Построение оптимальных моделей ДНК-сайтов связывания факторов транскрипции высших эукариот на основе данных различных экспериментальных методов тема диссертации и автореферата по ВАК РФ 03.00.28, кандидат физико-математических наук Кулаковский, Иван Владимирович

  • Кулаковский, Иван Владимирович
  • кандидат физико-математических науккандидат физико-математических наук
  • 2009, Москва
  • Специальность ВАК РФ03.00.28
  • Количество страниц 100
Кулаковский, Иван Владимирович. Построение оптимальных моделей ДНК-сайтов связывания факторов транскрипции высших эукариот на основе данных различных экспериментальных методов: дис. кандидат физико-математических наук: 03.00.28 - Биоинформатика. Москва. 2009. 100 с.

Оглавление диссертации кандидат физико-математических наук Кулаковский, Иван Владимирович

Введение.

Актуальность темы.

Цели и задачи исследования.

Научная новизна.

Практическое значение.

Апробация работы.

Рекомендованный список диссертаций по специальности «Биоинформатика», 03.00.28 шифр ВАК

Заключение диссертации по теме «Биоинформатика», Кулаковский, Иван Владимирович

Выводы

1. Разработан метод построения оптимальной модели ССТФ с использованием экспериментальных данных, полученных традиционными экспериментальными методами. Метод реализован в виде вычислительного алгоритма Показано, что при использовании данных ДНК футпринтинга для построения мотивов, распознаваемых ССТФ, необходимо использовать участки генома, прилегающие к картированным футпринтам. Предложен алгоритм, реализующий учет информации, содержащейся в геномных фланках футпринтов, при построении ОБЛВ.

2. Разработан метод построения оптимальной модели ССТФ путем интеграции данных различных экспериментальных методов, включая современные высокопроизводительные техники на базе иммунопреципитации хроматина. Метод реализован в виде вычислительного алгоритма СЫршипк.

3. Создан набор программных средств, реализующих предложенные алгоритмы. Созданные программы позволяют на базе различных вычислительных платформ анализировать данные, полученные с использованием широкого спектра экспериментальных методик. Создан единый вычислительный конвейер, интегрирующий новые алгоритмы и существующие программные инструменты АЬоРго и 8е81МСМС.

4. Создана коллекция мотивов связывания факторов регуляции транскрипции ВгоБорЬИа те1апо^аз1ег, содержащая мотивы, полученные с использованием практически всей экспериментальной информации, представленной в открытых источниках. Показано, что разработанные методы позволяют выявить мотивы связывания, превосходящие по своим характеристикам известные мотивы связывания, для широкого набора белков-регуляторов транскрипции.

5. Разработанные программные средства и построенные коллекции уточненных мотивов доступны в сети Интернет по адресам: http://line.imb .ac.ru/DMMPMM, http://line.imb. ac.ru/iDMMPMM, http://line.imb.ac.ru/Chipmunk.

Список литературы диссертационного исследования кандидат физико-математических наук Кулаковский, Иван Владимирович, 2009 год

1. Abramowitz, M. and Stegun, I.A. (1972) Handbook of Mathematical Functions, Dover Publications, New York

2. Angarica, V.E., Perez, A.G., Vasconcelos, A.T. et al. (2008) Prediction of TF target sites based on atomistic models of protein-DNA complexes. BMC Bioinformatics, 9, 436

3. Ao, W., Gaudet, J., Kent, W.J. et al. (2004) Environmentally induced foregut remodeling by PHA-4/FoxA and D AF-12/NHR. Science, 305, 1743-1746

4. Badis, G., Berger, M.F., Philippakis, A.A. et al. (2009) Diversity and complexity in DNA recognition by transcription factors. Science, 324(5935), 1720-1723

5. Bailey, T.L., Boden, M., Buske, F. A. et al. (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res, 37, W202-W208

6. Barski, A., Cuddapah, S., Cui, K. et al. (2007) High-resolution profiling of histone methylations in the human genome. Cell, 129, 823-837

