Открытая рамка считывания ybhE Escherichia coli кодирует ранее неизвестную 6-фосфоглюконолактоназу (Pgl) тема диссертации и автореферата по ВАК РФ 03.00.03, кандидат биологических наук Зименков, Данила Вадимович

  • Зименков, Данила Вадимович
  • кандидат биологических науккандидат биологических наук
  • 2005, Москва
  • Специальность ВАК РФ03.00.03
  • Количество страниц 107
Зименков, Данила Вадимович. Открытая рамка считывания ybhE Escherichia coli кодирует ранее неизвестную 6-фосфоглюконолактоназу (Pgl): дис. кандидат биологических наук: 03.00.03 - Молекулярная биология. Москва. 2005. 107 с.

Заключение диссертации по теме «Молекулярная биология», Зименков, Данила Вадимович

ВЫВОДЫ:

1. В геноме E.coli идентифицирована открытая рамка считывания ybhE, являющаяся структурной частью гена pgl, кодирующего 6-фосфоглюконолактоназу (6PGL). YbhE E.coli не имеет значимой гомологии с ранее охарактеризованными 6PGLs из других организмов. Этот вывод основывается на следующих результатах:

1.1.Делеция открытой рамки считывания ybhE приводит к проявлению у соответствующего штамма E.coli ранее описанного для д§7-мутанта Mal-Blu фенотипа.

1.2.Mal-B lu фенотип штамма с AybhE связан именно с потерей клеткой активности 6PGL, т.к. данный фенотип комплементируется введением экспрессирующегося гена pgl из Pseudomonas putida как в составе рекомбинантной плазмиды, так и в результате интеграции этого гена в бактериальную хромосому.

1.3.По сравнению с мутантом Apgi скорость роста двойных мутантов AybhE, hpgi на глюкозе (но не на глюконате) в качестве единственного источника углерода значительно снижена, что обусловлено возможностью утилизации глюкозы двойным мутантом через окислительную ветку пентозо-фосфатного пути лишь за счет спонтанного гидролиза 6-фосфоглюконолактона на второй стадии этой метаболической цепочки реакций.

1.4. Активность 6PGL в штамме с AybhE по меньшей мере на порядок ниже, чем в штамме дикого типа, и эта остаточная активность обусловлена спонтанным гидролизом 6-фосфоглюконолактона.

1.5.Очищенный до более 90% белковый продукт гена ybhE E.coli с введенным на N-конец (His)6-Tag участком аминокислотной последовательности обладает in vitro ферментативной активностью 6PGL, составляющей 780 ед/мг.

2. Организмы, в которых присутствуют гомологи YbhE E.coli, и организмы, в которых присутствуют либо описанные белки 6PGLs, либо их гомологи, составляют два непересекающихся множества. Это позволяет утверждать, что YbhE E.coli и его гомологи образуют новое семейство 6-фосфоглюконолактоназ.

3. Усиление транскрипции гена ybhE(pgF) за счет замены природного промотора на более сильные приводит к пропорциональному увеличению активности 6PGL в клетке и обеспечивает более эффективное накопление фенилаланина и триптофана модельными штаммами-продуцентами этих аминокислот.

Список литературы диссертационного исследования кандидат биологических наук Зименков, Данила Вадимович, 2005 год

1. S. Adhya, M.Schwartz. Phosphoglucomutase mutants of Escherichia coli K-12, J. Bacteriol. 108 (1971) 621-626.

2. R.R.Ariza, Z.Li, N.Ringstad, B.Demple. Activation of multiple antibiotic resistance and binding of stress-inducible promoters by Escherichia coli Rob protein, J. Bacteriol. 177(1995) 1655-1661.

3. S.D.Barbour, H.Nagaishi, A.Templin, A.J.CLARK. Biochemical and genetic studies of recombination proficiency in Escherichia coli. II. Rec+ revertants caused by indirect suppression of rec- mutations, Proc. Natl. Acad. Sci. U. S. A 67 (1970) 128135.

4. A.Baudin, O.Ozier-Kalogeropoulos, A.Denouel, F.Lacroute, C.Cullin. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae, Nucleic Acids Res. 21 (1993) 3329-3330.

5. L.Benov, I.Fridovich. Why superoxide imposes an aromatic amino acid auxotrophy on Escherichia coli. The transketolase connection, J. Biol. Chem. 274 (1999) 42024206.

6. R.Benzinger, L.W.Enquist, A.Skalka. Transfection of Escherichia coli spheroplasts. V. Activity of recBC nuclease in rec+ and rec minus spheroplasts measured with different forms of bacteriophage DNA, J. Virol. 15 (1975) 861-871.

7. G.Blakely, G.May, R.McCulloch, L.K.Arciszewska, M.Burke, S.T.Lovett, D.J.Sherratt. Two related recombinases are required for site-specific recombination at dif and cer in E coli K12, Cell 75 (1993) 351-361.

8. B.R.Bochner, H.C.Huang, G.L.Schieven, B.N.Ames. Positive selection for loss of tetracycline resistance, J. Bacteriol. 143 (1980) 926-933.

9. D.E.Boehm, K.Vincent, O.R.Brown. Oxygen and toxicity inhibition of amino acid biosynthesis, Nature 262 (1976) 418-420.

10. B.Boonstra, C.E.French, I.Wainwright, N.C.Bruce. The udhA gene of Escherichia coli encodes a soluble pyridine nucleotide transhydrogenase, J. Bacteriol. 181 (1999) 1030-1034.

11. M.M.Bradford. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72:248-54. (1976) 248-254.

12. K.Brcic-Kostic, I.Stojiljkovic, E.Salaj-Smic, Z.Trgovcevic. The recB gene product is essential for exonuclease V-dependent DNA degradation in vivo, Mutat. Res. 227 (1989) 247-250.

