Получение и изучение рекомбинантных Fab'-фрагментов антител к афлатоксинам тема диссертации и автореферата по ВАК РФ 03.01.04, кандидат биологических наук Калиниченко, Артем Андреевич
- Специальность ВАК РФ03.01.04
- Количество страниц 95
Оглавление диссертации кандидат биологических наук Калиниченко, Артем Андреевич
ИСПОЛЬЗУЕМЫЕ СОКРАЩЕНИЯ
I. ВВЕДЕНИЕ
II. ОБЗОР ЛИТЕРАТУРЫ 7 И. 1 Общие сведения об афлатоксинах.
11.1.1 Открытие афлатоксинов.
И. 1.2 Химические и физические свойства афлатоксинов, их источники. 8 II. 1.3 Воздействие афлатоксинов на организм человека и животных.
11.2 Способы детоксикации афлатоксинов в пищевых продуктах и кормах
11.3 Способы детекции афлатоксинов в пищевых продуктах и кормах.
11.3.1 Аналитические методы.
11.3.2 Скрининговые методы.
11.4 Антитела против афлатоксинов: получение и использование.
11.5 Системы эксперессии антител.
II.5.1 Экспрессия в клетках E.coli.
II.5.1 Эксперессия в клетках дрожжей.
II.5.1 Эксперессия в культурах клеток животных.
И.5.1 Эксперессия в растениях.
III. МАТЕРИАЛЫ И МЕТОДЫ 43 Реактивы.
Клетки гибридом и МА.
Буферные растворы.
Микробиологические среды.
Олигонуклеотиды, использованные для ПЦР.
Использованные методы:.
Прямой, непрямой и конкурентный иммуноферментный анализ.
Электрофорез белков в ПААГ.
Дот-блот анализ.
Получение функционально активных Fab'-фрагментов из МА.
Выделение мРНК, обратная траскрипция и амплификация вариабельных и константных доменов МА.
Получение генноинженерых конструкций.
Анализ нуклеотидных и аминокислотных последовательностей.
Сборка вектора для экспрессии рекомбинантных антител в виде Fab 'фрагментов.!.
Экспрессия и очистка рекомбинантных Fab'-фрагментов к AflaT.
Масс-спектрометрический анализ МА. и рекомбинантных Fab'- фрагментов.
Расчет констант диссоциации антител к АфлаТ.
IV. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ
Анализ моноклональных антител против афлатоксинов Вь В2, G2.
Определение подтипов легких и тяжелых цепей антител.
Амплификация кДНК вариабельных и константных доменов моноклональных антител.
Получение плазмидных конструкций для экспрессии рекомбинантных антител.
Биосинтез и выделение рекомбинантных Fabфрагментов МА.
Определение аффинности и кросс-реактивности Fab'-фрагментов.
ВЫВОДЫ
БЛАГОДАРНОСТИ
Рекомендованный список диссертаций по специальности «Биохимия», 03.01.04 шифр ВАК
Создание рекомбинантных антител против вируса клещевого энцефалита и изучение их свойств1999 год, кандидат биологических наук Николенко, Галина Николаевна
Продукция в растениях биологически активных миелоцитокинов человека2009 год, кандидат биологических наук Зверева, Анна Сергеевна
Локализация Т-кадгерина в стенке кровеносных сосудов и его влияние на адгезию и морфологию сосудистых клеток2001 год, кандидат биологических наук Иванов, Данила Борисович
Новая Н + , К +-АТФаза человека: генно-инженерный и иммунохимический подходы к поиску функционально активного фермента2002 год, кандидат биологических наук Корнеенко, Татьяна Васильевна
Действие белков YB-1 и РАВР на трансляцию полиа(-) и полиа(+)мРНК YB-12012 год, кандидат биологических наук Елисеева, Ирина Александровна
Заключение диссертации по теме «Биохимия», Калиниченко, Артем Андреевич
выводы
1. Впервые получены гены панели из 10 моноклональных антител к афлатоксинам Вь B2, G2, определена их нуклеотидная последовательность, картированы гипервариабельные участки вариабельных доменов легких и тяжелых цепей антител.
2. Обнаружено необычное для мышей соотношение подклассов легких цепей - половина антител содержат легкие цепи лямбда подкласса.
3. Показано ограниченное разнообразие легких цепей антител, как каппа, так и лямбда подклассов. Это позволяет предположить, что основную роль в формирование аффинности по отношению к гаптену вносят тяжелые цепи полученных антител.
4. Разработан метод экспрессии и очистки функционально активных рекомбинантных антител к афлатоксинам в виде Fab'-фрагментов
5. Показано, что полученные рекомбинантные Fab'-фрагменты обладают аффинностью и кросс-реактивностью, не уступающими по значениям исходным моноклональным антителам.
