Получение и анализ трансгенных растений, экспрессирующих белки тройного блока генов гордеивирусов тема диссертации и автореферата по ВАК РФ 03.00.06, кандидат биологических наук Горшкова, Елена Николаевна

  • Горшкова, Елена Николаевна
  • кандидат биологических науккандидат биологических наук
  • 2003, Москва
  • Специальность ВАК РФ03.00.06
  • Количество страниц 129
Горшкова, Елена Николаевна. Получение и анализ трансгенных растений, экспрессирующих белки тройного блока генов гордеивирусов: дис. кандидат биологических наук: 03.00.06 - Вирусология. Москва. 2003. 129 с.

Оглавление диссертации кандидат биологических наук Горшкова, Елена Николаевна

Список сокращений

Г. Введение

2: Обзор литературы

2.1 Общие положения ^

2.2. Альфа-подобные фнтовирусы, содержащие тройнойблок генов.

2.2.1. Семейство Tubiviridae.

2.2.1.1. Род Benyvirus

2.2.1.2. Род Pomovirus.

2.2.1.3. Род Pecluvirus. 16 * 2.2.1.4. Род Hordeivirus

2.2.2. Порядок Tymovirales 19 2.2:2:1. Семейство Potexviridae 1 ^

2.3: Методы изучения локализации транспортных белков фитовирусов

2.3.1.1. Субклеточное фракционирование белков ТБГ 22 2.3; 1.1.1.Субклеточна» локализация 6ТБГ1 21 2.3.1.1.2. Субклеточная локализация белков-ТБГ иЛБЕЗ.

2.3.1.2. Субклеточная локализация транспортных белков тобамовирусов

2.3.1.3. Субклеточная локализация транспортных белков витивирусов, порядок Tymovirales

2.3". 1.4. Субклеточная локализация транспортных белков представителей семейства Bromoviridae

2.3.1.5. Субклеточная- локализация- транспортных белков представителей семейства Comoviridae

2.3.1.6. Субклеточная локализация транспортных

Ф белков представителей, семейства Tombusviridae

2.3.2. Электронная микроскопия транспортных белков

2.3.2.1. Электронная микроскопия белков ТБГ 28 ^ 2.3.2.2. Электронна* микроскопия: транигшртных белков других вирусов растений

2.3.3. Изучение локализации транспортных белков методом лазерной конфокальной микроскопии

2.3.3Х Изучение локализации белков ТБГ методом флуоресцентной микроскопии

2.3. Комплементационный анализ транспортных белков

2.3.1. Гомологичная комплементация транспортных белков

2.3.2. Гетерологичная комплементация транспортных белков

2.3.2.1. Гетерологичная комплементация транспортных белков в положении in cis

2.3.2.2. Гетерологичная комплементация транспортных, белков в положении in tram 37 2.3.2.2.1. Гетерологичная комплементация транспортных бежов с помощью рекомбинантных конструкций

2.3.2.2.2. Гетерологичная комплементация транспортных белков вирусов в трансгенных растениях

2.3.2.2.3. Гетерологичная комплементация вирусного транспорта с использованием вирусов-помощников

2.4. Структура и свойства белков тройного блока генов.

2.4.1. Особенности первичной структуры белка ТБГ

2.4.2. Особенности первичной структуры белков ТБГ2 и 44 Ж ТБГЗ

2.4.3. Экспрессия белков ТБГ

2.4.4. Биохимические и функциональные свойства белка

2.4.5. Функции белков ТБГ2 и ТБГЗ

2.4.6. Возможная схема транспорта ТБГ-содержащих вирусов 52 3. Материалы и методы

3.1. Реактивы и материалы

3.2. Ферменты и наборы

3.3. Векторы для клонирования и бактериальные штаммы.

3.4. Среды, использовавшиеся при культивировании 55 бактериального и растительного материала

3.5. Выделение плазмидной ДНК

3.6. Трансформация бактериальных клеток плазмидной 56 ДНК

3.7. Электрофорез в агарозном геле

3.8. Извлечение фрагментов ДНК из агарозного геля.

3.9. Цитирование фрагментов ДНК

3.10. Трансформация растительных тканей

3.11. Трансформация бактериальных клеток A. tumefaciens плазмидной ДНК

3.12. Выделение тотального препарата нуклеиновых кислот из клеток A. tumefaciens

3.14. Рестрикционный гидролиз тотального препарата ДНК, выделенного из клеток A. tumefaciens

3.15. ДНК-блотинг 61 3 Л6. Гибридизация нуклеиновы кислот, иммобилизованных на найлоновом фильтре

3.17. Синтез зонда для гибридизации.

3.18. Выделение препарата тотальной РНК из растительных тканей

3.19.Электрофорез РНК в денатурирующем геле

3.20.Иммунодетекция белков

3.21. Субклеточное фракционирование растительных тканей

3.22. Разделение клеточных мембран в градиенте плотности сахарозы

3.23. Экстракция белков ш препарата мембран.

3.24. Выделение РНК из фракций протяженного градиента сахарозы

3.25. Флотация мембранных препаратов

4. Результаты

4.1. Получение трансгенных растений, экспрессирующих белок: ТБГЗ ПЛВМ и белок ТБГЗ ГОТОМ, слитого с GFP.

4.2. Иммунодетекция белков 18К и GFP-18K в трансгенных и зараженных растениях.

4.3. Эпифлуоресцентная микроскопия трансгенных растений, экспрессирующих ген. белка GFP- 18К.

4.4. Функциональная активность белков 18К и GFP-18K, экспрессируемых в трансгенных растениях

4.5. Субклеточное фракционирование растительных тканей, экспрессирующих белки 18К и GFP-18К

4.6. Исследование мембранной природы белков 18К и GFP

4.7. Локализация белков 18К и GFP-18K в эвдоплазматическом ретикулюме.

5. Обсуждение результатов

6. Выводы

Рекомендованный список диссертаций по специальности «Вирусология», 03.00.06 шифр ВАК

Введение диссертации (часть автореферата) на тему «Получение и анализ трансгенных растений, экспрессирующих белки тройного блока генов гордеивирусов»

Предметом молекулярной фитовирусологии является исследование репликации и экспрессии вирусного генома, а так- же взаимодействия вирусного патогена с растением — хозяином; Одной из ключевых проблем является изучение механизмов транспорта вирусов в зараженном растении. Основную роль. в вирусном, транспорте играют вирус-кодируемые транспортные белки, которые обеспечивают перенос вирусного генома внутри клетки, от сайтов репликации к плазмодесмам, межклеточный транспорт, а так же распространение вирусного генома по всему растению (Atabekov and Dorokhov, 1984; Carrington et al, 1996).

Транспортные белки фитовирусов делятся на несколько классов, одним из которых является группа белков, кодируемых тройным блоком 1-е нов (ТБГ) (Moruzov etui., 1987; 1989). В зависимости or группы вирусов ТБГ может находиться в различных участках вирусного генома, но взаимное расположение генов ТБГ1, ТБГ2 и ТБГЗ и особенности кодируемых ими белков всегда остаются неизменными. Мутации в любом из генов ТБГ приводят к потере вирусом транспортных функций (Petty and Jackson, 1990; Beck et al, 1991; Gilmer et al, 1992; Herzog et al., 1998). Среди белков ТБГ наиболее хорошо изучен 6ТБГ1. Для него показана РНК-связывающая, НТФ-азная и хеликазная активности (Bleykasten et al.,\996; Kalinina et al., 1996; 2001; 2002; Donald et al., 1997; Wung et al., 1999; Liou et al., 2000), кроме того, хорошо изучено его распределение к клетке (Niesbach-Klosgen et al., 1990; Donald et al., 1993; Rouleau et al., 1994; Morozov et al, 1999; Erhardt et al, 1999; 2000; Lawrence and Jackson, 2001). В отличие от 6ТБГ1, биохимические свойства белков ТБГ2 и ТБГЗ изучены слабее. Это обусловлено высокой гидрофобностью этих белков. Локализация 6ТБГ2 в клетках зараженных растений была определена достаточно давно (Niesbach-Klosgen et al, 1990; Donald et al, 1993), однако попытки детектировать биохимическими методами 6ТБГЗ в клетках зараженных растений до сих пор не были успешными (Niesbach-Klosgen et al, 1990; Donald et al, 199J; Krishnamurthy et at., 2003). Тем не менее в настоящий момент появилось достаточно много сведений о локализации этого белка при экспрессии его с помощью различных векторных систем (Solovyev et al, 2000; Cowan et al, 2002; Krishnamutrfhy et al, 2003).