7. Beckstette, M., Homann, R., Giegerich, R. et al. (2006) Fast index based algorithms and software for matching position specific scoring matrices. BMC Bioinformatics, 1, 389

8. Ben-Gal, I., Shani, A., Gohr, A. et al. (2005) Identification of transcription factor binding sites with variable-order Bayesian networks. Bioinformatics, 21, 2657-2666

9. Ben-Tabou de-Leon, S. and Davidson, E.H. (2007) Gene regulation: gene control network in development. An пи Rev Biophys Biomol Struct, 36, 191

10. Benizri, E., Ginouves, A. and Berra, E. (2008) The magic of the hypoxia-signaling cascade. Cell Mol Life Sei, 65, 1133-1149

11. Benos, P.V., Bulyk, M.L. and Stormo, G.D. (2002) Additivity in protein-DNAinteractions: how good an approximation is it?. Nucleic Acids Res, 30, 4442-4451

12. Berg, O.G. and von Hippel, P.H. (1987) Selection of DNA binding sites by regulatory proteins. Statistical-mechanical theory and application to operators and promoters. JMolBiol, 193, 723-750

13. Berger, M.F., Philippakis, A.A., Qureshi, A.M. et al. (2006) Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities. Nat Biotechnol, 24, 1429-1435

14. Bergman, C.M., Carlson, J.W. and Celniker, S.E. (2005) Drosophila DNase I footprint database: a systematic genome annotation of transcription factor binding sites in the fruitfly, Drosophila melanogaster. Bioinformatics, 21, 1747-1749

15. Berman, H.M., Olson, W.K., Beveridge, D.L. et al. (1992) The nucleic acid database. A comprehensive relational database of three-dimensional structures of nucleic acids. BiophysJ, 63, 751-759

16. Blackwell, T.K. and Weintraub, H. (1990) Differences and similarities in DNA-binding preferences of MyoD and E2A protein complexes revealed by binding site selection. Science, 250, 1104-1110

17. Blanchette, M., Schwikowski, B. and Tompa, M. (2002) Algorithms for phylogenetic footprinting. J Comput Biol, 9, 211-223

18. Boeva, V., Clement, J., Regnier, M. et al. (2007) Exact P-value calculation for heterotypic clusters of regulatory motifs and its application in computational annotation of cis-regulatory modules. Algorithms Mol Biol, 2, 13

19. Boeva, V., Regnier, M., Papatsenko, D. et al. (2006) Short fuzzy tandem repeats in genomic sequences, identification, and possible role in regulation of gene expression. Bioinformatics, 22, 676-684

20. Boffelli, D., McAuliffe, J., Ovcharenko, D. et al. (2003) Phylogenetic shadowing of primate sequences to find functional regions of the human genome. Science, 299, 1391-1394

21. Brazma, A., Jonassen, I., Vilo, J. et al. (1998) Predicting gene regulatoryelements in silico on a genomic scale. Genome Res, 8, 1202-1215

22. Brivanlou, A.H. and Darnell, J E, Jr (2002) Signal transduction and the control of gene expression. Science, 295, 813-818

23. Biyne, J.C., Valen, E., Tang, M.H. et al. (2008) JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update. Nucleic Acids Res, 36, D102-6

24. Buck, M.J. and Lieb, J.D. (2004) ChlP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics, 83, 349-360

25. Bulyk, M.L. (2006) DNA microarray technologies for measuring protein-DNA interactions. Curr Opin Biotechnol, 17, 422-430

26. Bulyk, M.L., Johnson, P.L. and Church, G.M. (2002) Nucleotides of transcription factor binding sites exert interdependent effects on the binding affinities of transcription factors. Nucleic Acids Res, 30, 1255-1261

27. Butler, J.E. and Kadonaga, J.T. (2002) The RNA polymerase II core promoter: a key component in the regulation of gene expression. Genes Dev, 16, 2583-2592

28. Cawley, S., Bekiranov, S., Ng, H.H. et al. (2004) Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell, 116(4), 499-509