БЛАГОДАРНОСТИ
Благодарю людей, с помощью которых состоялась эта работа. В первую очередь своего научного руководителя Долгих Дмитрия Александровича за ценные советы и направление в нужное русло, Алиева Теймура Кантамировича за помощь в интерпретации результатов и написании работы, Кирпичникова Михаила Петровича за интересную тему. Большое спасибо Топоровой Виктории Александровне за обучение хитростям молекулярной биологии, генной инженерии и пример целеустремленности. Большую признательность выражаю Паниной Анне Алексеевне и Литвинову Ивану Сергеевичу за многочисленные обсуждения, и редактирование печатных работ. Благодарю Болдыреву Елену Филипповну и Крюкову Елену Александровну за регулярную помощь в работе. Спасибо Шулепко Михаилу Анатольевичу, Копейной Гелине Сергеевне, Балабашину Дмитрию Сергеевичу и Хабибуллиной Нелле Фамзуловне за дружескую атмосферу и поддержку в сложных ситуациях. Выражаю глубокую признательность Петровской Ладе Евгеньевне и Шингаровой Людмиле Николаевне за ценные советы. Отдельная благодарность Шемчуковой Ольге Борисовне, Солоповой Ольге Николаевне и Поздняковой Любовь Петровне за анализ рекомбинантных белков и МА. Большая благодарность Свешникову Петру Георгиевичу за сотрудничество, гибридомы и разъяснение тонкостей иммунологического анализа.
Список литературы диссертационного исследования кандидат биологических наук Калиниченко, Артем Андреевич, 2010 год
1. Duran, R.M., J.W. Сагу, and A.M. Calvo, Production of cyclopiazonic acid, aflatrem, and aflatoxin by Aspergillus flavus is regulated by veA, a gene necessaiy for sclerotial formation. Appl Microbiol Biotechnol, 2007. 73(5): p. 1158-68.
2. Goldblatt, L., ed. Aflatoxin. scientific background, control, and implications 1969, Academic Press: New York.
3. Malloy, C.D. and J.S. Marr, Mycotoxins and public health: a review. J Public Health Manag Pract, 1997. 3(3): p. 61-9.
4. Robbins, C.A., et al., Health effects of mycotoxins in indoor air: a critical review. Appl Occup Environ Hyg, 2000. 15(10): p. 773-84.
5. Diaz, G.J., E. Calabrese, and R. Blain, Aflatoxicosis in chickens (Gallus gal his): an example ofhormesis? Poult Sci, 2008. 87(4): p. 727-32.
6. Azziz-Baumgartner, E., et al., Case-control study of an acute aflatoxicosis outbreak, Kenya, 2004. Environ Health Perspect, 2005. 113(12): p. 1779-83.
7. Nyikal, J.A., et al., Outbreak of aflatoxin poisoning-Eastern and Central Provinces, Kenya, January-July 2004. Morb. Mortal. Wlcly. Rep., 2004. 53: p. 790-793.
8. Lewis, L., et al., Aflatoxin contamination of commercial maize products daring an outbreak of acute aflatoxicosis in eastern and central Kenya. Environ Health Perspect, 2005. 113(12): p. 1763-7.
9. Asao, Т., et al., The Structures of Aflatoxins В and G. J Am Chem Soc, 1965. 87: p. 882-6.
10. Yu, J., et al., Clustered pathway genes in aflatoxin biosynthesis. Appl Environ Microbiol, 2004. 70(3): p. 1253-62.
11. Do, J.H. and D.-K. Choi, Aflatoxins: Detection, Toxicity, and Biosynthesis. Biotechnology and Bioprocess Engineering, 2007. 12: p. 585-593.
12. Robinson, J. A., Polyketide synthase complexes: their structure and function in antibiotic biosynthesis. Philos Trans R Soc Lond В Biol Sci, 1991. 332(1263): p. 107-14.
13. Goto, Т., D.T. Wicklow, and Y. Ito, Aflatoxin and cyclopiazonic acid production by a sclerotium-producing Aspergillus tamarii strain. Appl Environ Microbiol, 1996. 62(11): p. 4036-8.
14. Klich, M.A., et al., Molecular and physiological aspects of aflatoxin and sterigmatocystin biosynthesis by Aspergillus tamarii and A. ochraceoroseus. Appl Microbiol Biotechnol, 2000. 53(5): p. 605-9.
15. Peterson, S.W., et al., Aspergillus bombycis, a new aflatoxigenic species and genetic variation in its sibling species, A. nomius. Mycologia 2001. 93: p. 689703.