13. H.Bremer, P.P.Dennis. Modulation of Chemical Composition and Other Parameters of the Cell by Growth Rate, in: F.C.Neidhart (Ed.), Escherichia coli and Salmonella, 1996, pp. 1553-1569.

14. L.Brownlie, J.R.Stephenson, J.A.Cole. Effect of growth rate on plasmid maintenance by Escherichia coli HB101(pAT153), J. Gen. Microbiol. 136 (1990) 2471-2480.

15. F.Canonaco, T.A.Hess, S.Heri, T.Wang, T.Szyperski, U.Sauer. Metabolic flux response to phosphoglucose isomerase knock-out in Escherichia coli and impact of overexpression of the soluble transhydrogenase UdhA, FEMS Microbiol. Lett. 204 (2001) 247-252.

16. F.N.Capaldo, S.D.Barbour. The role of the rec genes in the viability of Escherichia coli K12, Basic Life Sci. 5A (1975) 405-418.

17. A.Carlioz, D.Touati. Isolation of superoxide dismutase mutants in Escherichia coli: is superoxide dismutase necessary for aerobic life?, EMBO J. 5 (1986) 623-630.

18. E.Cassuto, T.Lash, K.S.Sriprakash, C.M.Radding. Role of exonuclease and protein of phage lambda in genetic recombination. V. Recombination of lambda DNA in vitro, Proc. Natl. Acad. Sci. U. S. A 68 (1971) 1639-1643.

19. B.A.Castilho, M.J.Casadaban. Specificity of mini-Mu bacteriophage insertions in a small plasmid, J. Bacteriol. 173 (1991) 1339-1343.

20. A.F.Chalker, D.R.Leach, R.G.Lloyd. Escherichia coli sbcC mutants permit stable propagation of DNA replicons containing a long palindrome, Gene 71 (1988) 201205.

21. P.P.Cherepanov, W.Wackernagel. Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant, Gene 158 (1995) 9-14.

22. A.J.CLARK, rec genes and homologous recombination proteins in Escherichia coli, Biochimie 73 (1991) 523-532.

23. A.J.CLARK, A.D.MARGULIES. ISOLATION AND CHARACTERIZATION OF RECOMBINATION-DEFICIENT MUTANTS OF ESCHERICHIA COLI K12, Proc. Natl. Acad. Sci. U. S. A 53:451-9. (1965) 451-459.

24. J.L.Clarke, D.A.Scopes, O.Sodeinde, P.J.Mason. Glucose-6-phosphate dehydrogenase-6-phosphogluconolactonase. A novel bifunctional enzyme in malaria parasites, Eur. J. Biochem. 268 (2001) 2013-2019.

25. A.Cohen, A.J.CLARK. Synthesis of linear plasmid multimers in Escherichia coli K-12, J. Bacteriol. 167 (1986) 327-335.

26. S.P.Cohen, H.Hachler, S.B.Levy. Genetic and functional analysis of the multiple antibiotic resistance (mar) locus in Escherichia coli, J. Bacteriol. 175 (1993) 14841492.

27. F.Collard, J.F.Collet, I.Gerin, M.Veiga-da-Cunha, S.E.Van. Identification of the cDNA encoding human 6-phosphogluconolactonase, the enzyme catalyzing the second step of the pentose phosphate pathway(l), FEBS Lett. 459 (1999) 223-226.

28. Court DL, J.A.Sawitzke, L.C.Thomason. Genetic engineering using homologous recombination, Annu. Rev. Genet. 36 (2002) 361-388.

29. G.A.Cromie, C.B.Millar, K.H.Schmidt, D.R.Leach. Palindromes as substrates for multiple pathways of recombination in Escherichia coli, Genetics 154 (2000) 513522.

30. P.Dabert, G.R.Smith. Gene replacement with linear DNA fragments in wild-type Escherichia coli: enhancement by Chi sites, Genetics 145 (1997) 877-889.

31. E.C.Dale, D.W.Ow. Gene transfer with subsequent removal of the selection gene from the host genome, Proc. Natl. Acad. Sci. U. S. A 88 (1991) 10558-10562.

32. K.A.Datsenko, B.L.Wanner. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products, Proc. Natl. Acad. Sci. U. S. A 97 (2000) 6640-6645.

33. A.C.de Mello Filho, R.Meneghini. Protection of mammalian cells by o-phenanthroline from lethal and DNA-damaging effects produced by active oxygen species, Biochim. Biophys. Acta 847 (1985) 82-89.

34. M.S.Dillingham, M.Spies, S.C.Kowalczykowski. RecBCD enzyme is a bipolar DNA helicase, Nature %19;423 (2003) 893-897.

35. H.Ding, B.Demple. In vivo kinetics of a redox-regulated transcriptional switch, Proc. Natl. Acad. Sci. U. S. A 94 (1997) 8445-8449.

36. H.Ding, E.Hidalgo, B.Demple. The redox state of the 2Fe-2S] clusters in SoxR protein regulates its activity as a transcription factor, J. Biol. Chem. 271 (1996) 33173-33175.

37. P.Drueckes, B.Boeck, D.Palm, R.Schinzel. Mutational analysis of the oligosaccharide recognition site at the active site of Escherichia coli maltodextrin phosphorylase, Biochemistry 35 (1996) 6727-6734.

38. Ж.И.Каташкина. Разработка и использование методов направленной модификации целевых генетических локусов хромосомы E.coli при конструировании штаммов-продуцентов аминокислот. Автореферат.Москва. 2003.

