Разработка массивов оптических и терагерцовых детекторов на основе метаматериалов тема диссертации и автореферата по ВАК РФ 01.04.04, кандидат наук Бейранванд Бехрох Мирмохаммад

  • Бейранванд Бехрох Мирмохаммад
  • кандидат науккандидат наук
  • 2020, ФГАОУ ВО «Московский физико-технический институт (национальный исследовательский университет)»
  • Специальность ВАК РФ01.04.04
  • Количество страниц 152
Бейранванд Бехрох Мирмохаммад. Разработка массивов оптических и терагерцовых детекторов на основе метаматериалов: дис. кандидат наук: 01.04.04 - Физическая электроника. ФГАОУ ВО «Московский физико-технический институт (национальный исследовательский университет)». 2020. 152 с.

Оглавление диссертации кандидат наук Бейранванд Бехрох Мирмохаммад

Table of contents

ABSTRACT

1. INTRODUCTION OF BOLOMETERS

2. THE COLD ELECTRON BOLOMETER

2.1 Basic concepts

2.1.1 Superconductivity

2.1.2 BCS density of states

2.1.3 Hot electron effect and normal metal as an absorber

2.2 NIS junction and tunneling

2.2.1 NIS current

2.2.2 Power deposited in the absorber (normal metal) and superconductor

2.3 SINIS and CEB structure

2.3.1 Heat balance equation

2.3.2 Responsivity

2.3.3 Noise Equivalent Power (NEP)

2.3.4 Time Constant

3. METAMATERIAL-BASED ARRAY OF SINIS BOLOMETERS

3.1 Frequency Selective Surfaces (FSS)

3.1.2 The unit cell size

3.1.3 Large size unit cell

3.2 Wideband FSS array based on CEB (Small size unit cell)

3.2.1 Modeling and sample design

3.2.2 Defining impedances

3.2.3 Polarization and numerical model of CEB

3.2.4 Simulation results

3.2.5 Experimental test

3.3 FSS array based on CEB for dual mode design for arbitrary polarization

3.3.1 Dual mode design of FSS+CEBs

3.3.2 Calculating the power of absorption Pabs

3.4 A dual-band design of FSS+CEBs

3.4.1 Design structure

3.4.2 Simulation results

3.5 Wideband double-polarized array of CEBs for OLIMPO balloon telescope

3.5.1 NEP analysis

3.5.2 RF design and analysis

3.5.3 Numerical Analysis

3.6 Summary

4. COMPOSITE RIGHT/LEFT HANDED TRANSMISSION LINE WITH ARRAY THERMOCOUPLE FOR GENERATING TERAHERTZ RADIATION

4.1 Left Handed Metamaterials

4.1.1 LH transmission line

4.2 Composite right/left handed transmission line (CRLH TL)

4.2.1 Balanced and unbalanced CRLH TL

4.3 Nonequilibrium electrons in metals

4.3.1 Electron-electron collisions

4.3.2 Electron-phonon collisions

4.3.3 Energy absorption

4.3.4 Equation for phonons

4.3.5 Thermocouple chain and THz generation

4.4 Transmission Line Model

4.5 Summary

5. METAMATERIALS AND PLASMONIC

5.1 Plasmon Drag Effect

5.1.1 Localized surface resonances and surface plasmon polaritons

5.1.2 Application of surface plasmon photonics

5.1.3 Equation of motion and drude model

5.1.4 Maxwell's equations for surface plasmon polaritons

5.2 Cross plasmonic network consisting of gold strip arrays

5.3 Boundary states in a plasmonic crystal for SERS detectors

5.3.1 Introduction

5.3.2 Structure design

5.3.3 Results and discussion

5.3.4 Summary

5.4 A proposal for a multi-functional tunable dual-band plasmonic absorber consisting of a periodic array of elliptical groove

5.4.1 Introduction

5.4.2 Proposed structure and operating principle

5.4.3 Results and discussion

5.4.4 Conclusion

5.5 A proposal for a dual-band tunable plasmonic absorber using concentric-rings resonators and mono-layer graphene

5.5.1 Proposed structure and operating principle

5.5.2 Simulation method and materials

5.5.3 Results and discussion

5.5.4 Conclusion

REFERENCES

LIST OF PUBLICATIONS

CONFERENCES

Рекомендованный список диссертаций по специальности «Физическая электроника», 01.04.04 шифр ВАК

Введение диссертации (часть автореферата) на тему «Разработка массивов оптических и терагерцовых детекторов на основе метаматериалов»

Abstract

This work presents research and design of metamaterials in two parts, first section from chapter 1 to chapter 3 describes the Cold Electron Bolometers (CEBs) which have been introduced and invented by L. S. Kuzmin and in second section from chapter 4 to chapter 5, optical and THz metamaterials are discussed.

In the first section we attempted to investigate various designs of CEBs based on Superconductor-Insulator-Normal metal-Insulator-Superconductor (SINIS) tunnel junctions with array structures. Here, the selected motifs of array structures are annular and meander patterns from the Frequency Selective Surface (FSS) and act as detector for incident wave radiations. The operations of CEB devices such as designing and studying these arrays in a wideband for the range 300-450 GHz and ultrawideband for the range 200-1000 GHz, a model of dual band cold electron bolometer at 210 GHz and 240 GHz and other models to work in two modes of polarization are reported. In the above-mentioned CEB designs, first large-size unit cells in [1] for balloonborne telescope missions are briefly noted and compared with the small-size unit cells.

The second section a method is proposed for generating terahertz radiation using a array of thermocouples with capacitive coupling heated by femtosecond laser pulses. Here we present a model of Composite Right/Left Handed Transmission Line.

In the next part of this section we are going to report a numerical study of drag effect plasmonic metamaterial consisting of three layers SiO2/ Au/ Si with the aim of absorption for 1 um laser in spectral regime for infrared operation and also provide an edge states plasmonic metamaterial consisting of four layers SiO2/Ag/SiO2/Si with the aim of molecules detection in visible spectral regime for near field Raman spectroscopy which operates by using the topological insulator. The results showed us that we are able to benefit the edge states at several different frequencies (pixels) for this nano-structure. The nano-structure was irradiated for the range of 500-650 THz. Also two proposals for dual-band plasmonic absorber are presented which geometrically and dynamically are tunable and can be used as optical detectors.

Похожие диссертационные работы по специальности «Физическая электроника», 01.04.04 шифр ВАК

Заключение диссертации по теме «Физическая электроника», Бейранванд Бехрох Мирмохаммад

5.5.4 Conclusion

A tunable graphene-based plasmonic absorber using concentric-rings resonators has been presented and numerically investigated. The proposed structure provides two nearly perfect absorption peaks at 1125 nm and 1615 nm , which are independently tunable by controlling the chemical potential of the graphene layer. We have shown that, as chemical potential of the mono-layer graphene is increased from 0.3 to 0.46 eV, the absorption of the second peak is decreased by about 8.2% , while the first peak is fixed. Besides, by increasing the chemical potential from 0.5 to 0.66 eV, the absorption of the first peak is decreased by 13.6 %, while the absorption of the second peak remains 126

constant. Tunability factors (modulation of absorption per graphene Fermi energy) of 85%/eVand 51.25 %/eVwere calculated for the first and the second peaks, respectively. Furthermore, as the absorption magnitudes of the peaks are independent of the polarization of the incident light, the proposed device can be considered as a polarization-insensitive optical modulator with two separately tunable bands. We have also discussed that by making simple modifications to the rings (i.e. converting them into split-ring resonators) an absorption spectrum with a higher number of absorption peaks can be realized. Simulation results showed that the absorption magnitudes of these peaks are dependent directly upon the angular position of the introduced gaps. Since the proposed device offers a fully tunable optical absorption spectrum, it can be utilized in a wide range of applications such as photo-detectors and multi-spectral tunable reflectors.