16. Klich, M.A. and J.I. Pitt, Differentiation of Aspergillus flavus from Aspergillus parasiticus and other closely related species. Trans. Br. Mycol. Soc., 1988. 91: p. 99-108.
17. Martins, H.M., M.L. Martins, and F.A. Bernardo, Interaction of strains of non-toxigenic Aspergillus flavus with Aspergillus parasiticus on aflatoxin production. Braz. J. Vet. Res. Anim. Sci., 2000. 37: p. 1234-1237.
18. Detroy, R.W., E.B. Lillehoj, and C. A., Aflatoxin and related compounds. Microbial toxins, vol. VI: fungal toxins, ed. A. Press. 1971, New York.
19. Diener, U.L., et al., Epidemiology of aflatoxin formation by Aspergillus flavus. Annu. Rev. Phytopathol., 1987. 25: p. 249-270.
20. Klich, M.A., The degree of susceptibility of nectary-inoculated cotton flowers and bolls to subsequent seed infection by Aspergillus flavus is determined at or before anthesis. Appl Environ Microbiol, 1990. 56(8): p. 2499-502.
21. Dorner, J., Biological Control of Aflatoxin Crop Contamination. Aflatoxin and Food Safety. 2005. p. 333-352.
22. Van Egmond, H.P., Mycotoxins in daily products. Aflatoxin M^ occurrence, toxicity, regulation, in Mycotoxins in dairy products. Aflatoxin Mi: occurrence, toxicity, regulation
23. E.A. Science, Editor. 1989, Elsevier Applied Science: London, p. 11-55.
24. Wang, J.S. and J.D. Groopman, DNA damage by mycotoxins. Mutat Res, 1999. 424(1-2): p. 167-81.
25. Newberne, P.M. and W.H. Butler, Acute and chronic effects of aflatoxin on the liver of domestic and laboratory animals: a review. Cancer Res, 1969. 29(1): p. 236-50.
26. Peers, F.G. and C.A. Linsell, Dietary aflatoxins and liver cancer—a population based study in Kenya. Br J Cancer, 1973. 27(6): p. 473-84.
27. Shank, R.C., et al., Dietary aflatoxins and human liver cancer. IV. Incidence of primary liver cancer in two municipal populations of Thailand. Food Cosmet Toxicol, 1972. 10(2): p. 171-9.
28. Heinonen, J.T., et al., Determination of aflatoxin B1 biotransformation and binding to hepatic macromolecules in human precision liver slices. Toxicol Appl Pharmacol, 1996. 136(1): p. 1-7.
29. Kumara, V., M.S. Basua, and T.P. Rajendran, Mycotoxin research and mycoflora in some commercially important agricultural commodities Crop Protection, 2008. 27(6): p. 891-905.
30. Richard, J.L., et al., Effect of ochratoxin and aflatoxin on serum proteins, complement activity, and antibody production to Brucella abortus in guinea pigs. Appl Microbiol, 1975. 29(1): p. 27-9.
31. Richard, J.L. and J.R. Thurston, Effect of aflatoxin on phagocytosis of Aspergillus fumigatus spores by rabbit alveolar macrophages. Appl Microbiol, 1975. 30(1): p. 44-7.
32. Netke, S.P., et al., Ascorbic acid protects guinea pigs from acute aflatoxin toxicity. Toxicol Appl Pharmacol, 1997. 143(2): p. 429-35.
33. Schlemper, В., et al., DNA binding, adduct characterisation and metabolic activation of aflatoxin BI catalysed by isolated rat liver parenchymal, Kupffer and endothelial cells. Arch Toxicol, 1991. 65(8): p. 633-9.
34. Bingham, A.K., T.D. Phillips, and J.E. Bauer, Potential for dietary protection against the effects of aflatoxins in animals. J Am Vet Med Assoc, 2003. 222(5): p. 591-6.
35. Coulombe, R.A., Jr., Biological action of mycotoxins. J Dairy Sci, 1993. 76(3): p. 880-91.
36. Creppy, E.E., Update of survey, regulation and toxic effects of mycotoxins in Europe. Toxicol Lett, 2002. 127(1-3): p. 19-28.
37. Williams, J.H., et al., Human aflatoxicosis in developing countries: a review of toxicology, exposure, potential health consequences, and interventions. Am J Clin Nutr, 2004. 80(5): p. 1106-22.
38. Cancer, I.A.f.R.o., IARC Monograph Supplement 4. 1982: Lyon.40. http://www. iarc.fr/en.
39. Hsieh, L.L., et al., Immunological detection of aflatoxin Bl-DNA adducts formed in vivo. Cancer Res, 1988. 48(22): p. 6328-31.