39. Ref Type: Thesis/Dissertation

40. Ж.И.Каташкина, А.Ю.Скороходова, Д.В.Зименков, А.Ю.Гулевич, Н.И.Минаева, В.Г.Дорошенко, И.В.Бирюкова, С.В.Машко. Направленное изменение уровня экспрессии генов, расположенных в бактериальной хромосоме. Молекулярная биология 5. 2005.1. Ref Type: In Press

41. S.E.Egan, R.Fliege, S.Tong, A.Shibata, R.E.Wolf, Jr., T.Conway. Molecular characterization of the Entner-Doudoroff pathway in Escherichia coli: sequence analysis and localization of promoters for the edd-eda operon, J. Bacterio!. 174 (1992) 4638-4646.

42. K.M.E1, S.K.Amundsen, P.Dabert, A.Gruss. Gene replacement with linear DNA in electroporated wild-type Escherichia coli, Nucleic Acids Res. 27 (1999) 1296-1299.

43. P.T.Emmerson. Recombination deficient mutants of Escherichia coli K12 that map between thy A and argA, Genetics 60 (1968) 19-30.

44. M.Feiss, D.A.Siegele, C.F.Rudolph, S.Frackman. Cosmid DNA packaging in vivo, Gene 17(1982) 123-130.

45. J.Fiaux, Z.P.Cakar, M.Sonderegger, K.Wuthrich, T.Szyperski, U.Sauer. Metabolic-flux profiling of the yeasts Saccharomyces cerevisiae and Pichia stipitis, Eukaryot. Cell 2 (2003) 170-180.

46. E.Fischer, U.Sauer. Metabolic flux profiling of Escherichia coli mutants in central carbon metabolism using GC-MS, Eur. J. Biochem. 270 (2003) 880-891.

47. S.Flores, R.de Anda-Herrera, G.Gosset, F.G.Bolivar. Growth-rate recovery of Escherichia coli cultures carrying a multicopy plasmid, by engineering of the pentosephosphate pathway, Biotechnol. Bioeng. %20;87 (2004) 485-494.

48. S.Flores, G.Gosset, N.Flores, A.A.de Graaf, F.Bolivar. Analysis of carbon metabolism in Escherichia coli strains with an inactive phosphotransferase system by (13)C labeling and NMR spectroscopy, Metab Eng 4 (2002) 124-137.

49. D.G.Fraenkel. Selection of Escherichia coli mutants lacking glucose-6-phosphate dehydrogenase or gluconate-6-phosphate dehydrogenase, J. Bacteriol. 95 (1968) 1267-1271.

50. D.G.Fraenkel. The accumulation of glucose 6-phosphate from glucose and its effect in an Escherichia coli mutant lacking phosphoglucose isomerase and glucose 6-phosphate dehydrogenase, J. Biol. Chem. 243 (1968) 6451-6457.

51. D.G.Fraenkel, S.Baneijee. A mutation increasing the amount of a constitutive enzyme in Escherichia coli, glucose 6-phosphate dehydrogenase, J. Mol. Biol. 56 (1971) 183194.

52. D.G.Fraenkel, S.Baneijee. Deletion mapping of zwf, the gene for a constitutive en2yme, glucose 6-phosphate dehydrogenase in Escherichia coli, Genetics 71 (1972) 481-489.

53. D.G.Fraenkel, S.R.Levisohn. Glucose and gluconate metabolism in an Escherichia coli mutant lacking phosphoglucose isomerase, J. Bacteriol. 93 (1967) 1571-1578.

54. S.A.Friedman, J.B.Hays. Selective inhibition of Escherichia coli recBC activities by plasmid-encoded GamS function of phage lambda, Gene 43 (1986) 255-263.

55. L.K.Fuhrman, A. Wanken, K.W.Nickerson, T.Conway. Rapid accumulation of intracellular 2-keto-3-deoxy-6-phosphogluconate in an Entner-Doudoroff aldolase mutant results in bacteriostasis, FEMS Microbiol. Lett. 159 (1998) 261-266.

56. P.Gaudu, S.Dubrac, D.Touati. Activation of SoxR by overproduction of desulfoferrodoxin: multiple ways to induce the soxRS regulon, J. Bacteriol. 182 (2000) 1761-1763.

57. P.Gaudu, N.Moon, B.Weiss. Regulation of the soxRS oxidative stress regulon. Reversible oxidation of the Fe-S centers of SoxR in vivo, J. Biol. Chem. 272 (1997) 5082-5086.

58. P.Gaudu, B.Weiss. SoxR, a 2Fe-2S] transcription factor, is active only in its oxidized form, Proc. Natl. Acad. Sei. U. S. A 93 (1996) 10094-10098.

59. P.Gay, C.D.Le, M.Steinmetz, T.Berkelman, C.I.Kado. Positive selection procedure for entrapment of insertion sequence elements in gram-negative bacteria, J. Bacteriol. 164(1985)918-921.

60. F.P.Gibson, D.R.Leach, R.G.Lloyd. Identification of sbcD mutations as cosuppressors of recBC that allow propagation of DNA palindromes in Escherichia coli K-12, J. Bacteriol. 174 (1992) 1222-1228.

61. F.Gijsegem. Mu as a genetic tool, Phage Mu, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1987, pp. 215-250.

62. B.Gonzalez-Flecha, B.Demple. Homeostatic regulation of intracellular hydrogen peroxide concentration in aerobically growing Escherichia coli, J. Bacteriol. 179 (1997) 382-388.

63. M.M.Gottesman, M.E.Gottesman, S.Gottesman, M.Gellert. Characterization of bacteriophage lambda reverse as an Escherichia coli phage carrying a unique set of host-derived recombination functions, J. Mol. Biol. 88 (1974) 471-487.

64. J.T.Greenberg, B.Demple. A global response induced in Escherichia coli by redox-cycling agents overlaps with that induced by peroxide stress, J. Bacteriol. 171 (1989) 3933-3939.

