Особенности термодинамики и кинетики вырожденных фаз в кристаллах тема диссертации и автореферата по ВАК РФ 01.04.07, доктор физико-математических наук Минюков, Сергей Александрович
- Специальность ВАК РФ01.04.07
- Количество страниц 233
Оглавление диссертации доктор физико-математических наук Минюков, Сергей Александрович
ВВЕДЕНИЕ.
ГЛАВА I. ТЕРМОДИНАМИКА ПЕРЕХОДОВ С ОБРАЗОВАНИЕМ НЕСОРАЗМЕРНЫХ ФАЗ В КРИСТАЛЛАХ
1. Введение.
2. Обусловленное стрикцией взаимодействие доменных стенок в случае однокомпонентного параметра порядка.
3. Метод расчета упругого взаимодействие солитонов, образующих регулярную структуру.
4. Индуцированное деформациями взаимодействие солитонов в несоразмерной фазе для случая упругоизотропной среды с бесконечным модулем сдвига.
5. Индуцированное деформациями взаимодействие солитонов в несоразмерной фазе в кристаллах.
6. Различные вклады в притяжение солитонов.
7. Температурные аномалии вблизи перехода несоразмерная - соразмерная фаза.
8. Влияние дефектов на характер перехода несоразмерная - соразмерная фаза.
9. 1С-С переход в кристаллах К2БеОА и ЯЬ22пС1А: сравнение с экспериментом.
10. Аномалии оптического двупреломления в области перехода нормальная -несоразмерная фаза.
ГЛАВА II. ИНДУЦИРОВАННОЕ ДЕФОРМАЦИЯМИ
ВЗАИМОДЕЙСТВИЕ ВИХРЕЙ АБРИКОСОВА В СВЕРХПРОВОДНИКАХ II РОДА
1. Введение.
2. Деформации, индуцируемые вихрями вблизи нижнего критического поля: определяющий вклад "non-core" областей.
3. Индуцированное деформациями взаимодействие вихрей в упруго-изотропной среде.
4. Взаимодействие вихрей в кристалле в полях, не слишком близких к верхнему критическому полю.
5. Взаимодействие вихрей в кристалле в полях, близких к верхнему критическому полю.
ГЛАВА III. АНОМАЛИИ, ИССЛЕДУЕМЫЕ МЕТОДАМИ ЯКР и ЯМР
1. Введение.
2. Аномалии скорости спин-решеточной релаксации (СРР): общие соотношения.
3. Аномалии СРР: однокомпонентный параметр порядка, симметричная фаза.
4. Аномалии СРР: однокомпонентный параметр порядка, несимметричная фаза.
5. Особенности случая несимметричной соразмерной фазы, описываемой двухкомпонентным параметром порядка.
6. Аномалии СРР в несоразмерной фазе вблизи перехода из нормальной фазы.
7. Особенность систем порядок - беспорядок.
8. Вклад фазона в скорость СРР при низких температурах.
9. Низкотемпературное затухание фазона.
10. Вклад амплитудона в скорость СРР при низких температурах.
11. Форма линии в несоразмерной фазе.
ГЛАВА IV. УЛЬТРАЗВУКОВЫЕ АНОМАЛИИ ВБЛИЗИ
ТОЧЕК СТРУКТУРНЫХ ФАЗОВЫХ ПЕРЕХОДОВ.
1. Общие положения теории ультразвуковых аномалий.
2. Расчет ультразвуковых аномалий в рамках последовательной теории возмущений: симметричная фаза.
3. Расчет ультразвуковых аномалий в рамках последовательной теории возмущений: несимметричная фаза.
4. Особенности аномалий затухания ультразвука в случае двухкомпонент-ного параметра порядка.
5. Ультразвуковые аномалии в несоразмерной фазе.
ГЛАВА V. Часть! ПРИПОВЕРХНОСТНЫЕ ИСКАЖЕНИЯ
СТРУКТУРЫ КРИСТАЛЛОВ
1. Спонтанные приповерхностные искажения структуры кристаллов.
2. Приповерхностные искажения, индуцированные однородными внешними воздействиями.
3. Аномалии макроскопического квадрупольного момента.
Часть I! ВЛИЯНИЕ ВНЕШНЕГО ПОЛЯ НА СТРУКТУРУ
ВЕТВЛЕНИЯ ДОМЕНОВ В ФЕРРОМАГНЕТИКАХ
4. Приповерхностное ветвление доменов.
5. Расчет структуры ветвления во внешнем поле.
6. Минимальный размер поверхностных доменов.
ВЫВОДЫ.
Рекомендованный список диссертаций по специальности «Физика конденсированного состояния», 01.04.07 шифр ВАК
«Структурные фазовые переходы на поверхности металлов при взаимодействии с галогенами»2019 год, доктор наук Андрюшечкин Борис Владимирович
Электрические эффекты высших порядков в области структурных фазовых переходов в сегнетоэлектриках1984 год, доктор физико-математических наук Гладкий, Всеволод Владимирович
Влияние магнитострикции на промежуточное состояние в магнетике и магнитоупругие солитоны вблизи фазового перехода антиферромагнетизм-ферромагнетизм2008 год, кандидат физико-математических наук Сакаев, Руслан Джалилевич
Атомистическое моделирование несоразмерной фазы в кварце2010 год, кандидат физико-математических наук Самсонов, Андрей Викторович
Диэлектрические свойства тетрахлорцинката рубидия в нанопористых матрицах оксида кремния и оксида алюминия2022 год, кандидат наук Стекленева Любовь Сергеевна
Введение диссертации (часть автореферата) на тему «Особенности термодинамики и кинетики вырожденных фаз в кристаллах»
Исследование фазовых переходов в кристаллах представляет собой одну из широко исследуемых проблем в физике твердого тела. Особое место в этих исследованиях занимают переходы с образованием вырожденных фаз, к числу которых относятся несоразмерные фазы в диэлектриках и магнетиках, решетки вихрей Абрикосова в сверхпроводниках второго рода, волны зарядовой плотности в металлических системах, спин-пайерлсовские фазы и т.д. Энергия этих систем не зависит от определенной обобщенной координаты, которой обычно является фаза модуляции некоторого параметра порядка (фаза несоразмерной волны смещений или упорядочения атомов в диэлектрике, фаза волны зарядовой плотности в сплаве и т.д.). Такое вырождение приводит к появлению дополнительных бесщелевых (голдстоуновских) мод в спектрах возбуждений, которые и определяют характерные особенности этих систем.