40. Booth, S.C., et al., The activation of aflatoxin BI in liver slices and in bacterial mutagenicity assays using livers from different species including man. Carcinogenesis, 1981. 2(10): p. 1063-8.
41. Croy, R.G., et al., Identification of the principal aflatoxin Bl-DNA adduct formed in vivo in rat liver. Proc Natl Acad Sci USA, 1978. 75(4): p. 1745-9.
42. Smela, M.E., et al., The chemistry and biology of aflatoxin B(l): fi'om mutational spectrometry to carcinogenesis. Carcinogenesis, 2001. 22(4): p. 535-45.
43. Autmp, H., et al., Metabolism of aflatoxin BI and identification of the major aflatoxin Bl-DNA adducts formed in cultured human bronchus and colon. Cancer Res, 1979. 39(3): p. 694-8.
44. Cupid, B.C., et al., The formation of AFB(l)-macromolecular adducts in rats and humans at dietary levels of exposure. Food Chem Toxicol, 2004. 42(4): p. 559-69.
45. Stark, A.A., et al., Aflatoxin BI mutagenesis, DNA binding, and adduct formation in Salmonella typhimurium. Proc Natl Acad Sci USA, 1979. 76(3): p. 1343-7.
46. Singh, J., et al., Interactions of aflatoxin BI with SRP components can disrupt protein targeting. Cell Biochem Funct, 2005. 23(1): p. 9-13.
47. Singh, J., et al., Inhibition of the biosynthesis of SRP polypeptides and secretory proteins by aflatoxin BI can disrupt protein targeting. Cell Biochem Funct, 2006. 24(6): p. 507-10.
48. Gelboin, H. V., et al., Rapid and marked inhibition of rat-liver RNA polymerase by aflatoxin В-1. Science, 1966.154(753): p. 1205-6.
49. Yu, F.L., Mechanism of aflatoxin Bl inhibition of rat hepatic nuclear- RNA synthesis. J Biol Chem, 1977. 252(10): p. 3245-51.
50. Yu, F.L., Preferential binding of aflatoxin Bl to the transcriptionally active regions of rat liver nucleolar chromatin in vivo and in vitro. Carcinogenesis, 1983. 4(7): p. 889-93.
51. Yu, F.L., M. Cass, and L. Rokusek, Tissue, sex, and animal species specificity of aflatoxin Bl inhibition of nuclear RNA polymerase II activity. Carcinogenesis, 1982. 3(9): p. 1005-9.
52. McKenzie, K.S., et al., Oxidative degradation and detoxification of mycotoxins using a novel source of ozone. Food Chem Toxicol, 1997. 35(8): p. 807-20.
53. McKenzie, K.S., et al., Aflatoxicosis in turkey poults is prevented by treatment of naturally contaminated corn with ozone generated by electrolysis. Poult Sci, 1998. 77(8): p. 1094-102.
54. Pivai, G., et al., Detoxification methods of aflatoxins. A review. Nutrition Research, 1995.15(5): p. 767-776.
55. Ventura, M., et al., Ultraperformance liquid chromatography/tandem mass spectrometry for the simultaneous analysis ofaflatoxins Bl, GI, B2, G2 and ochratoxin A in beer. Rapid Comm. Mass Spectrom, 2006. 20: p. 3199-3204.
56. Piermarini, S., et al., An ELIME-array for detection of aflatoxin Bl in corn samples. Food Control, 2009. 20: p. 371-375.
57. Pal, A. and Т.К. Dhar, An analytical device for on-site immunoassay. Demonstration of its applicability in semiquantitative detection of aflatoxin Bl in a batch of samples with idtrahigh sensitivity. Anal Chem, 2004. 76(1): p. 98104.
58. Nasir, M.S. and M.E. Jolley, Development of a fluorescence polarization assay for the determination of aflatoxins in grains. J Agric Food Chem, 2002. 50(11): p. 3116-21.
59. Ammida, N.H.S., et al., Detection of aflatoxin B-l in barley: Comparative study of immunosensor andHPLC. Anal. Lett., 2006. 39: p. 1559-1572.
60. Pena. R., et al., Screening of aflatoxins in feed samples using a flow system coupled to capillaiy electrophoresis. J Chromatogr A, 2002. 967(2): p. 303-14.
61. Chan, D., et al., Simidtaneous determination of aflatoxins and ochratoxin A in food using a fully automated immunoaffinity column clean-up and liquid chromatography-fluorescence detection. J Chromatogr A, 2004. 1059(1-2): p. 13-6.