2. Обзор литературы

2Л. Общие положения транспорта вирусов растений

Распространение фитовирусов по тканям растения-хозяина происходит по принципиально отличной стратегии; по сравнению с вирусами животных или бактериофагами. Из первично-инфицированной клетки, пользуясь-специальными механизмами и не разрушая клетки, вирус транспортирует свой геном в соседние клетки растений (Atabekov and Taliansky, 1990; Carrington et al, 1996; Lazarowitz, 1999; Oparka and Roberts, 2001). Такое распространение фитовирусов называют ближним или межклеточным траснпортом (Carrington et al, Т996; Ding, 1998; Lazarowitz and Beachy 1999; Oparka and Roberts, 2001). При попадании в проводящие пучки вирус способен перемещаться по флоэме пассивно с током жидкости. Таким образом, вирус перемещается но стеблю на достаточно далекие дистанции к другим листьям и органам. Такой процесс именуется дальним транспортом (Atabekov and Taliansky, 1990; Carrington et al, 1996; Lazarowitz, 1999; Oparka and Roberts, 2001). Попав в неинфицированный лист, для дальнейшего распространения фитовирусы снова пользуются механизмами ближнего транспорта. Следует отметить, что существует несколько групп фитовирусов, неспособных к ближнему транспорту в мезофилле листовой пластины, и весь их жизненный цикл проходит во флоэме. Такие вирусы называют флоэмноограниченными (Leisner and Turgeon, 1993; Lucas and Wolf, 1999; Santa Cruz 1999).

Механизм попадания фитовирусов в первичную клетку изучен недостаточно хорошо. Считается, что такое проникновение вируса в клетку происходит через механические повреждения в клеточной стенке (Carrington et al, 1996). Известно, что вирусы, передающиеся насекомыми и патогенными грибами, попадают в первую очередь во флоэму (Tamada and Kusume 1991; Richards and Tamada 1992; Robinson et al, 1997). Некоторые вирусы способны передаваться через семена от поколения к поколению (Jackson et al.,1989; Edwards, 1995; Wang et al., 1997).

После попадания вириона в первично инфицированную клетку, начинаются процессы, связанные с выражением и репликацией вирусного i-енома. Среди синтезируемых вирусснецифических белков имеется один или несколько белковых продуктов, функциями которого является обеспечение процессов ближнего и дальнего транспорта. Такие белки получили название транспортных белков. В частности, в функции ТБ входит внутриклеточных транспорт вирусного генома от места репликации к плазмодесмам. Местом репликации вирусного генома может быть ядро для ДНК-содержащих фитовирусов или цитоплазма для РНК-содержащих вирусов. У некоторых вирусов транспортной функцией в дополнение к ТБ может обладать белок оболочки. Иногда наличие БО необходимо для обеспечения только дальнего транспорта.

2.2. Альфа-подобные фитовирусы, содержащие тройной блок генов

Геном вирусов, имеющих тройной блок генов, представляет собой однонитевую РНК положительной полярности. Все вирусы, имеющие в составе генома ТБГ, относятся к супергруппе альфа-подобных вирусов и имеют два характерных признака. Во-первых, их геномные РНК всегда несут кэп-структуру па 5'конце и поли-А-тракт и/или тРНК подобную структуру на З'конце. Во-вторых, они обладают характерным набором инвариантных доменов репликационных белков, а именно, домен, характерный для РНК-зависимой РНК-полимеразы, относящейся к супергруппе 3, хеликазный домен, характерный для суперсемейства 1, и метил-гуанилил-трансферазный домен (Goldbach, 1987; Koonin and Dolja, 1993).

В состав супергруппы альфа-подобных вирусов входят два семейства, геном представителей которых содержит ТБГ. Это семейства Tubiviridae и Potexviridae.

Похожие диссертационные работы по специальности «Вирусология», 03.00.06 шифр ВАК

Заключение диссертации по теме «Вирусология», Горшкова, Елена Николаевна

б. Выводы

1. Получены трансгенные растения N. benthamiana, экспрессирующие белки 18К и GFP-18K ПЛВМ.

2. Комплементационный анализ показал функциональную активность белков 18К и GFP-18K, экспрессируемых в трансгенных растениях.

3. Белки 18К и GFP-18K детектированы в трансгенных и зараженных растениях. Выявлена склонность белков к образованию высокомолекулярных агрегатов.

4. Субклеточное фракционирование тканей трансгенных растений, экспрессирующих белки 18К и GFP-18K и результаты экстракции этих белков показали их принадлежность к классу интегральных мембранных бежов.

5. Анализ распределения бежа 18К и GFP-18K относительно белков-маркеров в протяженном градиенте плотности сахарозы показал, что эти белки ассоциированы со структурами ЭР.

Список литературы диссертационного исследования кандидат биологических наук Горшкова, Елена Николаевна, 2003 год

1. Agranovsky AA, Boyko VP, Karasev AV, Koonin EV, Dolja WJ Mol Biol 1991 Feb 20;217(4):603-10 Putative 65 kDa protein of beet yellows closterovirus is a homologue of HSP70 heat shock proteins.

2. Agranovsky AA, Boyko VP, Karasev AV, Lunina NA, Koonin EV, Dolja VV.J Gen Virol 1991 Jan;72 (Pt l):15-23 Nucleotide sequence of the 3'-terminal half of beet yellows closterovirus RNA genome: unique arrangement of eight virus genes.

3. Agranovsky AA, Lesemann DE, Maiss E, Hull R, Atabekov JG.Proc Natl Acad Sci U S A 1995 Mar 28;92(7):2470-3 "Rattlesnake" structure of a filamentous plant RNA virus built of two capsid proteins.

4. Alzhanova DV, Hagiwara Y, Peremyslov VV, Dolja W.Virology 2000 Mar 1;268(1): 192-200 Genetic analysis of the cell-lo-cell movement of beet yellows closterovirus.

5. Alzhanova DV, Napuli AJ, Creamer R, Dolja W.EMBO J 2001 Dec 17;20(24):6997-7007 Ccll-to-ccll movement and assembly of a plant closterovirus: roles for the capsid proteins and Hsp70 homolog.

6. Angell,S.M.,Davies,C., and Baulcombe,D. 1996.Cell-to-cell movement of potato virus X is associated with a change in the size-exclusion limit of plasmodesmata in trichome cells of Nicotiana Cleveland». Virology 216: 197-201.