Список литературы диссертационного исследования кандидат наук Бейранванд Бехрох Мирмохаммад, 2020 год

References

1. Mahashabde S. Frequency selective cold-electron bolometer arrays // Chalmers University of Technology. — 2015.

2. Kuzmin L. Optimization of the hot-electron bolometer and a cascade quasiparticle amplifier for space astronomy// In International workshop on superconducting nano-electronics devices. Springer. — 2002. — P. 145-154.

3. Stockhausen A. Optimization of hot-electron bolometers for THz radiation// KIT Scientific Publishing. — 2013. — V. 8.

4. Nahum M., Martinis J M. Ultrasensitive-hot-electron microbolometer// Applied physics letters. — 1993. — V. 63, № 22. — P. 3075-3077.

5. Zhang W., Khosropanah P., Gao J. R., Kollberg E. L., Yngvesson K. S., Bansal T., Barends R., Klapwijk T.M. Quantum noise in a terahertz hot electron bolometer mixer// Applied Physics Letters. — 2010. — V. 96, № 11. — P. 111113.

6. Saleh M. Ultrasensitive superconducting cold-electron bolometer coupled to multi-frequency phased antenna array for polarization detection of the cosmic microwave background// Chalmers University of Technology. — 2014.

7. Irwin K. D., Hilton G. C., Martinis J. M., Cabrera B. A hot-electron microcalorimeter for x-ray detection using a superconducting transition edge sensor with electrothermal feedback// Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. — 1996. — V. 370, № 1. — P. 177-179.

8. Richards P. Bolometric detectors for space astrophysics// In Proc. far-ir, sub-mm, and mm detector workshop. — 2003. — P. 219-223.

9. Lee A. T., Richards P. L., Nam S. W., Cabrera B., Irwin K. D. A superconducting bolometer with strong electrothermal feedback// Applied Physics Letters. — 1996. — V. 69, № 12. — P. 1801-1803.

10. Day P. K., LeDuc H. G., Mazin B. A., Vayonakis A., Zmuidzinas J. A broadband superconducting detector suitable for use in large arrays// Nature. — 2003. — V. 425, № 6960. — P. 817.

11. McDonald D. G. Novel superconducting thermometer for bolometric

applications// Applied physics letters. — 1987. — V. 50, № 12. — P. 775-777. 128

12. North C. Observations of the Cosmic Microwave Background Polarization with C£over// Oxford University. — 2010.

13. Gordeeva A. V., Zbrozhek V. O., Pankratov A. L., Revin L. S., Shamporov V. A., Gunbina A. A., Kuzmin L. S. Observation of photon noise by cold-electron bolometers// Applied Physics Letters. — 2017. — V .110, № 16. — P. 162603. (references)

14. Aiola S., Amico G., Battaglia P., Battistelli E., Bau A., De Bernardis P., ... others. The large-scale polarization explorer (LSPE)// In Ground-based and airborne instrumentation for astronomy IV. — 2012. — V. 8446. — P. 84467A.

15. Masi S., Ade P., Boscaleri A., De Bernardis P., De Petris, M., De Troia, G., ... others. Olimpo: a balloon-borne, arcminute-resolution survey of the sky at mm and sub-mm wavelengths// In Proceedings of the 16th ESA symposium on european rocket and balloon programmes and related research. — 2003. — P. 557-560.

16. Kuzmin L. S., Perera A. Cold-electron bolometer. In Bolometers// INTECHWEB. ORG. — 2012. — P. 77-106.

17. Kuzmin L., Agulo I., Fominsky M., Savin A., Tarasov M. Optimization of electron cooling by SIN tunnel junctions// Superconductor Science and Technology. — 2004. — V. 17, № 5. — P. S400.

18. Onnes H. K. Further experiments with liquid helium. C. on the change of electric resistance of pure metals at very low temperatures etc. IV. the resistance of pure mercury at helium temperatures// In Through measurement to knowledge. Springer. — 1991. — P. 261-263.

19. Bardeen J., Cooper L. N., Schrieffer J. R. Theory of superconductivity// Phys. Rev. — 1957. — V. 108. — P. 1175-1204.

20. Tinkham M. Introduction to superconductivity// Courier Corporation, 2004.

21. Timusk T. The superconducting energy gap// La Physique Au Canada. — 2011. — V. 67, № 2. — P. 99.

22. Dynes R., Narayanamurti V., Garno J. P. Direct measurement of quasiparticle-lifetime broadening in a strong-coupled superconductor// Physical Review Letters. — 1978. — V. 41, № 21. — P. 1509.

23. Pekola J. P., Maisi V., Kafanov S., Chekurov N., Kemppinen A., Pashkin Y. A., Saira O.-P., Mottonen M., Tsai, J. S. Environment-assisted tunneling as an origin of the dynes density of states// Physical Review Letters. — 2010. — V. 105, № 2. — P. 026803.

24. Golubev D., Kuzmin L. S., Willander M. SIN tunnel junction as a temperature sensor// In Photodetectors: Materials and devices IV. — 1999. — V. 3629. — P. 364370.

25. Kuzmin L. S., Pankratov A. L., Gordeeva A. V., Zbrozhek V. O., Shamporov V. A., Revin L. S., Blagodatkin A. V., Masi S., de Bernardis P. Photon-noise-limited cold-electron bolometer based on strong electron self-cooling for high-performance cosmology missions// Communications Physics. — 2019. — V. 2, № 1. — P. 1-8.

26. Bakker J., Van Kempen H., Wyder P. Adiabatic demagnetization of ruby and the use of a superconducting tunnel junction thermometer// Physics Letters A. — 1970. — V. 31, № 6. — P. 290-291.

27. Nahum M., Eiles T. M., Martinis J. M. Electronic microrefrigerator based on a normal-insulator-superconductor tunnel junction// Applied Physics Letters. 1994. — V. 65, № 24. — P. 3123-3125.

28. O'Neil G. C. Improving NIS tunnel junction refrigerators: Modeling, materials, and traps// Santa Clara University. — 2011.

29. Levine J. L., Hsieh S. Recombination time of quasiparticles in superconducting aluminum// Physical Review Letters. — 1968. — V. 20, № 18. — P. 994.

30. Gray K., Long A., Adkins C. Measurements of the lifetime of excitations in superconducting aluminium// Philosophical Magazine. — 1969. — V. 20, № 164. — P. 273-278.

