 8. С. 6972.

34. Кажис Р.-Й.Ю. Ультразвуковые информационно-измерительные системы. Вильнюс: Мокслас, 1986. 216 с.

35. Кажис Р.-Й.Ю., Мажейка Л.Ю. Расчет неоднородных электрических и акустических полей в измерительных пьезопреобразователях методом конечных элементов // Научн. тр. вузов ЛитССР. Радиоэлектроника. 1983. Т. 19, № 1.С. 25-35.

36. Кажис Р.-Й.Ю., Мажейка Л.Ю. Расчет нестационарных электроакустических полей в измерительных пьезопреобразователях методом конечных элементов // Научн. тр. вузов ЛитССР. Ультразвук.1985. №17. С. 3-13.

37. Кажис Р.-Й.Ю., Мажейка Л.Ю. Исследование переходных процессов в плоских пьезоизлучателях методом конечных элементов // Дефектоскопия.1986. № 12. С. 3-11.

38. Кажис Р.-Й.Ю., Мажейка Л.Ю. Анализ нестационарного режима пьезопреобразователей методом конечных элементов // Акуст. журн. 1987. Т. 33, № 5. С. 895-902.

39. Ковалев С.П., Кузьменко В.А., Писаренко Г.Г., Чушко В.М. О построении численного решения задач электроупругости // Пробл. прочности. 1979. № 8. С. 90-92.

40. Шинкаренко Г.А. Проекционно-сеточные аппроксимации для вариационных задач пироэлектричества. I. Постановка задач и анализ установившихся вынужденных колебаний // Дифференц. уравнения. 1993. Т. 29, №7. С. 1252-1260.

41. Шинкаренко Г.А. Проекционно-сеточные аппроксимации для вариационных задач пироэлектричества. II. Дискретизация и разрешимость нестационарных задач // Дифференц. уравнения. 1994. Т. 30, № 2. С. 317326.

42. Ерофеев С.А., Ерофеев А.А. Интеллектуальное конечно-элементное моделирование и расчет элементов и устройств функционирования электроники в среде Feapiezo-2 // Тр. IV Межд. симп. "Интеллектуальные системы" (интелс'2000). М., 2000. С. 182-183.

43. Allik Н., Webman К.М., Hunt J.T. Vibration response of sonar transducers using piezoelectric finite elements // J. Acoust. Soc. Amer. 1974. V. 56, N 6. P. 17821791.

44. Boucher D., Lagier M., Maerfeld C. Computation of the vibrational modes for piezoellectric array transducers using a mixed finite element-perturbation method //IEEE Trans. Sonics Ultrasonics. 1981. V. SU-28, N 5. P. 318-330.

45. Challande P. Finite element method applied to piezoelectric cavities study: influence of the geometry on vibration modes and coupling coefficient // J. Mec. Theor. et Appl. 1988. V. 7, N 4. P. 461-477.

46. Challande P. Optimizing ultrasonic transducers based on the finite element method // IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 1990. V. 37, N 2. P. 135-140.

47. Cowdrey D.R., Willis J.R. Application of the finite element method to the vibrations of quarz plate // J. Acoust. Soc. Amer. 1974. V. 56, N 1. P. 94-98.

48. Hayward G., Bennett J. Assessing the influence of pillar aspect ratio on the behavior of 1-3 connectivity composite transducers // IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 1996. V. 43, N 1. P. 98-107.

49. Hossack J. A., Hay ward G. Finite-element analysis of 1-3 composite transducers // IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 1991. V. 38, N 6. P. 618-629.

50. Kagawa Y. A new approach to analysis and design of electromechanical filters by finite-element technique // J. Acoust. Soc. Amer. 1971. V. 49, N 2 (Part.l). P. 1348-1356.

51. Kagawa Y. Finite element simulation of transient heat response in ultrasonic transducers // IEEE Trans. Sonics Ultrasonics. 1992. V. SU-39, N 3. P. 432-440.

52. Kagawa Y., Arai H. Finite element simulation of energy-trapped electromechanical resonators // J. Sound and Vibr. 1975. V. 39, N 3. P. 317-335.

53. Kagawa Y., Gladwell G.M.L. Finite element analysis of flexire-type vibrators with electrostrictive transducers // IEEE Trans. Sonics Ultrasonics. 1970. V. SU-17,N l.P. 41-49.

54. Kagawa Y., Yamabuchi Т. Finite element simulation of two-dimensional electromechanical resonators // IEEE Trans. Sonics Ultrasonics. 1974. V. SU-21, N4. P. 273-280.

55. Kagawa Y., Yamabuchi T. A finite element approach to electromechanical problems whith an application to energy-trapped and surfaces free devices // IEEE Trans. Sonics Ultrasonics. 1976. V. SU-23, N 4. P. 263-272.