65. J.T.Greenberg, P.Monach, J.H.Chou, P.D.Josephy, B.Demple. Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli, Proc. Natl. Acad. Sci. U. S. A 87 (1990) 6181-6185.

66. K.L.Griffith, S.M.Becker, E.Wolf. Characterization of TetD as a transcriptional activator of a subset of genes of the Escherichia coli SoxS/MarA/Rob regulon, Mol. Microbiol. 56 (2005) 1103-1117.

67. P.W.Hager, M.W.Calfee, P.V.Phibbs. The Pseudomonas aeruginosa devB/SOL homolog, pgl, is a member of the hex regulon and encodes 6-phosphogluconolactonase, J. Bacteriol. 182 (2000) 3934-3941.

68. S.D.Hall, M.F.Kane, R.D.Kolodner. Identification and characterization of the Escherichia coli RecT protein, a protein encoded by the recE region that promotes renaturation of homologous single-stranded DNA, J. Bacteriol. 175 (1993) 277-287.

69. S.D.Hall, R.D.Kolodner. Homologous pairing and strand exchange promoted by the Escherichia coli RecT protein, Proc. Natl. Acad. Sci. U. S. A 91 (1994) 3205-3209.

70. B.Halliwell, J.M.Gutteridge. Role of free radicals and catalytic metal ions in human disease: an overview, Methods Enzymol. 186 (1990) 1-85.

71. R.L.Hanson, C.Rose. Effects of an insertion mutation in a locus affecting pyridine nucleotide transhydrogenase (pnt::Tn5) on the growth of Escherichia coli, J. Bacteriol. 141 (1980) 401-404.

72. E.Hidalgo, J.M.Bollinger, Jr., T.M.Bradley, C.T.Walsh, B.Demple. Binuclear 2Fe-2S] clusters in the Escherichia coli SoxR protein and role of the metal centers in transcription, J. Biol. Chem. 270 (1995) 20908-20914.

73. E.Hidalgo, B.Demple. An iron-sulfur center essential for transcriptional activation by the redox-sensing SoxR protein, EMBO J. 13 (1994) 138-146.

74. E.Hidalgo, B.Demple. Spacing of promoter elements regulates the basal expression of the soxS gene and converts SoxR from a transcriptional activator into a repressor, EMBO J. 16 (1997) 1056-1065.

75. E.Hidalgo, V.Leautaud, B.Demple. The redox-regulated SoxR protein acts from a single DNA site as a repressor and an allosteric activator, EMBO J. 17 (1998) 26292636.

76. R.H.Hoess, A.Wierzbicki, K.Abremski. The role of the loxP spacer region in PI site-specific recombination, Nucleic Acids Res. 14 (1986) 2287-2300.

77. F.Hommais, E.Krin, J.Y.Coppee, C.Lacroix, E.Yeramian, A.Danchin, P.Bertin. GadE (YhiE): a novel activator involved in the response to acid environment in Escherichia coli, Microbiology 150 (2004) 61-72.

78. E.R.Hondorp, R.G.Matthews. Oxidative stress inactivates cobalamin-independent methionine synthase (MetE) in Escherichia coli, PLoS. Biol. 2 (2004) e336.

79. P.Howard-Flanders, L.Theriot. Mutants of Escherichia coli K-12 defective in DNA repair and in genetic recombination, Genetics 53 (1966) 1137-1150.

80. Q.Hua, C.Yang, T.Baba, H.Mori, K.Shimizu. Responses of the central metabolism in Escherichia coli to phosphoglucose isomerase and glucose-6-phosphate dehydrogenase knockouts, J. Bacterid. 185 (2003) 7053-7067.

81. J.A.Imlay. A metabolic enzyme that rapidly produces superoxide, fumarate reductase of Escherichia coli, J. Biol. Chem. 270 (1995) 19767-19777.

82. J.A.Imlay, S.M.Chin, S.Linn. Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro, Science 240 (1988) 640-642.

83. J.A.Imlay, I.Fridovich. Assay of metabolic superoxide production in Escherichia coli, J. Biol. Chem. 266 (1991) 6957-6965.

84. J.A.Imlay, S.Linn. DNA damage and oxygen radical toxicity, Science 240 (1988) 1302-1309.

85. G.K.Jarori, P.K.Maitra. Nature of primary product(s) of D-glucose 6-phosphate dehydrogenase reaction. 13C and 31P NMR study, FEBS Lett. 278 (1991) 247-251.

86. H.E.Jasin, J.T.Dingle. Human mononuclear cell factors mediate cartilage matrix degradation through chondrocyte activation, J. Clin. Invest 68 (1981) 571-581.

87. J.W.Joseph, R.Kolodner. Exonuclease VIII of Escherichia coli. II. Mechanism of action, J. Biol. Chem. 258 (1983) 10418-10424.

88. J.W.Joseph, R.Kolodner. Exonuclease VIII of Escherichia coli. I. Purification and physical properties, J. Biol. Chem. 258 (1983) 10411-10417.

89. M.M.Kabir, K.Shimizu. Gene expression patterns for metabolic pathway in pgi knockout Escherichia coli with and without phb genes based on RT-PCR, J. Biotechnol. 105 (2003) 11-31.

90. K.Kaiser, N.E.Murray. Physical characterisation of the "Rac prophage" in E. coli K12, Mol. Gen. Genet. 175 (1979) 159-174.

91. G.Karakousis, N.Ye, Z.Li, S.K.Chiu, G.Reddy, C.M.Radding. The beta protein of phage lambda binds preferentially to an intermediate in DNA renaturation, J. Mol. Biol. 276(1998) 721-731.