31. Gray K. Steady state measurements of the quasiparticle lifetime in superconducting aluminium// Journal of Physics F: Metal Physics. — 1971. — V. 1, № 3. — P. 290.

32. Fisher P., Ullom J., Nahum M. High-power on-chip microrefrigerator based on a normal-metal/insulator/superconductor tunnel junction// Applied physics letters. — 1999. — V. 74, № 18. — P. 2705-2707.

33. Pekola J., Anghel D., Suppula T., Suoknuuti J., Manninen A., Manninen M. Trapping of quasiparticles of a nonequilibrium superconductor// Applied Physics Letters. — 2000. — V. 76, № 19. — P. 2782-2784.

34. Ullom J., Fisher P. Quasiparticle behavior in tunnel junction refrigerators// Physica B: Condensed Matter. — 2000. — V. 284. — P. 2036-2038.

35. Golwala S., Jochum J., Sadoulet B. Noise considerations in low resistance NIS junctions// In To appear in the proceedings of. — 1997.

36. Tarasov M. A., Kuzmin L. S., Edelman V. S., Mahashabde S., de Bernardis P. Optical response of a cold-electron bolometer array integrated in a 345-GHz cross-slot antenna// IEEE transactions on applied superconductivity. — 2011. — V. 21, № 6. — P. 3635-3639.

37. Kuprianov M. Y., Lukichev V. Influence of boundary transparency on the critical current of dirty ss's structures// Zh. Eksp. Teor. Fiz. — 1988. — V. 94. — P. 149.

38. Leivo M., Pekola J., Averin D. Efficient peltier refrigeration by a pair of normal metal/insulator/superconductor junctions// Applied Physics Letters. — 1996. — V. 68, № 14. — P. 1996-1998.

39. Kuzmin L., Yassin G., Withington S., Grimes P. An antenna coupled cold-electron bolometer for high performance cosmology instruments// Proc. of the 18th ISSTT. — 2007. — P. 93-99.

40. Golubev D., Kuzmin L. Nonequilibrium theory of a hot-electron bolometer with normal metal-insulator-superconductor tunnel junction// Journal of Applied Physics. — 2001. — V. 89, № 11. — P. 6464-6472.

41. Richards P. Bolometers for infrared and millimeter waves// Journal of Applied Physics. — 1994. — V. 76, № 1. — P. 1-24.

42. Kuzmin L. Ultimate cold-electron bolometer with strong electrothermal feedback// In Millimeter and submillimeter detectors for astronomy II. — 2004. — V. 5498. — P. 349-361.

43. Jethava N., Chervenak J., Brown A.-D., Benford D., Kletetschka G., Mikula V., Kongpop U., others. Development of superconducting transition edge sensors based on

electron-phonon decoupling// In Millimeter, submillimeter, and far-infrared detectors and instrumentation for astronomy V. — 2010. — V. 7741. — P .774120.

44. Kuzmin L. A Parallel/Series Array of Cold-Electron Bolometers with SIN Tunnel Junctions for Cosmology Experiments// Millimeter and Submillimeter Detectors and Instrumentation for Astronomy IV. — 2008. — P. 1-9.

45. Kuzmin L. An array of cold-electron bolometers with SIN tunnel junctions and JFET readout for cosmology instruments// In Journal of physics: Conference series. 2008. — V. 97. — P. 012310.

46. Munk B. A. Frequency selective surfaces: theory and design// John Wiley & Sons. — 2005.

47. Genovesi S., Costa F., Monorchio A. Low-profile array with reduced radar cross section by using hybrid frequency selective surfaces// IEEE Transactions on Antennas and Propagation. — 2012. — V. 60, № 5. — P. 2327-2335.

48. Euler M., Fusco V., Cahill R., Dickie R. 325 GHz single layer sub-millimeter wave FSS based split slot ring linear to circular polarization convertor// IEEE Transactions on Antennas and propagation. — 2010. — V. 58, № 7. — P. 2457-2459.

49. Kuzmin L. Distributed antenna-coupled cold-electron bolometers for focal plane antenna// Proc. ISSTT. — 2008. — P. 154-158.

50. Mahashabde S., Sobolev A. S., Tarasov M. A., Tsydynzhapov G. E., Kuzmin L. S. Planar frequency selective bolometric array at 350 GHz// IEEE Transactions on Terahertz Science and Technology. — 2014. — V. 5, № 1. — P. 37-43.

51. Mahashabde S., Sobolev A. S., Bengtsson A., Andr'en D., Tarasov M. A., Salatino M., de Bernardis P., Masi S., Kuzmin, L. S. A frequency selective surface based focal plane receiver for the olimpo balloon-borne telescope// IEEE Transactions on Terahertz Science and Technology. — 2014. — V. 5, № 1. — P. 145-152.

52. Mahashabde S., Tarasov M., Salatino M., Sobolev A., Masi S., Kuzmin L., de Bernardis P. A distributed-absorber cold-electron bolometer single pixel at 95 GHz// Applied Physics Letters. — 2015. — V. 107, № 9. — P. 092602.

53. Ulrich R. Far-infrared properties of metallic mesh and its complementary structure// Infrared Physics. — 1967. — V. 7, № 1. — P. 37-55.

54. Ulrich R. Effective low-pass filters for far infrared frequencies// Infrared Physics. — 1967. — V. 7, № 2. — P. 65-74.

55. Tarasov M., Sobolev A., Gunbina A., Yakopov G., Chekushkin A., Yusupov R., Lemzyakov S., Vdovin, V., Edelman, V. Annular antenna array metamaterial with SINIS bolometers// Journal of Applied Physics. — 2019. — V. 125, № 17. — P. 174501.

56. Liu Z., Hon P. W., Tavallaee A. A., Itoh T., Williams B. S. Terahertz composite right-left handed transmission-line metamaterial waveguides// Applied Physics Letters. 2012. — V. 100, № 7. — P. 071101.

57. Veselago V. G. The electrodynamics of substances with simultaneously negative values of e and p// PhysicsUspekhi. — 1968. — V. 10, № 4. — P. 509-514.

58. Shelby R. A., Smith D. R., Schultz S. Experimental verification of a negative index of refraction// Science. — 2001. — V. 292, № 5514. — P.77-79.

59. Lai A., Itoh T., Caloz C. Composite right/left-handed transmission line metamaterials// IEEE microwave magazine. — 2004. — V. 5, № 3. —P. 34-50.

60. Ramo S., Whinnery J. R., Van Duzer T. Fields and waves in communication electronics// John Wiley & Sons. — 1994. (3rd ed).

61. Pozar D. M. Microwave engineering// John Wiley & Sons. — 2009. (3rd ed).

62. Eleftheriades G. V., Iyer A. K., Kremer P. C. Planar negative refractive index media using periodically lc loaded transmission lines// IEEE transactions on Microwave Theory and Techniques. — 2002. — V. 50, № 12. — P. 2702-2712.

63. Eleftheriades G. V. Enabling RF/microwave devices using negative-refractive-index transmission-line (NRI-TL) metamaterials// IEEE Antennas and Propagation Magazine. — 2007. — V. 49, № 2. — P. 34-51.