56. Kagawa Y., Yamabuchi T. A finite element approach for a piezoVelectric circular rod // IEEE Trans. Sonics Ultrasonics. 1976. V. SU-23, N 6. P. 379-385.

57. Kagawa Y., Yamabuchi T. Finite element simulation of a composite piezoelectric ultrasonic transducer // IEEE Trans. Sonics Ultrasonics. 1979. V. SU-26,N2.P. 81-88.

58. Lerch R. Finite element analysis of piezoelectric devices by two- and three-dimensional finite elements // IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 1990. V. 37, N 3. P. 233-247.

59. Lerch R. Exact computer modelling: a tool for the design of imaging transducers //Acoustic. Imaging. 1992. V. 19. P. 175-186.

60. Naillon M., Coursant R.H., Besnier F. Analysis of piezoelectric structures by a finite element method // Acta Electrónica. 1983. V. 25, N 4. P. 341-362.

61. Tzou H.S., Tseng C.I. Distributed piezoelectric sensor/actuator design for dynamic measurement/control of distributed parameter systems: a piezoelectric finite element approach //J. Sound and Vibr. 1990. V. 138, N 1. P. 17-34.

62. Галлагер P. Метод конечных элементов. Основы: Пер. с англ. М.: Мир, 1984.-428 с.65.3енкевич О., Морган К. Конечные элементы и аппроксимация: Пер. с англ.-М.: Мир, 1986.-318 с.

63. ANSYS. Basic Analysis Procedures Guide. Rel.5.4 / ANSYS Inc. Houston, 1997.

64. ANSYS. Commands Ref. Rel.5.4 / ANSYS Inc. Houston, 1997.

65. ANSYS. Elements Ref. Rel.5.4 / ANSYS Inc. Houston, 1997.

66. ANSYS. Theory Ref. Rel.5.4. Ed. P. Kothnke / ANSYS Inc. Houston, 1997.

67. COSMOS/M. V.2.0. Advanced Modules Manual. ASTAR. / Strustural Research & Analysis Corp., 1997.

68. ATILA. Finite-element code for piezoelectric and magnetostrictive transducer and actuator modeling. V.5.1.1. User's Manual. / Lille Cedex (France): ISEN, 1997.

69. PZFlex, Explicit time domain, piezoelectric, nite element code. Weidlinger Associates Inc., Los Altos, CA.

70. Wojcik G.L., Vaughan D.K., Abboud N., Mould J. Electromechanical modeling using explicit time-domain finite elements // Proc. IEEE Ultrasonics Symp. 1993. V. 2.P. 1107-1112.

71. Abboud N.N., Wojcik G.L., Vaughan D.K., Mould J., Powell D.J., Nikodym L. Finite element modeling for ultrasonic transducers // Proc. SPIE Int. Symp. Medical Imaging. 1998.

72. ANSYS 9.0 Documentation / ANSYS Inc. 2004.

73. Наседкин A.B., Скалиух А.С., Соловьев А.Н. Пакет ACELAN и конечно-элементное моделирование гидроакустических пьезопреобразователей // Известия ВУЗов. Северо-Кавказский регион. 2001. Спецвыпуск. Математическое моделирование. С. 122-125.

74. Белоконь A.B., Наседкин A.B., Соловьев А.Н. Новые схемы конечно-элементного динамического анализа пьезоэлектрических устройств // Прикладная математика и механика. 2002. Т. 66, № 3. С.491-501.

75. Ляв А. Математическая теория упругости. М.; Л.: ОНТИ НКТП СССР, 1935.

76. Гуреев A.B., Шахворостов Д.Ю. Влияние технологических факторов на спектр резонатора круглого сечения. "Известия высших учебных заведений. Электроника №3", МИЭТ, 2007, С.75-76.

77. Шахворостов Д.Ю. Пьезокерамические фильтры поверхностного монтажа // "Микроэлектроника и информатика-2005". Всероссийская межвузовская научно-техническая конференция студентов и аспирантов: Тезисы докладов. М.: МИЭТ, 2005, С.355.

78. Шахворостов Д.Ю. К вопросу о моночастотности квадратных пьезокерамических резонаторов // "Электроника и информатика-2005". 5-я Международная научно-техническая конференция Тезисы докладов. М.: МИЭТ, 2005, С. 154.

79. Материалы пьезокерамические, ОСТ11 0444-87,1987, С.121.

80. Шахворостов Д.Ю. Моделирование колебаний ультразвукового фокусирующего элемента из пьезокерамики. // ("Актуальные проблемы пьезоэлектрического приборостроения и нанотехнологий", НКТБ "Пьзоприбор" РГУ, Ростов-на-Дону, 2006 г.

81. Сафронов А.Я., Никифоров В.Г., Шахворостов Д.Ю., Калифатиди А.К., Барыкин В.В. Малогабаритные пьезоэлектрические вибрационные гироскопы широкого применения. "Электроника: Наука, Технология, Бизнес", №8,2006, С.62-63.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.