29. Chen, X., Guo, L., Fan, Z. et al. (2008) W-AlignACE: an improved Gibbs sampling algorithm based on more accurate position weight matrices learned from sequence and gene expression/ChlP-chip data. Bioinformatics, 24, 1121-1128

30. Chen, Z., Lewis, K.A., Shultzaberger, R.K. et al. (2007) Discovery of Fur binding site clusters in Escherichia coli by information theory models. Nucleic Acids Res, 35, 6762-6777

31. Cliften, P.F., Hillier, L.W., Fulton, L. et al. (2001) Surveying Saccharomyces genomes to identify functional elements by comparative DNA sequence analysis. Genome Res, 11, 1175-1186

32. Contreras-Moreira, B., Branger, P.A. and Collado-Vides, J. (2007) TFmodeller: comparative modelling of protein-DNA complexes. Bioinformatics, 23, 1694-1696

33. Dai, S.M., Chen, H.H., Chang, C. et al. (2000) Ligation-mediated PCR for quantitative in vivo footprinting. Nat Biotechnol, 18, 1108-1111

34. Das, D., Banerjee, N. and Zhang, M.Q. (2004) Interacting models of cooperative gene regulation. Proc Natl Acad Sci USA, 101, 16234-16239

35. Das, M.K. and Dai, H.K. (2007) A survey of DNA motif finding algorithms. BMC Bioinformatics, 8 Suppl 7, S21

36. Day, W.H. and McMorris, F.R. (1992) Critical comparison of consensus methods for molecular sequences. Nucleic Acids Res, 20, 1093-1099

37. Eskin, E. and Pevzner, P.A. (2002) Finding composite regulatory patterns in DNA sequences. Bioinformatics, 18 Suppl 1, S354-63

38. Ettwiller, L., Paten, B., Ramialison, M. et al. (2007) Trawler: de novo regulatory motif discovery pipeline for chromatin immunoprecipitation. Nat Methods, 4, 563565

39. Euskirchen, G.M., Rozowsky, J.S., Wei, C.L. et al. (2007) Mapping of transcription factor binding regions in mammalian cells by ChIP: comparison of array- and sequencing-based technologies. Genome Res, 17, 898-909

40. Evan, G., Harrington, E., Fanidi, A. et al. (1994) Integrated control of cell proliferation and cell death by the c-myc oncogene. Philos Trans R Soc Lond B Biol Sci, 345, 269-275

41. Favorov, A.V., Gelfand, M.S., Gerasimova, A.V. et al. (2005) A Gibbs sampler for identification of symmetrically structured, spaced DNA motifs with improved estimation of the signal length. Bioinformatics, 21, 2240-2245

42. Fields, D.S., He, Y., Al-Uzri, A.Y. et al. (1997) Quantitative specificity of the Mnt repressor. JMol Biol, 271, 178-194

43. Fratkin, E., Naughton, B.T., Brutlag, D.L. et al. (2006) MotifCut: regulatory motifs finding with maximum density subgraphs. Bioinformatics, 22, el50-7

44. Frith, M.C., Saunders, N.F., Kobe, B. et al. (2008) Discovering sequence motifs with arbitrary insertions and deletions. PLoS Comput Biol, 4, el000071

45. Fujioka, M., Miskiewicz, P., Raj, L. et al. (1996) Drosophila Paired regulates late even-skipped expression through a composite binding site for the paired domain and the homeodomain. Development, 122(9), 2697-2707

46. Gershenzon, N.I., Stormo, G.D. and Ioshikhes, I.P. (2005) Computational technique for improvement of the position-weight matrices for the DNA/protein binding sites. Nucleic Acids Res, 33, 2290-2301

47. Goodman, S.D., Velten, N.J., Gao, Q. et al. (1999) In vitro selection of integration host factor binding sites. JBacteriol, 181, 3246-3255

48. Guille, M.J. and Kneale, G.G. (1997) Methods for the analysis of DNA-protein interactions. Mol Biotech, 8, 35-52

49. Gupta, S., Stamatoyannopoulos, J.A., Bailey, T.L. et al. (2007) Quantifying similarity between motifs. Genome Biol, 8, R24