92. P.Kast. pKSS~a second-generation general purpose cloning vector for efficient positive selection of recombinant clones, Gene 138 (1994) 109-114.

93. J.Katz, R.Rognstad. The labeling of pentose phosphate from glucose-14C and estimation of the rates of transaldolase, transketolase, the contribution of the pentose cycle, and ribose phosphate synthesis, Biochemistry 6 (1967) 2227-2247.

94. K.Keyer, J.A.Imlay. Superoxide accelerates DNA damage by elevating free-iron levels, Proc. Natl. Acad. Sci. U. S. A 93 (1996) 13635-13640.

95. M.S.K00, J.H.Lee, S.Y.Rah, W.S.Yeo, J.W.Lee, K.L.Lee, Y.S.Koh, S.O.Kang, J.H.Roe. A reducing system of the superoxide sensor SoxR in Escherichia coli, EMBO J. 22 (2003) 2614-2622.

96. A.R.Krapp, R.E.Rodriguez, H.O.Poli, D.H.Paladini, J.F.Palatnik, N.Carrillo. The flavoenzyme ferredoxin (flavodoxin)-NADP(H) reductase modulates NADP(H) homeostasis during the soxRS response of Escherichia coli, J. Bacteriol. 184 (2002) 1474-1480.

97. C.S.Kristensen, L.Eberl, J.M.Sanchez-Romero, M.Givskov, S.Molin, L.De, V. Site-specific deletions of chromosomally located DNA segments with the multimer resolution system of broad-host-range plasmid RP4, J. Bacteriol. 177 (1995) 52-58.

98. S.K.Kulkarni, F.W.Stahl. Interaction between the sbcC gene of Escherichia coli and the gam gene of phage lambda, Genetics 123 (1989) 249-253.

99. S.R.Kupor, D.G.Fraenkel. Glucose metabolism in 6 phosphogluconolactonase mutants of Escherichia coli, J. Biol. Chem. 247 (1972) 1904-1910.

100. S.R.Kupor, D.G.Fraenkel. 6-phosphogluconolactonase mutants of Escherichia coli and a maltose blue gene, J. Bacteriol. 100 (1969) 1296-1301.

101. K.Kusano, Y.Sunohara, N.Takahashi, H.Yoshikura, I.Kobayashi. DNA double-strand break repair: genetic determinants of flanking crossing-over, Proc. Natl. Acad. Sci. U. S. A 91 (1994) 1173-1177.

102. S.R.Kushner, H.Nagaishi, A.J.CLARK. Indirect suppression of recB and recC mutations by exonuclease I deficiency, Proc. Natl. Acad. Sci. U. S. A 69 (1972) 1366-1370.

103. A.Kuzminov. Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda, Microbiol. Mol. Biol. Rev. 63 (1999) 751 -813, table.

104. U.K.Laemmli. Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227 (1970) 680-685.

105. D.Lafontaine, D.Tollervey. One-step PCR mediated strategy for the construction of conditionally expressed and epitope tagged yeast proteins, Nucleic Acids Res. 24 (1996) 3469-3471.

106. A.T.Lee, A.Cerami. The formation of reactive intermediate(s) of glucose 6-phosphate and lysine capable of rapidly reacting with DNA, Mutat. Res. 179 (1987) 151-158.

107. A.T.Lee, A.Cerami. Elevated glucose 6-phosphate levels are associated with plasmid mutations in vivo, Proc. Natl. Acad. Sci. U. S. A 84 (1987) 8311-8314.

108. B .Levi, M .J. Werman. Fructose triggers DNA modification and damage in an Escherichia coli plasmid, J. Nutr. Biochem. 12 (2001) 235-241.

109. Z.Li, B.Demple. Sequence specificity for DNA binding by Escherichia coli SoxS and Rob proteins, Mol. Microbiol. 20 (1996) 937-945.

110. Z.Li, G.Karakousis, S.K.Chiu, G.Reddy, C.M.Radding. The beta protein of phage lambda promotes strand exchange, J. Mol. Biol. 276 (1998) 733-744.

111. S.I.Liochev, I.Fridovich. Fumarase C, the stable fumarase of Escherichia coli, is controlled by the soxRS regulon, Proc. Natl. Acad. Sci. U. S. A 89 (1992) 5892-5896.

112. R.G.Lloyd, C.Buckman. Identification and genetic analysis of sbcC mutations in commonly used recBC sbcB strains of Escherichia coli K-12, J. Bacteriol. 164 (1985) 836-844.

113. S.T.Lovett, R.D.Kolodner. Identification and purification of a single-stranded-DNA-specific exonuclease encoded by the recJ gene of Escherichia coli, Proc. Natl. Acad. Sci. U. S. A 86 (1989) 2627-2631.

114. S.T.Lovett, C.Luisi-DeLuca, R.D.Kolodner. The genetic dependence of recombination in recD mutants of Escherichia coli, Genetics 120 (1988) 37-45.

115. C.Luisi-DeLuca, R.D.Kolodner. Effect of terminal non-homology on intramolecular recombination of linear plasmid substrates in Escherichia coli, J. Mol. Biol. 227 (1992) 72-80.

116. M.Manchado, C.Michan, C.Pueyo. Hydrogen peroxide activates the SoxRS regulon in vivo, J. Bacteriol. 182 (2000) 6842-6844.

117. M.G.Marinus, M.Carraway, A.Z.Frey, L.Brown, J.A.Arraj. Insertion mutations in the dam gene of Escherichia coli K-12, Mol. Gen. Genet. 192 (1983) 288-289.

118. N.Marsic, S.Roje, I.Stojiljkovic, E.Salaj-Smic, Z.Trgovcevic. In vivo studies on the interaction of RecBCD enzyme and lambda Gam protein, J. Bacteriol. 175 (1993) 4738-4743.