7. Atabekov JG, Dorokhov YuL. Plant virus-specific transport function and resistance of plants to viruses. Adv Virus Res 1984;29:313-64

8. Atabekov JG, Taliansky ME. Expression of a plant virus-coded transport function by different viral genomes. Adv Virus Res 1990;38:201-48

9. Atabckov,J.G.,Rodionova,N.O.,Karpova,O.V.,Kozlovsky,S.V., and Po1jakov,V.Yu. 2000.Thc movement protcin-triggcrcd in situ conversion of potato virus X virion RNA from a nontranslatable into translatable form. Virology 271:259-263

10. Atkins,D.,Hull,R.,Wells,B.,Roberts,K.,Moore,P.,and Beachy,R.N. 1991. The tobacco mosaic virus 30K movement protein in transgenic tobacco plants is localized to plasmodesmata. J. Gen.Virol. 72: 209-211.

11. Balu^ska F., Cvrckova F., Kendrick-Jones J. & Volkmann D. (2001)Sink plasmodesmata as gateways for phloem unloading. MyosinVIII and calreticulin as molecular determinants of sinkstrength? Plant Physiology 126, 39-46.

12. Baulcombe,D.C.,Chapman,S., and Santa -Cruz,S. 1995. Jellyfish green fluorescent protein as a reporter for virus infections. Plant J. 7: 10451053.

13. Beck,D.L., Guilford, P.J.,Voot,D.M., Andersen, M.T., and Forster,R.L.S. 1991. Triple gene block proteins of white clover mosaic potexvirus are required for virus infections. Plant J. 7: 1045-1053.

14. Bertens, P., Ileijne, W., Van der Wei, W., Wellink, J., Van Kammen, A. (2003). Studies on the C-termiiius of the Cowpea mosaic virus movement protein. Arch Virol, 148, 265-279.

15. Blackman L.M. & Overall R.L. (1998) Immunolocalisation of thecytoskeleton to plastnodesmata of Char a corallina. Plant Journal 14, 733-741.

16. Blackman L.M. & Overall R.L. (2001) Structure and function ofplasmodesmata. Australian Journal of Plant Physiology 28, 709-727.

17. Blackman L.M., Boevink P., Santa Cruz S., Palukaitis P. & OparkaK.J. (1998) The movement protein of cucumber mosaic virustraffics into sieve elements in minor veins ofNicotiana Cleveland».Plant Cell 10, 525—537.

18. Blackman L.M., Harper J.D.I. & Overall R.L. (1999) Localizationof a centrin-like protein to higher plant plasmodesmata.European Journal of Cell Biology 78,297-304.

19. Blackman LM, Boevink P, Cruz SS, Palukaitis P, Oparka KJ. Plant Cell 1998 Apr;10(4):525-38 The movement protein of cucumber mosaic virus traffics into sieve elements in minor veins of nicotiana clevelandii

20. Bleykasten, C., Gilmer, D., Guilley, H., Richards, К. E., and Jonard, G. (1996). Beet necrotic yellow vein virus 42 kDa triple gene block protein binds nucleic acid in vitro. J. Gen. Virol. 77, 889-897.

21. Boyko V, Ashby JA, Suslova E, Ferralli J, Sterthaus O, Deom CM, Heinlem M.J Virol 2002 Apr;76(8):3974-80 Intramolecularcomplementing mutations in tobacco mosaic virus movement protein confirm a role for microtubule association in viral RNA transport.

22. Boyko VP, Karasev AV, Agranovsky AA, Koonin HV, Dolja VV.Proc Natl Acad Sci U S A 1992 Oct l;89(19):9156-60Coat protein gene duplication in a filamentous RNA virus of plants.

23. Boyko, V., Ferralli, J., Ashby, J., Schellenbaum, P., Heinlein, M. (2000). Function of microtubules in intercellular transport of plant virus RNA. Nat Cell Biol., 2, 826-832.

24. Boyko, V., Ferralli, J., Heinlein, M. (2000). Cell-to-cell movement of TMV RNA is temperature-dependent and corresponds to the association of movement protein with microtubules. Plant J., 22, 315-325.

25. Canizares MC, Marcos JF, Pallas V. Arch Virol 2001 0ct;146(10):2039-51 Molecular variability of twenty-one geographically distinct isolates of Carnation mottle virus (CarMV) and phylogenelic relationships within the Tombusviridae family.

26. Cantrill L.C., Overall R.L. & Goodwin P.B. (1999) Cell-to-ccllcommunication via plant cndomembrancs. Cell Biology International23, 653-661.

27. Cantrill L.C., Overall R.L. & Goodwin P.B. (2001) Changes insymplastic permeability during adventitious shoot regenerationin tobacco thin cell layers. Planta 214, 206-214.

28. Сагг D.J. (1976) Historical perspectives on plasmodesmata. lnlntercellular Communication in Plants: Studies on Plasmodesmata (eds B.E.S. Gunning & A.W. Robards), pp. 291-295.Springer-Verlag, Berlin, Germany.

29. Carrington JC, Jensen PE, Schaad MC. Plant J 1998 May;14(4):393-400 Genetic evidence for an essential role for potyvirus CI protein in cell-to-cell movement.

30. Carrington,J.C,Kasschau,lC.D.,Mahajaii,S.K.,and Schaad,M.C. 1996. Cell-to-cell and long-distance transport of viruses in plants. Plant Cell 8: 1669-1681.

31. Cavileer, T. D., Ilalpern, В. Т., Lawrence, D. M, Podleckis, E. V., Martin, R. R., and Hillman, В. I. (1994). Nucleotide sequence of the carlavirus associated with blueberry scorch and similar diseases. J. Gen. Virol. 75, 711-720.

32. Chapman ,S.,Hills,G.,Watts,J., and Baulcombe,D. 1992.Mutational analysis of the coat protein gene of potato virus X: effects on virion morphology and viral pathogenicity. Virology 191: 223-230 Virology 191:223-230.

33. Chen M.-H., Sheng J., Hind G., Handa A.K. & Citovsky V. (2000)Interaction between the tobacco mosaic virus MP and host cellpectin methylesterases is required for viral cell-to-cell movement.EMBO Journal 19, 913-920.

34. Citovsky V. Plant Physiol 1993 Aug;l02(4): 1071-1076 Probing Plasmodcsmal Transport with Plant Viruses.

35. Citovsky, V., Knorr, D., Schuster, G., Zambryski, P. (1990). The P30 movement protein of tobacco mosaic virus is a single-strand nucleic acid binding protein. Cell, 60, 637-647.4LCitovsky,V.,McLean,B.G.,Zupan,J.R.,Zambryski ,P. 1993.

36. Phosphorilation of tobacco mosaic virus cell-to-cell movement protein by a developmentally regulated plant cell wall- associated protein kinase. Genes. Devel.7: 904-910

37. Citovsky,V.,Wong,M.L.,Shaw,A.L.,Prasad,B.V.V., and Zambryski,P. 1992. Visualization and characterization of tobacco mosaic virus movement protein binding to single-stranded nucleic acids.Plant cell 4: 397-411.

38. Cohen Y, Gisel A, Zambryski PC. Virology 2000 Aug l;273(2):258-66 Cell-to-cell and systemic movement of recombinant green fluorescent prolein-lagged turnip crinkle viruses.

39. Cook M.E., Graham L.E., Botha C.C.J. & Lavin C.A. (1997) Comparativeultrastructure of plasmodesmata of Chara and sclcctcdbryophytcs: toward an elucidation of the evolutionary origin ofplant plasmodesmata. American Journal of Botany 84,1169-1178.

40. Cowan GH, Lioliopoulou F, Ziegler A, Torrance L.Virology 2002 Jun 20;298(1): 106-15 Subcellular localisation, protein interactions, and RNA binding of Potato mop-top virus triple gene block proteins.

41. Davenport, G. F., and Baulcombe, D. C. (1997). Mutation of the GK.S motif of the RNA-dependent RNA polymerase from potato virus X disables or eliminates virus replication. J. Gen. Virol. 78, 1247-1251.