Исследованию переходов с образованием вырожденных фаз посвящено большое количество как экспериментальных, так и теоретических работ (см., например, обзоры и монографии [1-8]). Интерес к теории вырожденных фаз обусловлен, с одной стороны, фундаментальным характером проблемы фазовых переходов, с другой - значением этой теории для интерпретации разнообразных свойств сегнетоэлектриков, магнетиков, сверхпроводников и других систем.
К началу выполнения работ, вошедших в диссертацию, существовало достаточно хорошее понимание основных особенностей, характерных для вырожденных фаз и фазовых переходов с их образованием. Однако многие аспекты влияния на термодинамику и кинетику таких переходов характерного для твердого тела упругого (а часто и кулоновского) дальнодействия, включая эффекты взаимодействия флуктуаций параметра порядка с флуктуациями акустических степеней свободы, либо только начинали изучаться, либо вовсе еще не были рассмотрены к этому времени. Отчасти, такое положение дел объяснялось тем, что и в теории, описывающей "обычные" фазовые переходы (переходы между невырожденными фазами) в твердом теле, существовали определенные пробелы. Так, например, развитая довольно давно теория аномалий спин-решеточной релаксации, возникающих в кристаллах вблизи обычных фазовых переходов, представлялась неудовлетворительной, поскольку в ней использовалось, как правило, слишком упрощенное описание корреляционных функций параметра порядка [1, 138-142]. Аналогичные недостатки были присущи и анализу ультразвуковых аномалий [202-203].
Следует также отметить, что в ряде вопросов теории вырожденных систем, например, в вопросе о величине обусловленного флуктуациями фазы вклада в ультразвуковые аномалии, некоторые опубликованные результаты [212, 213] противоречили качественному пониманию характера взаимодействий в таких системах.
С другой стороны, ряд эффектов не рассматривался, по-видимому, ввиду казавшейся их малой значимости. Например, описание влияния упругого дальнодействия на термодинамику переходов несоразмерная - соразмерная фаза в диэлектриках явно было неполным, поскольку отсутствовал анализ эффектов, связанных с таким универсальным взаимодействием, как стрикционное [1]. В качестве другого примера здесь можно привести исследование индуцированного деформациями взаимодействия вихрей в сверхпроводниках второго рода. При расчете такого взаимодействия обычно использовалась упрощенная модель, в которой в качестве источников дилатации рассматривались только коры вихрей [110-112, 122-124], что, как оказалось, приводило к заниженной оценке величины взаимодействия. Кроме того, для анизотропного случая не анализировалась та часть упругого взаимодействия, которая связана с конечностью образца и обусловлена так называемыми силами изображения.
Наряду с этим, многие экспериментальные данные, полученные при исследовании вырожденных систем, не удавалось интерпретировать в рамках существовавших на тот момент представлений о свойствах идеальных вырожденных систем. Часто причиной такого несоответствия являлось наличие дефектов, приводящих к пиннингу солитонов и, как следствие, к появлению щели в голдстоуновской моде, размытию "lock-in" перехода и т.д. [1, 3, 6].
Однако последующие исследования специально очищенных кристаллов показали, что в них подобные эффекты могут оказываться несущественными. Так, например, щель фазонной моды в ряде экспериментов по магнитному резонансу оказывалась заведомо меньше ларморовских частот [176,177].
Очевидно, что прежде чем анализировать существовавшие несоответствия между теорией и экспериментами, необходимо было понять, каковы же собственно результаты теории идеальных вырожденных систем. При этом естественно было сначала исследовать более простые случаи, в которых системы испытывают "соразмерные" фазовые переходы, если рассматриваемые вопросы для них не были изучены с необходимой полнотой. Помимо самостоятельного интереса, результаты таких исследований полезны и при анализе вырожденных систем, в той его части, где речь идет об эффектах, связанных с изменением модуля параметра порядка. Как оказалось, во многих случаях результаты последовательной теории дают более сложное описание свойств идеальных вырожденных систем, чем это полагалось ранее, и вполне позволяют интерпретировать многие экспериментальные результаты для реальных систем. Именно исследование всех этих вопросов и представляет основное содержание диссертации.
Главным направлением диссертационной работы является развитие макроскопической теории фазовых переходов с образованием вырожденных систем в кристаллах и теории свойств собственно вырожденных систем. Основные новые результаты, полученные в рамках этого направления, изложены в работах [9-31]. Кратко их можно сформулировать следующим образом.