64. Oliner A. A. A planar negative-refractive-index medium without resonant elements// In IEEE MTT-S international microwave symposium digest. — 2003. — V. 1. — P. 191-194.

65. Caloz C., Itoh T. Electromagnetic metamaterials: transmission line theory and microwave applications// John Wiley & Sons. —2005.

66. Rethfeld B., Kaiser A., Vicanek M., Simon G. Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation// Physical Review B. — 2002. — V. 65, № 21. — P. 214303.

67. Sun C.-K., Vall ee F., Acioli L., Ippen E., Fujimoto J. Femtosecondtunable measurement of electron thermalization in gold// Physical Review B. — 1994. — V. 50, № 20. — P. 15337.

68. Snoke D., Ruhle W., Lu Y.-C., Bauser E. Evolution of a nonthermal electron energy distribution in gaas// Physical Review B. — 1992. — V. 45, № 19. — P. 10979.

69. Binder R., Kohler H. S., Bonitz M., Kwong N. Green's function description of momentum-orientation relaxationof photoexcited electron plasmas in semiconductors// Physical Review B. — 1997. — V. 55, № 8. — P. 5110.

70. Allen P. B. Theory of thermal relaxation of electrons in metals// Physical review letters. — 1987. — V. 59, № 13. — P. 1460.

71. Caloz C., Allen C., Itoh T. Unusual propagation characteristics in CRLH structures// In IEEE antennas and propagation society symposium. — 2004. — V. 4. — P. 3549-3552.

72. Ziman J. The general variational principle of transport theory// Canadian Journal of Physics. — 1956. — V. 34, № 12A. — P. 1256-1273.

73. Bardeen J. Conductivity of monovalent metals// Physical Review. — 1937. — V. 52, № 7. — P. 688.

74. Ziman J. Electrons and phonons, chapter IX, sect. 12// Oxford University Press. — 1962.

75. Pines D., Noziures P. The theory of quantum liquids v. 1: Normal fermi liquids// Benjamin. — 1966.

76. Ashcroft N., Mermin N. Solid state physics saunders college publishing// Fort Worth. — 1976.

77. Zeldovich Y. B., Raizer Y. P. Teor. fiz// Sov. Phys JETP. — 1965. — V . 20. — P. 772.

78. E. M. E ' pshtein. Fiz. Tverd. Tela// Sov. Phys. Solid State. — 1970 . — V . 11. — P. 2213.

79. Kaiser A., Rethfeld B., Vicanek M., Simon G. Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses// Physical Review B. — 2000. — V. 61, № 17. — P. 11437.

80. Seely J. F., Harris E. G. Heating of a plasma by multiphoton inverse bremsstrahlung// Physical Review A. — 1973. — V. 7, № 3. — P. 1064.

81. Rozmus W., Tikhonchuk V., Cauble R. A model of ultrashort laser pulse absorption in solid targets// Physics of Plasmas. — 1996. — V. 3, № 1. — P. 360-367.

82. Price D., More R., Walling R., Guethlein G., Shepherd R., Stewart R., White W. Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 11000 ev// Physical review letters. — 1995. — V. 75, № 2. — P. 252.

83. Lee J. B., Kang K., Lee S. H. Comparison of theoretical models of electron-phonon coupling in thin gold films irradiated by femtosecond pulse lasers// Materials Transactions. 2011. — V. 52, № 3. — P. 547-553.

84. Abina A., Puc U., jeglic A., Zidansek A. Applications of terahertz spectroscopy in the field of construction and building materials // Applied spectroscopy reviews . — 2015. — V. 50, N.41 — P. 279-303.

85. Fitzgerald A. J., Berry E., Zinovev N. N., Walker G. C., Smith M. A and Chamberlain J. M. An introduction to medical imaging with coherent terahertz frequency radiation // Physics in Medicine and Biology . — 2002. — V. 47, № 7 — P. R67.

86. Hafez H. A., Chai X., Ibrahim A., Mondal S., Ropagnol X., Ozaki T. Intense terahertz radiation and their applications // Journal of Optics . — 2016. — V. 18, № 9

— P.093004.

87. Perenzoni M., Paul D. J. Physics and applications of Terahertz radiation // Springer . — 2014

88. Nagatsuma T., Ducournau G., Renaud C. C. Advances in terahertz communications accelerated by photonics // Nature Photonics. — 2016. — V. 10, № 6

— P. 371-379. 135

89. Zhang C. X., Xu J. "Generation and Detection of THzWaves"in Introduction of THz wave photonics // Springer . — 2010. —P. 27-48.

90. Blanchard F., Sharma G., Razzari L., Ropagnol X., Bandulet H. C and Vidal F., Morandotti R., Kieffer J. C., Ozaki T., Tiedje H., others. Generation of intense terahertz radiation via optical methods // IEEE Journal of Selected Topics in Quantum Electronics . — 2011. — V. 17, № 1 — P. 5-16.

91. Yang S., Hashemi M. R., Berry C. W and Jarrahi M. 7.5% Optical-to-Terahertz Conversion Efficiency Offered by Photoconductive Emitters With Three-Dimensional Plasmonic Contact Electrodes, // IEEE Transactions on Terahertz Science and Technology, — 2014. — V. 4, № 5 — P. 575-581.

92. Rethfeld B., Kaiser A., Vicanek M., Simon G. Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation // Physical Review B. — 2002. — V. 65, № 21 — P. 214303.

93. Lee J. B., Kang K., Lee S. H. Comparison of theoretical models of electron-phonon coupling in thin gold films irradiated by femtosecond pulse lasers // Materials transactions. — 2011. — V. 52, № 3 — P. 547-553.

94. Durach M., Noginova N. Plasmon Drag Effect. Theory and Experiment // Springer. — 2017. — P.233-270.

95. Gibson A.F, Kimmitt M.F., Walker A.C. Photon drag in germanium // Applied Physics Letters. — 1970. — V.17, № 2 — P. 75-77.

96. Danishevskii A.M., Kastalskii A.A., Ryvkin S.M., Yaroshetskii I.D. Dragging of free carriers by photons in direct interband transitions in semiconductors // Sov. Phys. JETP. — 1970. — V.31, № 2 — P. 292-295.

97. Gibson A.F., Montasser S. A theoretical description of the photon-drag spectrum of p-type germanium // Journal of Physics C: Solid State Physics . — 1975. — V.8, № 19 — P. 3147.

98. Luryi S. Photon-drag effect in intersubband absorption by a two-dimensional electron gas // Physical review letters . — 1987. — V.58, № 21 — P. 2263.

99. Grinberg A.A., Luryi S. Comment on ''Light-induced drift of quantum-confined electrons in semiconductor heterostructures // Physical review letters . — 1991. — V. 67, № 1 — P. 156.

100. Shalaev V.M., and Moskovits M. Light-induced drift of electrons in metals // Physics Letters A. — 1992. — V. 169, № 3 — P. 205-210.

101. Shalaev V.M., Douketis C., Stuckless J.T., Moskovits M. Light-induced kinetic effects in solids // Physical Review B. — 1996. — V. 53, № 17 — P. 11388.