62. Cervino, C., et al., Use of isotope-labeled Aflatoxins for1.-MS/MS stable isotope dilution analysis of foods. J. Agric. Food Chem., 2008. 56: p. 1873-1879.
63. Sulyolc, M., et al., Development and validation of a liquid chromatography/tandem mass spectrometric method for the determination of39 mycotoxins in wheat and maize. Rapid Commun Mass Spectrom, 2006. 20(18): p. 2649-59.
64. Otta, K.H., et al., Determination of aflatoxins in corn by use of the personal OPLC basic system. J. Plan. Chromatogr., 1998. 11(1): p. 370-373.
65. Papp, E., et al., Liquid chromatographic determination of aflatoxins. Microchem. J. , 2002. 73: p. 39-46.
66. Nguyen, M.T., et al., Occurrence of aflatoxin Bl,citrinin and ochratoxin A in rice in five provinces of the central region of Vietnam. Food Chem., 2007. 105: p. 42-47.
67. Sheibani, A. and G. H.S., Pressurized fluid extraction for quantitative recovery of aflatoxins
68. Bl and B2 from pistachio. Food Control, 2009. 20: p. 124-128.
69. Blesa, J., et al., Determination of aflatoxins in peanuts by matrix solid-phase dispersion and liqiud chromatography. J Chromatogr A, 2003. 1011(1-2): p. 49-54.
70. Xavier, J .J.M. and V.M. Scussel, Development of an LC-MS/MS method for the determination ofaflatoxins B-l, B-2, G(l), and G(2) in Brazil nut. Intern. J. Envir. Anal. Chem., 2008. 88: p. 425-433.
71. Sheibani, A., M. Tabrizchi, and H.S. Ghaziaskar, Determination of aflatoxins ВI and B2 using ion mobility spectrometry. Talanta, 2008. 75(1): p. 233-8.
72. Hernandez Hierro, J.M., et al., Aflatoxins and ochratoxin A in red paprika for retail sale in Spain: occurrence and evaluation of a simultaneous analytical method. J Agric Food Chem, 2008. 56(3): p. 751-6.
73. D'Ovidio, K., et al., Aflatoxins in ginseng roots. Food Addit Contam, 2006. 23(2): p. 174-80.
74. Daradimos, E., P. Marcaki, and M. Koupparis, Evaluation and validation of two fluorometric HPLC methods for the determination of aflatoxin Bl in olive oil Food Addit Contam, 2000. 17(1): p. 65-73.
75. Garcia-Villanova, R.J., et al., Simultaneous immunoaffinity column cleanup and HPLC analysis of aflatoxins and ochratoxin A in Spanish bee pollen. J Agric Food Chem, 2004. 52(24): p. 7235-9.
76. Oliveira, C.A., et al., Aflatoxin Bl residues in eggs of laying hens fed a diet containing different levels of the mycotoxin. Food Addit Contam, 2000. 17(6): p. 459-62.
77. Sharma, M. and C. Marquez, Determination of aflatoxins in domestic pet foods (dog and cat) using immunoaffinity column and HPLC. Anim. Feed Sci. Technol., 2001. 93(1): p. 109-114.
78. Navas, S.A., M. Sabino, and D.B. Rodriguez-Amaya, Aflatoxin M(l) and ochratoxin A in a human milk bank in the city of Sao Paulo, Brazil. Food Addit Contam, 2005. 22(5): p. 457-62.
79. Micheli, L., et al., An electrochemical immunosensor for aflatoxin Ml determination in milk using screen-printed electrodes. Biosens. Bioelectr., 2005. 21: p. 588-596.
80. Josephs, R.D., et al., Aflatoxin Ml in milk powders: processing, homogeneity and stability testing of certified reference materials. Food Addit Contain, 2005. 22(9): p. 864-74.
81. Govaris, A., et al., Distribution and stability of aflatoxin Ml during production and storage of yoghurt. Food Addit Contain, 2002. 19(11): p. 1043-50.
82. S. M. Maxwell, et al., Aflatoxins in Breast Milk, Neonatal Cord Blood and Sera of Pregnant Women. Toxin Reviews, 1989. 8(1-2): p. 19-29.
83. Oyelami, O.A., et al., Aflatoxins in the autopsy brain tissue of children in Nigeria. Mycopathologia, 2005. 132(1): p. 35-38.
84. Gutarowska, B. and M. Piotrowska, Methods of mycological analysis in buildings. Build. Environ., 2007. 42\ p. 1843-1850.
85. Tuomi, Т., et al., Detection of aflatoxins (G(l-2), B(l-2)), sterigmatocystin, citrinine and ochratoxin A in samples contaminated by microbes. Analyst, 2001.126(9): p. 1545-50.