Рассмотрено индуцированное упругими стрикционными деформациями взаимодействие солитонов в несоразмерных фазах в кристаллах конечных размеров, а также аналогичное взаимодействие стенок в полидоменных кристаллах. Проведен анализ основных взаимодействий солитонов в несоразмерных фазах вблизи переходов в соразмерные фазы, включая взаимодействия, индуцированные дефектами. Уточнен характер аномалий термодинамических величин вблизи перехода несоразмерная - соразмерная фаза.
Приведено наиболее простое доказательство того факта, что критический индекс аномалии двупреломления, существующего в симметричной фазе, вблизи фазового перехода второго рода (в частности, вблизи перехода нормальная -несоразмерная фаза) является таким же, как и критический индекс энтропии. Уточнены результаты теории индуцированного упругими деформациями взаимодействия вихрей Абрикосова во всей области магнитных полей, где существует смешанное состояние. Развита последовательная теория аномалий скорости спин-решеточной релаксации вблизи точек структурных фазовых переходов, включая переходы из нормальной в несоразмерную фазу. Рассмотрены особенности низкочастотной фононной динамики и скорости спин-решеточной релаксации в несоразмерных фазах при низких температурах. Проанализирована форма линии ЯМР (ЯКР) в несоразмерной фазе вблизи точки перехода нормальная - несоразмерная фаза. В рамках последовательной теории возмущений проведен анализ ультразвуковых аномалий вблизи точек структурных фазовых переходов для случаев однокомпонентного и двухкомпонентного параметра порядка, а также для перехода в несоразмерную фазу. Выявлены качественные различия в характере этих аномалий для двух предельных случаев: переходов типа порядок - беспорядок и переходов типа смещения. Рассчитан вклад фазона в затухание звука. В рамках феноменологической теории исследована температурная эволюция приповерхностных искажений вблизи точек структурных фазовых переходов. Предложено феноменологическое описание аномалий макроскопического квадрупольного момента вблизи точек сегнетоэлектрических переходов. Рассмотрено влияние внешнего магнитного поля на структуру приповерхностного ветвления в ферромагнетиках.
Все перечисленные теоретические результаты получены автором. Основные идеи, изложенные в диссертации, обсуждались с А.П.Леванюком. Расчеты взаимодействия вихрей в сверхпроводниках для упругоизотропного случая проводились совместно с А. Кано. Автор выносит на защиту следующие основные положения:
I. Обобщенная теория влияния упругого дальнодействия на свойства несоразмерных фаз и термодинамику фазовых переходов несоразмерная соразмерная фаза.
1. Вывод о существенном вкладе стрикции во взаимодействие солитоновв несоразмерных фазах в диэлектриках и результат расчета этого взаимодействия.
2. Метод расчета индуцированного деформациями взаимодействия двумерных солитонов, образующих регулярную структуру в кристалле конечных размеров с произвольной анизотропией.
3. Анализ термодинамических аномалий при переходе первого рода несоразмерная - соразмерная фаза. В частности, результат о конечности диэлектрической восприимчивости в точке потери устойчивости несоразмерных сегнетоэлектрических фаз.
4. Вывод о том, что за реальные времена эксперимента отталкивание солитонов, обусловленное дефектами, не успевает распространиться на межсолитонные расстояния, и поэтому не должно сказываться на характере перехода несоразмерная - соразмерная фаза в кристаллах.
II. Развитие теории влияния упругого дальнодействия на взаимодействие вихрей
Абрикосова в сверхпроводниках второго рода с большим параметром
Гинзбурга - Ландау.
1. Утверждение о преобладающем вкладе "non-core" областей в индуцированное упругими деформациями взаимодействие вихрей Абрикосова в сверхпроводящем кристалле в магнитных полях, не слишком близких к верхнему критическому полю.
2. Результаты для величины взаимодействия образующих решетку вихрей в изотропной среде конечных размеров для полей, близких к нижнему и верхнему критическим, а также для промежуточных полей.
3. Выражение для расчета энергии индуцированного деформациями взаимодействия вихрей в кристалле конечных размеров с произвольной упругой анизотропией.
4. Вывод о том, что индуцированное упругими деформациями взаимодействие вихрей, образующих решетку в конечном кристалле, не зависит от его формы.
III. Доказательство равенства критических индексов энтропии и существующего в обеих фазах двупреломления на основе только гипотезы универсальности.
IV. Улучшенная теория аномалий скорости спин-решеточной релаксации (СРР) вблизи точек структурных фазовых переходов типа смещения для температур, выше дебаевских.
1. Вывод о сильной пространственной дисперсии низкочастотного затухания мягкой моды в несимметричной фазе в случае однокомпо-нентного параметра порядка.
2. Вывод о существенной разнице в низкочастотном затухании и пространственной дисперсии мод, отвечающих различным компонентам параметра порядка.
3. Результаты для температурных зависимостей скорости СРР в симметричной и несимметричной фазах в случаях сильной и слабой пространственной дисперсии мягкой моды вблизи фазового перехода с однокомпонентным параметром порядка.
4. Вывод о существенной разнице в величинах вкладов в скорость СРР, отвечающих различным компонентам параметра порядка.
5. Результат о логарифмической зависимости от ларморовской частоты вклада продольных флуктуаций в скорость СРР в несоразмерных фазах.
V. Теория низкотемпературной спин-решеточной релаксации в несоразмерных фазах.
1. Вывод о преобладающем вкладе прямых процессов в скорость низкотемпературной СРР, обусловленной поперечными флуктуациями, а также о линейной зависимости этого вклада от температуры и независимости от ларморовской частоты.
2. Результат о логарифмической расходимости на малых частотах и волновых векторах действительной части продольной функции отклика и формулу для ее мнимой части при низких температурах. 3. Вывод о преобладающем вкладе прямых процессов в скорость низкотемпературной СРР, обусловленной продольными флуктуациями, и кубической зависимости этого вклада от температуры.