102. Gurevich V.L., Laiho R., Lashkul A.V. Photomagnetism of metals // Physical Review Letters. — 1992. — V. 69, № 1 — P. 180.

103. Gurevich V.L., Laiho R. Photomagnetism of metals: Microscopic theory of the photoinduced surface current // Physical Review B. — 1993. — V. 48, № 11 — P. 8307.

104. Gurevich V.L., Laiho R. Photomagnetism of metals. First observation of dependence on polarization of light // Physics of the Solid State . — 2000. — V. 42, № 10 — P. 1807-1812.

105. Stockman M.L., Pandey L.N., George T.F. Light-induced drift of quantum-confined electrons in semiconductor heterostructures // Physical Review Letters . — 1990. — V. 65, № 27— P. 3433.

106. Raether H. Surface plasmons on smooth and rough surfaces and on gratings // Springer tracts in modern physics. — 1988. — V. 111— P. 1-3.

107. Kretschmann E. The angular dependence and the polarisation of light emitted by surface plasmons on metals due to roughness // Optics Communications. — 1972. — V. 5, № 5— P. 331-336.

108. Ritchie R.H. Surface plasmons in solids // Surface Science. — 1973. — V. 34, № 1— P. 1-9.

109. Moskovits M. Surface-enhanced spectroscopy // Reviews of modern physics. — 1985. — V. 57, № 3— P. 783.

110. Quinten M., Leitner A., Krenn J.R., Aussenegg F.R. Electromagnetic energy transport via linear chains of silver nanoparticles // Optics letters. — 1998. — V. 23, № 17— P. 1331-1333.

111. Averitt R.D., Westcott S.L., Halas N.J. Linear optical properties of gold nanoshells // JOSA B. — 1999. — V. 16, № 10— P. 1824-1832.

112. Mock J.J., Barbic M., Smith D.R., Schultz D.A., Schultz S. Shape effects in plasmon resonance of individual colloidal silver nanoparticles // The Journal of Chemical Physics. — 2002. — V. 116, № 15— P. 6755-6759.

113. Kreibig U., Vollmer M. Optical Properties of Metal Clusters // Springer Series in Material Science Springer-Verlag. — 1995. — V. 25.

114. Su K.H., Wei Q.H., Zhang X., Mock J.J., Smith D.R., Schultz S. Interparticle coupling effects on plasmon resonances of nanogold particles // Nano letters. — 2003.

— V. 3, № 8— P. 1087-1090.

115. Noginov M.A., Zhu G., Mayy M., Ritzo B.A., Noginova N., Podolskiy V.A. Stimulated emission of surface plasmon polaritons // Physical review letters. — 2008.

— V. 101, № 22— P. 226806.

116. Baudrion A.-L., León-Pérez F. de., Mahboub O., Hohenau A., Ditlbacher H., García-Vidal F. J., Dintinger J., Ebbesen T.W., Martín-Moreno L., Krenn J.R. Coupling efficiency of light to surface plasmon polariton for single subwavelength holes in a gold film // Optics express. — 2008. — V. 16, № 5— P. 3420-3429.

117. Koshelev A., Munechika K., Cabrini S. Hybrid photonic-plasmonic near-field probe for efficient light conversion into the nanoscale hot spot // Optics letters. — 2017.

— V. 42, № 21— P. 4339-4342.

118. Yatsui T., Ohtsu M. Development of nanophotonic devices and their integration by optical near-field // IEEE/LEOS International Conference on Optical MEMs. — 2002. —P. 199-200.

119. Jiang R.H., Chen C., Lin D.Z., Chou H.C., Chu J.Y., Yen T.J. Near-field plasmonic probe with super resolution and high throughput and signal-to-noise ratio // Nano letters. — 2018. — V. 18, № 2— P. 881-885.

120. Hecht B., Sick B., Wild U.P., Decker! V., Zenobi R., Martin O. J. F., Pohl D. W. Scanning near-field optical microscopy with aperture probes: Fundamentals and applications // The Journal of Chemical Physics. — 2000. — V. 112, № 18— P. 77617774.

121. Pendry J.B. Negative refraction makes a perfect lens // Physical review letters. — 2000. — V. 85, № 18— P. 3966.

122. Fu Y., Zhou X. Plasmonic lenses: a review // Plasmonics. — 2010. — V. 5, № 3— P. 287-310.

123. Pettinger B., Domke K.F., Zhang D., Picardi G., Schuster R. Tip-enhanced Raman scattering: influence of the tip-surface geometry on optical resonance and enhancement // Surface Science. — 2009. — V. 603, № 10-12— P. 1335-1341.

124. Yeo B.S., Stadler J., Schmid T., Zenobi R., Zhan W. Tip-enhanced Raman Spectroscopy--Its status, challenges and future directions // Chemical Physics Letters.

— 2009. — V. 472, № 1-3— P. 1-13.

125. Chang R. Surface enhanced Raman scattering // Springer Science & Business Media. — 2013. — V. 472, № 1-3— P. 1-13.

126. S. Sadeghi M. Plasmonic metaresonances: Molecular resonances in quantum dot-metallic nanoparticle conjugates // Physical Review B. — 2009. — V. 79, № 23— P. 233309.

127. Jin Y., Gao X. Plasmonic fluorescent quantum dots // Nature nanotechnology.

— 2009. — V. 4, № 9— P. 571-576.

128. Li Y. Plasmonic Optics: Theory and Applications // SPIE PRESS BOOK. — 2017. — V. TT110— P. 250.

129. Dionne J. A., Verhagen E., Polman A., Atwater H. A. Are negative index materials achievable with surface plasmon waveguides? A case study of three plasmonic geometries // Optical Society of America. — 2008. — V. 16, № 23— P. 19001-19017.

130. Tang W.X., Zhang H.C., Ma H.F., Jiang W.X., Cui T.J. Concept, Theory, Design, and Applications of Spoof Surface Plasmon Polaritons at Microwave Frequencies // Advanced Optical Materials. — 2019. — V. 7, № 1— P. 1800421.

131. Schurig D., Mock J.J., Justice B.J., Cummer S.A., Pendry J.B., Starr A.F., Smith D.R. Metamaterial electromagnetic cloak at microwave frequencies // Science. — 2006. — V. 314, № 5801— P. 977-980.

132. Wiltshire M.C.K., Syms R.R.A. Measuring noise in microwave metamaterials // Journal of Applied Physics. — 2018. — V. 123, № 17— P. 174901.

133. Caloz C., Itoh T. Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications // John Wiley & Sons, Hoboken. — 2005. P. 12-16.

134. Chen T., Tang W., Mu J., Cui T.J. Microwave metamaterials // Annalen der Physik. — 2019. — V. 531, № 8— P. 1800445.

135. Lheurette E. Metamaterials and Wave Control // Wiley Online Library.— 2013.— P. 67-86.

136. Ilbili H., Karaosmanoglu B., Ergiil O. Demonstration of negative refractive index with low-cost inkjet-printed microwave metamaterials // Microwave and Optical Technology Letters. — 2018. — V. 60, № 1— P. 187-191.