42. Davies C, Hills G, Baulcombe DC.Virology 1993 Nov; 197(1): 166-75 Sub-cellular localization of the 25-kDa protein encoded in the triple gene block of potato virus X.

43. Dawson,W.O., Bubrick,P.,and Grantham,G.L. 1988. Modifications of the tobacco mosaic virus coat protein gene affecting replication movement and symptomatology. Phytopathology 78: 783-789.

44. Deom, C.M., Oliver, M.J., Beachy, R.N. (1987). The 30K gene product of tobacco mosaic virus potentiates virus movement. Science, 237, 384-389.

45. Deom,C.M.,Lapidot,M.,and Beachy,R. 1992. Plant virus movement proteins. Cell 69: 221-224.

46. Deom,C.M.,Schubert,K.R.,Wolf,S.,Holt,C.A.,Lucas,W.J.,and

47. Beachy,R.N. 1990. Molecular characterization and biological function of Ihe movement protein of tobacco mosaic virus in transgenic plants. Proc.NatLAcad.Sci.USA87:3284-3288.

48. Dmg B, Haudenshield JS, Hull RJ, WolfS, Beachy RN, Lucas WJ. Plant Cell 1992 Aug;4(8):915-28 Secondary plasmodesmata arc specific sites oflocalization of the tobacco mosaic virus movement protein in transgenic tobacco plants.

49. Ding B, Turgeon R, Parthasarathy MV. J Electron Microsc Tech 1991 Sep;19(l):107-17 Routine cryotlxation of plant tissue by propane jet freezing for freeze substitution.

50. Ding B. Plant Mol Biol 1998 Scp;38(l-2):279-310 Intcrccllular protein trafficking through plasmodesmata.

51. Ding, В., Li, Q-b., Nguyen, L., Palukaitis, P., Lucas, W.J. (1995) Cucumber mosaic virus 3a protein potentiates cell-to-cell trafficking of CMV vRNA in tobacco plants. Virology, 207, 345-353.

52. Ding, X.S., Carter, S.A., Deom, C.M., Nelson, R.S. (1998). Tobamovirus and potyvirus accumulation in minor veins of inoculated leaves from representatives of the Solanaceae and Fabaceae. Plant Physiol, 116, 125136.

53. Ding,В.,Turgeon,R.,ParthasarathyM.,V. 1992. Substructure of freeze -substituted plasmodesmata. Protoplasma 169:28-41

54. Dolja VV, Haldeman R, Robertson NL, Dougherty WG, Carrington JC.EMBO J 1994 Mar 15; 13(6): 1482-91 Distinct functions of capsid protein in assembly and movement of tobacco etch potyvirus in plants.

55. Dolja W, Haldeman-Cahill R, Montgomery AE, Vandenbosch KA, Carrington JC.Virology 1995 Feb 1;206(2): 1007-16 Capsid protein determinants involved in cell-to-cell and long distance movement of tobacco etch potyvirus.

56. Donald RG, Zhou H, Jackson AO.Virology 1993 Aug;195(2):659-68 Serological analysis of barley stripe mosaic virus-encoded proteins in infected barley.

57. Donald, R. G. K., Petty, 1. T. D., Zhou, H., and Jackson, A. O. (1995). Properties of genes influencing barley stripe mosaic virus movement phenolypes. In "Fifth International Symposium on Biotechnology and

58. Plant Protection: Viral Pathogenesis and Disease Resistance", pp. 135147. World Scientific, Singapore.

59. Donald, R. G., and Jackson, A. O. (1994). The barley stripe mosaic virus Ub gene encodes a multifunctional cysteine-rich protein that affects pathogenesis. Plant Cell 6, 1593-1606.

60. Donald, R. G., Lawrcncc, D. M., and Jackson, A. O. (1997). The barley stripe mosaic virus 58-kilodalton Db protein is a multifunctional RNA binding protein. J. Virol. 71, 1538-1546.

61. Ehlers K, Kollmann R. Protoplasma 2001,216(1-2): 1-30 Primary and secondary plasmodesmata: structure, origin, and functioning.

62. Ehlers,K.,Kollman,R. 1996. Formation of branched plasmodesmata in regenerating Solanuin nigrum-rotoplasts. Planta 199: 126-138.

63. Erhardt M, Stussi-Garaud C, Guilley H, Richards KE, Jonard G, Bouzoubaa S.Virology 1999 Nov 10;264(l):220-9 The first triple gene block protein of peanut clump virus localizes to the plasmodesmata during virus infection.

64. Erhardt,M.,Herzog,E.,Lauber,E.,Fritsch,C.,

65. Guelley,H., Jonard, G.,Richards,K.E., and Bouzoubaa,S. 1999(a). Transgenic plants expressing the TGB protein of peanut clump virus complement movement of TGB 1-defective peanut clump virus but not of

66. TGBl-defective beet necrotic yellow vein virus. Plant Cell Reports 18: 614-619.

67. Erokhina TN, Zinovkin RA, Vitushkina MV, Jelkmann W, Agranovsky AA.J Gen Virol 2000 Mar;81(Pt 3):597-603 Detection of beet yellows closterovirus melhyllransferase-like and helicase-Iike proteins in vivo using monoclonal antibodies.

68. Esau,fcL,Thorsch,J. 1985.Sieve plate pores and plasmodesmata , the communication channels of the symplast: ultrastructural aspects and developmental relations. Am J.Bol. 72: 1641-1653 .

69. Fedoroff N V. Curr Opin Plant Biol 2002 Oct;5(5):452-9 RNA-binding proteins in plants: the tip of an iceberg?

70. Forster,R.L.S.,Beck,D.L., Guilford,P.GJ.,Voot,D.M.,Van Dolleweerd,C.J.,and Andersen,M.T. 1992.The coat protein of white clover mosaic potexvirus has a role in facilitating cell-to-cell transport in plants. Virology 191:480-484.

71. Fridborg 1, Grainger J, Page A, Coleman M, Findlay K, Angell S. Mol Plant Microbe Interact 2003 Feb; 16(2): 132-40 TIP, a novel host factor linking callose degradation with the cell-to-cell movement of Potato virus X.

72. Gamalei Y.V. (1989) Structure and function of leaf minor veins intrees and herbs. Trees 3, 96-110.

73. Gamalei,Y.,V., Van Bel,A.,J.,E., Pakhomova,M.,V., and SjutkinaA. 1994. Effects of temperature on the conformation of the endoplasmatic reticulum and on starch accumulation in leaves with the symplastic minor-vein configuration. Planta 194:443-453

74. Garcia-Castillo S, Sanchez-Pina MA, Pallas V. J Gen Virol 2003 Mar;84(Pt 3):745-9 Spatio-temporal analysis of the RNAs, coat and10Qmovement (p7) proteins of Carnation mottle virus in Chenopodium quinoa plants.

75. Gilberlson,R.l.,Lucas,W.J.1996. How do viruses traffic on the "vascular highway"? Trends Plant Sell: 260-268

76. Gilmer, D., Bouzoubaa, S., Hehn, A., Guilley, H., Richards, K., and Jonard, G. (1992a). Efficient cell-to-cell movement of beet necrotic yellow vein virus requires 3' proximal genes located on RNA 2. Virology 189, 40-47.

77. Gorbalenya, A. E., and Koonin, E.V. (1993). Helicases. Amino acid sequence comparisons and beyond. Curr. Opin. Struct. Biol. 3, 419-429.