VI. Теоретический анализ формы линии магнитного резонанса в несоразмерной фазе при линейной зависимости резонансных частот от параметра порядка.
VII. Последовательная теория возмущений для аномалий затухания звука вблизи точек структурных фазовых переходов, включая переходы в несоразмерную фазу.
1. Формулы для коэффициента затухания звука в несимметричной фазе для случая однокомпонентного параметра порядка.
2. Вывод о качественном отличии характера аномалий затухания звука вблизи точек фазовых переходов в системах типа порядок - беспорядок и системах типа смещения.
3. Результат для величины комплексного модуля упругости в несимметричной фазе в случае двухкомпонентного параметра порядка.
4. Формулу для фазонного вклада в затухание звука в несоразмерной фазе и вывод о малости этого вклада в общем случае.
VIII. Феноменологическая теория аномалий квадруполыюго момента, индуцированного приповерхностными искажениями структуры кристаллов вблизи точек сегнетоэлектрических фазовых переходов.
IX. Расчет структуры приповерхностного ветвления доменов в одноосном ферромагнетике во внешнем магнитном поле.
Перейдем к описанию основного содержания диссертации по главам.
В первой главе исследуется влияние упругого дальнодействия на термодинамические свойства вырожденных систем, представляющих собой регулярные структуры двумерных солитонов. Исследование проводится на примере структурных несоразмерных (1С) фаз в диэлектрических кристаллах. Для таких фаз характерной является пространственная модуляция некоторого структурного параметра порядка, который описывает понижение симметрии, отвечающее определенной соразмерной фазе [1, 2]. Обычно такая соразмерная фаза образуется в том же кристалле при более низких температурах в результате фазового перехода из 1С фазы. Для диэлектрических кристаллов с несоразмерными фазами особенности термодинамики переходов из симметричной (нормальной (К)) фазы в несоразмерную фазу уже были достаточно полно изучены ранее [1-3]. Поскольку все известные №1С переходы являются переходами второго рода, при описании 1С фазы вблизи такого перехода обычно используется одногармоническое приближение для распределения параметра порядка. В этом приближении эффекты упругого дальнодействия проявляются достаточно тривиальным образом: стрикционное взаимодействие вызывает в несоразмерной фазе однородные деформации, пропорциональные квадрату модуля параметра порядка. Результат такого взаимодействия сводится лишь к перенормировке амплитуды несоразмерной волны параметра порядка [48,68].
Ситуация при описании несоразмерных фаз в области, не слишком близкой к Ы-1С переходу, оказывается более сложной. В случае несоразмерных фаз типа II, когда инварианты Лифшица запрещены симметрией, необходимо учитывать по крайней мере несколько пространственных гармоник в распределении параметра порядка [39] и связь каждой из них с гармониками упругих деформаций [32]. При этом, как правило, 1С-С переход оказывается переходом первого рода и в недеформируемой среде [38-41]. Так что в этих случаях учет упругих степеней свободы не приводит к каким-либо качественным изменениям в характере перехода.
В случаях же несоразмерных фаз типа I, для которых наличие инварианта Лифшица определено симметрией кристалла, распределение параметра порядка вблизи 1С-С перехода оказывается возможным представить в виде регулярной последовательности доменных стенок (солитонов) [1]. В приближении постоянной амплитуды (модуля параметра порядка) и при отсутствии упругого дальнодействия такое распределение впервые было получено в [36]. Однако для выяснения характера 1С-С перехода в этом случае потребовалось более детальное исследование пространственного распределения параметра порядка в 1С фазе, которое было проведено гораздо позже [49, 50]. В результате было показано, что в системах без дальнодействия рассматриваемый переход является непрерывным.
Естественно, что вопрос о влиянии упругого дальнодействия на свойства 1С фаз типа I вблизи 1С-С перехода является еще более сложным. Исследованию этого вопроса был посвящен целый ряд работ, основной целью которых было выяснение характера 1С-С перехода. В результате были выявлены две основные причины, по которым 1С-С переход должен иметь скачкообразный характер: 1) взаимодействие параметра порядка со статическими упругими деформациями, которое описывается зависимостью от последних инварианта Лифшица [55, 57, 58]; 2) совместные эффекты дальнодействия и тепловых (или квантовых) флуктуаций [54].
Нами рассмотрен еще один тип взаимодействия - это стрикционное взаимодействие параметра порядка с упругими деформациями [10, 11]. Это взаимодействие является универсальным, т.е. существует безотносительно к тому, допускается или нет симметрией кристалла инвариант Лифшица в разложении плотности свободной энергии системы.
Вначале исследован более простой случай, когда регулярная структура солитонов представляет собой обычную полидоменную структуру, которая описывается однокомпонентным параметром порядка. Этот случай не только иллюстрирует все аспекты обусловленного стрикцией взаимодействия, но и позволяет понять отличие в величинах этого взаимодействия для 1С фаз различных типов, структуры которых могут также рассматриваться как регулярные последовательности соответствующих солитонов (доменных стенок).
Причина рассматриваемого взаимодействия доменных стенок в такой полидоменной структуре заключается в следующем. Изменение параметра порядка в стенке приводит, в силу стрикции, к появлению в ней упругой дилатации и, как следствие, к продольным (вдоль плоскости стенки) напряжениям, распространяющимся в глубь конечного кристалла. Взаимодействие этих напряжений с дилатацией соседних стенок и приводит к их взаимному притяжению. Величина дилатации, а значит, и притяжения, определяется величиной изменения квадрата параметра порядка в стенке. Упругая задача непосредственно решена для упругоизотропной среды конечных размеров, в которой полидоменная структура обладает периодом, много большим ширины стенки.