137. Kim T., Bae Y.J., Lee N., Cho H.H. Hierarchical Metamaterials for Multispectral Camouflage of Infrared and Microwaves // Advanced Functional Materials. — 2019. — V. 29, № 10— P. 1807319.

138. Wu M.T.C., Sun S.J. Microwave metamaterials-based ultrafast detecting scheme for automotive radars // Microwave and Optical Technology Letters. — 2015. — V. 57, № 6— P. 1343- 1345.

139. Ding F., Cui Y., Ge X., Jin Y., He S. Ultra-broadband microwave metamaterial absorber // Applied physics letters. — 2012. — V. 100, № 10— P. 103506.

140. Shelby R.A., Smith D.R., Nemat-Nasser S.C., Schultz S. Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial // Applied Physics Letters. — 2001. — V. 78, № 4— P. 489-491.

141. Caloz C., Itoh T. Novel microwave devices and structures based on the transmission line approach of meta-materials // IEEE MTT-S International Microwave Symposium Digest. — 2003. — V. 1— P. 195-198.

142. Gao B., Yuen M.M.F., Ye T.T. Flexible frequency selective metamaterials for microwave applications // Scientific reports. — 2017. — V. 7, № 1— P. 1-7.

143. Landy N., Smith R.D. A full-parameter unidirectional metamaterial cloak for microwaves // Nature materials. — 2013. — V. 12, № 1— P. 25-28.

144. Li Z., Stan L., Czaplewski A.D., Yang X., Gao J. Wavelength-selective mid-infrared metamaterial absorbers with multiple tungsten cross resonators // Optics express. — 2018. — V. 26, № 5— P. 5616-5631.

145. Moritake Y., Tanaka T. Controlling bi-anisotropy in infrared metamaterials using three-dimensional split-ring-resonators for purely magnetic resonance // Scientific reports. — 2017. — V. 7, № 1— P. 1-6.

146. Kenanakis G., Xomalis A., Selimis A., Vamvakaki M., Farsari M., Kafesaki M., Soukoulis C.M., Economou N.E. A three-dimensional infra-red metamaterial with asymmetric transmission // The European Conference on Lasers and Electro-Optics. — 2015. — V. 2— P. 287-294.

147. Yang J., Xu C., Qu S., Ma H., Wang J., Pang Y. Optical transparent infrared high absorption metamaterial absorbers // Journal of Advanced Dielectrics. — 2018. — V. 8, № 01— P. 1850007.

148. Santiago C.K., Mundle R., White C., Bahoura M., Pradhan K.A. Infrared metamaterial by RF magnetron sputtered ZnO/Al: ZnO multilayers // AIP Advances. — 2018. — V. 8, № 3— P. 035011.

149. Hwang I., Yu J., Lee J., Choi J.H., Choi D.G., Jeon S., Lee J., Jung J.Y. Plasmon-enhanced infrared spectroscopy based on metamaterial absorbers with dielectric nanopedestals // Acs Photonics. — 2018. — V. 5, № 9— P. 492-3498.

150. Zhang S., Fan W., Panoiu N.C., Malloy K.J., Osgood R.M., Brueck S.R.J. Experimental demonstration of near-infrared negative-index metamaterials // Physical review letters. — 2005. — V. 95, № 13— P. 137404.

151. Liu X., Padilla W.J. Thermochromic Infrared Metamaterials // Advanced Materials. — 2016. — V. 28, № 5— P. 871-875.

152. Ogawa S., Fujisawa D., Hata H., Uetsuki M., Misaki K., Kimata M. Mushroom plasmonic metamaterial infrared absorbers // Applied Physics Letters. — 2015. — V. 106, № 4— P. 041105.

153. Liu X., Tyler T., Starr T., Starr A.F., Jokerst N.M., Padilla W.J. Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters // Physical review letters. — 2011. — V. 107, № 4— P. 045901.

154. Chang Y.C., Liu C.H., Liu C.H., Zhang S., Marder S.R., Seth R.N., Evgenii E., Zhong Z., Norris T., Theodore B. Realization of mid-infrared graphene hyperbolic metamaterials// Nature communications . — 2016. — V. 7, № 1— P. 1-7.

155. Driscoll T., Palit S., Qazilbash M.M., Brehm M., Keilmann F., Chee B.G., Yun S.J., Kim H T., Cho S.Y., Jokerst N.M., Smith D.R., Basov D.N. Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide // Applied Physics Letters. — 2008. — V. 93, № 2— P. 024101.

156. Kang S., Qian Z., Rajaram V., Calisgan S.D., Alu A., Rinaldi M., Rinaldi M. Ultra-Narrowband Metamaterial Absorbers for High Spectral Resolution Infrared Spectroscopy // Advanced Optical Materials. — 2019. — V. 7, № 2— P. 1801236.

157. Yokoyama T., Dao T.D., Chen K., Ishii S., Sugavaneshwar R.P., Kitajima M., Nagao T. Spectrally Selective Mid-Infrared Thermal Emission from Molybdenum Plasmonic Metamaterial Operated up to 1000° C // Advanced Optical Materials. — 2016. — V. 4, № 12— P. 1987-1992.

158. Gong B., Zhao X., Pan Z., Li S., Wang X., Zhao Y., Luo C. A visible metamaterial fabricated by self-assembly method // Scientific reports. — 2014. — V. 4. — P. 4713.

159. Falco1 A.D., Ploschner M., Krauss T.F. Flexible metamaterials at visible wavelengths // New Journal of Physics. — 2010. — V. 12, № 11— P. 113006.

160. Maas R., Parsons J., Engheta N., Polman A. Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths // Nature Photonics. — 2013. — V. 7, № 11— P. 907-912.

161. Ospanova A.K., Stenishchev I.V., Basharin A.A. Anapole mode sustaining silicon metamaterials in visible spectral range // Laser & Photonics Reviews. — 2018.

— V. 12, № 7— P. 1800005.

162. Li C., Xiao Z., Ling X., Zheng X. Broadband visible metamaterial absorber based on a three-dimensional structure // Waves in Random and Complex Media. — 2019. — V. 29, № 3— P. 403-412.

163. Hoa N.T.Q., Tung P.D., Lam P.H., Dung N.D., Quang N.H. Numerical Study of an Ultrabroadband, Wide-Angle, Polarization-Insensitivity Metamaterial Absorber in the Visible Region // Journal of Electronic Materials. — 2018. — V. 47, № 5— P. 2634-2639.

164. Hedayati M.K., Zillohu A.U., Strunskus T., Faupel F., Elbahri M. Plasmonic tunable metamaterial absorber as ultraviolet protection film // Applied Physics Letters.

— 2014. — V. 104, № 4— P. 041103.

165. Baqir M.A., Choudhury P.K. Hyperbolic Metamaterial-Based UV Absorber // IEEE Photonics Technology Letters. — 2017. — V. 29, № 18— P. 1548-1551.

166. Kim M., So S., Yao K., Liu Y., Rho J. Deep sub-wavelength nanofocusing of UV-visible light by hyperbolic metamaterials // Scientific reports. — 2016. — V. 6. — P. 38645.