119. D.Mascarenhas, D J.Ashworth, C.S.Chen. Deletion of pgi alters tryptophan biosynthesis in a genetically engineered strain of Escherichia coli, Appl. Environ. Microbiol. 57 (1991) 2995-2999.

120. R.McDaniel, P.Licari, C.Khosla. Process development and metabolic engineering for the overproduction of natural and unnatural polyketides, Adv. Biochem. Eng Biotechnol. 73:31-52. (2001) 31-52.

121. K.R.Messner, J.A.Imlay. The identification of primary sites of superoxide and hydrogen peroxide formation in the aerobic respiratory chain and sulfite reductase complex of Escherichia coli, J. Biol. Chem. 274 (1999) 10119-10128.

122. K.R.Messner, J.A.Imlay. Mechanism of superoxide and hydrogen peroxide formation by fumarate reductase, succinate dehydrogenase, and aspartate oxidase, J. Biol. Chem. 277 (2002) 42563-42571.

123. E.Miclet, V.Stoven, P.A.Michels, F.R.Opperdoes, J. Y.Lallemand, F.Duffieux. NMR spectroscopic analysis of the first two steps of the pentose-phosphate pathway elucidates the role of 6-phosphogluconolactonase, J. Biol. Chem. 276 (2001) 3484034846.

124. T.Morita, W.El-Kazzaz, Y.Tanaka, T.Inada, H.Aiba. Accumulation of glucose 6-phosphate or fructose 6-phosphate is responsible for destabilization of glucose transporter mRNA in Escherichia coli, J. Biol. Chem. 278 (2003) 15608-15614.

125. K.Muniyappa, C.M.Radding. The homologous recombination system of phage lambda. Pairing activities of beta protein, J. Biol. Chem. 261 (1986) 7472-7478.

126. K.C.Murphy. Lambda Gam protein inhibits the helicase and chi-stimulated recombination activities of Escherichia coli RecBCD enzyme, J. Bacteriol. 173 (1991) 5808-5821.

127. K.C.Murphy. Use of bacteriophage lambda recombination functions to promote gene replacement in Escherichia coli, J. Bacteriol. 180 (1998) 2063-2071.

128. K.C.Murphy, K.G.Campellone. Lambda Red-mediated recombinogenic engineering of enterohemorrhagic and enteropathogenic E. coli, BMC. Mol. Biol. 4 (2003) 11.

129. E.L.Murray, T.Conway. Multiple regulators control expression of the Entner-Doudoroff aldolase (Eda) of Escherichia coli, J. Bacteriol. 187 (2005) 991-1000.

130. J.P.Muyrers, Y.Zhang, F.Buchholz, A.F.Stewart. RecE/RecT and Redalpha/Redbeta initiate double-stranded break repair by specifically interacting with their respective partners, Genes Dev. 14 (2000) 1971-1982.

131. E.Mythili, K.A.Kumar, K.Muniyappa. Characterization of the DNA-binding domain of beta protein, a component of phage lambda red-pathway, by UV catalyzed cross-linking, Gene 182 (1996) 81-87.

132. T.Nunoshiba, E.Hidalgo, Z.Li, B.Demple. Negative autoregulation by the Escherichia coli SoxS protein: a dampening mechanism for the soxRS redox stress response, J. Bacteriol. 175 (1993) 7492-7494.

133. H.Ochman, A.S.Gerber, D.L.Hartl. Genetic applications of an inverse polymerase chain reaction, Genetics 120 (1988) 621 -623.

134. M.K.Oh, J.C.Liao. Gene expression profiling by DNA microarrays and metabolic fluxes in Escherichia coli, Biotechnol. Prog. 16 (2000) 278-286.

135. A.Okado-Matsumoto, I.Fridovich. The role of alpha,beta -dicarbonyl compounds in the toxicity of short chain sugars, J. Biol. Chem. 275 (2000) 34853-34857.

136. C.A.Ouzounis, P.D.Karp. Global properties of the metabolic map of Escherichia coli, Genome Res. 10 (2000) 568-576.

137. I.Paskvan, E.Salaj-Smic, I.Ivancic-Bace, K.Zahradka, Z.Trgovcevic, K.Brcic-Kostic. The genetic dependence of RecBCD-Gam mediated double strand end repair in Escherichia coli, FEMS Microbiol. Lett. 205 (2001) 299-303.

138. R.L.Patsey, M.F.Bruist. Characterization of the interaction between the lambda intasome and attB, J. Mol. Biol. 252 (1995) 47-58.

139. A.J.Pease, R.E.Wolf, Jr. Determination of the growth rate-regulated steps in expression of the Escherichia coli K-12 gnd gene, J. Bacteriol. 176 (1994) 115-122.

140. M. Y.Peredelchuk, G.N.Bennett. A method for construction of E. coli strains with multiple DNA insertions in the chromosome, Gene 187 (1997) 231-238.

141. L.Petruschka, K.Adolf, G.Burchhardt, J.Dernedde, J.Jurgensen, H.Herrmann. Analysis of the zwf-pgl-eda-operon in Pseudomonas putida strains H and KT2440, FEMS Microbiol. Lett. 215 (2002) 89-95.

142. G.Peyru, D.G.Fraenkel. Genetic mapping of loci for glucose-6-phosphate dehydrogenase, gluconate-6-phosphate dehydrogenase, and gluconate-6-phosphate dehydrase in Escherichia coli, J. Bacteriol. 95 (1968) 1272-1278.

143. E.Ponce, A.Martinez, F.Bolivar, F.Valle. Stimulation of glucose catabolism through the pentose pathway by the absence of the two pyruvate kinase isoenzymes in Escherichia coli, Biotechnol. Bioeng. 58 (1998) 292-295.