86. Tari'n, A., M.G. Rosell, and X. Guardino, Use of high-performance liquid chromatography to assess airborne mycotoxins Aflatoxins and ochratoxin A. J. Chromatogr. A, 2004. 1047(1): p. 235-240.
87. Wang, Y., et al., Simultaneous detection of airborne Aflatoxin, Ochratoxin and Zearalenone in a poultry house by immunoajfinity clean-up and high-performance liquid chromatography. Environ. Res., 2008. 107: p. 139-144.
88. Langseth, W. and T. Rundberget, Instrumental methods for determination of nonmacrocyclic trichothecenes in cereals, foodstuffs and cultures. J. Chromatogr\ A, 1998. 815(1): p. 103-121.
89. Zollner, P. and B. Mayer-Helm, Trace mycotoxin analysis in complex biological and food matrices by liquid chromatography-atmospheric pressure ionisation mass spectrometry. J Chromatogr A, 2006. 1136(2): p. 123-69.
90. Nielsen, K.F. and J. Smedsgaard, Fungal metabolite screening: database of 474 mycotoxins and fungal metabolites for dereplication by standardised liquid chromatography-UV-rnass spectrometry methodology. J Chromatogr A, 2003. 1002(1-2): p. 111-36.
91. Krska, R. and A. Molinelli, Mycotoxin analysis: state-of-the-art and future trends. Anal Bioanal Chem, 2007. 387(1): p. 145-8.
92. Lin, L., et al., Thin-layer chromatography of mycotoxins and comparison with other chromatographic methods. J Chromatogr A, 1998. 815(1): p. 3-20.
93. Krska, R., et al., Mycotoxin analysis: an update. Food Addit Contara Part A Chem Anal Control Expo Risk Assess, 2008. 25(2): p. 152-63.
94. Stroka, J., R. Van Otterdijk, and E. Anlclam, Immimoaffmity column clean-up prior to thin-layer chromatography for the determination of aflatoxins in various food matrices. J Chromatogr A, 2000. 904(2): p. 251-6.
95. Prieto-Simon, В., Т. Noguer, and M. Campas, Emerging biotools for assessment of mycotoxins in the past decade. TrAC, 2007. 26: p. 689-702.
96. Shephard, G.S., et al., Do fumonisin mycotoxins occur in wheat? J. Agric. Food Chem., 2005. 53: p. 9293-9296.
97. Yu, F.Y., et al., Development of a sensitive enzyme-linked immunosorbent assay for the determination of ochratoxin A. J Agric Food Chem, 2005. 53(17): p. 6947-53.
98. Zheng, M.Z., J.L. Richard, and J. Binder, A review of rapid methods for the analysis of mycotoxins. Mycopathologia, 2006. 161: p. 261-273.
99. Schneider, E., et al., Rapid methods for deoxynivalenol and other trichothecenes. Toxicol Lett, 2004.153(1): p. 113-21.
100. Krska, R., E. Welzig, and H. Boudra, Analysis of Fusarium toxins in feed. Animal Feed Sci. Technol., 2007. 137: p. 241-264.
101. Mullett, W., E.P. Lai, and J.M. Yeung, Immunoassay offumonisins by a surfaceplasmon resonance biosensor. Anal Biochem, 1998. 258(2): p. 161-7.112. van der Gaag, В., et al., Biosensors and midtiple mycotoxin analysis. Food Control 2003. 14: p. 251-254.
102. Delmulle, B.S., et al., Development of an immunoassay-based lateral flow dipstick for the rapid detection of aflatoxin B1 in pig feed. J Agric Food Chem, 2005. 53(9): p. 3364-8.
103. Li, P., Q. Zhang, and W. Zhang, Immunoassays for aflatoxins. Trends in Analytical Chemistry, 2009. 28( 9): p. 1115-1126.
104. Goryacheva, I.Y., et al., Immunochemical methods for rapid mycotoxin detection: evolution from single to midtiple analyte screening: a review. Food Addit Contam, 2007. 24(10): p. 1169-83.
105. Logrieco, A., et al., DNA arrays, electronic noses and tongues, biosensors and receptors for rapid detection of toxigenic fungi and mycotoxins: a review. Food Addit Contam, 2005. 22(4): p. 335-44.
106. Schnerr, H., R.F. Vogel, and L. Niessen, A biosensor-based immunoassay for rapid screening of deoxynivalenol contamination in wheat. Food Agric. Immunol., 2002. 14: p. 313-321.
107. Ngundi, M.M., et al., Array biosensor for detection of ochratoxin A in cereals and beverages. Anal Chem, 2005. 77(1): p. 148-54.