В несоразмерных фазах стрикционному взаимодействию отвечает связь деформаций со скалярным квадратом параметра порядка (квадратом амплитуды или, что тоже, модуля параметра порядка). В этом случае притяжение между солитонами индуцируется деформациями, возникающими за счет изменения модуля параметра порядка в области локализации солитонов. Наибольший интерес представляет случай 1С фаз типа I со слабой анизотропией, в которых, как было сказано выше, 1С-С переход должен был бы реализовываться как непрерывный в отсутствие дальнодействия. В таких 1С фазах величина изменения модуля параметра порядка в области локализации солитонов существенно меньше, чем в случаях однокомпонентного параметра порядка или несоразмерных фаз типа II. Поэтому, в принципе, расчет индуцированного деформациями взаимодействия солитонов в случае 1С фаз типа I необходимо проводить в рамках более точного приближения, чем так называемое приближение постоянной амплитуды (постоянного модуля), которое обычно используется при исследовании термодинамики таких фаз [1]. Возможно, именно это обстоятельство является одной из причин, по которой влияние стрикции на взаимодействие солитонов в 1С фазах ранее не рассматривалось.
Для расчета обусловленного стрикцией взаимодействия солитонов в вырожденных системах предложен новый метод, в котором существенную роль играет регулярность структуры солитонов. В этом случае, как показано, можно пренебречь приповерхностными искажениями деформаций и параметра порядка, а неоднородные изменения этих величин в объеме рассматривать как одномерные. В основе метода лежит анализ предельного случая, в котором конечная среда полагается упругоизотропной и имеющей бесконечный модуль сдвига. В этом предельном случае существует только однородная дилатация (и), которая может рассматриваться как некоторый вариационный параметр. Сначала должна быть вычислена свободная энергия при некотором фиксированном значении и, что формально эквивалентно решению задачи для системы без дальнодействия. Затем, величина энергии, а значит, и взаимодействия, вычисляется варьированием по параметру и. Для того чтобы найти величину взаимодействии для случая конечного модуля сдвига или для анизотропного случая, оказывается достаточным произвести соответствующие перенормировки коэффициентов, входящих в выражение для взаимодействия солитонов. Справедливость такой процедуры устанавливается из эквивалентности форм функционалов свободной энергии от параметра порядка, полученных в результате варьирования по упругим степеням свободы для рассматриваемых случаев.
Этим методом рассчитан стрикционный вклад во взаимодействие солитонов в 1С фазе типа I, характеризующейся одномерной модуляцией двух-компонентного параметра порядка и слабой анизотропией в пространстве компонент параметра порядка. Для общности рассмотрения наряду со стрикционным взаимодействием учитывается также зависимость инварианта Лифшица от деформации. При решении задачи с параметром и для предельного случая бесконечного модуля сдвига распределение параметра порядка и свободная энергия, как функция плотности солитонов (и деформации и ), могут быть представлены в виде рядов по степеням некоторого малого параметра анизотропии. В виде такого же ряда можно вычислять и деформацию и. При этом точность, с которой вычисляется деформация, путем минимизации свободной энергии в задаче с параметром, определяется точностью вычисления энергии. При расчете указанной энергии, а значит, и деформации, мы ограничились первым приближением по параметру анизотропии.
Соответственно, энергия взаимодействия вычислена в низшем приближении по этому параметру.
В Приложении А показано, что в 1С фазе обусловленная стрикционным эффектом деформация определяется изменением квадрата амплитуды параметра порядка в областях локализации солитонов, вычисленном в том же приближении, что и деформация. Такое соотношение отвечает условию равенства нулю средних напряжений, которое должно выполняться в каждом порядке теории возмущений по параметру анизотропии.
Используя результат для энергии системы в предельном случае бесконечного модуля сдвига и указанную выше процедуру перенормировок, получены выражения для энергии взаимодействия в случае конечного модуля сдвига и в случае анизотропных систем, к которым относятся несоразмерные фазы в кристаллах семейства селената калия.
Далее проведено сравнение указанных выше основных типов взаимодействий солитонов на больших расстояниях. Показано, что для большого числа систем типа смещения с не слишком малой анизотропией именно стрикционное взаимодействие оказывается более существенным по сравнению с взаимодействием, которое описывается линейной связью градиента фазы с деформацией или возникает за счет флуктуаций изгиба стенок.
На основе полученных результатов вычислены аномалии теплоемкости и диэлектрической восприимчивости вблизи 1С-С перехода первого рода. В частности, показано, что для сегнетоэлектрических 1С фаз в точке потери их устойчивости расходится только теплоемкость, а диэлектрическая проницаемость остается конечной.
Далее в этой главе рассматривается вопрос о том, каким образом наличие в кристалле дефектов может сказаться на характере 1С-С перехода, наблюдаемого в реальном эксперименте. Вообще говоря, вопрос о влиянии дефектов на свойства вырожденных систем является сложным, и не все его аспекты хорошо изучены к настоящему времени. Здесь исследован характер взаимодействия солитонов (доменных стенок) на расстояниях порядка и меньше периода 1С фазы в кристалле с точечными дефектами. Обычно считалось ([69-71]), что такие дефекты приводят к отталкиванию между стенками, которое возникает благодаря контакту соседних стенок при статических изгибах, обусловленных неоднородным распределением дефектов в объеме. В то же время на больших расстояниях (превышающих ширину стенки) между стенками существует притяжение, обусловленное упругим (а в сегнетоэлектриках - и кулоновскими) дальнодействием. Естественно, что характер перехода несоразмерная -соразмерная фаза зависит от того, какое взаимодействие является наиболее эффективным.