144. G.Posfai, V.Kolisnychenko, Z.Bereczki, F.R.Blattner. Markerless gene replacement in Escherichia coli stimulated by a double-strand break in the chromosome, Nucleic Acids Res. 27 (1999) 4409-4415.

145. A.R.Poteete, A.C.Fenton. Efficient double-strand break-stimulated recombination promoted by the general recombination systems of phages lambda and P22, Genetics 134(1993) 1013-1021.

146. A.R.Poteete, A.C.Fenton, K.C.Murphy. Modulation of Escherichia coli RecBCD activity by the bacteriophage lambda Gam and P22 Abe functions, J. Bacteriol. 170 (1988) 2012-2021.

147. D.L.Rowley, A.J.Pease, R.E.Wolf, Jr. Genetic and physical analyses of the growth rate-dependent regulation of Escherichia coli zwf expression, J. Bacteriol. 173 (1991) 4660-4667.

148. D.L.Rowley, R.E.Wolf, Jr. Molecular characterization of the Escherichia coli K-12 zwf gene encoding glucose 6-phosphate dehydrogenase, J. Bacteriol. 173 (1991) 968977.

149. C.B.Russell, D.S.Thaler, F.W.Dahlquist. Chromosomal transformation of Escherichia coli recD strains with linearized plasmids, J. Bacteriol. 171 (1989) 2609-2613.

150. E.Salaj-Smic, D.Dermic, K.Brcic-Kostic, G.C.Cajo, E.Trgovcevic. In vivo studies of the Escherichia coli RecB polypeptide lacking its nuclease center, Res. Microbiol. 151 (2000) 769-776.

151. M.D.Sam, D.Cascio, R.C. Johnson, R.T.Clubb. Crystal structure of the excisionase-DNA complex from bacteriophage lambda, J. Mol. Biol. 338 (2004) 229-240.

152. B.D.Sanwal. Regulatory mechanisms involving nicotinamide adenine nucleotides as allosteric effectors. 3. Control of glucose 6-phosphate dehydrogenase, J. Biol. Chem. 245 (1970) 1626-1631.

153. U.Sauer. Evolutionary engineering of industrially important microbial phenotypes, Adv. Biochem. Eng Biotechnol. 73 (2001) 129-169.

154. U.Sauer, F.Canonaco, S.Heri, A.Perrenoud, E.Fischer. The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli, J. Biol. Chem. 279 (2004) 6613-6619.

155. T.J.Schmidt. Helenanolide-type sesquiterpene lactones—III. Rates and stereochemistry in the reaction of helenalin and related helenanolides with sulfhydryl containing biomolecules, Bioorg. Med. Chem. 5 (1997) 645-653.

156. L.C.Seaver, J.A.Imlay. Are respiratory enzymes the primary sources of intracellular hydrogen peroxide?, J. Biol. Chem. %19;279 (2004) 48742-48750.

157. L.C.Seaver, J.A.Imlay. Hydrogen peroxide fluxes and compartmentalization inside growing Escherichia coli, J. Bacteriol. 183 (2001) 7182-7189.

158. J.F.Senecoff, M.M.Cox. Directionality in FLP protein-promoted site-specific recombination is mediated by DNA-DNA pairing, J. Biol. Chem. 261 (1986) 73807386.

159. M.J.Shulman, L.M.Hallick, H.Echols, E.R.Signer. Properties of recombination-deficient mutants of bacteriophage lambda, J. Mol. Biol. 52 (1970) 501-520.

160. K.A.Siddiquee, M.J.rauzo-Bravo, K.Shimizu. Effect of a pyruvate kinase (pykF-gene) knockout mutation on the control of gene expression and metabolic fluxes in Escherichia coli, FEMS Microbiol. Lett. 235 (2004) 25-33.

161. Z.Silberstein, A.Cohen. Synthesis of linear multimers of OriC and pBR322 derivatives in Escherichia coli K-12: role of recombination and replication functions, J. Bacteriol. 169 (1987) 3131-3137.

162. Z.Silberstein, S.Maor, I.Berger, A.Cohen. Lambda Red-mediated synthesis of plasmid linear multimers in Escherichia coli K12, Mol. Gen. Genet. 223 (1990) 496507.

163. Z.Silberstein, Y.Tzfati, A.Cohen. Primary products of break-induced recombination by Escherichia coli RecE pathway, J. Bacteriol. 177 (1995) 1692-1698.

164. C.A.Snyder, S.J.Garte, A.R.Sellakumar, R.E.Albert. Relationships between the levels of binding to DNA and the carcinogenic potencies in rat nasal mucosa for three alkylating agents, Cancer Lett. 33 (1986) 175-181.

165. M.Spies, P.R.Bianco, M.S.Dillingham, N.Handa, RJ.Baskin, S.C.Kowalczykowski. A molecular throttle: the recombination hotspot chi controls DNA translocation by the RecBCD helicase, Cell 114 (2003) 647-654.

166. K.S.Sriprakash, N.Lundh, M.M.O.Huh, C.M.Radding. The specificity of lambda exonuclease. Interactions with single-atranded DNA, J. Biol. Chem. 250 (1975) 54385445.

167. M.M.Stahl, L.Thomason, A.R.Poteete, T.Tarkowski, A.Kuzminov, F.W.Stahl. Annealing vs. invasion in phage lambda recombination, Genetics 147 (1997) 961977.

168. F.W.Studier, B.A.Moffatt. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes, J. Mol. Biol. 189 (1986) 113-130.

169. F.W.Studier, A.H.Rosenberg, J.J.Dunn, J.W.Dubendorff. Use of T7 RNA polymerase to direct expression of cloned genes, Methods Enzymol. 185:60-89. (1990) 60-89.