50. Hampshire, A.J., Rusling, D.A., Broughton-Head, V.J. et al. (2007) Footprinting: a method for determining the sequence selectivity, affinity and kinetics of DNA-binding ligands. Methods, 42, 128-140

51. Hannenhalli, S. (2008) Eukaryotic transcription factor binding sites-modeling and integrative search methods. Bioinformatics, 24, 1325-1331

52. Hannenhalli, S. and Wang, L.S. (2005) Enhanced position weight matrices usingmixture models. Bioinformatics, 21 Suppl 1, i204-12

53. Harr, R., Haggstrom, M. and Gustafsson, R (1983) Search algorithm for pattern match analysis of nucleic acid sequences. Nucleic Acids Res, 11, 2943-2957

54. Heinemeyer, T., Wingender, E., Reuter, I. et al. (1998) Databases on transcriptional regulation: TRANSFAC, TRRD and COMPEL. Nucleic Acids Res, 26, 362-367

55. Hertz, G.Z. and Stormo, G.D. (1999) Identifying DNA and protein patterns with statistically significant alignments of multiple sequences. Bioinformatics, 15, 563-577

56. Hertz, G.Z., Hartzell, G W, 3rd and Stormo, G.D. (1990) Identification of consensus patterns in unaligned DNA sequences known to be functionally related. ComputAppl Biosci, 6, 81-92

57. Hochheimer, A. and Tjian, R. (2003) Diversified transcription initiation complexes expand promoter selectivity and tissue-specific gene expression. Genes Dev, 17,1309-1320

58. Ji, H., Vokes, S.A. and Wong, W.H. (2006) A comparative analysis of genome-wide chromatin immunoprecipitation data for mammalian transcription factors. Nucleic Acids Res, 34, el46

59. Karin, M. (1990) Too many transcription factors: positive and negative interactions. New Biol, 2, 126-131

60. Keilwagen, J., Baumbach, J., Kohl, T. A. et al. (2009) MotifAdjuster: a tool for computational reassessment of transcription factor binding site annotations. Genome Biol, 10(5), R46

61. Kel-Margoulis, O.V., Kel, A.E., Reuter, I. et al. (2002) TRANSCompel: a database on composite regulatory elements in eukaryotic genes. Nucleic Acids Res, 30, 332-334

62. Khouiy, G. and Gruss, P. (1983) Enhancer elements. Cell, 33, 313-314 ICing, O.D. and Roth, F.P. (2003) A non-parametric model for transcription factor binding sites. Nucleic Acids Res, 31, el 16

63. Kolchanov, N.A., Ignatieva, E.V., Ananko, E.A. et al. (2002) Transcription Regulatory Regions Database (TRRD): its status in 2002. Nucleic Acids Res, 30, 312-317

64. Man, T.K. and Stormo, G.D. (2001) Non-independence of Mnt repressor-operator interaction determined by a new quantitative multiple fluorescence relative affinity (QuMFRA) assay. Nucleic Acids Res, 29, 2471-2478

65. Maniatis, T., Ptashne, M., Backman, K. et al. (1975) Recognition sequences of repressor and polymerase in the operators of bacteriophage lambda. Cell, 5, 109-113

66. Mardis, E.R. (2007) ChlP-seq: welcome to the new frontier. Nat Methods, 4, 613-614

67. Matys, V., Fricke, E., Geffers, R. et al. (2003) TRANSFAC: transcriptionalregulation, from patterns to profiles. Nucleic Acids Res, 31, 374-378

68. Matys, V., Kel-Margoulis, O.V., Fricke, E. et al. (2006) TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res, 34, D108-10

69. McGinnis, S. and Madden, T.L. (2004) BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res, 32, W20-5

70. Meng, X., Brodsky, M.H. and Wolfe, S.A. (2005) A bacterial one-hybrid system for determining the DNA-binding specificity of transcription factors. Nat Biotechnol, 23(8), 988-994