Нами показано, что индуцированное дефектами отталкивание в трехмерных структурных 1С системах не успевает реализоваться за реальные времена эксперимента [12]. Доказательство проведено на основе оценок характерных времен, которые требуются для активационного возникновения настолько больших изгибов, чтобы возникли столкновения соседних стенок. Именно наличие таких столкновений и означало бы реализацию рассматриваемого отталкивания. Времена активационного процесса в той или иной системе определяются энергиями характерных барьеров. В рассматриваемом случае предполагается, что величина характерного барьера того же порядка, что и энергия характерного изгиба, амплитуда которого близка к расстоянию между стенками.
Оценки характерных барьеров и соответствующих времен проведены для различных систем, таких как системы без дальнодействия, сегнетоэлектрические и сегнетоэластические 1С фазы с различным характером взаимодействия параметра порядка и деформаций или поляризации. Практически во всех рассмотренных случаях времена распространения рассматриваемого отталкивания оказываются слишком большими по сравнению с временами реальных экспериментов, что и означает фактическую неэффективность такого взаимодействия.
Сравнение полученных при исследовании 1С-С переходов соотношений для термодинамических величин с экспериментальными данными проведено для наиболее хорошо изученных кристаллов с несоразмерными фазами: К23е04 и ЯЬ2гпС14. При этом 1С-С переходы в кристаллах рассматриваются как размытые переходы первого рода, поскольку равновесные состояния таких систем не достигаются ввиду больших времен релаксации.
В последнем параграфе главы рассмотрен характер аномалий оптического двупреломления, которое допускается симметрией парафазы (исходной фазы) вблизи точек фазовых переходов, включая N-10 переходы. Важность этого вопроса термодинамики фазовых переходов определяется следующими обстоятельствами. С одной стороны, измерения двупреломления обладают высокой точностью и поэтому используются для определения критических индексов. Однако, с другой стороны, интерпретация экспериментальных данных часто основывалась на неверном предположении о том, что критический индекс аномалий двупреломления должен определяться величиной 2/?, где р -критический индекс среднего параметра порядка (см., например, [2, 89]). В то же время, существовавшие для области скейлинга вычисления критического индекса локального квадрата параметра порядка, которому и пропорциональна величина двупреломления, носили достаточно сложный характер. Однако оказалось возможным получить простое доказательство, использующее только гипотезу универсальности, того, что индекс локального квадрата параметра порядка равен 1 -а, где а - индекс теплоемкости [14]. Доказательство проведено путем сравнения аномалий энтропии и локального квадрата параметра порядка для частного случая, в котором те коэффициенты исходного гамильтониана (недоинтегрированного по флуктуациям параметра порядка), которые обычно полагаются константами, пропорциональны температуре (Г). В этом случае искомый результат получается наиболее очевидным образом при вычислении энтропии. В силу гипотезы универсальности этот результат должен быть справедливым и при иных температурных зависимостях коэффициентов исходного гамильтониана, т.е. в общем случае. Кроме того, в рамках теории возмущений вычислены аномалии двупреломления в области температур, не слишком близкой к точке перехода [14, 15]. Результаты приведены как для случая однокомпонентного, так и двухкомпонентного параметра порядка, описывающего переход в несоразмерную фазу. В конце параграфа кратко рассматривается экспериментальная ситуация.
Во второй главе исследуется влияние упругого дальнодействия на свойства вихрей Абрикосова в сверхпроводниках второго рода. Как известно [8], в кристалле вихри образуют двумерную решетку, которая вблизи нижнего критического поля представляет собой, фактически, регулярную структуру одномерных солитонов. В ранних работах [109-114] исследовалось влияние деформаций, индуцированных дефектами и вихрями, на пиннинг вихрей. Значительно позже интерес к этому вопросу возобновился в связи с исследованиями влияния упругого дальнодействия на ориентацию решетки вихрей относительно кристаллической решетки [123, 124].
При рассмотрении этих эффектов, как и вообще при исследовании термодинамики вихрей, выделяют две области, характеризующиеся близостью внешнего магнитного поля к верхнему критическому полю Нс2. В этих областях используются качественно различные приближения при описании распределения параметра порядка [8]. Вблизи Нс2 распределение модуля параметра порядка существенно неоднородно, фактически, на любых расстояниях от вихря. Для полей, не слишком близких к Нс2, в обычно используемом лондоновском приближении предполагается, что модуль параметра порядка изменяется только в области кора вихря (/?<£, где £ -корреляционный радиус). Поскольку изменение квадрата модуля параметра порядка описывает распределение источников деформаций, обусловленных стрикционным взаимодействием, то именно коры вихрей и рассматривались в качестве таких источников в области применимости лондоновского приближения. Одним из основных вопросов, который исследуется в данной главе, является изучение упругого дальнодействия в области полей Н « Нс2 с использованием более точного приближения, чем лондоновское [16]. В этом приближении учитывается изменение квадрата модуля параметра порядка не только в коре, но и в окружающей его ("non-core") области, ограниченной длиной экранирования Л (в сверхпроводниках с большим параметром Гинзбурга - Ландау Я »
Сначала вычислены деформации, индуцируемые изолированным вихрем на расстояниях, превышающих длину экранирования. Именно эти деформации и определяют взаимодействие вихрей в решетке, имеющей периоды, большие длины экранирования (т.е. вблизи нижнего критического поля). Показано, что за счет большой протяженности "non-core" области, ее вклад в деформации в 4 In л-раз больше вклада кора.