167. Xu T., Agrawal A., Abashin M., Chau K.J., Lezec H.J. All-angle negative refraction and active flat lensing of ultraviolet light // Nature. — 2013. — V. 497, № 7450— P. 470- 474.

168. Shen K.C., Ku C.T., Hsieh C., Kuo H.C., Cheng Y.J., Tsai D P. Deep-Ultraviolet Hyperbolic Metacavity Laser // Advanced Materials. — 2018. — V. 30, № 21— P. 1706918.

169. Lecoq P. Metamaterials for novel X- ory-ray detector designs // 2008 IEEE Nuclear Science Symposium Conference Record. — 2008. — P. 1405—1409.

170. Barik S., Miyake H., DeGottardi W., Waks E., Hafezi M. Two-dimensionally confined topological edge states in photonic crystals // New Journal of Physics. — 2016. — V. 18, № 11— P. 113013.

171. Qiu P., Qiu W., Ren J., Lin Z., Wang Z., Wang J.X., Kan Q., Pan J.Q. Pseudospin dependent one-way transmission in graphene-based topological plasmonic crystals // Nanoscale research letters. — 2016. — V. 13, № 1— P. 1-7.

172. Slobozhanyuk A.P., Poddubny A.N., Sinev I.S., Samusev A.K., Yu Y.F., Kuznetsov A.I., A.E Miroshnichenko., Kivshar Y.S. Enhanced photonic spin Hall effect with subwavelength topological edge states // Laser & Photonics Reviews. — 2016. — V. 10, № 4— P. 656-664.

173. Kruk S., Slobozhanyuk A., Denkova D., Poddubny A., Kravchenko I., Miroshnichenko A., Neshev D., Kivshar Y. Edge States and Topological Phase Transitions in Chains of Dielectric Nanoparticles // Small. — 2017. — V. 13, № 11— P. 1603190.

174. Zhang Z., Teimourpour M.H., Arkinstall J., Pan M., Miao P., Schomerus H., Ganainy R.E., Feng L. Experimental Realization of Multiple Topological Edge States in a 1D Photonic Lattice // Laser & Photonics Reviews. — 2019. — V. 13, № 2— P. 1800202.

175. Chen X.D., Deng W.M., Zhao F.L., Dong J.W. Accidental double Dirac cones and robust edge states in topological anisotropic photonic crystals // Laser & Photonics Reviews. — 2018. — V. 12, № 11— P. 1800073.

176. Ji C.Y., Liu G.B., Zhang Y., Zou B., Yao Y. Transport tuning of photonic topological edge states by optical cavities // Physical Review A. — 2019. — V. 99, № 4— P. 043801.

177. Gulacsi B., Dora B. Collective modes for helical edge states interacting with quantum light // Physical Review B. — 2019. — V. 99, № 24— P. 245137.

178. Han C., Lee M., Callard S., Seassal C., Jeon H. Lasing at topological edge states in a photonic crystal L3 nanocavity dimer array // Light: Science & Applications. — 2019. — V. 8, № 1— P. 1-10.

179. Gorlach M.A., Ni X., Smirnova D.A., Korobkin D., Zhirihin D., Slobozhanyuk A.P., Belov P.A., Alu A., Khanikaev A.B. Far-field probing of leaky topological states in all-dielectric metasurfaces // Nature communications. — 2018. — V. 9, № 1— P. 18.

180. Humphrey A.D., Barnes W.L. Plasmonic surface lattice resonances on arrays of different lattice symmetry // Physical Review B. — 2014. — V. 90, № 7— P. 075404.

181. Guo R., Hakala T.K., Torma P. Geometry dependence of surface lattice resonances in plasmonic nanoparticle arrays // Physical Review B. — 2017. — V. 95, № 15— P. 155423.

182. Lei D.Y., Li J., Fern andez-Domínguez A.I., Ong H.C., Maier S.A. Geometry dependence of surface plasmon polariton lifetimes in nanohole arrays // ACS nano. — 2010. — V. 4, № 1— P. 432-438.

183. Chen Y., Dai J., Yan M., Qiu M. Metal-insulator-metal plasmonic absorbers: influence of lattice // Optics express. — 2014. — V. 22, № 25— P. 30807-30814.

184. Hu J., Wang C., Yang S., Zhou F., Li Z., Kan C. Surface Plasmon Resonance in Periodic Hexagonal Lattice Arrays of Silver Nanodisks // Journal of Nanomaterials. — 2013. — V. 2013. — P. 838191.

185. Haes A.J., Haynes C.L., McFarland A.D., Schatz G.C., Van Duyne R.P., Zou S. Plasmonic materials for surface-enhanced sensing and spectroscopy // MRS bulletin. — 2005. — V. 30. — P. 368-375.

186. Aroca R.F. Plasmon enhanced spectroscopy // Physical Chemistry Chemical Physics. — 2013. — V. 15, № 15. — P. 5355-5363.

187. Haynes C.L., Van Duyne R.P. Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy // The Journal of Physical Chemistry B. — 2003. — V. 107, № 30. — P. 7426-7433.

188. Sharma B., Frontiera R.R., Henry A.I., Ringe E., Van Duyne R.P. SERS: Materials, applications, and the future. — 2012. — V. 15, № 1-2. — P. 16-25.

189. Lin J., Zhang Y., Qian J., He S. A nano-plasmonic chip for simultaneous sensing with dual-resonance surface-enhanced Raman scattering and localized surface plasmon resonance. — 2014. — V. 8, № 4. — P. 610-616.

190. Ahmed A., Gordon R. Single molecule directivity enhanced Raman scattering using nanoantennas // Nano letters. — 2012. — V. 12, № 5. — P. 2625-2630.

191. Albella P., de la Osa R.A., Moreno F., Maier S.A. Electric and magnetic field enhancement with ultralow heat radiation dielectric nanoantennas: considerations for surface-enhanced spectroscopies // ACS Photonics. — 2014. — V. 1, № 6. — P. 524529.

192. Deng Y.H., Yang Z.J., HE J. Plasmonic nanoantenna-dielectric nanocavity hybrids for ultrahigh local electric field enhancement // Optics express. — 2018. — V. 26, № 24. — P. 31116-31128.

193. Jahani S., Jacob Z. All-dielectric metamaterials // Nature nanotechnology. — 2016. — V. 11, № 1. — P. 23.

194. Lipson R. H. Dielectric Photonic Crystals // Photonics. — 2015. — V. 2. — P. 133.

195. Ao X. Surface mode with large field enhancement in dielectric-dimer-on-mirror structures // Optics letters. — 2018. — V. 43, № 5. — P. 1091-1094.

196. Nati F., Ade P., Boscaleri A., Brienza D., Calvo M., Colafrancesco S., Conversi L., de Bernardis P., De Petris M., and Delbart A., et al. The OLIMPO experiment // New Astronomy Rev. — 2007. — V. 51, № 3. — P. 1091-1094.