71. Mitchell, P.J. and Tjian, R. (1989) Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science, 245, 371-378

72. Moens, C.B. and Selleri, L. (2006) Hox cofactors in vertebrate development. Dev Biol, 291, 193-206

73. Morozov, A.V. and Siggia, E.D. (2007) Connecting protein structure with predictions of regulatory sites. P roc Natl Acad Sei USA, 104, 7068-7073

74. Moses, A.M., Chiang, D.Y., Kellis, M. et al. (2003) Position specific variation in the rate of evolution in transcription factor binding sites. BMC Evol Biol, 3,19

75. Mueller, P.R. and Wold, B. (1989) In vivo footprinting of a muscle specific enhancer by ligation mediated PCR. Science, 246, 780-786

76. Mukherjee, S., Berger, M.F., Jona, G. et al. (2004) Rapid analysis of the DNA-binding specificities of transcription factors with DNA microarrays. Nat Genet, 36, 1331-1339

77. Mulligan, M.E., Hawley, D.K., Entriken, R. et al. (1984) Escherichia coli promoter sequences predict in vitro RNA polymerase selectivity. Nucleic Acids Res, 12, 789-800

78. Myers, E.W. and Miller, W. (1989) Approximate matching of regular expressions. Bull Math Biol, 51, 5-37

79. Newberg, L.A., Thompson, W.A., Conlan, S. et al. (2007) A phylogenetic Gibbssampler that yields centroid solutions for cis-regulatoiy site prediction. Bioinformatics, 23, 1718-1727

80. Newburger, D.E. and Bulyk, M.L. (2009) UniPROBE: an online database of protein binding microarray data on protein-DNA interactions. Nucleic Acids Res, 37, D77-82

81. Ng, P., Tan, J. J., Ooi, H.S. et al. (2006) Multiplex sequencing of paired-end ditags (MS-PET): a strategy for the ultra-high-throughput analysis of transcriptomes and genomes. Nucleic Acids Res, 34, e84

82. Noyes, M.B., Christensen, R.G., Wakabayashi, A. et al. (2008a) Analysis of homeodomain specificities allows the family-wide prediction of preferred recognition sites. Cell, 133, 1277-1289

83. Noyes, M.B., Meng, X., Wakabayashi, A. et al. (2008b) A systematic characterization of factors that regulate Drosophila segmentation via a bacterial one-hybrid system. Nucleic Acids Res, 36, 2547-2560

84. Oliphant, A.R., Brandl, C.J. and Struhl, K. (1989) Defining the sequence specificity of DNA-binding proteins by selecting binding sites from random-sequence oligonucleotides: analysis of yeast GCN4 protein. Mol Cell Biol, 9, 2944-2949

85. Osada, R., Zaslavsky, E. and Singh, M. (2004) Comparative analysis of methods for representing and searching for transcription factor binding sites. Bioinformatics, 20,3516-3525

86. Ottolenghi, C., Uda, M., Crisponi, L. et al. (2007) Determination and stability of sex. Bioessays, 29, 15-25

87. Papatsenko, D. (2007) ClusterDraw web server: a tool to identify and visualize clusters of binding motifs for transcription factors. Bioinformatics, 23, 1032-1034

88. Papatsenko, D. and Levine, M. (2007) A rationale for the enhanceosome and other evolutionarily constrained enhancers. Curr Biology, 17, R955-7

89. Papatsenko, D.A., Makeev, V.J., Lifanov, A.P. et al. (2002) Extraction of functional binding sites from unique regulatory regions: the Drosophila early developmental enhancers. Genome Res, 12,470-481

90. Pavesi, G., Mereghetti, P., Mauri, G. et al. (2004) Weeder Web: discovery of transcription factor binding sites in a set of sequences from co-regulated genes. Nucleic Acids Res, 32, W199-203