Далее вычислено взаимодействие вихрей в упругоизотропной среде конечных размеров. При вычислении использован описанный в предыдущей главе метод, основанный на анализе предельного случая, отвечающего бесконечному модулю сдвига. Этот метод позволил вычислить в рамках единой процедуры индуцированное деформациями взаимодействие вихрей во всей области существования смешанного состояния. Полученные результаты показывают, что основной вклад во взаимодействие вихрей в полях, не слишком близких к верхнему критическому, определяется именно "non-core" областями вихрей.
Проанализирован также случай среды с произвольной упругой анизотропией. Получено выражение для энергии взаимодействия вихрей, образующих решетку в кристалле конечных размеров. Энергия взаимодействия содержит два вклада: один, определяющий парное взаимодействие вихрей в бесконечном кристалле, и другой, обусловленный конечностью образца. Проведены оценки величины энергии взаимодействия вихрей, которые показывают, что и в анизотропном случае эта величина определяется вкладом "non-core" областей, по крайней мере для полей, далеких от верхнего критического поля. Кроме того, в противоположность более ранним утверждениям, показано, что взаимодействие вихрей в решетке не зависит от формы образца.
В последнем параграфе рассчитано взаимодействие вихрей вблизи верхнего критического поля в конечной среде с произвольной упругой анизотропией. Полученный результат показывает, что это взаимодействие существенно меньше, чем предполагалось ранее
В главе III проведено исследование аномалий, исследуемых методами ЯМР и ЯКР, вблизи структурных фазовых переходов. Вначале исследуются аномалии скорости спин-решеточной релаксации (скорости СРР) [18, 19]. Во введении приводится обобщение результатов, полученных в предшествующих исследованиях корреляционных функций параметра порядка. Далее эти результаты используются при вычислении аномалий СРР. Вычисления выполнены для случая переходов типа смещения, в котором теория возмущений позволяет учитывать ангармонизмы в широкой области температур.
При вычислении аномалий СРР вблизи фазового перехода с однокомпонентным параметром порядка подробно исследованы предельные случаи слабой и сильной дисперсии мягкой моды. Эти случаи отличаются величиной и температурной зависимостью низкочастотного затухания мягкой моды в симметричной фазе (в первом случае определяющим является взаимодействие с акустическими модами, во втором - собственный ангармонизм мягкой моды). Поскольку именно низкочастотное затухание мягкой моды определяет вклад прямых процессов в скорость СРР, эти вклады оказываются существенно различными как по величине, так и по температурной зависимости в рассматриваемых предельных случаях. Далее вычислен вклад двухфононных процессов и показано, что он существенно меньше однофононного.
Для несимметричной фазы проанализирован специфический вклад в затухание мягкой моды, обусловленный собственным ангармонизмом третьего порядка. При этом показано, что для определения соответствующего вклада в скорость СРР оказывается существенной дисперсия низкочастотного затухания в области волновых векторов, меньших обратного радиуса корреляции. Такая дисперсия ранее не отмечалась. Для случая слабой дисперсии мягкой моды вычисленный вклад оказывается того же порядка, что и вклад, обусловленный затуханием мягкой моды за счет энгармонизма четвертого порядка. Для случая сильной дисперсии мягкой моды этот вклад является определяющим в несимметричной фазе.
Аналогичный анализ, проведенный для случая двухкомпонентного параметра порядка, показал, что вклад различных компонент в скорость СРР должен различаться на величину порядка самих вкладов, поскольку таков же характер отличий в низкочастотных коэффициентах затухания мод, отвечающих этим компонентам. Этот вывод существенно отличается от того, к которому можно было бы прийти при использовании высокочастотных коэффициентов затухания, которые близки по величине в рассматриваемых модах.
Далее исследованы аномалии скорости СРР в несоразмерной фазе. Вклад фазона в скорость СРР был вычислен ранее [143]. Расчет же вклада амплитудонной моды (продольная релаксация) более сложен, поскольку в нем требуется учесть расходимость продольной восприимчивости, возникающей на малых волновых векторах и частотах за счет взаимодействия с фазонной модой [162]. Расчет произведен в рамках теории возмущений, которая формулируется в прямых корреляционных функциях, что позволяет избежать расходимостей в высоких по ангармонизмам порядках теории. Проведенные вычисления показывают, что вклад амплитудона содержит две части. Одна часть, обусловленная взаимодействием амплитудона с фазоном, логарифмически зависит от ларморовской частоты, но является малой по параметру теории возмущений относительно частотно-независящей части.
В следующих трех параграфах главы IV рассмотрена спин-решеточная релаксация в несоразмерных фазах при низких температурах, много меньших дебаевской температуры продольных колебаний, но больших температуры, соответствующей энергии кванта с ларморовской частотой [20]. В этой области температур аномалии скорости СРР уже наблюдались экспериментально (см., например, [186]), однако теория, учитывающая для 1С фазы специфику низких температур, отсутствовала.
Вначале проведены вычисления фазонного вклада в скорость СРР при низких температурах. Показано, что этот вклад определяется прямыми процессами, и, в отличие от высоких температур, не зависит от ларморовской частоты и пропорционален первой степени температуры (Г). Кроме того, он существенно превышает вклад акустических фононов, пропорциональный квадрату ларморовской частоты.