197. Masi S., Battistelli E., Brienza D., et al. OLIMPO // Mem. S. A. It. — 2008. — V. 79. — P. 887-892.

198. Aiola S., et al. The Large-ScalePolarization Explorer (LSPE) // SPIE Astronomical Telescopes+ Instrument. — 2012. — V. 8446. — P. 84467A.

199. Kuzmin L.S., Pankratov A. L., Gordeeva A.V., Zbrozhek V. O., Shamporov V. A., Revin L. S., Blagodatkin A. V., Masi S., de Bernardis P. Photon-noise-limited cold-electron bolometer based on strong electron self-cooling for high-performance cosmology missions // Communications Physics. — 2019. — V. 2, № 1. — P. 1-8.

200. Gao X., Zhou L., Liao Z., Ma H. F., and Cui T. J. An ultra-wideband surface plasmonic filter in microwave frequency// Applied Physics Letters.—2014 .— V. 104.— P. 191603.

201. Im H., Shao H., Park Y. I., Peterson V. M., Castro C. M., Weissleder R., et al.Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor// Nature biotechnology. — 2014. — V. 32. — P. 490.

202. Salamin Y., Ma P., Baeuerle B., Emboras A., Fedoryshyn Y., Heni W., et al.100 GHz plasmonic photodetector// ACS photonics. — 2018. — V. 5. — P. 3291-3297.

203. Emboras A., Niegemann J., Ma P., Haffner C., Pedersen A., Luisier M., et al. Atomic scale plasmonic switch// Nano Letters. — 2016. —V. 16. — P. 709-714.

204. Awal M., Ahmed Z., and Talukder M.A. An efficient plasmonic photovoltaic structure using silicon strip-loaded geometry// Journal of Applied Physics. — 2015. — V. 117. — P. 063109.

205. Piper J.R. and Fan S. Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance// Acs Photonics.

— 2014. — V. 1. — P. 347-353.

206. Zare M. S., Nozhat N., and Rashiditabar R. Tunable graphene based plasmonic absorber with grooved metal film in near infrared region// Optics Communications. — 2017. — V. 398. — P. 56-61.

207. Lu H., Cumming B.P., and Gu M. Highly efficient plasmonic enhancement of graphene absorption at telecommunication wavelengths// Optics letters. — 2015. — V. 40. — P. 3647-3650.

208. Akhavan A., Abdolhosseini S., Ghafoorifard H., and Habibiyan H. Narrow band total absorber at near-infrared wavelengths using monolayer graphene and sub-wavelength grating based on critical coupling// Journal of Lightwave Technology. — 28. — V. 36. — P. 5593-5599.

209. Zare M. S., Nozhat N., and Rashiditabar R. Improving the absorption of a plasmonic absorber using a single layer of graphene at telecommunication wavelengths// Applied optics. — 2016. — V. 55. — P. 9764-9768.

210. Ogawa S. and Kimata M. Metal-insulator-metal-based plasmonic metamaterial absorbers at visible and infrared wavelengths: A review// Materials. — 2018. — V. 11.

— P. 458, 2018.

211. Zhu X., Shi L., Schmidt M. S., Boisen A., Hansen O., Zi J., et al. Enhanced lightmatter interactions in graphene-covered gold nanovoid arrays// Nano letters. — 2013.

— V. 13. — P. 4690-4696.

212. Sondergaard T., Novikov S. M., Holmgaard T., Eriksen R. L., Beermann J., Han Z., et al. Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves// Nature communications . — 2012. — V. 3. —P. 1-6.

213. Sondergaard T., Bozhevolnyi S. I., Beermann J., Novikov S. M., Devaux E., and Ebbesen T.W. Resonant plasmon nanofocusing by closed tapered gaps// Nano letters. — 2010. — V. 10. — P. 291-295.

214. Zhou W., Li K., Song C., Hao P., Chi M., Yu M., et al. Polarization-independent and omnidirectional nearly perfect absorber with ultra-thin 2D subwavelength metal grating in the visible region// Optics express. — 2015. — V. 23. — P. A413-A418.

215. Shinoda M., Gattass R. R., and Mazur E. Femtosecond laser-induced formation of nanometer-width grooves on synthetic single-crystal diamond surfaces// Journal of Applied Physics. — 2009. — V. 105. — P. 053102.

216. Arikawa T., Wang X., Belyanin A. A., and Kono J. Giant tunable Faraday effect in a semiconductor magneto-plasma for broadband terahertz polarization optics// Optics express. — 2012. — V. 20. — P. 19484-19492.

217. Johnson P. B. and Christy R.-W. Optical constants of the noble metals// Physical review B. — 1972. — V. 6. — P. 4370.

218. Philipp H. Silicon dioxide (SiO2)(glass)// in Handbook of optical constants of solids, ed: Elsevier. — 1997. — P. 749-763.

219. Rakheja S. and Sengupta P. The tuning of light-matter coupling and dichroism in graphene for enhanced absorption: Implications for graphene-based optical absorption devices// Journal of Physics D: Applied Physics. — 2016. — V. 49. — P. 115106.

220. Hanson G. W. Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene// Journal of Applied Physics. — 2008. — V. 103. — P. 064302.

221. Lu H., Cumming B.P., Gu M. Highly efficient plasmonic enhancement of graphene absorption at telecommunication wavelengths// Optics letters. —2015. —V. 40. —P. 3647-3650.

222. Philipp H. Silicon dioxide (SiO2)(glass), in Handbook of optical constants of solids// Elsevier. —1997. —P. 749-763.

223. Johnson P. B. and Christy R.-W. Optical constants of the noble metals// Physical review B. —1972. — V. 6. —P. 4370.

224. Hanson G. W. Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene// Journal of Applied Physics. —2008. — V. 103. —P. 064302.

225. Sikdar D., Kornyshev A. A. An electro-tunable Fabry-Perot interferometer based on dual mirror-on-mirror nanoplasmonic metamaterials// Nanophotonics. —2019. — V. 8. —P. 2279-2290.

226. Wang Y., Chen Z., Xu D., Yi Z., Chen X., Chen J., et al. Triple-band perfect metamaterial absorber with good operating angle polarization tolerance based on split ring arrays// Results in Physics. —2020. — V. 16. —P. 102951.

227. Tong J., Suo F., Tobing L. Y., Yao N., Zhang D., Huang Z.-M., et al. High order magnetic and electric resonant modes of split ring resonator metasurface array for strong enhancement of mid-infrared photodetection// ACS Applied Materials & Interfaces. —2020. — V. 12. —P. 8835-8844.

228. He H., Shang X., Xu L., Zhao J., Cai W., Wang J., et al. Thermally switchable bifunctional plasmonic metasurface for perfect absorption and polarization conversion based on VO 2// Optics Express. —2020. — V. 28. —P. 4563-4570.

229. Dubois V., Bleiker S. J., Stemme G., and Niklaus F. Scalable manufacturing of nanogaps// Advanced Materials. —2018. — V. 30. —P. 1801124.

230. Kubo W., and Fujikawa S. Au double nanopillars with nanogap for plasmonic sensor// Nano letters. —2011. — V. 11. —P. 8-15.

231. Wang X. and Shi Y. Fabrication techniques of graphene nanostructures// Royal Society of Chemistry. —2014.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.