91. Pawson, T. (1993) Signal transduction-^ conserved pathway from the membrane to the nucleus. Dev Genet, 14, 333-338

92. Philippakis, A.A., Qureshi, A.M., Berger, M.F. et al. (2008) Design of compact, universal DNA microarrays for protein binding microarray experiments. J Comput Biol, 15, 655-665

93. Pollard, D.A., Moses, A.M., Iyer, V.N. et al. (2006) Detecting the limits of regulatory element conservation and divergence estimation using pairwise and multiple alignments. BMC Bioinformatics, 7, 376

94. Ponomarenko, J.V., Orlova, G.V., Frolov, A.S. et al. (2002) SELEXJDB: a database on in vitro selected oligomers adapted for recognizing natural sites and for analyzing both SNPs and site-directed mutagenesis data. Nucleic Acids /^,,30(1), 195-199

95. Pribnow, D. (1975) Nucleotide sequence of an RN A polymerase binding site at an early T7 promoter. Proc Natl Acad Sci USA, 72, 784-788

96. Ptashne, M. and Gann, A. (1997) Transcriptional activation by recruitment. Nature, 386, 569-577

97. Pudimat, R., Schukat-Talamazzmi, E.G. and Backofen, R. (2005) A multiple-feature framework for modelling and predicting transcription factor binding sites. Bioinformatics, 21, 3082-3088

98. Reese, J.C. (2003) Basal transcription factors. Curr Opin Genet Dev, 13, 114118

99. Roeder, R.G. (1996) Nuclear RNA polymerases: role of general initiation factors and cofactors in eukaryotic transcription. Methods Enzymol, 273, 165-171

100. Roulet, E., Busso, S., Camargo, A.A. et al. (2002) High-throughput SELEX • SAGE method for quantitative modeling of transcription-factor binding sites. Nat Biotechnol, 20, 831-835

101. Rozanov, U.A. (1995) Probability Theory, Random Processes, and Mathematical Statistics. Kluwer Academic Publishers, Dordrecht (Netherlands)/Boston (MA)

102. Saffer, J.D., Jackson, S.P. and Annarella, M.B. (1991) Developmental expression of Spl in the mouse. Mol Cell Biol, 11, 2189-2199

103. Sandelin, A. and Wasserman, W. W. (2004) Constrained binding site diversity within families of transcription factors enhances pattern discovery bioinfonhatics. J Mol Biol, 338, 207-215

104. Sandve, G.K., Abul, O., Walseng, V. et al. (2007) Improved benchmarks for computational motif discovery. BMC Bioinformatics, 8, 193

105. Schneider, T.D., Stormo, G.D., Gold, L. et al. (1986) Information content of binding sites on nucleotide sequences. J Mol Biol, 188, 415-431

106. Shamovsky, I. and Nudler, E. (2008) New insights into the mechanism of heat shock response activation. Cell Mol Life Sci, 65, 855-861

107. Sharon, E., Lubliner, S. and Segal, E. (2008) A feature-based approach to modeling protein-DNA interactions. PLoS Comput Biol, 4, el000154

108. Singh, S.P. and Mishra, B.N. (2008) Prediction of MHC binding peptide using Gibbs motif sampler, weight matrix and artificial neural network. Bioinformation, 3,150.155

109. Sinha, S. and Torapa, M. (2003) YMF: A program for discovery of novel transcription factor binding sites by statistical overrepresentation. Nucleic Acids Res, 31, 3586-3588

110. Sinha, S., Blanchette, M. and Tompa, M. (2004) PhyME: a probabilistic algorithm for finding motifs in sets of orthologous sequences. BMC Bioinformatics, 5, 170

111. Stavrovskaia, E.D., Makeev, V. and Mironov, A.A. (2006) ClusterTree-RS: the binary tree algorithm for identification of co-regulated genes by clustering regulatory signals. Mol Biol (Mosk), 40, 524-532

112. Stormo, G.D. (1990) Consensus patterns in DNA. Methods Enzymol, 183, 211221

113. Stormo, G.D. (2000) DNA binding sites: representation and discovery. Bioinformatics, 16, 16-23

114. Stormo, G.D., Schneider, T.D. and Gold, L. (1986) Quantitative analysis of the relationship between nucleotide sequence and functional activity. Nucleic Acids Res, 14, 6661-6679