78. Grabski,S.,de FeijterA.W.,Schindler,M.1993.Endoplasmic reticulum forms a dynamic continuum for lipid diffusion between contiguous soybean root cells. Plant Cell5: 25-38

79. Gunning B.E.S. & Overall R.L. (1983) Plasmodesmata and cellto-cell transport in plants. Bioscience 33, 260-265.

80. Hacker DL, Petty IT, Wei N, Morris TJ. Virology 1992 Jan;186(l):l-8 Turnip crinkle virus genes required for RNA replication and virus movement.

81. Haywood V, Kragler F, Lucas WJ. Plant Cell 2002; 14 Suppl:S303-25 Plasmodesmata: pathways for protein and ribonucleoprotein signaling.

82. Hcffcron KL, Doyle S, AbouHaidar MG.Arch Virol 1997;142(2):425-33 Immunological detection of the 8K protein of potato virus X (PVX) in cell walls of PVX-infected tobacco and transgenic potato.

83. Heinlein,L.,Epel,B.,l.,Padgett,H.,S.,Beachy,bL,N.1995.Interaction of tobamovirus movement proteins with the plant cytoskeleton. Science 270:1983-1985.

84. Herzog H, Hemmer O, Hauser S, Meyer G, Bouzoubaa S, Fritsch C. Virology 1998 Sep 1;248(2):312-22 Identification of genes involved in replication and movement of peanut clump virus.

85. Jackson, A.O., Petty, T.T.D., Jones, R.W., Edwards, M.C., and French, R. (1991). Analysis of barley stripe mosaic virus pathogenicity. Semin. Virol. 2: 107-119

86. Jackson, A.O.,Hunter,B.G., and Gustafson, G.D. 1989. Hordeivirus relationships and genome organization. Annu. Rev.Phylopalhol. 27: 95121.)

87. Jankowsky E, Gross CH, Shuman S, Pyle AM. Science 2001 Jan 5;291(5501):121-5 Active disruption of an RNA-protein interaction by a DExH/D RNA helicase.

88. Jelkmann, W. (1994). Nucleotide sequences of apple stem pitting virus and of the coat protein gene of a similar virus from pear associated with vein yellows disease and their relationship with potex- and carlaviruses. J. Gen. Virol. 75,1535-1542.

89. Jones M.G.K. (1976) The origin and development of plasmodesmata.In Intercellular Communication in Plants: Studies on Plasmodesmata(eds B.E.S. Gunning & A.W. Robards), pp. 81-105.Springer-Verlag, Berlin, Germany.

90. Juuti JT, Bamford DH, Tuma R, Thomas GJ Jr. J Mol Biol 1998 Jun 5;279(2):347-59 Structure and NTPase activity of the RNA-translocating protein (P4) of bacteriophage phi 6.

91. Kadare, G., and Haenni, A. L. (1997). Virus-encoded RNA helicases. J. Virol. 71, 2583-2590.

92. Kalinina NO, Rakitina DV, Solovyev AG, Schiemann J, Morozov SY. Virology 2002 May 10;296(2):321-9 RNA helicase activity of the plant virus movement proteins encoded by the first gene of the triple gene block.

93. Kalinina,N.A.,Fedorkin,O.N.,Samuilova,O.V.,Maiss,E.,Korpela,T., Morozov,S.Yu.,Alabekov,J.G. 1996. Expression and biochemical analysisof recombinant potato virus X 25K movement protein. FEBS Letters 397: 75-78.

94. Karasev AV, Hilf ME, Garnsey SM, Dawson WO.J Virol 1997 Aug;71(8):6233-6 Transcriptional strategy of closteroviruses: mapping the 5' termini of the citrus tristeza virus subgenomic RNAs.

95. Karasev AV, Kashina AS, Gelfand VI, Dolja VV.FEBS Lett 1992 Jun 8;304(l):12-4 HSP70-related 65 kDa protein of beet yellows closterovirus is a microtubule-binding protein.

96. Karasev AV, Nikolaeva OV, Mushegian AR, Lee RF, Dawson WO Virology 1996 Jul 1;221(1): 199-207 Organization of the 34erminal half of beet yellow stunt virus genome and implications for the evolution of closteroviruses.

97. Karasev AV.Annu Rev Phytopathol 2000;38:293-324 GENETIC DIVERSITY AND EVOLUTION OF CLOSTEROVIRUSES.

98. Karpova OV, Rodionova NP, Ivanov Kl, Kozlovsky SV, Dorokhov YL, Atabekov JG. Virology 1999 Aug I5;261(l):20-4 Phosphorylation of tobacco mosaic virus movement protein abolishes its translation repressing ability.

99. Karpova, О. V., Ivanov, К. I., Rodionova, N. P., Dorokhov Yu, L., and Atabekov, J. G. (1997). Nontranslatability and dissimilar behavior in plants and protoplasts of viral RNA and movement protein complexes formed in vitro. Virology 230, 11-21.

100. Kasschau KD, Cronin S, Carrington JC.Virology 1997 Feb 17;228(2):251-62 Genome amplification and long-distance movementfunctions associated with the central domain of tobacco etch potyvirus helper component-proteinase.

101. Kasleel, D. Т., vander Wei, N. N., Jansen, K. A., Goldbach, R. W., and van Lent, J. W. (1997). Tubule-forming capacity of the movement proteins of alfalfa mosaic virus and brome mosaic virus. J. Gen. Virol. 78, 2089-2093.

102. Kempers, R., van Bel, A.J.E. (1997). Symplasmic connections between sieve element and companion cell in the stem phloem of Vicia faba L. have a molecular exclution limit of at least lOkDa. Planta, 201, 195-201.

103. King JA, Dubielzig R, Grimm D, Kleinschmidt JA. EMBO J 2001 Jun 15;20(12):3282-91 DNA helicase-mediated packaging of adeno-associated virus type 2 genomes into preformed capsids.

104. Klein PG, Klein RR, Rodriguez-Cerezo E, Hunt AG, Shaw JG. Virology 1994 Nov l;204(2):759-69 Mutational analysis of the tobacco vein mottling virus genome.

105. Koonin,E.V., and Dolja,V.V.1993. Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Critical Reviews in Biochemestry and Molecular biology 28:375-373.

106. Kragler, F., Lucas, W.J., Monzer, J. (1998). Plasmodesmata: dynamics, domains and patterning. Ann Bot, 81, 1-10.

107. Krishnamurthy К, Mitra R, Payton ME, Verchot-Lubicz J.Virology 2002 Sep 1 ;300(2):269-81 Cell-to-cell movement of the PVX 12K, 8K, or coat proteins may depend on the host, leaf developmental stage, and the PVX 25K protein.

108. Lai MM, Cavanagh D.Adv Virus Res 1997;48:1-100 The molecular biology of coronaviruscs.

109. Lawrence DM, Jackson AO.J Virol 2001 Sep;75(18):8712-23 Interactions of the TGB1 protein during cell-to-cell movement of Barley stripe mosaic virus.

110. Lee JY, Yoo ВС, Rojas MR, Gomez-Ospina N, Staehelin LA, Lucas WJ. Science 2003 Jan 17;299(5605):392-6 Selective trafficking of non-cell-autonomous proteins mediated by NtNCAPPl.

111. Leisner,S.,M.,Howell,S.,H. 1993(a). Long distance movement of viruses in plants. Trends Microbiol. 1: 314-317

112. Leisner,S.M.,Turgeon,R.,and Howell,S.H. 1993(b). Effects of host plant development on the long-distance movement of cauliflower mosaic virus in Arabidopsis.Plant Cell 5:191-202.

113. Li WZ, Qu F, Morris TJ. Virology 1998 May 10;244(2):405-16 Cell-to-cell movement of turnip crinkle virus is controlled by two small open reading frames that function in trans.