170. B.M.Swalla, E.H.Cho, R.I.Gumport, J.F.Gardner. The molecular basis of co-operative DNA binding between lambda integrase and excisionase, Mol. Microbiol. 50 (2003) 89-99.

171. S.Swaminathan, H.M.Ellis, L.S.Waters, D.Yu, E.C.Lee, Court DL, S.K.Sharan. Rapid engineering of bacterial artificial chromosomes using oligonucleotides, Genesis. 29 (2001) 14-21.

172. T.Szyperski. Biosynthetically directed fractional 13C-labeling of proteinogenic amino acids. An efficient analytical tool to investigate intermediary metabolism, Eur. J. Biochem. 232 (1995) 433-448.

173. T.Szyperski. 13C-NMR, MS and metabolic flux balancing in biotechnology research, Q. Rev. Biophys. 31 (1998) 41-106.

174. N.K.Takahashi, K.Kusano, T.Yokochi, Y.Kitamura, H.Yoshikura, I.Kobayashi. Genetic analysis of double-strand break repair in Escherichia coli, J. Bacteriol. 175 (1993)5176-5185.

175. A.Taylor, G.R.Smith. Unwinding and rewinding of DNA by the RecBC enzyme, Cell 22(1980) 447-457.

176. A.F.Taylor, G.R.Smith. RecBCD enzyme is a DNA helicase with fast and slow motors of opposite polarity, Nature %19;423 (2003) 889-893.

177. D.S.Thaler, E.Sampson, I.Siddiqi, S.M.Rosenberg, L.C.Thomason, F.W.Stahl, M.M.Stahl. Recombination of bacteriophage lambda in recD mutants of Escherichia coli, Genome 31 (1989) 53-67.

178. L.C.Thomason, Court DL, A.R.Datta, R.Khanna, J.L.Rosner. Identification of the Escherichia coli K-12 ybhE gene as pgl, encoding 6-phosphogluconolactonase, J. Bacteriol. 186 (2004) 8248-8253.

179. Z.Trogovcevic, W.D.Rupp. Lambda bacteriophage gene produces and X-ray sensitivity of Escherichia coli: comparison of red-dependent and gam-dependent radioresistance, J. Bacteriol. 123 (1975) 212-221.

180. I.R.Tsaneva, B.Weiss. soxR, a locus governing a superoxide response regulon in Escherichia coli K-12, J. Bacteriol. 172 (1990) 4197-4205.

181. J.I.Tu, G.R Jacobson, DJ.Graves. Isotopic effects and inhibition of polysaccharide Phosphorylase by 1,5-gluconolactone. Relationship to the catalytic mechanism, Biochemistry 10 (1971) 1229-1236.

182. A.Varma, B.O.Palsson. Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110, Appl. Environ. Microbiol. 60 (1994) 3724-3731.

183. G.Voordouw, d.van, V, A.P.Themmen. Why are two different types of pyridine nucleotide transhydrogenase found in living organisms?, Eur. J. Biochem. 131 (1983) 527-533.

184. B.L. Wanner, R.Kodaira, F.C.Neidhart. Physiological regulation of a decontrolled lac operon, J. Bacteriol. 130 (1977) 212-222.

185. S.Warming, N.Costantino, Court DL, N.A.Jenkins, N.G.Copeland. Simple and highly efficient BAC recombineering using galK selection, Nucleic Acids Res. 33 (2005) e36.

186. W.Wiechert. 13C metabolic flux analysis, Metab Eng 3 (2001) 195-206.

187. N.S.Willetts, D.W.Mount. Genetic analysis of recombination-deficient mutants of Escherichia coli K-12 carrying rec mutations cotransducible with thy A, J. Bacteriol. 100(1969) 923-934.

188. C.Wittmann. Metabolic flux analysis using mass spectrometry, Adv. Biochem. Eng Biotechnol. 74:39-64. (2002) 39-64.

189. R.E.Wolf, Jr., D.M.Prather, F.M.Shea. Growth-rate-dependent alteration of 6-phosphogluconate dehydrogenase and glucose 6-phosphate dehydrogenase levels in Escherichia coli K-12, J. Bacteriol. 139 (1979) 1093-1096.

190. A.N.Woodmansee, J.A.Imlay. A mechanism by which nitric oxide accelerates the rate of oxidative DNA damage in Escherichia coli, Mol. Microbiol. 49 (2003) 11-22.

191. J.Wu, B.Weiss. Two divergently transcribed genes, soxR and soxS, control a superoxide response regulon of Escherichia coli, J. Bacteriol. 173 (1991) 2864-2871.

192. D.Yu, H.M.Ellis, E.C.Lee, N.A.Jenkins, N.G.Copeland, Court DL. An efficient recombination system for chromosome engineering in Escherichia coli, Proc. Natl. Acad. Sei. U. S. A 97 (2000) 5978-5983.

193. R.Zablotny, D.G.Fraenkel. Glucose and gluconate metabolism in a mutant of Escherichia coli lacking gluconate-6-phosphate dehydrase, J. Bacteriol. 93 (1967) 1579-1581.

194. J.Zhao, T.Baba, H.Mori, K.Shimizu. Effect of zwf gene knockout on the metabolism of Escherichia coli grown on glucose or acetate, Metab Eng 6 (2004) 164-174.

195. J.Zhao, T.Baba, H.Mori, K.Shimizu. Global metabolic response of Escherichia coli to gnd or zwf gene-knockout, based on 13C-labeling experiments and the measurement of enzyme activities, Appl. Microbiol. Biotechnol. 64 (2004) 91-98.

196. M.Zheng, F.Aslund, G.Storz. Activation of the OxyR transcription factor by reversible disulfide bond formation, Science 279 (1998) 1718-1721.1. Благодарности