115. Stormo, G.D., Schneider, T.D., Gold, L. et al. (1982) algorithm to distinguish translational initiation sites in E. coli. Nucleic Acids Res, 10, 2997-3011

116. Thiesen, H.J. and Bach, C. (1990) Target Detection Assay (TDA): a versatile procedure to determine DNA binding sites as demonstrated on SP1 protein. Nucleic Acids Res, 18(11), 3203-3209

117. Thompson, J.D., Gibson, T.J. and Higgins, D.G. (2002) Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics, Chapter 2, Unit 2 3

118. Thompson, W., Conlan, S., McCue, L.A. et al. (2007) Using the Gibbs Motif Sampler for phylogenetic footprinting. Methods Mol Biol, 395, 403-424

119. Thompson, W., Rouchka, E.C. and Lawrence, C.E. (2003) Gibbs Recursive

120. Sampler: finding transcription factor binding sites. Nucleic Acids Res, 31, 3580-3585

121. Tornaletti, S. and Pfeifer, G.P. (1995) UV light as a footprinting agent: modulation of UV-induced DNA damage by transcription factors bound at the promoters of three human genes. J Mol Biol, 249, 714-728

122. Treisman, R., Marais, R.' and Wynne, J. (1992) Spatial flexibility in ternary complexes between SRF and its accessory proteins. EMBOJ, 11, 4631-4640

123. Tuerk, C. and Gold, L. (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 249, 505510

124. Vanet, A., Marsan, L., Labigne, A. et al. (2000) Inferring regulatory elements from a whole genome. An analysis of Helicobacter pylori sigma(80) family of promoter signals. J Mol Biol, 297, 335-353

125. Velculescu, V.E., Zhang, L., Vogelstein, B. et al. (1995) Serial analysis of gene expression. Science, 270, 484-487

126. Venter, J.C., Adams, M.D., Myers, E.W. et al. (2001) The sequence of the human genome. Science, 291, 1304-1351

127. Warren, C.L., Kratochvil, N.C.S., Hauschild, K.E. et al. (2006) Defining the sequence-recognition profile of DNA-binding molecules. Proc Natl Acad Sci U SA, 103(4), 867-872

128. Wasserman, W.W. and Sandelin, A. (2004) Applied bioinformatics for the identification of regulatory elements. Nat Rev Genet, 5, 276-287

129. Waterman, M.S. (1986) Multiple sequence alignment by consensus. Nucleic Acids Res, 14, 9095-9102

130. Wei, C.L., Wu, Q., Vega, V.B. et al. (2006) A global map of p53 transcription-factor binding sites in the human genome. Cell, 124, 207-219

131. Werner, M.H. and Burley, S.K. (1997) Architectural transcription factors: proteins that remodel DNA. Cell, 88, 733-736

132. Wheeler, D.A., Srinivasan, M., Egholm, M. et al. (2008) The complete genome of an individual by massively parallel DNA sequencing. Nature, 452, 872-876

133. Xing, E.P., Wu, W., Jordan, M.I. et al. (2003) LOGOS: a modular Bayesian model for de novo motif detection. Proc IEEE Comput Soc Bioinform Conf, 2, 266276

134. Yudkovsky, N,, Ranish, J. A. and Hahn, S. (2000) A transcription reinitiation intermediate that is stabilized by activator. Nature, 408(6809), 225-229

135. Zhang, M.Q. and Marr, T.G. (1993) A weight array method for splicing signal analysis. ComputAppl Biosci, 9,499-509

136. Zhang, Y., Shin, H., Song, J.S. et al. (2008) Identifying positioned nucleosomes with epigenetic marks in human from ChlP-Seq. BMC Genomics, 9, 537

137. Zhao, X., Huang, H. and Speed, T.P. (2005) Finding short DNA motifs using permuted Markov models. J Comput Biol, 12, 894-906

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.