114. Li,Q.,and Palukaitis,P. 1996. Comparision of the nucleic acid- and NTP-binding properties of the movment proteins of cucumber mosaic virus cucumovirus and tobacco mosaic tobamovirus. Virology 216: 71-79

115. Longstaff, M., Brigneti, G., Boccard, F., Chapman, S., and Baulcombe, D. (1993). Extreme resistance to potato virus X infection in plants expressing a modified component of the putative viral replicase. EMBO J. 12, 379-386.

116. Lough TJ, Emerson SJ, Lucas WJ, Forster RL. Virology 2001 Sep 15;288(1): 18-28 Trans-complementation of long-distance movement of White clover mosaic virus triple gene block (TGB) mutants: phloem-associated movement of TGBpl.

117. Lucas W.J. & Gilbertson R.L. (1994) Plasmodesmata in relationto viral movement within leaf tissues. Annual Review of Phytopathology32, 387-411.

118. Lucas W.J. & Wolf S. (1993) Plasmodesmata: the intercellularorganelles of green plants. Trends in Cell Biology 3, SOS-SIS.

119. Lucas,W.J.,Ding,B ,van der Schoot,C. 1993. Plasmodesmata and the supracellular nature of plants. New Phytol. 125: 435-476.

120. Marcos JF, Vilar M, Perez-Paya E, Pallas V. Virology 1999 Mar 15;255(2):354-65 In vivo detection, RNA-binding properties and characterization of the RNA-binding domain of the p7 putative movement protein from carnation mottle carmovirus (CarMV).

121. Martelli, G. P., and Jelkmann, W. (1998). Foveavirus, a new plant virus genus. Arch. Virol. 143, 1245-1249.

122. Mas P. & Beachy R.N. (2000) Role of microtubules in the intracellulardistribution of tobacco mosaic virus movement protein.Proceedings of the National Academy of Science, USA 97, 12345-12349.

123. Maule ,A.J. 1991. Virus movement in infected plants. Cri. Rev. Plant Sci. 9:457-473.

124. McGeachy KD, Barker H. Mol Plant Microbe Interact 2000 Jan;13(l): 125-8 Potato mop-top virus RNA can move long distance in the absence of coat protein: evidence from resistant, transgenic plants.

125. McLean ,B.G., Hempel,F.D.,Zambryski,P.C. 1995. Tobacco mosaic virus movement protein associated with the cytoskeleton in tobacco cells. Plant Cell 7: 2102-2114.

126. Medina V, Peremyslov VV, Ilagiwara Y, Dolja VV.Virology 1999 Jul 20;260(1): 173-81 Subcellular localization of the HSP70-homolog encoded by beet yellows closterovirus.

127. Mezitt LA, Lucas WJ. Piasmodesmal ceil-to-cell transport of proteins and nucleic acids. Plant Mol Biol 1996 Oct;32(l-2):251-73

128. Morozov,S.Yu. and Solovyev,A.G. 1999. Genome organization in RNA viruses. In "Molecular biology of plant viruses".(C.L.Mandahar.Ed) pp 47-98. Kluwer Academic Publishes, (review) Bostoa^Dordrecht /I ondon

129. Morozov.S.Yu., Lukasheva,L,l.,Chernov,В,K.,Skryabin,K.G., and Atabekov,J.G. 1987. Nucleotide sequence of the open reading frames adjacent to the coat protein cistron in potato virus X. FEBS Lett. 213; 438-442.

130. Morozov,S.Yu,,Dolja,V. V., and Atabekov,.I.G. 1989. Probable reassortment of genomic elements among elongated RNA-comaining virus. J. Mol, Evol, 29; 52-62,

131. Morozov,S.Yu.,Fedorkin,O.N.,Junter,G.,Schiemann,J.,Baulcombe, D.C., and Atabekov,J.G. 1997. Complementation of a potato virus X mutant mediated by bombardment of plant tissues with cioned viral movement protein genes, J. Gen.Viroi. 78: 2077-2083.

132. Morozov,S.Yu.,Miroschnochenko,N, A,,Solovyev A-G-,PedorkinfO. N.,Zelenina,D.A.,Lukasheva,L.I.,Karasev,A,V,,Dolja,V.V.,and Atabekov,j.G. 1991(a). Expression strategy of the potato virus X triple gene block. J Gen.Virology 72: 2039-2042.

133. Morozov,S. Yu^Miroschnochenko^.A^Solovyev.A.G.^elenina^. A.„Fedorkin,O.N., Lukashe va,L. I., Grachev, S. A., and Chernov,B.A. 1991(b). hi vilro membrane binding of Ihe translation products of the carlavirus 7-kDa protein genes. Virology 183: 782-785.

134. Morozov, S.Yu., Solovyev, A.G.,Kalinina,N.O.,Fedorkin,O.N.,Samui lova,O.V.,Schiemann,J., and Atabekov,J.G. 1999. Evidence for two nonoverlapping functional domains in the potato virus X 25K movement protein. Virology 260: 55-63.

135. Morvan O., Quentin M., Jauneau A., Mareck A. & Morvan C.(1998) Immunogold localization of pectin methylesterases in thecortical tissues of flax hypocotyl. Protoplasma 202, 175-184.

136. Napuli AJ, Alzhanova DV, Doneanu CE, Barofsky DF, Koonin EV, Dolja W.The 64-kilodalton capsid protein liomolog of Beet yellows virus is required for assembly of virion tails.

137. Noneiry AO, Lucas WJ, Gilbertson RL. Cell 1994 Mar ll;76(5):925-32 Two proteins of a plant DNA virus coordinate nuclear and plasmodesmal transporL

138. Ofifei SK, Coffin RS, Coutts RH. J Gen Virol 1995 Jun;76 ( Pt 6): 1493-6 The tobacco necrosis virus p7a protein is a nucleic acid-binding protein.

139. Oparka K.J. & Roberts A.G. (2001) Plasmodesmata. A not soopen-and-shut case. Plant Physiology 125, 123-126.

140. Oparka ,К J.,Prior,D. 1996. Direct evidence for pressure generated closure of plasmodesmata. Plant. J. 2: 741-750.

141. Overall,R.L.,BlackmanL.M. 1996. A model for the macromolecular structure of plasmodesmata. Trends Plant Sci 1: 307-311.

142. Pantaleo V, Grieco F, Castellano MA, Martelli GP. Arch Virol 1999;144(6): 1071-9 Synthesis of infectious transcripts of olive latent virus 1: genes required for RNA replication and virus movement.

143. Peng CW, Dolja VV.J Virol 2000 0ct;74(20):9766-70 Leader proteinase of the beet yellows closterovirus: mutation analysis of the function in genome amplification.

144. Peng CW, Napuli AJ, Dolja VV J Virol 2003 Mar;77(5):2843-9 Leader proteinase of beet yellows virus functions in long-distance transport.

145. Peng CW, Peremyslov VV, Mushegian AR, Dawson WO, Dolja VV.J Virol 2001 Dec;75(24): 12153-60 Functional specialization and evolution of leader proteinases in the family Closteroviridae.

146. Peng CW, Peremyslov VV, Snijder EJ, Dolja VV Virology 2002 Mar l;294(l):75-84 A replication-competent chimera of plant and animal viruses.

147. Peremyslov VV, Dolja VV.Virology 2002 Apr 10;295(2):299-306 Identification of the subgenomic mRNAs that encode 6-kDa movement protein and Hsp70 homolog of Beet yellows virus.

148. Peremyslov W, Hagiwara Y, Dolja VV J Virol 1998 Jul;72(7):5870-6 Genes required for replication of the 15.5-kilobase RNA genome of a plant closterovirus.