108. Adanyi, N., et al., Development of immunosensor based on OWLS technique for determining Aflatoxin Bl and Ochratoxin A. Biosens Bioelectron, 2007. 22(6): p. 797-802.
109. Piermarini, S., et al., Electrochemical immunosensor array using a 96-well screen-printed microplate for aflatoxin B1 detection. Biosens Bioelectron, 2007. 22(7): p. 1434-40.
110. Owino, J.H., et al., Modelling of the impedimetric responses of an aflatoxin В (J) immunosensor prepared on an electrosynthetic polyaniline platform. Anal Bioanal Chem, 2007. 388(5-6): p. 1069-74.
111. Cuccioloni, M., et al., Biosensor-based screening method for the detection of aflatoxins Bl-Gl. Anal Chem, 2008. 80(23): p. 9250-6.
112. Mullett, W.M., E.P. Lai, and J.M. Yeung, Surface plasmon resonance-based immunoassays. Methods, 2000. 22(1): p. 77-91.
113. Wang, J.S., et al., Development of aflatoxin B(l)-lysine adduct monoclonal antibody for human exposure studies. Appl Environ Microbiol, 2001. 67(6): p. 2712-7.
114. Sujatha, N., S. Suryakala, and B.S. Rao, Enzyme immunoassay for aflatoxin В1-lysine adduct and its validation. J AOAC Int, 2001. 84(5): p. 1465-74.
115. Haugen, A., et al., Monoclonal antibody to aflatoxin В1-modified DNA detected by enzyme immunoassay. Proc Natl Acad Sci USA, 1981. 78(7): p. 4124-7.
116. Groopman, J.D., et al., High-affinity monoclonal antibodies for aflatoxins and their application to solid-phase immunoassays. Proc Natl Acad Sci USA, 1984. 81(24): p. 7728-31.
117. Fan, T.S., G.S. Zhang, and F.S. Chu, Production and characterization of antibody against aflatoxin 01. Appl Environ Microbiol, 1984. 47(3): p. 52632.
118. Devi, K.T., et al., Production and characterization of monoclonal antibodies for aflatoxin Bl. Lett Appl Microbiol, 1999. 29(5): p. 284-8.
119. Burkin, M.A., et al., Comparative immunochemical characteristics of polyclonal and monoclonal antibodies to aflatoxin B1J. Prikl Biokhim Mikrobiol, 2000. 36(5): p. 575-81.
120. C.Y.G., L., L. P.X., and C. K.J., Monoclonal Antibody-Based Immunoassays for Aflatoxin Isoforms Journal of Clinical Ligand Assay, 2003. 26(2): p. 107110.
121. Kolosova, A.Y., et al., Direct competitive ELISA based on a monoclonal antibody for detection of aflatoxin Bl. Stabilization of ELISA kit components and application to grain samples. Anal Bioanal Chem, 2006. 384(1): p. 28694.
122. Cervino, C., et al., Comparison of hybridoma screening methods for the efficient detection of high-affinity hapten-specific monoclonal antibodies. J Immunol Methods, 2008. 329(1-2): p. 184-93.
123. Zhang, J., et al., Production and characterization of monoclonal antibodies against aflatoxin g(l). Hybridoma (Larchmt), 2009. 28(1): p. 67-70.
124. Li, P., et al., Development of a class-specific monoclonal antibody-based ELISA for aflatoxins in peanut Food Chemistry, 2009. 115(1): p. 313-317.
125. Zhang, D., et al., Production of ultrasensitive generic monoclonal antibodies against major aflatoxins using a modified two-step screening procedure. Anal Chim Acta, 2009. 636(1): p. 63-9.
126. Moghaddam, A., et al., Selection and characterisation of recombinant single-chain antibodies to the hapten Aflatoxin-Bl from naive recombinant antibody libraries. J Immunol Methods, 2001. 254(1-2): p. 169-81.
127. Pansri, P., et al., A compact phage display human scFv library for selection of antibodies to a wide variety of antigens. BMC Biotechnol, 2009. 9: p. 6.
128. Kalinina, N.A., et al., Molecular cloning, expression, and characterization of human mini-antibodies against enterotoxin CI of Staphylococcus aureus., Bioorg Khim, 2009. 35(2): p. 192-201.
129. Ward, E.S., Antibody engineering: the use of Escherichia coli as an expression host. FASEB J, 1992. 6(7): p. 2422-7.
130. Carter, P., et al., High level Escherichia coli expression and production of a bivalent humanized antibody fragment. Biotechnology (N Y), 1992. 10(2): p. 163-7.
131. Georgiou, G. and P. Valax, Expression of correctly folded proteins in Escherichia coli. Curr Opin Biotechnol, 1996. 7(2): p. 190-7.