Далее приведено вычисление низкочастотного затухания фазонной моды при низких температурах, которое представляет самостоятельный интерес, но также необходимо для оценки характерной температуры перехода к высокотемпературному режиму, в котором появляется зависимость скорости СРР от ларморовской частоты. Вычисления основаны на теории возмущений для температурных функций Грина (Приложение Г). Основной вклад в это затухание дают четырехфононные процессы с участием фазонных возбуждений, а также процессы с непрямым взаимодействием фазонных возбуждений через амплитудонные [189]. Как показывают оценки, при низких температурах и частотах затухание фазона оказывается намного больше, чем затухание, отвечающее отклику оптических мод, но даже для тепловых фазонов оно меньше ларморовских частот вплоть до температур порядка единиц Кельвинов.
Затем вычисляется отвечающая продольным (амплитудонным) флуктуациям функция отклика (подробности вычислений приведены в Приложении Д), необходимая для расчета соответствующего вклада в скорость СРР. Полученный результат показывает, что расходимость действительной части продольной функции отклика на малых волновых векторах и частотах, возникающая за счет взаимодействия с поперечными (фазонными) флуктуациями, более слабая (логарифмическая), чем при высоких температурах. В тоже время мнимая часть этой функции отклика имеет расходимость ц~г. Проведенное вычисление амплитудонного вклада в скорость СРР показало, что он значительно меньше вклада фазона, пропорционален Тг и не зависит от ларморовской частоты.
В последнем параграфе исследована форма линии ЯМР (ЯКР) в несоразмерной фазе, характеризующейся гармонической волной модуляции. Как хорошо известно, в несоразмерной фазе линии резонанса становятся неоднородно уширенными и приобретают специфическую форму, которая отражает модуляцию пространственного распределения атомных позиций [1]. При этом тепловые флуктуации приводят к существенным изменениям формы линии. Большое число экспериментальных работ (см., например, [194-199]), в которых эти эффекты исследовались как в несоразмерных фазах, так и волнах зарядовой плотности, показали, что экспериментальные результаты не согласуются с теоретическими расчетами, предсказывавшими единственное изменение: сужение неоднородного уширения за счет обусловленного тепловыми флуюуациями уменьшения эффективной амплитуды модуляции локальных полей. Попытки объяснить это расхождение влиянием неконтролируемых примесей дали лишь некоторое качественное согласие с экспериментом. Однако последовательный расчет формы линии в чистом кристалле с 1С фазой фактически отсутствовал.
Нами проведен последовательный расчет формы линии магнитного резонанса в несоразмерной фазе вблизи N-10 перехода [22]. Расчет проведен в адиабатическом приближении для области температур, в которой выполняется условие применимости теории возмущений. При этом учитываются тепловые флуктуации как амплитудона, так и фазона. Форма линии дается сверткой статической (обусловленной статической несоразмерной модуляцией) и динамической (обусловленной флуюуациями амплитуды и фазы этой модуляции) форм в частотной области. В результате показано, что с точностью до масштабного преобразования форма линии зависит только от двух параметров, которые определяются отношением вкладов флуктуаций фазона и амплитудона в динамическое уширение локальных резонансов к величине неоднородного статического уширения линии. Оба параметра зависят от кинетических коэффициентов, определяющих затухание в соответствующих фононных ветвях. При этом оказалось, что тепловые флуктуации не только уменьшают ширину неоднородной линии, как это считалось ранее, но и приводят к качественному изменению полной формы линии: при приближении к точке N-10 перехода два боковых максимума, обусловленных неоднородным статическим распределением резонансных частот, сливаются в один в центре линии. В качестве примера использования полученных результатов приведено описание экспериментальных данных двумерного ЯМР в кристалле /?622иС/4.
Похожие диссертационные работы по специальности «Физика конденсированного состояния», 01.04.07 шифр ВАК
Диэлектрические свойства тетрахлорцинката рубидия в нанопористых матрицах оксида кремния и оксида алюминия2023 год, кандидат наук Стекленева Любовь Сергеевна
Топологические дефекты и солитоны в несоизмеримых магнитных и кристаллических структурах1999 год, доктор физико-математических наук Киселев, Владимир Валерьевич
Динамика солитонов в неоднородных конденсированных средах1984 год, доктор физико-математических наук Абдуллаев, Фатхулла Хабибуллаевич
Акустические и диэлектрические свойства в области фазовых переходов в кристаллах с полярной и структурной неустойчивостями1998 год, доктор физико-математических наук Балашова, Елена Владимировна
Акустика нематических жидких кристаллов1998 год, доктор физико-математических наук Кожевников, Евгений Николаевич
Список литературы диссертационного исследования доктор физико-математических наук Минюков, Сергей Александрович, 2005 год
1. Incommensurate Phases in Dielectrics. Edited by R. Blinc and A.P. Levanyuk// Amsterdam, North Holland. 1
2. Vols. 1, 2. 2. 3. A. Брус, P. Каули. Структурные фазовые переходы// Москва, «Мир». 1984. H.Z. Cummins. Experimental studies of structurally incommensurate crystal phases// Pys.Rep. (Review Section of Physics Letters). 1990. V. 185. P. 211-409. 4. Ю.А. Изюмов. Модулированные, или длиннонериодические, магаитные структуры кристаллов//УФН. 1984. Т. 144. 439-474.
3. Charge Density Waves in Solids. Modem Problems in condensed Matter Science Series. Edited by L.P. Gorkov and G. Gruner// Lausanne, Elsevier. 1989.
6. Etrillard, J. Even, M. Sougoti, S. Longeville, and B. Toudic. Elastic neutron scattering study of high order satellites in the incommensurate phase of bis (4-chlorophenyl) sulfone// Solid State Commun. 1993. V. 87. P. 47-51.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.