149. Peremyslov VV, Hagiwara Y, Dolja VVProc Natl Acad Sci U S A 1999 Dec 21;96(26):14771-6 HSP70 homolog functions in cell-to-cell movement of a plant virus. J Virol 2003 Feb;77(4):2377-84

150. Petty I.T.D. & Jackson A.O. (1990) Mutational analysis of barleystripe mosaic virus RNA b. Virology 179, 712-718.

151. Petty IT, Hunter BG, Wei N, Jackson AO. Virology 1989 Aug;171(2):342-9 Infectious barley stripe mosaic virus RNA transcribed in vitro from full-length genomic cDNA clones.

152. Pilon M, Schekman R.CelI 1999 Jun 11 ;97(6):679-82 Protein translocation: how Hsp70 pulls it off.

153. Pringle CR. Arch Virol 1998; 143(7): 1449-59 Virus taxonomy-San Diego 1998.

154. Prokhnevsky Al, Peremyslov VV, Napuli AJ, Dolja VV.J Virol 2002 No v,76(21):11003-11 Interaction between long-distance transport factor and Hsp70-relaled movement protein of Beet yellows virus.

155. Prokhorov,V.V.,Ustinova,S.V.,Chernov,B.K., Schiemann,J., Solovyev,A.G., and Morozov,S.Yu. 2001. RNA-binding properties of the 63 kDa protein cncodcd by the triple gene block of poa scmilatcnt hordeivirus. J. Gen. Virol. 82: 2569-2578.

156. Radford,J.,E.,White,R.,G. 1998. Localization of myosin -like protein to plasmodesmata. Plant J. 14(6): 743-50.

157. Rajamaki ML, Valkonen JP Mol Plant Microbe Interact 2002 Feb;15(2):138-49Viral genome-linked protein (VPg) controls accumulation and phloem-loading of a potyvirus in inoculated potato leaves.

158. Rajamaki ML, Valkonen JP.Mol Plant Microbe Interact 1999 Dec; 12(12): 1074-81The 6K2 protein and the VPg of potato virus A are determinants of systemic infection in Nicandra physaloides.

159. Reed JC, Dolja W.Kasschau KD, Prokhnevsky Al, Gopinath K, Pogue GP, Carrington JC,

160. Reichel, C., Mas, P., Beachy, R.N. (1999). The role of the ER and cytoskeleton in plant viral trafficking. Trends Plant Sci., 4(11), 13601385.

161. Reichel,С and Beachy,R.N. 1998. Tobacco mosaic virus infection induce severe morphological changes of the endoplasmic reticulum. Proc. Natl. Acad. Sci USA 95: 11169-11174.

162. Reichelt S., Knight A.E., Hodge T.P., Baluska F., Samaj J., VolkmannD. & Kendrick-Jones J. (1999) Characterization of theunconventional myosin VIII in plant cells and its localization atthe post-cytokinetic cell wall. Plant Journal 19,555-567.

163. Riechmann JL, Lain S, Garcia JA J Gen Virol 1992 Jan;73 ( Pt 1):1-16 Highlights and prospects of potyvirus molecular biology.

164. Rinne P.L.H., Kaikuranla P.M. & van der School C. (2001) Theshoot apical meristem restores its symplastic organisation duringchilling-induced release from dormancy. Plant Journal 26, 249264.

165. Roberts A.G., Santa Cruz S., Roberts I.M., Prior D.A.M., TurgeonR. & Oparka K.J. (1997) Phloemunloading in sink leaves ofNicotiana benthamiana: comparison of a fluorescent solute withafluorescent virus. Plant Cell 9, 1381-1396.

166. Roberts 1.М., Boevink P., Roberts A.G., Sauer N., Reichel C. &Oparka K.J. (2001) Dynamic changes in the frequency andarchitecture of plasmodesmata during the sink-source transitionin tobacco leaves. Protoplasma 218, 31-44.

167. Roberts IM, Wang D, Findlay K, Maule AJ. Virology 1998 May 25;245(1):173-81 Ultrastructural and temporal observations of the potyvirus cylindrical inclusions (Cis) show that the CI protein acts transiently in aiding virus movement.

168. Roberts, A.G., Oparka, K.J. (2003). Plasmodesmata and the control of symplastic transport. Plant, Cell and Environment, 26, 103-124.

169. Rodriguez-Cerezo E, Ammar ED, Pirone TP, Shaw J G.J Gen Virol 1993 Sep;74 ( Pt 9):1945-9Association of the non-structural P3 viral protein with cylindrical inclusions in poty virus-infected cells.

170. Rodriguez-Cerezo E, Findlay K, Shaw JG, LomonossofF GP, Qiu SG, Linstead P, Shanks M, Risco C.Virology 1997 Sep 29;236(2):296-306The coat and cylindrical inclusion proteins of a potyvirus are associated with connections between plant cells.

171. Rohde, W., Gramstat, A., Schmitz, J., Таске, E., and Prufer, D. (1994). Plant viruses as model systems for the study of non-canonicaltranslation mechanisms in higher plants. J. Gen. Virol. 75, 2141-2149.

172. Rojas MR, Zerbini FM, Allison RF, Gilbertson RL, Lucas WJ.Virology 1997 Oct 27;237(2):283-95 Capsid protein and helper component-proteinase function as potyvirus cell-to-cell movement proteins.

173. Rupasov, V. V., Morozov, S. Y., Kanyuka, К. V., and Zavricv, S. K. (1989). Partial nucleotide sequence of potato virus M RNA shows similarities to protexviruses in gene arrangement and the encoded amino acid sequences. J. Gen. ViroL 70, 1861-1869.

174. Ryabov E.V., Robinson D.J. & Taliansky M.E. (1999) A plantvirus-encoded protein facilitates long-distance movement of heterologous viral RNA. Proceedings of the National Academyof Science, USA 96, 1212— 1217.

175. Ryabov EV, Oparka KJ, Santa Cruz S, Robinson DJ, Taliansky ME. Virology 1998 Mar 15;242(2):303-13 Intracellular location of two groundnut rosette umbravirus proteins delivered by PVX and TMV vectors.

176. Saenz P, Salvador B, Simon-Mateo C, Kasschau KD, Carrington JC, Garcia JA.J Virol 2002 Feb;76(4):l922-3lHost-specific involvement of the HC protein in the long-distance movement of poty viruses.

177. Saito,T., Yamana,K., and Okada,Y. 1990. Long-distance movement and viral assembly of tobacco mosaic virus mutants. Virology 176: 329336.

178. Santa Cruz S. Trends Microbiol 1999 Jun;7(6):237-41 Perspective: phloem transport of viruses and macromolecules what goes in must come out.

179. Santa Cruz,S.,Roberts,A. G.,Prior,D. A.M.,Chapman,S., and Oparka,K.J. 1998. Cell-to-cell and phloem- mediated transport of potato vims X: the role of virions. Plant cell 10:495-510.

180. Savenkov, E. I., Solovyev, A. G., and Morozov, S. Y. (1998). Genome sequences of poa semilatent and lychnis ringspot hordeiviruses. Arch. Virol. 143, 1379-1393.

181. Schaad MC, Lellis AD, Carrington JC.J Virol 1997 Nov;71(ll):8624-31 VPg of tobacco etch potyvirus is a host genotype-spccific determinant for long-distancc movement

182. Scholthof H.B., Scholthof K.-B.G., Kikkert M. & Jackson A.0.(1995) Tomato bushy stunt virus spread is regulated by twonested genes that function in cell-to-cell movement and hostdependentsystemic invasion. Virology 213, 425-438.