132. Jaeger, K.E. and M.T. Reetz, Microbial lipases form versatile tools for biotechnology. Trends Biotechnol, 1998. 16(9): p. 396-403.
133. Filloux, A., et al., Protein secretion in gram-negative bacteria: transport across the outer membrane involves common mechanisms in different bacteria. EMBO J, 1990. 9(13): p. 4323-9.
134. Thanassi, D.G. and S.J. Hultgren, Multiple pathways allow protein secretion across the bacterial outer membrane. Curr Opin Cell Biol, 2000. 12(4): p. 42030.
135. DeLisa, M.P., D. Tullman, and G. Georgiou, Folding quality control in the export of proteins by the bacterial twin-arginine translocation pathway. Proc Natl Acad Sci USA, 2003. 100(10): p. 6115-20.
136. Humphreys, D.P., et al., Co-expression of human protein disulphide isomerase (PDI) can increase the yield of an antibody Fab' fragment expressed in Escherichia coli. FEBS Lett, 1996. 380(1-2): p. 194-7.
137. Levy, R., et al., Production of correctly folded Fab antibody fragment in the cytoplasm of Escherichia coli trxB gor mutants via the coexpression of molecular chaperones. Protein Expr Purif, 2001. 23(2): p. 338-47.
138. Corisdeo, S. and B. Wang, Functional expression and display of an antibody Fab fragment in Escherichia coli: study of vector designs and culture conditions. Protein Expr Purif, 2004. 34(2): p. 270-9.
139. Miller, K.D., et al., Production, purification, and characterization of human scFv antibodies expressed in Saccharomyces cerevisiae, Pichia pastoris, and Escherichia coli. Protein Expr Purif, 2005. 42(2): p. 255-67.
140. Thomassen, Y.E., et al., Specific production rate of VHH antibody fragments by Saccharomyces cerevisiae is correlated with growth rate, independent of nutrient limitation. J Biotechnol, 2005. 118(3): p. 270-7.
141. Shusta, E.V., et al., Increasing the secretory capacity of Saccharomyces cerevisiae for production of single-chain antibody fragments. Nat Biotechnol, 1998.16(8): p. 773-7.
142. Cereghino, G.P. and J.M. Cregg, Applications of yeast in biotechnology: protein production and genetic analysis. Curr Opin Biotechnol, 1999. 10(5): p. 422-7.
143. Zsebo, K.M., et al., Protein secretion from Saccharomyces cerevisiae directed by the prepro-alpha-factor leader region. J Biol Chem, 1986. 261(13): p. 5858-65.
144. Lucas, B.K., et al., High-level production of recombinant proteins in CHO cells using a dicistronic DHFR intron expression vector. Nucleic Acids Res, 1996. 24(9): p. 1774-9.
145. Chadd, H.E. and S.M. Chamow, Therapeutic antibody expression technology. Cuit Opin Biotechnol, 2001.12(2): p. 188-94.
146. Hiatt, A., R. Cafferkey, and K. Bowdish, Production of antibodies in transgenic plants. Nature, 1989. 342(6245): p. 76-8.
147. Ma, J.K., et al., Generation and assembly of secretory antibodies in plants. Science, 1995. 268(5211): p. 716-9.
148. Hood, E.E., S.L. Woodard, and M.E. Horn, Monoclonal antibody manufacturing in transgenic plants—myths and realities. Curr Opin Biotechnol, 2002.13(6): p. 630-5.
149. Kathuria, S., et al., Efficacy of plant-produced recombinant antibodies against HCG. Hum Reprod, 2002. 17(8): p. 2054-61.
150. Vaquero, C., et al., A carcinoembryonic antigen-specific diabody produced in tobacco. FASEB J, 2002. 16(3): p. 408-10.
151. Ma, J.K., et al., Antibody processing and engineering in plants, and new strategies for vaccine production. Vaccine, 2005. 23(15): p. 1814-8.
152. Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970. 227(5259): p. 680-5.
153. Chenchik, A., et al., eds. Generation and use of high-quality cDNA from small amounts of total RNA by SMART™ PCR. . In Gene cloning and analysis by RT-PCR, ed. L.J.N. Siebert P. 1998, MA: Biotechniques Books.
154. Marchuk, D., et al., Construction ofT-vectors, a rapid and general system for direct cloning of unmodified PCR products. Nucleic Acids Res, 1991. 19(5): p. 1154.
155. Friguet, В., et al., Measurements of the true affinity constant in solution of antigen-antibody complexes by enzyme-linked immunosorbent assay. J Immunol Methods, 1985. 77(2): p. 305-19.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.