183. Serazev TV, Kalinina NO, Nadezhdina ES, Shanina NA, Morozov SY.Cell Biol Int 2003;27(3):271-2 Potato virus X coat protein interacts with microtubules in vitro.

184. Sjolund, R.D. (1997). The phloem sieve element: a river runs through it. Plant Cell, 9,1137-1146.

185. Solovyev AG, Savenkov EI, Grdzelishvili VZ, Kalinina NO, Morozov SY, Schiemann J, Atabekov JG. Virology 1999 Jan 20;253(2):278-87 Movement of hordeivirus hybrids with exchanges in the triple gene block.

186. Solovyev AG, Slroganova ТА, Zamyalnin AA Jr, Fedorkin ON, Schiemann J, Morozov SY.Virology 2000 Mar 30;269(1):113-27 Subcellular sorting of small membrane-associated triple gene block proteins: TGBp3-assisted targeting of TGBp2.

187. Solovyev AG, Zelenina DA, Savenkov EI, Grdzelishvili VZ, Morozov SY, Lesemann DE, Maiss E, Casper R, Atabekov JG. Virology 1996 Mar 15;217(2):435-41 Movement of a barley stripe mosaic virus chimera with a tobacco mosaic virus movement protein.

188. Solovyev,A.G.,Savenkov,E.I.,Agranovsky,A.A.,and Morozov,S.Y. 1996. Comparision of the genomic cis-elements and coding regions in

189. RNAp components of hordeiviruses barley striple mosaic virus, lychnis ringspot virus, and poa semilatent virus. Virology 219: 9-18.

190. Soultanas P, Wigley DB Trends Biochem Sci 2001 Jan;26(l):47-54 Unwinding the 'Gordian knot' of helicase action.

191. Storms, M. M., Kormelink, R., Peters, D., van Lent, J. W., and Goldbach, R. W. (1995). The nonstructural NSm protein of tomato spotted wilt virus induces tubular structures in plant and insect cells. Virology 214, 485-493.

192. Taliansky ME, Robinson DJ, Murant AF. Gen Virol 1996 Sep;77 ( Pt 9):2335-45 Complete nucleotide sequence and organization of the RNA genome of groundnut rosette umbravirus.

193. Taljansky,M.E., and Garcia-Arenal,b\ 1995. Role of cucumovirus capsid protein inlong -distance movement whithin the infected plants.J. Virol. 69:916-922.

194. Tamai,A. and Meshi,R. 2001. Cell-to-cell movement of potato virus X: the role of pi2 and p8 encoded by second and third open reading frames of the triple gene block. MPMI 14:1158-1167.

195. Terry,B.R.,Robards,A.B. 1987. Hydrodynamic radius alone governs the mobility of molecules trough plasmodesmata. Planta 172: 145-157.

196. Tilney LG, Cooke TJ, Connelly PS, Tilney MS. J Cell Biol 1991 Feb; 112(4):739-47 The structure of plasmodesmata as revealed by plasmolysis, detergent extraction, and protease digestion.

197. Tomcnius,K.,Clapham,D., and Mcshi,T. 1987. Localization by immunogold cytochemistry of the virus-encoded 30K protein in plasmodesmata of leaves infected with tobacco mosaic virus. Virology 160: 363-371.

198. Tseng SS, Weaver PL, Liu Y, Hitomi M, Tartakoff AM, Chang TH. EMBO J 1998 May l;17(9):2651-62 Dbp5p, a cytosolic RNA helicase, isrequired for poly(A)+ RNA export.

199. Van Lent,J.,Wellink,J., and Goldbach,R. 1990. Evidence for the involvement of the 58K and 48K proteins in the intercellular movement of cowpea mosaic virus. J.Gen. Virol. 71: 219-223.

200. Verchot,J.,Angell,S.M., and Baulcombe,C. 1998. In vivo translation of the triple gene block of the potato virus X requires two subgenomic mRNAs. J. Virol, oct 1998: 8316-8320.

201. Vilar M, Esteve V, Pallas V, Marcos JF, Perez-Paya E. J Biol Chem 2001 May 25;276(21): 18122-9 Structural properties of carnation mottle virus p7 movement protein and its RNA-binding domain.

202. Vilar M, Sauri A, Monne M, Marcos JF, von Heijne G, Perez-Paya E, Mingarro I. J Biol Chem 2002 Jun 28;277(26):23447-52 Insertion and topology of a plant viral movement protein in the endoplasmic reticulum membrane.

203. Waigmann E, Turner A, Peart J, Roberts K, Zambryski P. Planta 1997 Sep;203(l):75-84 Ultrastructural analysis of leaf trichome plasmodesmata reveals major differences from mesophyll plasmodesmata.

204. Waigmann E., Chen M.-H., Bachmaier R., Ghoshroy S. & CitovskyV. (2000) Regulation of plasmodesmal transport by phosphorylationof tobacco mosaic virus cell-lo-cell MP. EMBOJournal 19, 4875-4884.

205. Waigmann,E.,Zambryski,P. 1995. Tobacco mosaic virus movement-mediated protein transport between trichome cells. Plant Cell 7: 2069-2079.

206. Wellink,J., and Van Kammen ,A. 1989.Cell-to-cell transport of cowpea mosaic virus requires both die 58K/48K proteins and the capsid proteins. J.Gen Virol. 70: 2279-2286.

207. Weng Z, Xiong Z. J Gen Virol 1997 Mar;78 (Pt 3):525-34 Genome organization and gene expression of saguaro cactus carmovirus.

208. While, R.G., Badell, K., Overall, R.L., Vesk, M. (1994). Aclin associated with plasmodesmata. Protoplasma, 180, 169-184.

209. Wieczoreck,A., and Sanfacon,H. 1993. Charachterization and subcellular localization of tomato ringspot nepovirus putative movement protein. Virology 194: 732-742.

210. Wolf,S.,Deom,C.M.,Beachy,R,N.,Lucas,W.J. 1989. Movement protein of tobacco mosaic virus modifies plasmodesmatal size exclusion limit. Science 426:377-379.

211. Xiong ,Z.,Kim,K.H.,Giesman-Cookmeyer,D., and Lommel,S.A. 1993. The roles of the red necrotic mosaic virus capsid and cell-to-cell movement proteins in systemic infection. Virology 192: 27-32.

212. Yahalom A., Lando R., Katz A. & Hpel B.L. (1998) Acalcium-dependent protein kinase is associated with maizemesocotyl plasmodesmata. Journal of Plant Physiology 153,354-362.

213. Yang,Y.,Ding,В.,Baulcombe,D., and Verchot,J. 2000. Cell-to-cell movement of the 25K protein of potato virus X is regulated by three other viral proteins. MPMI 13: 599-605.

214. Zambryski P.C. & Crawford K.M. (2000) Plasmodesmata: gatekeepersfor cell-to-cell transport of developmental signals inplants. Annual Review of Cell and Developmental Biology 16,393—421.

215. Zhang, Y.-P., Kirkpatrick, В. C., Smart, C. D., and Uyemoto, J. K. (1998). cDNA cloning and molccular charactcrization of chcrry green ringmottle virus. J. Gen. Virol. 79, 2275-2281.

216. Zheng, H., Wang, G., Zhang, L. (1997). Alfalfa mosaic virus movement protein induces tubules in plant protoplasts. Mol Plant Microbe Interact, 10,1010-1014.

217. Zhou ,Y., and Jackson,A.O. 1996. Expression of the barley striple mosaic virus "triple gene block".Virology 216: 367-379.

218. Zinovkin RA, Jelkmann W, Agranovsky AA.J Gen Virol 1999 Jan;80 ( Pt l):269-72 The minor coat protein of beet yellows closterovirus encapsidates the 51 terminus of RNA in virions.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.